
XYZ Data Efficiency: Improving Deep Learning
Model Quality and Training Efficiency via Efficient

Data Sampling and Routing

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recent advances on deep learning models come at the price of formidable train-1

ing cost. The increasing model size is one of the root causes, but another less-2

emphasized fact is that data scale is actually increasing at a similar speed as model3

scale, and the training cost is proportional to both of them. Compared to the rapidly4

evolving model architecture, how to efficiently use the training data (especially5

for the expensive foundation model pretraining) is both less explored and difficult6

to realize due to the lack of a convenient framework that focus on data efficiency7

capabilities. To this end, we present XYZ Data Efficiency, a framework that8

makes better use of data, increases training efficiency, and improves model quality.9

Specifically, we propose and combine two data efficiency techniques: efficient data10

sampling via a general curriculum learning library, and efficient data routing via11

a novel random layerwise token dropping technique. For GPT-3 1.3B language12

model pretraining, our work achieves 12.5x less data/time/cost ($3.7K if rent on13

Azure), while still maintaining 95% of model quality compared to baseline with full14

data and cost ($46.3K). For GPT-3 1.3B and BERT-large pretraining, our work can15

also achieve the same model quality with up to 2x less data/time/cost, or achieve16

better model quality under same data/time/cost. XYZ Data Efficiency is easy to17

use and tune, enabling us to easily apply it and verify its benefit on additional tasks18

including GPT-3 MoE model pretraining and small-scale GPT-2/ViT finetuning.19

1 Introduction20

BERT
(2018)

GPT-2
(2019)

GPT-3
(2020)

BLOOM
(2022)

PaLM
(2022)

0
200
400
600
800

Bi
llio

n

Model Scale (Billion)
Data Scale (Billion)

Figure 1: Model scale (number of
parameters) and data scale (number
of consumed training tokens) of rep-
resentative language models in the
last 5 years [14, 46, 7, 45, 9].

Recently, large-scale deep learning models are empowering us21

to achieve more in many ways, such as code generation [17]22

and text-to-image generation [40, 41]. To keep improving23

the service quality, deep learning model architecture evolves24

rapidly, and the model size is also growing at a tremendous25

speed. The increasing model size leads to unprecedented26

training cost (especially for foundation model pretraining),27

which recently grows to 2 months on thousands of GPUs/T-28

PUs [47, 9]. On the other hand, a less-emphasized perspective29

is that data scale is actually increasing at a similar speed as30

model scale, and the training cost is proportional to both of them. As plotted in Fig. 1, for several31

representative language models in the last 5 years both the model and data scales increase at a similar32

speed. Recent works including Chinchilla [20] and PaLM 2 [18] emphasize the need of increasing33

data scale at an even faster speed. This demonstrates the importance of improving data efficiency:34

achieve same model quality with less data and reduced training cost, or achieve better model quality35

with the same amount of data and similar training cost.36

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

There are two popular research directions among existing data efficiency techniques: Data sampling37

techniques aim to improve the convergence speed by sampling the most suitable next data batch from38

the whole data pool; Data routing techniques aim to reduce the computation by routing each data to39

only a subset of the model components. These techniques improve data and training efficiency, but40

existing solutions have several limitations:41

• Techniques like curriculum learning improves data efficiency by indexing and sampling training42

data based on certain difficulty metric [3], and it is recently proved effective on large-scale43

pretraining tasks [29]. However, implementing different CL strategies for different user tasks can44

require a lot of code-refactoring, which is time-consuming and error-prone. In addition, existing45

implementations have less consideration on scalability, which makes it difficult to analyze and46

index large-scale training data based on different difficulty metrics.47

• Existing data routing techniques such as token drop/bypass/pruning were mostly designed for48

inference and inapplicable to training. TokenBypass [21], to our knowledge the only data routing49

technique for foundation model pretraining, skips the compute of part of the input tokens at some50

middle layers during BERT pretraining, reducing pretraining cost while maintaining model quality.51

However, it requires several special implementations that may only work for the tested BERT52

pretraining case, such as the importance score-based token dropping decisions and the whitelist for53

special tokens. This could limit the possibility and benefit of applying it to other cases.54

• Although promising data efficiency solutions have been proposed independently, combining multi-55

ple methods together for the best outcome is still a laborious process, requiring changes in multiple56

places in the training pipeline: data loader, data sampler, model architecture, etc. Another challenge57

is that existing techniques usually add additional hyperparameters but without a clear and low-cost58

tuning strategy.59

To address these above challenges, we present XYZ Data Efficiency, a framework that makes better60

use of data, increases training efficiency, and improves model quality. Specifically, XYZ Data61

Efficiency demonstrates the following contributions:62

• Efficient data sampling via general curriculum learning library. We present a general curricu-63

lum learning (CL) library that is both scalable and customizable: it includes a map-reduce based64

data analyzer that enables scalable analysis and indexing of massive data based on any possible65

CL metric; it includes a general CL-based data sampler and loader design for users to apply any66

customized CL strategies. Using this library, we are able to thoroughly explore different CL67

strategies for GPT-3 1.3B and BERT-large pretraining, and identify the best solution that provides68

better data and training efficiency than existing CL solution. This library (and the whole XYZ Data69

Efficiency framework) has been open sourced in a deep learning acceleration library (name hidden70

for anonymity) that is fully compatible with PyTorch. This will benefit the whole community as a71

useful tool to apply curriculum learning to their own training tasks.72

• Efficient data routing via random layerwise token dropping. We present a novel data routing73

technique called random layerwise token dropping (random-LTD) to skip the computation of a74

subset of the input tokens at all middle layers. Random-LTD employs a simple yet effective routing75

strategy and requires minimal model architecture change. It is very flexible to apply random-LTD76

to various tasks (GPT-3/GPT-3 MoE/BERT pretraining and GPT/ViT finetuning) which the SOTA77

technique (TokenBypass) does not explore or provides less improvement.78

• An easy to use/tune framework that maximizes data/training efficiency. XYZ Data Efficiency79

seamlessly composes the two proposed techniques, and only requires minimal changes on user80

side. To our knowledge, we are the first to demonstrate that composing data sampling and81

routing techniques can lead to even better data/training efficiency, especially for foundation model82

pretraining: For GPT-3 1.3B pretraining, Fig. 2 shows that our approach provides better model83

quality at all cost budgets, advancing the whole cost-quality Pareto frontier. In particular, we84

achieve up to 12.5x data/time/cost saving while still maintaining 95% of the model quality (zero-85

shot eval accuracy) compared to the baseline with full data, while baseline can only maintain86

91% of the model quality, a 1.8x higher quality degradation. Based on measured training time,87

12.5x would be a cost reduction from $46.3K to $3.7K if renting similar hardware on Azure [2],88

greatly democratizing research and usage of foundation models for AI community. For GPT-389

1.3B and BERT-large pretraining, we can also achieve up to 2x data and 2x time saving together90

with better or similar model quality as compared to the baseline training with full data, greatly91

surpassing state-of-the-art data efficiency solutions as summarized in Tab. 1. Both techniques92

under our framework are easy to use and tune, and we include a low-cost tuning strategy and93

a summarized usage guidelines. This enables us to easily apply proposed work and verify its94

2

Table 1: Comparing XYZ Data Efficiency with SOTAs.
Efficient Efficient Verified Key

data sampling data routing workloads achievements

Sequence length 1 specific N/A GPT-2/GPT-3 1.3x data/cost saving
warmup [29] CL metric pretraining with 100% model quality

TokenBypass N/A TokenBypass BERT 1.33x data/cost saving
[21] pretraining with 100% model quality

Proposed XYZ general CL random-LTD GPT-3/BERT/MoE 12.5x data/cost saving
Data Efficiency library support pretraining with 95% model quality

GPT-2/ViT 2x data/cost saving
finetuning with 100% model quality

1%
$463

2%
$925

4%
$1850

8%
$3.7K

16%
$7.4K

32%
$14.8K

50%
$23.1K

100%
$46.3K

Consumed data and cost (log scale)

80
85
90
95

100
105

M
od

el
 q

ua
lit

y
(%

)

Baseline
XYZ Data Efficiency

Figure 2: GPT-3 1.3B pretraining: rel-
ative model quality (baseline with full
data as 100% quality) under different
data consumption (1% to 100%) and
training cost (when renting on Azure).

benefits on additional workloads including GPT-3 Mixture-of-Experts (MoE) model pretraining95

and small-scale GPT-2/ViT model finetuning.96

2 Background and Related Works97

Data sampling. For deep learning, the most common data sampling method for minibatch stochastic98

gradient descent is uniform sampling, where at each step a batch of data is drawn uniformly at99

random from the whole training data. However, it’s potentially beneficial to focus on different kinds100

of data at different training stages. One example is the curriculum learning technique [3] which101

aims to improve training convergence speed by presenting relatively easier or simpler examples102

earlier during training. Building a curriculum learning solution usually requires two components:103

the difficulty metric (i.e., how to quantify the difficulty of each data sample) and the pacing function104

(i.e., how to decide the difficulty range when sampling next training data batch). In the NLP area,105

curriculum learning has been applied on small-scale one-stage tasks and downstream finetuning tasks,106

such as neural machine translation (NMT) [25, 6, 62, 36, 63] and natural language understanding107

(NLU) [42, 43, 48, 55]. There are also a few works that explore curriculum learning for language108

model pretraining [37, 61, 8, 29]. However, one common limitation among existing works is that109

there does not exist a scalable and customizable curriculum learning library, making it difficult to110

analyze large-scale data and explore custom difficulty metrics/pacing functions. One evidence is that111

most of the curriculum learning works for language model pretraining only focus on the sequence112

length metric due to the difficulty of exploring other metrics on the huge pretraining dataset.113

Data routing. In common deep learning training, the model is considered as a whole and all sampled114

data will be routed to all model components. However, it’s potentially beneficial to route each data115

sample to only a subset of model components, improving the training efficiency. One direction of116

efficient data routing is to add data bypassing/skipping capability to existing model architectures such117

as Transformer. Transformer [49] architecture is a stack of transformer layers, each of which has118

two main ingredients, i.e., the multi-head attention (MHA) and the feed-forward connection network119

(FFC). Suppose the transformer has l layers denoted as L1, . . . , Ll. Let Xi ∈ Rs×d be the output120

tensor of i−th transformer layer, and x0 be the input (after embedding) of the transformer. Here s is121

the sequence length and d is the hidden dimension.122

Several token dropping/bypassing/pruning techniques [24, 19, 23, 38, 53] were proposed for BERT123

inference to reduce the computational overhead, but they are not practical for training. In these124

works, if a token i (Xj,i) is decided to be dropped at layer j (Lj), the compute cost of this token125

through all remaining layers (Lk where k > j) is eliminated. As such, the sequence length si of126

the i-th layer’s input Xi−1 will be a non-increasing array, i.e., s0 ≥ s1 ... ≥ sl. However, such a127

configuration has been shown instability for adaptive token-dropping inference [23]. Therefore, [23]128

utilize the sandwich rule and distillation from [58] to stabilize training and boost accuracy. But these129

two methods also significantly increase the training cost. Thus, such techniques cannot be applied to130

speed up the pretraining procedure.131

Recently, TokenBypass [21] enabled token dropping for BERT pretraining. It uses several importance132

scores/metrics to determine the dropped tokens (token frequency and cumulative loss). It proposed133

two main mechanisms to overcome the training instability issue: (1) the sandwich token dropping134

rule, where the first (L1 to Li) and the last few BERT layers (Ll−j to Ll) capture all tokens (no token135

dropping) and only bypass s′ ≤ s tokens from Li to Ll−j middle layers. Particularly, the authors136

(only) test on the encoder transformer (12-layer BERTbase and 24-layer BERTlarge), and let i = l/2−1,137

j = 1, s′ = s/2. (2) special token treatment, where special tokens (e.g., [MASK], [CLS], [SEP])138

are never dropped. Compared to TokenBypass, our random-LTD (1) does not require importance139

score metric, special token treatment, or the sandwich token dropping rule, which dramatically140

3

reduces the manual design effort; (2) has been broadly tested on GPT-3/BERT pretraining tasks and141

GPT-2/ViT finetuning tasks, providing better data/training efficiency than TokenBypass.142

3 Design143

Figure 3: Design of the XYZ
Data Efficiency framework.

At high-level, the proposed XYZ Data Efficiency framework has two144

components as shown in Fig. 3: First we have efficient data sampling,145

where instead of the baseline’s random sampling, we aim to sample146

the most suitable next data batch from the whole data pool by a147

general curriculum learning (CL) library. Second we have efficient148

data routing, where instead of passing all input data to all model149

components, we aim to efficiently route each data through different150

components of model by leveraging the proposed random layerwise151

token dropping (random-LTD) technique. This section presents the152

design of the two techniques, how we compose them, together with153

a low-cost tuning strategy and a summarized usage guidelines.154

3.1 Efficient data sampling via curriculum learning155

To solve the limitations of existing CL solutions as described in156

previous sections, we design and implement a general curriculum157

learning library emphasizing the scalability and customizability. It158

consists of three components as shown in top part of Fig. 3. First we use a data analyzer to perform159

the offline CPU-only data analysis which indexes the whole data pool based on any difficulty metric,160

which could be the sequence length, the vocabulary rarity, or anything defined by user. This data161

analyzer employs a Map-Reduce scheme: During the Map stage, user provides a function that162

computes the desired difficulty metric, the raw training dataset, and other configurations such as163

number of CPU nodes and number of threads per node. Then the data analyzer will automatically164

splits the dataset based on number of workers, compute the difficulty values in a batched fashion, and165

write the results to two indexes: one index maps each data sample to its difficulty value, and another166

index maps each distinct difficulty value to the corresponding samples. During the Reduce stage,167

the data analyzer will merge the index files produced by all workers. This Map-Reduce scheme is168

necessary since the training data could be huge thus has to be distributed. For instance, we have 173169

million data samples (each with sequence length 2048) for GPT-3 pretraining and 2.5 billion data170

samples (each with sequence length ⩽ 512) for BERT pretraining. To reduce the memory overhead171

when analyzing the huge dataset, we write the index files as numpy memory-mapped files. Using this172

data analyzer we are able to efficiently analyze GPT-3 and BERT pretraining data based on various173

difficulty metrics. Using 40 CPU threads on a single node with AMD EPYC 7V12 64-Core Processor,174

we can finish the analysis on one metric within 3/80 hours for GPT-3/BERT data, respectively.175

Next, during training, the curriculum scheduler will determine the difficulty threshold for the current176

step based on a pacing function such as linear, rooted, or any strategy provided by user. Then the177

data sampler will sample the data with desired difficulty from the indexed data pool. To apply the178

proposed CL solution to a existing training pipeline, user just need to call an API and provide the raw179

training data, the difficulty metric index (computed in the offline analysis), and the pacing function180

configurations. Our framework will then provide a curriculum learing-based data loader that users181

can simply iterate at each step. Using our CL library for GPT-3/BERT pretraining, we are able to182

easily analyze and index the huge training data based on 7 difficulty metrics:183

• Truncation-based sequence length (seqtru), for GPT and BERT. This metric starts with shorter184

data samples and gradually increases the sequence length during training. To change the sequence185

length, this metric will truncate the sequences (from the end of sequence) while keeping the number186

of samples unchanged, thus the number of tokens will decrease. This metric is recently applied to187

GPT-2 and GPT-3 models and demonstrate decent training efficiency gains [29].188

• Reshape-based sequence length (seqres), for GPT. This metric is similar to seqtru metric, but189

instead of truncating we break the original sequences into segments based on the desired new190

sequence length. Thus we are essentially “reshaping” the input tensor into more samples and shorter191

lengths. This metric is proposed in MosaicML Composer as a variant of the seqtru metric [33],192

but their documentation does not describe which way provides better model quality. We don’t193

apply the seqres to BERT case because unlike GPT data where all tokens are valid, BERT input194

sequences only include two natural sentences thus each sequence has different “effective sequence195

length” and then padded to 512. If we simply “reshape” BERT sequences, some of the new short196

sequences may only contain padding tokens.197

4

• Reorder-based sequence length (seqreo), for BERT. This metric is similar to seqtru metric, but198

instead of truncating we adjust the sequence length by reordering the training data based on the199

“effective sequence length” in BERT training data sequences.200

• Vocabulary rarity (voc), for GPT and BERT. This metric was proposed in a CL work for neural201

machine translation [36]. It computes the product of the unigram probabilities for each sequence by202

−
∑N

k=1 log(p(wk)) where p(wk) is the vocabulary frequency (inside whole training data) of the203

kth word in the sequence. Lower value indicates that the sequence has more common vocabularies.204

• seqtru_voc, for GPT and BERT. seqres_voc, for GPT. seqreo_voc, for BERT. These 3 metrics205

are combinations of above metrics. For seqtru_voc and seqres_voc, we first reorder the training206

data based on voc metric, then apply seqtru or seqres as a kind of post-processing. For seqreo_voc,207

we treat it as a single new metric and index the data based on it.208

Besides the difficulty metrics, another set of CL hyperparameters is the pacing function: the start209

and end difficulty (ds and de), total number of CL steps (Tc), and the kind of pacing function (linear,210

sqrt, or users can plug in any customized function to the proposed framework). For seqtru and seqres211

metrics, we set the ds and de as value-based (e.g., ds = 80, de = 2048) since the possible values212

of these two metrics are continuous. For other metrics, we set ds and de as percentile-based (e.g.,213

ds = 1%, de = 100%) since the possible values of these metrics are discrete. For seqtru and seqres214

we use a linear pacing function (dt = ds+(de−ds)×min(t
Tc
, 1)) following the preivous work [29],215

while for seqreo and voc we use a sqrt pacing function (dt = ds + (de − ds) ×min((t
Tc
)0.5, 1)).216

This is because seqreo and voc will only sample from a subset of data pool before reaching the end217

difficulty, and previous work finds that in such case it’s beneficial to use a sqrt function to avoid218

sampling too much easy samples at the beginning [36]. Sec. 3.3 includes low-cost tuning strategy219

and usage guidelines for our CL solutions.220

3.2 Efficient data routing via random-LTD221

Layerwise Token Dropping. Existing token dropping methods for inference and training either222

permanently drop tokens from the compute graph at intermediate layers, or at least make some tokens223

fully skip a consecutive series of middle layers (Sec. 2). However, several works [50, 31, 51] have224

shown that MHA focuses on different tokens at different layer depths and the attention map aligns225

with the dependency relation most strongly in the middle of transformer architectures. Therefore,226

fully skipping middle layers like TokenBypass [21] may hinder the learnability/generalization of the227

architecture during pretraining/inference. We conjecture that this might be why multiple first/last228

layers need to disable token bypassing and the special token treatment is needed.229

In order to overcome this problem, we propose a layerwise token dropping (LTD) mechanism.230

Instead of fully bypassing same tokens over all middle layers, each transformer layer independently231

drops/retains its own set of tokens. In more detail, recall that the input of (i+ 1)-th layer (Li+1) is232

Xi ∈ Rs×d. Denote the dropped token index as Ji = {j1, j2, ..., jai
} and the kept token index as233

Ki = {k1, ..., kbi} such that ai+ bi = s. We have Ji ∪Ki = {1, 2, 3..., s} and Ji ∩Ki = ∅ for each234

layer. Meanwhile, for any two different layers Li1 and Li2 , Ji1 and Ji2 are independent, though the235

dropped ratios are the same. With this layerwise mechanism, each token rarely bypasses all middle236

layers. Thus, its dependency on other tokens can be captured by MHA.237

Random Token Dropping. Various importance score-based metrics are used to determine the token238

dropping criterion. Most of them can be categorized in attention score-based or loss/frequency-based239

metrics. However, both of them introduce challenges that make LTD less practical: For attention240

score-based metrics, the compute cost for LTD is too high since the metric has to be calculated241

for every layer; For loss/frequency-based metrics, the accumulated loss or frequency would not be242

changed within the same iteration, which leads the dropped token to be the same for different layers,243

breaking the desired LTD mechanism. Instead of importance score, we propose to use purely random244

token dropping assignment and prove its effectiveness in all our experiments. For each transformer245

layer, we randomly (uniformly) select a small batch of tokens to proceed with the compute and drop246

the rest. In more details, assume Mi ={mi(1), mi(2), ..., mi(s)} is a random shuffle of S ={1, 2,247

..., s}. Then the dropped token set is Ji ={mi(1), mi(2), ..., mi(ai)} for the input of Li+1.248

Random and Layerwise Token Dropping. Combining layerwise token dropping with random token249

dropping, we have our final random and layerwise token dropping method (random-LTD), which can250

efficiently apply token dropping for each individual layer and can capture the attention dependency251

of each token with other others in middle layers with high probability. As a result, our experiments252

on BERT pretraining confirm that random-LTD does not require and won’t benefit from special token253

treatment used by the TokenBypass work, further reducing the implementation complexity. Fig. 5254

5

1 if meth == "baseline":
2 hs = Layer(hs)
3 if meth == "random-LTD":
4 k_hs , d_hs = gather(hs)
5 k_hs = Layer(k_hs)
6 hs = combine(k_hs , d_hs)

Figure 4: random-LTD only requires a few
lines of code. hs, khs, and dhs means the
full input, kept input, and dropped input.
“gather”, “Layer”, “combine” means the func-
tions for random selection, transformer layer,
and order-preserved token combination.

Figure 5: Transformer layers for baseline and random-
LTD. The dash-line box is repeated by l − 2 times.

presents the comparison between standard baseline training and random-LTD. The pseudo-code255

is given in Fig. 4. For each layer, random-LTD randomly selects (function “gather”) a subset of256

the tokens and feeds (function “Layer”) them into the transformer layer. Afterward, we combine257

(function “combine”) the output of transformer layer with the dropped tokens to recover the full258

sequence length in a order-preserved manner. Thus, the next layer still receives the full sequence and259

can repeat this process. To apply random-LTD to an existing training pipeline, user just needs to260

provide the module class name that they want to apply random-LTD (e.g., a TransformerLayer class).261

Then XYZ Data Efficiency will wrap the module with a new module that includes token dropping262

capability, and drop some of the input tokens for this module during training.263

Layers without Token Dropping. While TokenBypass needs to keep half of the layers in full264

sequence length training, random-LTD has no such limitation. Thanks to its attention-capture feature,265

we can apply random-LTD to most of the transformer layers except the first and last layers, enabling266

further training efficiency gain. Our experiments show that keeping the first and last layers in full267

sequence length training usually leads to better performance since (1) the first layer directly connects268

to the embedding, and it can help refine the raw feature; (2) directly connected to the final prediction,269

the last layer provides a feature realignment for all tokens which could improve the model quality.270

Monotonic Sequence Length Growth. In order to reduce the gradient variance introduced by271

random-LTD, we gradually increase the kept sequence length throughout training with a linear272

schedule (referred to as MSLG). Thus random-LTD has two hyperparameters similar to CL: starting273

from a sequence length rs which denotes the size of kept token set Ki for each middle layer after274

dropping, random-LTD will gradually drop less tokens (following a linear function) and eventually275

stop dropping after Tr steps. Our experiments show that MSLG provides better model quality than276

constant drop schedule under similar data/compute savings. Sec. 3.3 includes low-cost tuning strategy277

and usage guidelines for random-LTD.278

3.3 Composing CL and random-LTD, tuning strategy, usage guidelines279

Table 2: CL and random-LTD usage guidelines.
Case Guidelines

GPT-3 CL: ds = 80/1% (seqtru/voc), Tc = 40% of baseline’s total steps
pretraining random-LTD: rs = 128, Tr = 70% of baseline’s total steps

BERT CL: ds = 128/5% (seqtru/voc), Tc = 50% of baseline’s total steps
pretraining random-LTD: rs = 128, Tr = 100% of baseline’s total steps

GPT-2 CL: ds = 32 (seqres), Tc = 70% of baseline’s total steps
finetuning random-LTD: rs = 128, Tr = 30% of baseline’s total steps

ViT finetuning random-LTD: rs = 32/66, Tr = 80% of baseline’s total steps

CL and random-LTD are complemen-280

tary: CL helps to sample the next data281

batch, and random-LTD helps to decide282

how to route each sampled data inside283

the model. XYZ Data Efficiency hides284

several complexities when composing285

the two techniques so that users can eas-286

ily enjoy the compound benefit. As one287

example, some CL metrics would affect288

the actual sample sequence length, thus289

inside our framework we make sure the random-LTD’s token dropping mechanism is aware of this,290

and also adjust the calculation of number of actual consumed tokens which are affected by both291

techniques. This token consumption calculation is also critical to the learning rate schedule: previous292

CL work [29] finds that if a CL technique reduces the number of tokens on certain steps, it is desirable293

to use a learning rate decay schedule based on consumed tokens instead of consumed steps. This294

is because if baseline and CL use the same step-wise LR decay, it leads to much faster token-wise295

LR decay for CL which hurts model quality. In this work, we apply the token-based LR decay296

schedule for both CL and random-LTD. To our knowledge this is the first work to apply such LR297

schedule to token dropping/data routing techniques, and our experiments show that it does help298

improving random-LTD’s performance. Our CL library’s general data analyzer/sampler/loader and299

random-LTD’s module wrapping design makes it easy to apply our framework to different model300

6

training tasks. And the overall composibility of XYZ Data Efficiency enables us to leverage both301

data efficiency techniques and achieve even better data and training efficiency (Sec. 4).302

Tuning Strategy and Usage Guidelines. Both CL and random-LTD only have two parameters that303

need user tuning: the starting CL difficulty/random-LTD seqlen (ds/rs), and the total CL/random-LTD304

steps (Tc/Tr). 1 And for both CL and random-LTD we find that it’s possible to apply a low-cost305

tuning strategy proposed in previous CL work [29], where we perform binary search on a very small306

portion (e.g., 2%) of training to find the smallest ds/rs and largest Tc/Tr that don’t trigger substantial307

validation loss fluctuations (“whether the perplexity value becomes larger than 1.3x of the previous308

best perplexity”). For GPT-2 finetuning, given the low training cost we also perform full training of309

16 different CL/random-LTD settings which confirm that (1) the low-cost tuning strategy is able to310

find very good hyperparameters; (2) both CL and random-LTD are not sensitive to hyperparameter311

choices. Tab. 2 summarizes the usage guidelines based on our tuning results, which we believe can be312

directly applied to any similar models (at least as a very good starting point for any further tuning).313

4 Evaluation314

We evaluate XYZ Data Efficiency by GPT-3/GPT-3 MoE/BERT pretraining and GPT-2/ViT finetuning.315

Appendix A.5 includes studies of the TokenBypass method on GPT finetuning and pretraining, further316

demonstrating the advantages of the proposed random-LTD method.317

4.1 GPT-3 and GPT-3 MoE pretraining318

We use the Pile public dataset [16] to perform the pretraining of GPT-3 1.3B [7] (24 layers, 2048319

hidden size, 16 attention heads) model. We also pretrain a GPT-3 Mixture-of-Experts (MoE) 6.7B320

model (24 layers, 1024 hidden size, 16 attention heads, 64 experts on every other layer) following321

related work [39]. We then perform 0-shot and 10-shot evaluations on 19 tasks to evaluate the model322

quality of the pretrained models. Detailed experimental setup is described in Appendix A.1.323

Among the 5 CL difficulty metrics we have for GPT-3 model, to find out which metric provides the324

best model quality we pretrain the model (with 100% data) 5 times (each with 1 CL metric). For325

seqtru metric (to our knowledge the only metric previously applied to GPT-3 pretraining), we tune326

the CL hyperparameters ds and Tc based on the tuning strategy proposed in previous work [29].327

Then for other metrics we use the same hyperparameters without retuning for fair comparison. As328

presented in Tab. 3 case 1 to 6, results show that all 5 CL metrics provide better model quality than329

baseline (except (4)CL_voc’s 0-shot accuracy), and the (5)CL_seqtru_voc provides the best quality.330

The extensibility of our general CL library enables us to easily apply different CL metrics to this331

large-scale model pretraining with huge training data, and identify a new CL metric that provides332

better model quality than existing solution (2)CL_seqtru. Next we pretrain the model with 67%333

data, comparing the baseline and the best CL metric we find. Results show that the average 0-shot334

evaluation accuracy drops from 42.5 to 41.9 when baseline use less data (Tab. 3 case 1, 9). On the335

other hand, our CL solution (case 10) with 67% data is able to achieve better 0-shot and 10-shot336

accuracy than baseline with 100% data, achieving a 1.5x data and time saving.337

When applying the proposed random-LTD technique, results show similar benefit as CL: better model338

quality when using 100% data (Tab. 3 case 7), and 1.5x data/time saving while maintaining model339

quality (case 11). To explore whether composing CL and random-LTD could achieve even better data340

and training efficiency, first we pretrain the model with both techniques under 100% training data.341

Results (case 5, 7, 8) show that using both techniques together further improves the model quality,342

demonstrating the benefit of composability by our framework. Next we pretrain the model with 50%343

data. Results (case 12 to 15) show that the baseline has worse 0-shot and 10-shot evaluation accuracy344

under 2x less data. Using CL or random-LTD can only recover part of the accuracy loss. On the other345

hand, the composed data efficiency solution is able to achieve the same or better accuracy results as346

baseline with 100% data, demonstrating a 2x data and 2x time saving.347

To better understand how the proposed approach influences the model convergence, Fig. 6 plots the348

token-wise validation perplexity during pretraining. At the beginning of the training the proposed349

approach has slower convergence since we focus on easier/simpler data samples (CL) and drop more350

tokens (random-LTD) at the beginning. On the other hand, at the later stage of training the proposed351

approach is able to provide faster convergence speed than baseline. Our approach with 50% data352

is able to achieve similar final validation perplexity as baseline with 100% data (while baseline353

with 50% data cannot). Our approach with 100% data is able to achieve even better final validation354

perplexity which leads to the highest model quality.355

1For CL, the ending difficulty de is always the highest possible difficulty

7

Table 3: GPT-3 1.3B (case 1 to 15) and GPT-3 MoE
6.7B (case 16, 17) pretraining cost and average evalua-
tion accuracy on 19 tasks. GPT-3 MoE only has 0-shot
accuracy due to time constraints. Accuracy results for
each single task can be found in Appendix A.1

CL/ Data Time Avg Avg
random-LTD (billon (hours on 0-shot 10-shot

Case hyperparameter tokens) 64 V100) accuracy accuracy

(1)baseline N/A 300 (1x) 260 (1x) 42.5 44.0
(2)CL_seqtru ds = 80, Tc = 110K 300 (1x) 257 (1.01x) 43.4 44.8
(3)CL_seqres ds = 80, Tc = 110K 300 (1x) 248 (1.05x) 43.0 44.5
(4)CL_voc ds = 1%, Tc = 110K 300 (1x) 257 (1.01x) 42.3 44.5
(5)CL_seqtru_voc same as (2) + (4) 300 (1x) 259 (1.00x) 43.6 44.9
(6)CL_seqres_voc same as (3) + (4) 300 (1x) 248 (1.05x) 43.0 44.4
(7)random-LTD rs = 128, Tr = 200K 300 (1x) 263 (0.99x) 43.7 44.9
(8)CL_seqtru_voc same as (5) + (7) 300 (1x) 260 (1.00x) 43.8 45.1
+random-LTD

(9)baseline N/A 200 (1.5x) 174 (1.49x) 41.9 44.0
(10)CL_seqtru_voc seqtru: ds = 80, Tc = 73K 200 (1.5x) 171 (1.52x) 42.7 44.5

voc: ds = 1%, Tc = 73K
(11)random-LTD rs = 128, Tr = 133K 200 (1.5x) 176 (1.48x) 43.1 44.8

(12)baseline N/A 150 (2x) 130 (2.00x) 42.0 42.7
(13)CL_seqtru_voc seqtru: ds = 80, Tc = 55K 150 (2x) 129 (2.02x) 42.6 43.7

voc: ds = 1%, Tc = 55K
(14)random-LTD rs = 128, Tr = 100K 150 (2x) 131 (1.98x) 42.7 43.5
(15)CL_seqtru_voc same as (13) + (14) 150 (2x) 130 (2.00x) 42.8 44.0
+random-LTD

(16)baseline N/A 300 (1x) 111 (1x) 42.8
(17)CL_seqtru_voc same as (5) + (7) but with 300 (1x) 111 (1.00x) 43.5
+random-LTD 2x Tc and Tr due to batch size

(a) Begining 10% of training

0 7.5B 15B 22.5B 30B
Tokens

0
20
40
60
80

100

Va
lid

at
io

n
PP

L Baseline 300B tokens
CL+rLTD 300B tokens
Baseline 150B tokens
CL+rLTD 150B tokens

(b) End of training

0 75B 150B 225B 300B
Tokens

5.505.756.006.256.506.757.007.257.50

Va
lid

at
io

n
PP

L

Figure 6: Validation perplexity during
GPT-3 1.3B pretraining, comparing the
baseline and the best XYZ Data Effi-
ciency solution under 100% and 50%
training data.

As presented in Sec. 1 and Fig. 2, we also compare baseline and proposed work when using even less356

data during GPT-3 pretraining (Detailed accuracy results can be found in Appendix A.1). Results357

show that our approach provides better model quality at all cost budgets, advancing the whole358

cost-quality Pareto frontier. In particular, we achieve up to 12.5x data/time/cost saving while still359

maintaining 95% of the model quality (zero-shot eval accuracy) compared to the baseline with full360

data. Based on measured training time, this would be a cost reduction from $46.3K to $3.7K if renting361

similar hardware on Azure [2], greatly democratizing research and usage of foundation models.362

Recent work shows that applying Mixture-of-Experts (MoE) to GPT-style model pretraining could363

lead to better training efficiency while reaching similar model quality [39]. Thus we also pretrain a364

GPT-3 MoE 6.7B model (350M base model, together with 64 experts on every other layer) to compare365

baseline and proposed work. Results show that MoE model does achieve similar model quality with366

less training cost (Tab. 3 case 1, 16). On the other hand, our approach can further improve MoE367

model’s model quality (case 17), confirming its broad applicability.368

4.2 BERT-large pretraining369

We use the Pile public dataset [16] to perform the pretraining of BERT-large [14] (24 layers, 1024370

hidden size, 16 attention heads) model. We then perform GLUE finetuning to evaluate the model371

quality of the pretrained models. Detailed experimental setup is described in Appendix A.2.372

Similar to the GPT-3 case, for CL we first investigate which metric (among 5 metrics we have for373

BERT model) provides the best model quality by pretraining the model (with 100% data) 5 times.374

Tab. 4 case 1 to 6 results show that 4 CL metrics provide better model quality than baseline, and375

the (5)CL_seqtru_voc provides the best quality. Next we pretrain with 67% data, comparing the376

baseline and our best CL metric. Results show that the GLUE score drops from 87.29 to 87.19 when377

baseline use less data (case 1, 9). On the other hand, our CL solution (case 10) with 67% data is able378

to achieve on-par GLUE score as baseline with 100% data, achieving a 1.5x data and time saving.379

Tab. 4 case 7, 11, 14 present the case when applying random-LTD only. In terms of data saving380

random-LTD performs better than CL: it is able to achieve better GLUE score even with 2x less data381

than baseline (case 14), greatly surpassing the 1.33x data saving by the state-of-the-art TokenBypass382

method. However, the time saving is less than data saving because the token dropping mechanism383

adds a computation overhead at each step. Because the BERT-large is a smaller model than GPT-3384

1.3B, this fixed latency overhead has a larger relative impact to the training time. However, even with385

this overhead random-LTD is still a more data/time-efficient solution than baseline/TokenBypass.386

Tab. 4 case 8 and 15 present the case when applying both CL and random-LTD. At 50% data, the387

composed solution further improves the GLUE score from the CL/random-LTD-only cases (case 15),388

achieving a 2x data and 1.8x time saving while maintaining the GLUE score compared to baseline.389

8

Table 4: BERT-large pretraining cost and GLUE fine-
tuning score (median±std, details in Appendix A.2).

CL/ Data Time GLUE
random-LTD (billon (hours on finetune

Case hyperparameter tokens) 64 V100) score

(1)baseline N/A 1049 (1x) 261 (1x) 87.29±0.53
(2)CL_seqtru ds = 128, Tc = 960K 1049 (1x) 265 (0.98x) 87.31±0.57
(3)CL_seqreo ds = 5%, Tc = 960K 1049 (1x) 261 (1.00x) 87.48±0.61
(4)CL_voc ds = 5%, Tc = 960K 1049 (1x) 261 (1.00x) 87.36±0.64
(5)CL_seqtru_voc same as (2) + (4) 1049 (1x) 266 (0.98x) 87.60±0.34
(6)CL_seqreo_voc same as (3) + (4) 1049 (1x) 262 (1.00x) 87.06±0.52
(7)random-LTD rs = 128, Tr = 2M 1049 (1x) 302 (0.86x) 88.17±0.48
(8)CL_seqtru_voc same as (5) + (7) 1049 (1x) 290 (0.90x) 87.69±0.32
+random-LTD

(9)baseline N/A 703 (1.5x) 175 (1.49x) 87.19±0.49
(10)CL_seqtru_voc seqtru: ds = 128, Tc = 640K 703 (1.5x) 178 (1.47x) 87.29±0.62

voc: ds = 5%, Tc = 640K
(11)random-LTD rs = 128, Tr = 1.34M 703 (1.5x) 201 (1.3x) 87.99±0.38

(12)baseline N/A 524 (2x) 131 (1.99x) 86.61±0.5
(13)CL_seqtru_voc seqtru: ds = 128, Tc = 480K 524 (2x) 133 (1.96x) 86.9±0.33

voc: ds = 5%, Tc = 480K
(14)random-LTD rs = 128, Tr = 1M 524 (2x) 150 (1.74x) 87.32±0.48
(15)CL_seqtru_voc same as (13) + (14) 524 (2x) 144 (1.81x) 87.44±0.46
+random-LTD

Table 5: GPT-2 finetuning on PTB results.
Best PPL Num. combinations PPL median/std

Case at seed 1234 surpass baseline over 5 seeds

(1)baseline 16.077 N/A 16.077±0.028
(2)CL_seqtru 15.888 9 out of 16
(3)CL_seqres 15.795 16 out of 16 15.818±0.032
(4)CL_voc 16.031 4 out of 16
(5)CL_seqtru_voc 16.005 3 out of 16
(6)CL_seqres_voc 15.981 8 out of 16
(7)random-LTD 15.910 16 out of 16 15.948±0.040
(8)CL_seqres 15.831 N/A 15.831±0.014
+random-LTD

Table 6: ViT finetuning results.
CIFAR datasets on 24-layer ViT

Data saving Top-1 (CIFAR100) Top-1 (CIFAR10)

baseline N/A 93.93±0.30 99.32±0.05
random-LTD 1.4x 94.02±0.40 99.30±0.03

ImageNet datasets on 12-layer ViT
Data saving Top-1 Top-5

baseline N/A 84.65±0.04 97.41±0.02
random-LTD 1.3x 84.70±0.04 97.48±0.02

Another thing to note is that this case also has more time saving than the random-LTD-only case.390

This is because CL will first truncate the sequences before random-LTD perform the random token391

selection, and the shorter sequences reduces random-LTD’s computation overhead. At 100% data,392

the composed solution (case 8) improves the GLUE score from the CL-only case, but is worse than393

the random-LTD-only case. One hypothesis is that for BERT pretraining when composing the two394

techniques it’s preferable to reduce the CL duration, but exhaustively testing all hyperparameters is395

out of our resource budget and this work’s scope.396

4.3 GPT-2 and ViT finetuning397

To verify the effectiveness of the proposed work on small-scale tasks, we apply our techniques to PTB398

finetuning task [30] for an already-pretrained GPT-2350M model checkpoint from Huggingface. Given399

the much smaller training cost, we focus on improving the model quality under the same amount of400

data. Detailed experimental setup and hyperparameter tuning are described in Appendix A.3. As401

shown in Tab. 5, seqres provides the best model quality among the 5 CL metrics (case 3), unlike the402

two pretraining tasks where the seqtru_voc is the best metric. This is because this finetuning task has403

much smaller batch size and number of tokens per batch. seqtru will reduce number of tokens per404

batch, which is less desirable under small-batch training. The small batch also prevents the voc metric405

to include sufficient number of samples with different vocabulary rarity, limiting its benefit. Applying406

random-LTD also improves the model quality (case 7). Both CL best metric and random-LTD are407

able to surpass baseline on all 16 combinations of their hyperparameters, demonstrating that they are408

not sensitive to the hyperparameter choices. At last we try another 4 seeds for the baseline, CL best409

metric, random-LTD, and the CL+random-LTD case. The composed CL+random-LTD case (case410

8) further improves model quality from random-LTD-only case, but is only on-par with CL-only411

case. One hypothesis is that for tasks with such small-scale training data, it’s less possible to further412

improve model quality by composing multiple data efficiency techniques.413

We also try finetune the vision transformer (ViT) on both ImageNet (with a 12-layer pretrained414

ViT) and CIFAR (with a 24-layer pretrained ViT). Due to time/resource limitation, we only test415

random-LTD for this task. Detailed experimental setup is described in Appendix A.4. As presented416

in Tab. 6, results show that random-LTD is able to achieve 1.3-1.4x data savings while maintaining417

the model quality, demonstrating its broad applicability.418

5 Conclusion419

Unlike model scale which could reduce in the future with novel architecture, the amount of available420

training data will increase continuously and irreversibly. Language model pretraining is one of the421

first to reach a data scale that even training one full epoch is difficult, but sooner or later all machine422

learning tasks will face the same data efficiency challenge. In this work we propose the XYZ Data423

Efficiency framework, which demonstrate the power of composing 2 novel data efficiency techniques424

together. This enables us to achieve an up 12.5x data/time/cost saving (from $46.3K to $3.7K on425

Azure) while maintaining 95% of model quality for GPT-3 pretraining, an up to 2x saving for GPT-3426

and BERT pretraining while maintaining 100% model quality, or to achieve even better model quality427

under similar data and cost. XYZ Data Efficiency is easy to use and tune, which enables us to apply428

it and verify the benefit on additional GPT-3 MoE pretraining and GPT-2/ViT finetuning tasks.429

9

References430

[1] Ardavan Afshar, Ioakeim Perros, Evangelos E Papalexakis, Elizabeth Searles, Joyce Ho, and431

Jimeng Sun. Copa: Constrained parafac2 for sparse & large datasets. In Proceedings of the 27th432

ACM International Conference on Information and Knowledge Management, pages 793–802,433

2018.434

[2] Microsoft Azure. Pricing calculator. https://azure.microsoft.com/en-us/pricing/435

calculator/, 2023.436

[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.437

In Proceedings of the 26th annual international conference on machine learning, pages 41–48,438

2009.439

[4] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase440

from question-answer pairs. In Proceedings of the 2013 conference on empirical methods in441

natural language processing, pages 1533–1544, 2013.442

[5] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about phys-443

ical commonsense in natural language. In Proceedings of the AAAI conference on artificial444

intelligence, pages 7432–7439, 2020.445

[6] Ondřej Bojar, Jindřich Helcl, Tom Kocmi, Jindřich Libovickỳ, and Tomáš Musil. Results of the446

wmt17 neural mt training task. In Proceedings of the second conference on machine translation,447

pages 525–533, 2017.448

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,449

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel450

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,451

Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott452

Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya453

Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle,454

M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information455

Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc., 2020.456

[8] Daniel Campos. Curriculum learning for language modeling. arXiv preprint arXiv:2108.02170,457

2021.458

[9] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam459

Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:460

Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.461

[10] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and462

Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions.463

arXiv preprint arXiv:1905.10044, 2019.464

[11] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,465

and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning466

challenge. arXiv preprint arXiv:1803.05457, 2018.467

[12] Ido Dagan, Dan Roth, Mark Sammons, and Fabio Massimo Zanzotto. Recognizing textual468

entailment: Models and applications. Synthesis Lectures on Human Language Technologies,469

6(4):1–220, 2013.470

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-471

scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern472

recognition, pages 248–255. Ieee, 2009.473

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of474

deep bidirectional transformers for language understanding. In NAACL-HLT, 2019.475

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,476

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,477

Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image478

recognition at scale. In International Conference on Learning Representations, 2021.479

10

https://azure.microsoft.com/en-us/pricing/calculator/
https://azure.microsoft.com/en-us/pricing/calculator/
https://azure.microsoft.com/en-us/pricing/calculator/

[16] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason480

Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse481

text for language modeling. arXiv preprint arXiv:2101.00027, 2020.482

[17] GitHub. Github copilot. https://github.com/features/copilot/, 2021.483

[18] Google. Palm 2 technical report. https://ai.google/static/documents/484

palm2techreport.pdf, 2023.485

[19] Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan Chakaravarthy, Yogish486

Sabharwal, and Ashish Verma. Power-bert: Accelerating bert inference via progressive word-487

vector elimination. In International Conference on Machine Learning, pages 3690–3699.488

PMLR, 2020.489

[20] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza490

Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.491

Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.492

[21] Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin Wu, Xinying Song, Xiaodan Song, and493

Denny Zhou. Token dropping for efficient BERT pretraining. In Proceedings of the 60th Annual494

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages495

3774–3784, Dublin, Ireland, May 2022. Association for Computational Linguistics.496

[22] Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large497

scale distantly supervised challenge dataset for reading comprehension. arXiv preprint498

arXiv:1705.03551, 2017.499

[23] Gyuwan Kim and Kyunghyun Cho. Length-adaptive transformer: Train once with length drop,500

use anytime with search. arXiv preprint arXiv:2010.07003, 2020.501

[24] Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Woosuk Kwon, Joseph Hassoun,502

and Kurt Keutzer. Learned token pruning for transformers. arXiv preprint arXiv:2107.00910,503

2021.504

[25] Tom Kocmi and Ondřej Bojar. Curriculum learning and minibatch bucketing in neural machine505

translation. In Proceedings of the International Conference Recent Advances in Natural506

Language Processing, RANLP 2017, pages 379–386, 2017.507

[26] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.508

2009.509

[27] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale510

reading comprehension dataset from examinations. arXiv preprint arXiv:1704.04683, 2017.511

[28] Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge.512

In Thirteenth International Conference on the Principles of Knowledge Representation and513

Reasoning. Citeseer, 2012.514

[29] Conglong Li, Minjia Zhang, and Yuxiong He. The stability-efficiency dilemma: Investigating515

sequence length warmup for training gpt models. In Advances in Neural Information Processing516

Systems, 2022.517

[30] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large518

annotated corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330,519

1993.520

[31] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one?521

Advances in neural information processing systems, 32, 2019.522

[32] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct523

electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,524

2018.525

[33] MosaicML. Sequence length warmup, mosaicml composer. https://docs.mosaicml.com/526

en/v0.11.1/method_cards/seq_length_warmup.html, 2022.527

11

https://github.com/features/copilot/
https://ai.google/static/documents/palm2techreport.pdf
https://ai.google/static/documents/palm2techreport.pdf
https://ai.google/static/documents/palm2techreport.pdf
https://docs.mosaicml.com/en/v0.11.1/method_cards/seq_length_warmup.html
https://docs.mosaicml.com/en/v0.11.1/method_cards/seq_length_warmup.html
https://docs.mosaicml.com/en/v0.11.1/method_cards/seq_length_warmup.html

[34] Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela.528

Adversarial nli: A new benchmark for natural language understanding. arXiv preprint529

arXiv:1910.14599, 2019.530

[35] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,531

Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:532

Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.533

[36] Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabás Póczos, and Tom M534

Mitchell. Competence-based curriculum learning for neural machine translation. In NAACL-535

HLT, 2019.536

[37] Ofir Press, Noah A Smith, and Mike Lewis. Shortformer: Better language modeling using537

shorter inputs. arXiv preprint arXiv:2012.15832, 2020.538

[38] Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases539

enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.540

[39] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi,541

Ammar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-542

experts inference and training to power next-generation ai scale. In International Conference543

on Machine Learning, pages 18332–18346. PMLR, 2022.544

[40] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical545

text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.546

[41] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-547

resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF548

Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.549

[42] Mrinmaya Sachan and Eric Xing. Easy questions first? a case study on curriculum learning550

for question answering. In Proceedings of the 54th Annual Meeting of the Association for551

Computational Linguistics (Volume 1: Long Papers), pages 453–463, 2016.552

[43] Mrinmaya Sachan and Eric Xing. Self-training for jointly learning to ask and answer questions.553

In Proceedings of the 2018 Conference of the North American Chapter of the Association for554

Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages555

629–640, 2018.556

[44] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An557

adversarial winograd schema challenge at scale. In Proceedings of the AAAI Conference on558

Artificial Intelligence, volume 34, pages 8732–8740, 2020.559

[45] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow,560

Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A561

176b-parameter open-access multilingual language model. arXiv preprint arXiv:2211.05100,562

2022.563

[46] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan564

Catanzaro. Megatron-lm: Training multi-billion parameter language models using model565

parallelism. arXiv preprint arXiv:1909.08053, 2019.566

[47] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari,567

Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, et al. Using568

deepspeed and megatron to train megatron-turing nlg 530b, a large-scale generative language569

model. arXiv preprint arXiv:2201.11990, 2022.570

[48] Yi Tay, Shuohang Wang, Anh Tuan Luu, Jie Fu, Minh C Phan, Xingdi Yuan, Jinfeng Rao,571

Siu Cheung Hui, and Aston Zhang. Simple and effective curriculum pointer-generator networks572

for reading comprehension over long narratives. In Proceedings of the 57th Annual Meeting of573

the Association for Computational Linguistics, pages 4922–4931, 2019.574

12

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,575

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information576

processing systems, pages 5998–6008, 2017.577

[50] Jesse Vig and Yonatan Belinkov. Analyzing the structure of attention in a transformer language578

model. arXiv preprint arXiv:1906.04284, 2019.579

[51] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head580

self-attention: Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint581

arXiv:1905.09418, 2019.582

[52] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.583

Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv584

preprint arXiv:1804.07461, 2018.585

[53] Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Efficient sparse attention architecture with586

cascade token and head pruning. In 2021 IEEE International Symposium on High-Performance587

Computer Architecture (HPCA), pages 97–110. IEEE, 2021.588

[54] Ross Wightman. Pytorch image models. https://github.com/rwightman/589

pytorch-image-models, 2019.590

[55] Benfeng Xu, Licheng Zhang, Zhendong Mao, Quan Wang, Hongtao Xie, and Yongdong Zhang.591

Curriculum learning for natural language understanding. In Proceedings of the 58th Annual592

Meeting of the Association for Computational Linguistics, pages 6095–6104, 2020.593

[56] Vikas Yadav, Steven Bethard, and Mihai Surdeanu. Quick and (not so) dirty: Unsuper-594

vised selection of justification sentences for multi-hop question answering. arXiv preprint595

arXiv:1911.07176, 2019.596

[57] Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick597

Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large598

neural networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.599

[58] Jiahui Yu and Thomas S Huang. Universally slimmable networks and improved training600

techniques. In Proceedings of the IEEE/CVF international conference on computer vision,601

pages 1803–1811, 2019.602

[59] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a603

machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.604

[60] Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, Kevin Duh, and Benjamin Van Durme.605

Record: Bridging the gap between human and machine commonsense reading comprehension.606

arXiv preprint arXiv:1810.12885, 2018.607

[61] Wei Zhang, Wei Wei, Wen Wang, Lingling Jin, and Zheng Cao. Reducing bert computation608

by padding removal and curriculum learning. In 2021 IEEE International Symposium on609

Performance Analysis of Systems and Software (ISPASS), pages 90–92. IEEE, 2021.610

[62] Xuan Zhang, Gaurav Kumar, Huda Khayrallah, Kenton Murray, Jeremy Gwinnup, Marianna J611

Martindale, Paul McNamee, Kevin Duh, and Marine Carpuat. An empirical exploration of612

curriculum learning for neural machine translation. arXiv preprint arXiv:1811.00739, 2018.613

[63] Xuan Zhang, Pamela Shapiro, Gaurav Kumar, Paul McNamee, Marine Carpuat, and Kevin614

Duh. Curriculum learning for domain adaptation in neural machine translation. In NAACL-HLT,615

2019.616

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	Introduction
	Background and Related Works
	Design
	Efficient data sampling via curriculum learning
	Efficient data routing via random-LTD
	Composing CL and random-LTD, tuning strategy, usage guidelines

	Evaluation
	GPT-3 and GPT-3 MoE pretraining
	BERT-large pretraining
	GPT-2 and ViT finetuning

	Conclusion

