

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DIFFUDETR: RETHINKING DETECTION TRANSFORMERS WITH DENOISING DIFFU- SION PROCESS

Anonymous authors

Paper under double-blind review

ABSTRACT

In this paper, we present DiffuDETR, a novel approach that formulates object detection as a conditional object query generation task, conditioned on the image and a set of noisy reference points. We integrate DETR-based models with denoising diffusion training to generate object queries’ reference points from a prior gaussian distribution. We propose two variants: DiffuDETR, built on top of the Deformable DETR decoder, and DiffuDINO, based on DINO’s decoder with contrastive denoising queries (CDNs). To improve inference efficiency, we further introduce a lightweight sampling scheme that requires only multiple forward passes through the decoder. Our method demonstrates consistent improvements across multiple backbones and datasets, including COCO 2017, LVIS, and V3Det, surpassing the performance of their respective baselines, with notable gains in complex and crowded scenes. Using ResNet-50 backbone we observe a **+1.0** in COCO-val, reaching 51.9 mAP on DiffuDINO compared to 50.9 mAP of the DINO. We also observe similar improvements on LVIS and V3DET datasets with **+2.4** and **+2.2** respectively. Code will be released upon acceptance.

1 INTRODUCTION

Object detection is a fundamental task in computer vision. It has gained much attention in recent years for its wide use in real-world applications. Object detection can be decomposed to two more primitive tasks: object localization and object classification. Traditional methods depend heavily on predefined bounding boxes (Liu et al., 2016), CPU-intensive selective search (Girshick et al., 2014), and region proposals networks (Girshick, 2015; Cai & Vasconcelos, 2018) to propose candidate locations. These methods, while effective, limit flexibility and generalizability in network training.

Initial deep learning approaches (Girshick, 2015; Cai & Vasconcelos, 2018) require a set of predefined anchor boxes and heuristics to generate proposals. This method involves a one-to-many label assignment strategy, wherein each ground-truth bounding box is matched with multiple points in the detector’s predictions. Despite their strong performance, these detectors depend heavily on several manually designed components, such as the predefined anchor boxes or non-maximum suppression for postprocessing.

Later, DEtection TRansformer (DETR) (Carion et al., 2020) proposed an end-to-end training objective by solving the problem as a bipartite set matching between a set of predictions and ground truths. These architectures rely on object queries, where each query matches exactly one object what is also known as one-to-one matching. This approach simplified the training objective and achieved SOTA results in both object detection. However, it suffers from query initialization problem.

Figure 1: Performance of DiffuDINO against other DETR and CNN-based models using ResNet-50 (He et al., 2016) backbone.

054 Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020; Song et al., 2020) were
 055 introduced as a probabilistic framework for image generation, achieving state-of-the-art (SOTA)
 056 performance in this domain. The core idea of DDPM is to model the process of gradually adding
 057 noise to a clean image, eventually reaching pure noise. The model learns to reverse process: starting
 058 from noisy data, it attempts to recover the original clean image at each timestep. To generate new
 059 images, DDPM samples random noise from a learned distribution and sequentially denoises it
 060 through the reverse process, ultimately producing a high-quality image. Over time, this method has
 061 been successfully extended to a wide range of computer vision tasks, demonstrating its versatility
 062 and effectiveness.

063 Building on previous work, we propose DiffuDETR, a framework built upon DeformableDETR
 064 and DiffuDINO, built on DINO, which shares DETR’s backbone that extracts multi-scale image
 065 features, an encoder that employs multi-scale deformable attention within its transformer layers,
 066 a transformer decoder that applies cross-attention between initial object queries and the encoder’s
 067 image features, and an MLP head that decodes each object query into a class label and bounding-box
 068 coordinates. We propose a new query initialization technique that aligns with the objective of
 069 denoising diffusion models to sample from the normally distributed reference points. This method
 070 avoids the inconveniences of query reference points initialization in DETR variants. Figure 1 shows
 071 the convergence of our proposed DiffuDINO against other DETR-based models, while it required
 072 more epochs due to the slowing nature of training diffusion models. The performance surpasses
 073 DINO after 50 epochs of training on COCO dataset, which tends to deteriorate after 36 epochs.

074 We summarize our contribuitons in the following:
 075

- 076 1. We represent object detection with detection transformers as a diffusion denoising process
 077 by denoising queries’ reference points.
- 078 2. We introduce two models, DiffuDETR and DiffuDINO, built upon Deformable DETR and
 079 DINO, respectively.
- 080 3. We conduct extensive experiments with our models on multiple benchmark datasets and
 081 conduct extensive ablation studies to validate their effectiveness.

084 2 RELATED WORK

086 2.1 DIFFUSION MODELS

088 Denoising diffusion models have emerged as powerful generative frameworks in computer vision,
 089 demonstrating exceptional performance in tasks such as image generation (Austin et al., 2021; Avra-
 090 hami et al., 2022), super-resolution (Gao et al., 2023), inpainting (Lugmayr et al., 2022), and editing.
 091 These models progressively learn to reverse a diffusion process that adds noise to data, enabling them
 092 to synthesize high-quality and diverse samples.

093 Beyond generative tasks, diffusion models have also proven useful in discriminative settings, in-
 094 cluding image segmentation (Amit et al., 2021; Baranchuk et al., 2021; Brempong et al., 2022),
 095 classification (Chen et al., 2023a), and anomaly detection (Wolleb et al., 2022). Their ability to
 096 learn strong latent representations highlights their potential in broader representation learning con-
 097 texts, making them an increasingly popular choice across multiple vision domains (Croitoru et al.,
 098 2023).

099 While diffusion models have seen significant success in generative and discriminative tasks, their
 100 application to object detection remains relatively underexplored. Only a few works (Chen et al.,
 101 2023b) have investigated generative diffusion models for detection, and the progress in this area
 102 noticeably lags behind that in segmentation. This discrepancy arises because segmentation tasks
 103 are naturally formulated in an image-to-image fashion, which aligns closely with the denoising and
 104 generative process of diffusion models. In contrast, object detection is inherently a set prediction
 105 problem, requiring the model to generate a discrete set of object candidates and assign them to cor-
 106 responding ground truth objects (Ren et al., 2015). This difference introduces unique challenges for
 107 diffusion-based approaches, as the generation of unordered object queries and accurate localization
 is conceptually less straightforward than reconstructing pixel-wise maps.

Figure 2: The DiffuDETR model framework involves a transformer encoder that encodes multi-scale visual features from the backbone. Ground-truth object reference points are introduced with Gaussian noise, where the noise level is controlled by a time step. These noisy reference points, along with learnable content queries, are processed by the transformer decoder, which denoises them based on the encoded features to produce precise object localizations during inference.

2.2 DETECTION TRANSFORMER

DEtection TRansformer (DETR) (Carion et al., 2020) revolutionized object detection by reformulating it as a direct set prediction problem, eliminating the need for hand-crafted components such as anchor boxes, region proposals, or non-maximum suppression. At its core, DETR employs an encoder-decoder transformer architecture: the encoder processes image features extracted by a CNN backbone, while the decoder operates on a fixed set of learnable object queries. Each query acts as a placeholder for a potential object and interacts with encoded features through cross-attention. Training is performed end-to-end using a bipartite matching loss based on the Hungarian algorithm, which enforces one-to-one alignment between predictions and ground-truth objects. This design enables DETR to predict all objects in a single forward pass, making it both conceptually simple and architecture-agnostic.

Despite its conceptual clarity, DETR faces practical challenges. Since its queries are initialized as zero embedding vectors without explicit spatial priors, the model must learn query-to-object alignment entirely from scratch, leading to slow convergence and unstable training. These limitations have motivated two complementary directions of research: improving query initialization and designing more effective training objectives.

The first direction focuses on enhancing query representation and initialization. DAB-DETR (Dynamic Anchor Box DETR) (Liu et al., 2022) reformulates decoder queries explicitly as anchor box coordinates—center, width, and height—which are dynamically updated across decoder layers. By incorporating positional priors directly into the queries, DAB-DETR improves alignment with image features and refines localization progressively, resulting in faster convergence and higher accuracy. In parallel, Deformable DETR (Zhu et al., 2020) introduces Deformable Attention, which restricts attention to a sparse set of spatially relevant sampling points, allowing the model to focus on key object regions. Its two-stage variant further strengthens query content by generating region proposals in the encoder (topK proposals) and refining them in the decoder, making queries image-dependent. Together, these works demonstrate that better-designed queries with spatial priors and dynamic updates can significantly enhance convergence and detection performance.

The second line of research focuses on auxiliary training tasks that enhance optimization and stability. DN-DETR (Li et al., 2022) introduces a denoising auxiliary task, where noisy ground-truth boxes and labels are injected during training, and the model learns to reconstruct the correct targets. This additional supervision alleviates instability in bipartite matching and accelerates convergence. Building upon this idea, DINO (Zhang et al., 2022) incorporates a contrastive denoising (CDN) auxiliary task combined with mixed query selection. Reference points are sampled from high-confidence encoder outputs, while their content queries are initialized with learnable class embeddings, aligning better with the denoising objective. Furthermore, DINO introduces hard nega-

162 tives to strengthen the auxiliary contrastive loss, yielding improved robustness and overall detection
163 performance.
164

165 Building on these advances, we introduce DiffuDETR, a diffusion-based object detector that lever-
166 ages a generative denoising process to produce object query anchors from noise. By progressively
167 denoising noisy reference points, DiffuDETR generates better-initialized queries that provide strong
168 starting points for the decoder, effectively addressing limitations in query alignment and conver-
169 gence. At the same time, the denoising process serves as an improved training objective, guiding
170 the model to recover precise object locations and class predictions. This dual advantage of enhanced
171 query anchor initialization and a denoising-driven learning signal allows DiffuDETR to achieve
172 greater training stability and superior detection performance compared to existing DETR variants.
173

174 Beyond these two research directions, several additional approaches have explored alternative path-
175 ways for improving DETR-based detectors. Many-to-one supervision strategies (Zhao et al., 2024;
176 Ouyang-Zhang et al., 2022) relax the strict one-to-one matching constraint to provide richer supervi-
177 sory signals. Other works introduce multi-route decoding to enhance information flow (Zhang et al.,
178 2025) and improve optimization. Aside from architectural changes, loss-function refinements aim to
179 better align classification and localization objectives (Cai et al., 2024). While these directions offer
180 promising directions for advancing DETR-style models, they fall outside the scope of this paper,
181 which focuses on diffusion-based query initialization and denoising-driven training.
182

183 2.3 OBJECT DETECTION AS GENERATION TASK 184

185 Recent studies have started to view object de-
186 tection through the lens of generative modeling,
187 moving beyond traditional discriminative for-
188 mulations. In this perspective, detection is cast
189 as the process of generating structured outputs
190 (bounding boxes and class labels) conditioned
191 on image features. Two notable directions are
192 sequence generation and denoising diffusion.
193

194 Pix2Seq (Chen et al., 2021) is one of the first
195 works to explore this paradigm, formulating de-
196 tection as a sequence generation task. Bounding
197 boxes and class labels are represented as
198 discrete tokens, and an encoder-decoder ar-
199 chitecture is trained to autoregressively gen-
200 erate these tokens conditioned on the image
201 and previously generated outputs. By do-
202 ing so, Pix2Seq eliminates the need for hand-
203 crafted components such as proposal genera-
204 tion or bounding box regression, offering a sim-
205 ple, generic formulation of detection.
206

207 In contrast, DiffusionDet (Chen et al., 2023b)
208 formulates detection as a denoising diffusion
209 process. Built on the Sparse R-CNN decoder
210 (Sun et al., 2021), DiffusionDet replaces fixed
211 proposal boxes with noisy ones, which are
212 progressively refined into accurate predictions.
213 During training, ground-truth boxes are diffused
214 into random distributions, and the model learns to
215 reverse this noising process. At inference, boxes sampled from a Gaussian distribution are iteratively
216 denoised through multiple cascaded decoder stages, enabling progressive refinement and flexibility
217 in the number of predictions.
218

219 While Pix2Seq treats detection as language modeling and DiffusionDet as denoising noisy proposal
220 boxes, our work DiffuDETR continues along the diffusion direction but adapts it to DETR. Specif-
221 ically, we formulate object detection as a denoising diffusion process that generates DETR’s object
222 queries’ anchors directly from noise, introducing diffusion-based query generation into transformer-
223 based detection.
224

Figure 3: DiffuDETR’s decoder iteratively de-
noises noisy object reference points using multi-
scale encoded features, integrating self-attention,
deformable attention, feed-forward networks, and
time-step embeddings to refine queries across dif-
fusion steps.

216 3 METHOD
217218 3.1 PRELIMINARIES
219220 3.1.1 DETR
221

222 The DETR model Carion et al. (2020) uses an image feature extracted as a backbone for feature
223 extraction, followed by a Transformer encoder that processes the feature map into sequences. The
224 decoder, which utilizes learned object queries, predicts bounding boxes and object classes. The Hun-
225 garian Matcher is used to match predicted boxes with ground truth by minimizing a cost matrix based
226 on class and bounding box errors. Deformable DETR (Zhu et al., 2020) introduced deformable at-
227 tention, where each query generates reference points to facilitate more efficient computations. This
228 approach allows the queries to leverage multi-scale features, improving object localization. Addi-
229 tionally, Deformable DETR introduced a 2-stage initialization method, where queries are initialized
230 with the top-k encoder proposals.

231 3.1.2 DENOISING DIFFUSION PROBABILISTIC MODELS
232

233 In Denoising Diffusion Probabilistic Models (DDPM), the forward process refers to the gradual
234 addition of noise to an image over a series of timesteps, which transforms a clean image x_0 into
235 a noisy vector x_t . This process is performed in a series of steps, each adding a small amount of
236 Gaussian noise to the image, progressively degrading it. Mathematically, this forward diffusion
237 process is defined as:

$$238 q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t}x_{t-1}, \beta_t I) \quad (1)$$

239 where β_t is the noise scheduler to control the mean of the added noise, and \mathcal{N} is the normal distri-
240 bution of the added noise.

241 During sampling, we can generate samples by sampling a noisy image $x_T \sim \mathcal{N}(0, I)$, we update
242 the noisy image using the following equation:

$$243 x_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(x_t - \frac{\sqrt{1 - \alpha_t}}{1 - \bar{\alpha}_t} \right) \epsilon_\theta(x_t, t, y) + \sigma_t z \quad (2)$$

244 where $\alpha_t = 1 - \beta_t$ and $\bar{\alpha}_t = \prod_{s=1}^T \alpha_s$ and β_t is scheduled to control the mean of the noise added to
245 the original image. $z \sim \mathcal{N}(0, I)$ and σ_t are used to control the stochasticity of sampling.

246 3.2 DIFFUDETR
247

248 Our models build upon the Deformable DETR framework, retaining the encoder-decoder trans-
249 former architecture with multi-scale deformable attention. DiffuDETR is built on Deformable-
250 DETR and DiffuDINO adds the CDNs introduced in DINO (Zhang et al., 2022). The key mod-
251 ification is introduced at the training scheme. We adopt a diffusion-like training where reference
252 points are treated as low-dimensional latent diffusion variables and refined through an iterative de-
253 noising process to enhance object localization. During training, we use a diffusion schedule with
254 100 timesteps $T = 100$, which is significantly fewer than the typical 1000 steps $T = 1000$ used
255 in standard diffusion models. This reduction is made possible by the low dimensionality of the
256 diffusion space, **which allows efficient sampling during inference**.

257 The complete architecture is illustrated in Figure 2. The encoder is similar to that introduced in Zhu
258 et al. (2020), which extracts multi-scale visual features from the input image using deformable atten-
259 tion modules, effectively capturing rich contextual information at various spatial resolutions. These
260 encoded features serve as the foundational representation for the detection pipeline. The transformer
261 decoder layer shown in Figure 3 takes three inputs: **the encoded multi-scale features O_{enc}** , the noisy
262 reference points r_t , and static learnable content queries. While the content queries encode seman-
263 tic information about potential object classes, the noisy reference points provide spatial priors that
264 guide the denoising process. The decoder iteratively refines these noisy queries conditioned on the
265 encoded image features, effectively denoising and localizing objects.

$$266 q_n = \text{FFN}(\text{MSDA}(\text{SA}(q_{n-1}) + t), r_t, O_{enc}) \quad (3)$$

Figure 4: Qualitative comparison between Deformable DETR, DiffuDETR, DINO, and DiffuDINO on COCO 2017 Validation set. Only predictions with confidence scores above 50% are shown.

where q_n represents the n^{th} layer queries, t represents the timestep embedding, O_{enc} is the output multi scale features of the encoder. SA stands for self-attention, MSDA stands for Multi-scale deformable attention that takes the noisy reference points and interpolates the sampled points on the encoded features.

We introduce the query denoising task as simply a diffusion process on the normalized object reference points $r \in \mathbb{R}^{N \times 4}$, representing N ground-truth objects in an image. Specifically, we sample initial time step $t \sim \mathcal{U}(0, 100)$ reference points r_t from a posterior Noise distribution given by:

$$q(r_t | r) = f(r_t; r, \sigma^2 I), \quad (4)$$

where r_t are noisy reference points at diffusion step t , and σ^2 denotes the variance controlling the noise intensity. This formulation encourages the model to learn the conditional distribution of object locations. *f* stands for the forward process refers to the noise function used for noising conviently chosen to be normal distribution ; however, more options could suit different problems (Nachmani et al., 2021).

At inference time, we generate object proposals by applying a deterministic DDIM sampler over a small number of timesteps. Concretely, for N object queries, we first sample $K = 4$ reference points per query from a standard Gaussian at the final diffusion step:

$$r_T^{(i,k)} \sim \mathcal{N}(0, I), \quad i = 1, \dots, N, \quad k = 1, \dots, 4.$$

We then perform iterative denoising for $t = T, T-1, \dots, 1$. At each step we predict the noise residual $\hat{\epsilon} = \epsilon_\theta(r_t, t)$ via the transformer decoder and update the reference points according to the DDIM update rule (Song et al., 2020):

$$r_{t-1} = \sqrt{\bar{\alpha}_{t-1}} \frac{r_t - \sqrt{1 - \bar{\alpha}_t} \hat{\epsilon}}{\sqrt{\bar{\alpha}_t}} + \sqrt{1 - \bar{\alpha}_{t-1}} \hat{\epsilon}, \quad (5)$$

Different noise schedulers have been proposed for diffusion models (Chen, 2023), with performance varying across tasks. In our setting, inference requires only S decoding evaluations, where $S \ll T$. The outputs $\{r_0^{(i,k)}\}$ from these steps are taken as the final bounding boxes. This efficient sampling scheme adds only a few extra computations using the decoder while the backbone and encoder are run once, resulting in only a small increase in computation (GFLOPs) compared to DINO.

324
325 Table 1: Comparison of various object detectors on the COCO 2017 validation set using ResNet-50
326 and ResNet-101 backbones.
327

Model	Epochs	AP	AP ₅₀	AP ₇₅	AP _s	AP _m	AP _l
ResNet-50 (He et al., 2016)							
DETR-DC5 (Carion et al., 2020)	500	43.3	63.1	45.9	22.5	47.3	61.1
DN-Deformable DETR (Li et al., 2022)	50	48.6	67.4	52.7	31.0	52.0	63.7
MS-DETR (Zhao et al., 2024)	24	50.9	68.4	56.1	34.7	54.3	65.1
Salience DETR (Hou et al., 2024)	24	51.2	68.9	55.7	33.9	55.5	65.6
MR-DETR (Zhang et al., 2025)	24	51.4	69.0	56.2	34.9	54.8	66.0
Pix2Seq (Chen et al., 2021)	300	43.2	61.0	46.1	26.6	47.0	58.6
DiffusionDet (Chen et al., 2023b)	-	46.8	65.3	51.8	29.6	49.3	62.2
Deformable DETR (Zhu et al., 2020)	50	48.2	67.0	52.2	30.7	51.4	63.0
Align-DETR (Cai et al., 2024)	24	51.4	69.1	55.8	35.5	54.6	65.7
DINO (Zhang et al., 2022)	36	50.9	69.0	55.3	34.6	54.1	64.6
DiffuDETR (Ours)	50	50.2	66.8	55.2	33.3	53.9	65.8
DiffuAlignDETR (Ours)	24	51.9	69.2	56.4	34.9	55.6	66.2
DiffuDINO (Ours)	50	51.9	69.4	55.7	35.8	55.7	67.1
ResNet-101 (He et al., 2016)							
DETR-DC5 (Carion et al., 2020)	50	43.5	63.8	46.4	21.9	48.0	61.8
DAB-DETR-DC5 (Liu et al., 2022)	50	46.6	67.0	50.2	28.1	50.5	64.1
DN-DETR-DC5 (Li et al., 2022)	50	47.3	67.5	50.8	28.6	51.5	65.0
MR-DETR (Zhang et al., 2025)	12	51.4	68.6	55.7	34.3	55.1	66.7
Pix2Seq (Chen et al., 2021)	300	44.5	62.8	47.5	26.0	48.2	60.3
DiffusionDet (Chen et al., 2023b)	-	47.5	65.7	52.0	30.8	50.4	63.1
DINO (Zhang et al., 2022)	12	50.0	67.7	54.4	32.2	53.4	64.3
Align-DETR (Cai et al., 2024)	12	51.2	68.8	55.7	32.9	55.1	66.6
DiffuDINO (Ours)	12	51.2	68.6	55.8	33.2	55.6	67.2
DiffuAlignDETR (Ours)	12	51.7	69.3	56.1	34.0	55.6	67.0

352
353

4 EXPERIMENTS

354

4.1 SETUP

355
356 We evaluated DiffuDETR on multiple benchmark datasets to assess its performance across varying
357 levels of object density, diversity, and scale.358
359 **COCO 2017.** The COCO 2017 dataset (Lin et al., 2014) comprises 80 object categories, with
360 118,287 training images and 5,000 validation images. It serves as a standard benchmark for object
361 detection, segmentation, and captioning tasks, featuring a diverse range of everyday scenes.362
363 **LVIS.** The LVIS dataset (Gupta et al., 2019) includes 1,203 object categories, with 100,170 training
364 images and 19,809 validation images. It is designed to address long-tail object distributions,
365 featuring a large vocabulary of object categories with varying frequencies.366
367 **V3DET.** The V3DET dataset (Wang et al., 2023) encompasses 13,204 object categories, with
368 183,354 training images and 29,821 validation images. It is a large-scale, richly annotated dataset
369 featuring detection bounding box annotations for a vast number of object classes.370
371 For evaluation, we adopt the standard metrics defined by each benchmark. On COCO, we report
372 mean Average Precision (AP) averaged across IoU thresholds from 0.5 to 0.95, together with AP at
373 IoU thresholds of 0.5 (AP₅₀) and 0.75 (AP₇₅), as well as scale-specific AP for small, medium, and
374 large objects. On LVIS, we follow its official evaluation protocols, which extend the COCO-style
375 AP by also reporting performance across categories with different frequencies: rare (AP_r), common
376 (AP_c), and frequent (AP_f). These standardized measures provide a comprehensive view of detector
377 performance across imbalanced category distributions.378
379

4.2 RESULTS

380
381 Table 1 compares our proposed models with existing detectors on the COCO 2017 validation set.
382 Using ResNet-50, DiffuDETR improves upon its baseline Deformable DETR by achieving 50.2

378 Table 2: Comparison of DINO and DiffuDINO on the LVIS validation set using ResNet-50 and
 379 ResNet-101 backbones. All models are trained for 12 epochs.
 380

Model	AP	AP ₅₀	AP ₇₅	AP _s	AP _m	AP _l	AP _r	AP _c	AP _f
ResNet-50 (He et al., 2016)									
DINO (Zhang et al., 2022)	26.5	35.9	27.8	20.0	35.2	40.9	9.2	24.6	36.2
DiffuDINO (Ours)	28.9	38.5	30.8	20.7	37.5	46.4	13.7	27.6	36.9
ResNet-101 (He et al., 2016)									
DINO (Zhang et al., 2022)	30.9	40.4	32.8	23.2	40.5	46.3	13.9	29.7	39.7
DiffuDINO (Ours)	32.5	42.4	34.8	23.5	43.4	49.7	13.5	32.0	41.5

388 Table 3: Comparison of DINO and DiffuDINO
 389 on the V3DET validation set using ResNet-50 and
 390 Swin-B backbones. All models are trained for 24
 391 epochs.
 392

Model	AP	AP ₅₀	AP ₇₅
ResNet-50 (He et al., 2016)			
DINO (Zhang et al., 2022)	33.5	37.7	35.0
DiffuDINO (Ours)	35.7	41.4	37.7
Swin-B (Liu et al., 2021)			
DINO (Zhang et al., 2022)	42.0	46.8	43.9
DiffuDINO (Ours)	50.3	56.6	52.9

388 Table 4: DiffuDINO performance with
 389 different diffusion noise distributions on the
 390 COCO 2017 validation set.
 391

Diffusion Noise	AP	AP ₅₀	AP ₇₅
Beta	49.5	66.7	53.8
Sigmoid Gaussian	50.4	68.0	54.7
Gaussian	51.9	69.5	56.3

400
 401 AP compared to 48.2, while also outperforming DN-Deformable DETR (48.6 AP), showing that
 402 our diffusion-based denoising task provides a stronger training signal than DN-DETR denoising
 403 strategy. Similarly, DiffuDINO surpasses its baseline DINO, reaching 51.9 AP versus 50.9, with
 404 consistent improvements across AP₅₀, AP₇₅, and scale-specific metrics. When compared with other
 405 generation-inspired approaches, both DiffuDETR and DiffuDINO significantly outperform Diffu-
 406 sionDet (46.8 AP) and Pix2Seq (43.2 AP), highlighting the advantages of integrating the diffusion
 407 denoising process with DETR-style query generation. With ResNet-101, DiffuDINO further im-
 408 proves over DINO (51.2 vs. 50.0 AP), demonstrating that our approach consistently strengthens
 409 DETR-based detectors across different backbones. [We additionally introduce DiffuAlignDETR](#),
 410 built upon Align-DETR Cai et al. (2024), and observe that diffusion refinement provides a con-
 411 sistent boost under standard COCO training schedules. With a ResNet-50 backbone and the 2 \times
 412 schedule (24 epochs), Align-DETR achieves 51.4 AP, whereas DiffuAlignDETR improves this to
 413 51.9 AP. Similarly, with ResNet-101 under the 1 \times schedule (12 epochs), DiffuAlignDETR reaches
 414 [51.7 AP compared to 51.2 AP for the baseline](#).

415 We show the results on LVIS validation set in Table 2. where we compare DiffuDINO with its
 416 baseline DINO under both ResNet-50 and ResNet-101 backbones, trained for 12 epochs. With
 417 ResNet-50, DiffuDINO achieves 28.9 AP, improving over DINO’s 26.5 by +2.4 AP. With ResNet-
 418 101, DiffuDINO continues to outperform DINO (32.5 vs. 30.9 AP), with improvements in medium
 419 and large objects as well as common and frequent categories.

420 We present results on the V3DET validation set with ResNet-50 and Swin-B backbones in Table 3,
 421 trained for 24 epochs. With ResNet-50, DiffuDINO surpasses its baseline DINO by +2.2 AP (35.7
 422 vs. 33.5), alongside clear improvements in AP₅₀ (+3.7) and AP₇₅ (+2.7). The performance gap
 423 becomes more pronounced with the stronger Swin-B backbone, where DiffuDINO achieves 50.3
 424 AP, outperforming DINO’s 42.0 by a large margin of +8.3 points.

425 Figure 4 visually compares detection results across four models: Deformable DETR, DiffuDINO,
 426 DINO, and DiffuDINO on samples from COCO 2017 Validation. The qualitative examples high-
 427 light the consistent improvements introduced by our diffusion-based models, particularly in crowded
 428 scenes with multiple overlapping objects. DiffuDINO exhibits more accurate and complete local-
 429 ization of instances compared to Deformable DETR, while DiffuDINO further refines predictions
 430 beyond DINO, reducing missed detections and improving boundary alignment. These visualizations
 431 support the quantitative results and confirm that the diffusion-based denoising process yields clearer
 432 and more precise predictions, especially in challenging, densely populated regions.

432 4.3 ABLATION STUDY
433434 4.3.1 DIFFUSION NOISE DISTRIBUTIONS
435

436 Table 4 reports the results using different noise distributions. Among the tested, Gaussian distribution
437 consistently achieves the best performance across all metrics, yielding 51.9 AP. In comparison,
438 Beta noise distribution underperforms relative to Gaussian noise, with up to 2.4 AP lower. Sigmoid
439 Gaussian shows competitive results. Our primary intuition for using the sigmoid Gaussian distribution
440 is to avoid clipping values from the diffused Gaussian points (ensuring that reference points
441 are valued between (0 and 1). However, it still lags behind Gaussian noise overall. This shows that
442 empirically Gaussian distribution still prevails as the more suitable distribution even in detection
443 tasks.

454
455
456
457 Figure 5: Different Schedulers noise re-
458 tained plot against timesteps.
459
460
461
462

463 4.3.2 DIFFUSION NOISE SCHEDULERS
464

465 We compare the impact of different noise schedulers on DiffuDINO performance in Table 5. The
466 cosine scheduler achieves the best overall results, reaching 51.9 AP. The linear scheduler performs
467 competitively, particularly on medium-sized objects where it matches cosine at 55.8 AP_m, but
468 slightly trails behind in other metrics. The square root scheduler shows the lowest performance
469 among the three, with a drop of around 0.5 AP compared to cosine. This is expected because cosine
470 schedulers tend to retain more of the original signal in later timesteps as shown in Figure 5. These
471 results indicate that cosine scheduling provides a smoother distortion for reference points as time
472 steps $t < 100$ while still completely distorting the reference points at $t = 100$.
473
474

475 4.3.3 NUMBER OF DECODER EVALUATIONS
476

477 Table 6 shows the effect of varying decoder evaluation on DiffuDINO performance compared to the
478 DINO baseline on the COCO 2017 validation set. With a single decoder evaluation, DiffuDINO
479 already surpasses DINO by +1.7 AP while maintaining identical computational cost in both FLOPs
480 (244.5 ± 25.5 G) and activations (673 ± 66 M). Increasing the number of decoder evaluations to
481 three yields the best overall results, reaching 51.9 AP with improvements across all object scales.
482 However, this comes with a moderate increase in computation to 285.2 ± 27.1 GFLOPs and 871 ± 73
483 M activations. Further increasing the decoder evaluations to five or ten does not yield additional
484 performance gains, with AP slightly declining while computational costs continue to grow significantly,
485 reaching 428 ± 33 GFLOPs and 1564 ± 95 M activations at ten steps. This demonstrates that our
486 approach enables effective sampling, with only three decoder evaluations being sufficient to achieve
487 the best results while adding minimal computation overhead compared to the baseline.

Table 5: DiffuDINO performance with different noise schedulers on the COCO 2017 validation set.

Scheduler	AP	AP ₅₀	AP ₇₅	AP _s	AP _m	AP _l
Cosine	51.9	69.5	56.4	35.9	55.8	67.1
Linear	51.6	69.1	56.2	35.6	55.8	66.4
Square Root	51.4	68.9	56.0	35.3	55.4	66.0

Table 6: Comparison of DINO and DiffuDINO with different Decoder Evaluation on the COCO 2017 validation set. We report AP metrics along with FLOPs (in GigaFLOPs) and activations (in millions).

Model	D.E.	AP	FLOPs (G)	Activations (M)
DINO	1	50.9	244.5 ± 25.5	673.1 ± 66.5
DiffuDINO	1	51.6	244.5 ± 25.5	673.1 ± 66.5
DiffuDINO	3	51.9	285.2 ± 27.1	871.0 ± 73.7
DiffuDINO	5	51.8	326.0 ± 28.7	1068.9 ± 79.0
DiffuDINO	10	51.4	427.9 ± 32.7	1563.6 ± 95.7

486 Table 7: DiffuDINO performance with different numbers of decoder evaluations on COCO val2017,
 487 averaged over 5 random initializations. Results are reported as mean \pm standard deviation.

D.E.	AP	AP ₅₀	AP ₇₅	AP _s	AP _m	AP _l
1	51.68 \pm 0.02	69.28 \pm 0.02	55.89 \pm 0.04	35.50 \pm 0.09	55.58 \pm 0.04	66.96 \pm 0.10
3	51.95 \pm 0.03	69.54 \pm 0.02	56.32 \pm 0.05	35.92 \pm 0.08	55.81 \pm 0.01	67.18 \pm 0.05
5	51.83 \pm 0.01	69.24 \pm 0.03	56.21 \pm 0.05	35.82 \pm 0.06	55.71 \pm 0.06	67.02 \pm 0.05
10	51.49 \pm 0.08	68.54 \pm 0.09	56.02 \pm 0.08	35.56 \pm 0.12	55.46 \pm 0.15	66.83 \pm 0.04

494
 495 Table 8: Comparison of DiffuDINO performance across varying numbers of decoder evaluations on
 496 COCO Dense and Sparse scene subsets. The first row of each section reports the baseline DINO
 497 results, followed by DiffuDINO results using different numbers of decoder evaluations. Metrics are
 498 reported as mean \pm standard deviation over 5 random initializations.

D.E.	AP	AP50	AP75	APS	APM	APL
COCO Sparse Scenes						
DINO	57.00	73.37	62.63	36.14	55.95	59.26
1	58.48 \pm 0.05	74.68 \pm 0.031	63.53 \pm 0.02	37.78 \pm 0.10	57.66 \pm 0.08	68.34 \pm 0.13
3	58.65 \pm 0.03	74.75 \pm 0.03	63.85 \pm 0.04	38.07 \pm 0.19	57.81 \pm 0.05	68.55 \pm 0.06
5	58.50 \pm 0.04	74.52 \pm 0.05	63.71 \pm 0.08	37.72 \pm 0.15	57.57 \pm 0.14	68.46 \pm 0.04
10	58.16 \pm 0.04	73.94 \pm 0.03	63.41 \pm 0.07	37.36 \pm 0.14	57.27 \pm 0.15	68.10 \pm 0.04
COCO Dense Scenes						
DINO	43.72	62.29	47.81	33.98	51.95	66.63
1	44.53 \pm 0.07	63.24 \pm 0.08	47.87 \pm 0.10	34.45 \pm 0.11	53.15 \pm 0.16	61.48 \pm 0.16
3	44.88 \pm 0.02	63.65 \pm 0.03	48.39 \pm 0.09	34.96 \pm 0.09	53.40 \pm 0.06	61.60 \pm 0.06
5	44.85 \pm 0.05	63.36 \pm 0.09	48.40 \pm 0.11	34.92 \pm 0.07	53.46 \pm 0.07	61.61 \pm 0.07
10	44.57 \pm 0.07	62.69 \pm 0.10	48.23 \pm 0.11	34.79 \pm 0.15	53.35 \pm 0.10	61.31 \pm 0.09

513 4.4 SENSITIVITY TO INITIALIZATION NOISE

514 To assess the robustness of DiffuDINO with respect to initial noise, we evaluate the model across
 515 five independent runs with different random seeds and report the mean and standard deviation of
 516 AP and related metrics. As shown in Tables 7, DiffuDINO exhibits consistently low seed-to-seed
 517 variance across all decoder evaluation settings (1, 3, 5, and 10 steps). On COCO with a ResNet-
 518 50 backbone, the variation across seeds remains below ± 0.2 AP, demonstrating that the model’s
 519 predictions are highly stable despite changes in initialization noise.

520 To further analyze stability under different scene complexities, we split the COCO validation set
 521 into a sparse scenes subset (images with 10 or fewer objects) and a dense scenes subset (images
 522 with more than 10 objects). DiffuDINO maintains the same level of robustness in both subsets. As
 523 shown in the Dense and Sparse results in Table 8, the standard deviation remains below ± 0.2 AP
 524 across all metrics, even under large variations in object density. Moreover, DiffuDINO consistently
 525 improves over the baseline DINO in both crowded and sparse scenes, demonstrating that diffusion-
 526 based refinement not only enhances accuracy but also preserves stability across seeds.

527 5 CONCLUSION

528 In this work, we represented object detection with detection transformers as a diffusion denoising
 529 process by progressively denoising queries’ reference points. We introduced two models, Diffu-
 530 DETR and DiffuDINO, built upon Deformable DETR and DINO, respectively. Our approach en-
 531 ables effective sampling at inference, where only three decoder evaluations are sufficient to achieve
 532 the best results while adding minimal computation overhead compared to the baseline. Extensive
 533 experiments on COCO, LVIS, and V3Det demonstrate that our method consistently improves over
 534 the baselines across all datasets. Furthermore, we show that Gaussian noise provides the most
 535 suitable training signal, consistently outperforming alternative noise distributions. In addition, we
 536 observe that a cosine scheduler achieves the best performance among the different noise scheduling
 537 strategies we tested. **Moreover, our multi-seed analysis confirms that DiffuDINO is highly robust to**
 538 **initialization noise.** Finally, we believe this work opens up new directions for integrating generative
 539 and autoregressive approaches into object detection, offering fresh perspectives beyond traditional
 discriminative formulations.

540 REFERENCES
541

- 542 Tomer Amit, Tal Shahrbany, Eliya Nachmani, and Lior Wolf. Segdiff: Image segmentation with
543 diffusion probabilistic models. *arXiv preprint arXiv:2112.00390*, 2021.
- 544 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
545 denoising diffusion models in discrete state-spaces. *Advances in neural information processing*
546 *systems*, 34:17981–17993, 2021.
- 547 Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of
548 natural images. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
549 *recognition*, pp. 18208–18218, 2022.
- 551 Dmitry Baranchuk, Ivan Rubachev, Andrey Voynov, Valentin Khrulkov, and Artem Babenko. Label-
552 efficient semantic segmentation with diffusion models. *arXiv preprint arXiv:2112.03126*, 2021.
- 553
- 554 Emmanuel Asiedu Brempong, Simon Kornblith, Ting Chen, Niki Parmar, Matthias Minderer, and
555 Mohammad Norouzi. Denoising pretraining for semantic segmentation. In *Proceedings of the*
556 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 4175–4186, 2022.
- 557
- 558 Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection. In
559 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 6154–6162,
560 2018.
- 561 Zhi Cai, Songtao Liu, Guodong Wang, Zeming Li, Zheng Ge, Xiangyu Zhang, and Di Huang.
562 Align-detr: Enhancing end-to-end object detection with aligned loss. In *35th British Machine*
563 *Vision Conference 2024, BMVC 2024, Glasgow, UK, November 25–28, 2024*. BMVA, 2024. URL
564 <https://papers.bmvc2024.org/0211.pdf>.
- 565
- 566 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
567 Sergey Zagoruyko. End-to-end object detection with transformers. In *European conference on*
568 *computer vision*, pp. 213–229. Springer, 2020.
- 569
- 570 Ning Chen, Jun Yue, Leyuan Fang, and Shaobo Xia. Spectraldiff: A generative framework for
571 hyperspectral image classification with diffusion models. *IEEE Transactions on Geoscience and*
572 *Remote Sensing*, 61:1–16, 2023a.
- 573
- 574 Shoufa Chen, Peize Sun, Yibing Song, and Ping Luo. Diffusiondet: Diffusion model for object
575 detection. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
19830–19843, 2023b.
- 576
- 577 Ting Chen. On the importance of noise scheduling for diffusion models. *arXiv preprint*
arXiv:2301.10972, 2023.
- 578
- 579 Ting Chen, Saurabh Saxena, Lala Li, David J Fleet, and Geoffrey Hinton. Pix2seq: A language
580 modeling framework for object detection. *arXiv preprint arXiv:2109.10852*, 2021.
- 581
- 582 Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models
583 in vision: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(9):
10850–10869, 2023.
- 584
- 585 Sicheng Gao, Xuhui Liu, Bohan Zeng, Sheng Xu, Yanjing Li, Xiaoyan Luo, Jianzhuang Liu, Xi-
586 antong Zhen, and Baochang Zhang. Implicit diffusion models for continuous super-resolution.
587 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
10021–10030, 2023.
- 588
- 589 Ross Girshick. Fast r-cnn. In *Proceedings of the IEEE international conference on computer vision*,
590 pp. 1440–1448, 2015.
- 591
- 592 Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for ac-
593 curate object detection and semantic segmentation. In *Proceedings of the IEEE conference on*
594 *computer vision and pattern recognition*, pp. 580–587, 2014.

- 594 Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance segmen-
 595 tation. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 596 pp. 5356–5364, 2019.
- 597 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 598 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 599 770–778, 2016.
- 600 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 601 *neural information processing systems*, 33:6840–6851, 2020.
- 602 Xiuquan Hou, Meiqin Liu, Senlin Zhang, Ping Wei, and Badong Chen. Salience detr: Enhanc-
 603 ing detection transformer with hierarchical salience filtering refinement. In *Proceedings of the*
 604 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 17574–17583, 2024.
- 605 Feng Li, Hao Zhang, Shilong Liu, Jian Guo, Lionel M Ni, and Lei Zhang. Dn-detr: Accelerate
 606 detr training by introducing query denoising. In *Proceedings of the IEEE/CVF conference on*
 607 *computer vision and pattern recognition*, pp. 13619–13627, 2022.
- 608 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 609 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer*
 610 *vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6–12, 2014, pro-*
 611 *ceedings, part v 13*, pp. 740–755. Springer, 2014.
- 612 Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi, Hang Su, Jun Zhu, and Lei Zhang.
 613 Dab-detr: Dynamic anchor boxes are better queries for detr. *arXiv preprint arXiv:2201.12329*,
 614 2022.
- 615 Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
 616 Alexander C Berg. Ssd: Single shot multibox detector. In *Computer Vision–ECCV 2016: 14th*
 617 *European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I*
 618 *14*, pp. 21–37. Springer, 2016.
- 619 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 620 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*
 621 *IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.
- 622 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 623 *arXiv:1711.05101*, 2017.
- 624 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
 625 Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the*
 626 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 11461–11471, 2022.
- 627 Eliya Nachmani, Robin San Roman, and Lior Wolf. Non gaussian denoising diffusion models. *arXiv*
 628 *preprint arXiv:2106.07582*, 2021.
- 629 Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, and Philipp Krähenbühl. Nms strikes back.
 630 *arXiv preprint arXiv:2212.06137*, 2022.
- 631 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
 632 detection with region proposal networks. *Advances in neural information processing systems*, 28,
 633 2015.
- 634 Tianhe Ren, Shilong Liu, Feng Li, Hao Zhang, Ailing Zeng, Jie Yang, Xingyu Liao, Ding Jia,
 635 Hongyang Li, He Cao, Jianan Wang, Zhaoyang Zeng, Xianbiao Qi, Yuhui Yuan, Jianwei Yang,
 636 and Lei Zhang. detrex: Benchmarking detection transformers, 2023.
- 637 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
 638 national Conference on Learning Representations*, 2020.
- 639 Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng Xu, Wei Zhan, Masayoshi Tomizuka,
 640 Lei Li, Zehuan Yuan, Changhu Wang, et al. Sparse r-cnn: End-to-end object detection with
 641 learnable proposals. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 642 *recognition*, pp. 14454–14463, 2021.

- 648 Jiaqi Wang, Pan Zhang, Tao Chu, Yuhang Cao, Yujie Zhou, Tong Wu, Bin Wang, Conghui He, and
649 Dahua Lin. V3det: Vast vocabulary visual detection dataset. In *Proceedings of the IEEE/CVF*
650 *International Conference on Computer Vision*, pp. 19844–19854, 2023.
- 651
- 652 Julia Wolleb, Florentin Bieder, Robin Sandkühler, and Philippe C Cattin. Diffusion models for med-
653 ical anomaly detection. In *International Conference on Medical image computing and computer-
654 assisted intervention*, pp. 35–45. Springer, 2022.
- 655 Chang-Bin Zhang, Yujie Zhong, and Kai Han. Mr. detr: Instructive multi-route training for detection
656 transformers. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
657 9933–9943, 2025.
- 658
- 659 Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-Yeung
660 Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. *arXiv
661 preprint arXiv:2203.03605*, 2022.
- 662 Chuyang Zhao, Yifan Sun, Wenhao Wang, Qiang Chen, Errui Ding, Yi Yang, and Jingdong Wang.
663 Ms-detr: Efficient detr training with mixed supervision. In *Proceedings of the IEEE/CVF confer-
664 ence on computer vision and pattern recognition*, pp. 17027–17036, 2024.
- 665 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
666 Deformable transformers for end-to-end object detection. *arXiv preprint arXiv:2010.04159*, 2020.
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

702 **A APPENDIX**
703704 **A.1 IMPLEMENTATION DETAILS**
705706 All experiments were implemented using the Detrex framework (Ren et al., 2023). For data pre-
707 processing, we followed the default COCO augmentations provided by Detrex across all datasets to
708 ensure consistent training pipelines. Unless otherwise stated, all models were optimized using the
709 AdamW optimizer (Loshchilov & Hutter, 2017) with an initial learning rate of 1×10^{-4} , weight
710 decay of 1×10^{-4} , and $\beta = (0.9, 0.999)$. For models trained with ResNet-50 and ResNet-101
711 backbones, we used a batch size of 16, while models with the Swin-B backbone were trained with a
712 batch size of 8 due to memory constraints. Across all settings, we adopted four-scale feature maps
713 from the backbone to ensure a consistent multi-scale representation for detection.
714715 **A.1.1 TRAINING ON COCO 2017**
716717 For COCO 2017, we trained models with ResNet-50 and ResNet-101 backbones (He et al., 2016).
718 Models with ResNet-50 backbones were trained for 50 epochs, applying a learning rate decay at
719 epoch 40. Models with ResNet-101 backbones were trained for 12 epochs, with the learning rate
720 decayed at epoch 11. We additionally retained the baseline DINO with ResNet-50 backbone for 50
721 epochs to provide a consistent reference. We found DINO after 36 epochs starts to deteriorate, so
722 we compare our results to the best results achieved by the authors in their paper (Zhang et al., 2022).
723724 **A.1.2 TRAINING ON LVIS**
725726 On the LVIS dataset, we trained both ResNet-50 and ResNet-101 backbones for 12 epochs, with
727 a total of 270k iterations. The learning rate was decayed by factors of 0.1 and 0.01 at 210k and
728 250k iterations, respectively, before terminating at 270k iterations. To ensure comparability, we also
729 trained the baseline DINO models with ResNet-50 and ResNet-101 backbones following the same
730 schedule.
731732 **A.1.3 TRAINING ON V3DET**
733734 For V3DET, we trained models with both ResNet-50 and Swin-B backbones (Liu et al., 2021) for
735 24 epochs, reducing the learning rate at epochs 16 and 22 by a factor of 10. A repeated sampler
736 was used with the repeat factor set 1×10^{-3} , following the dataset protocol. For baseline compar-
737 isons, we used the official DINO results reported in the V3DET dataset paper and replicated their
738 hyperparameters in our DiffuDINO experiments to ensure fair comparison.
739740 **A.1.4 DIFFUSION-BASED VARIANTS**
741742 All DETR-based models were trained with 900 object queries by default. Our DiffuDETR and
743 DiffuDINO models introduced a diffusion process with 100 decoder evaluations, where gaussian
744 noise were progressively denoised. During inference, we reduced this to only 3 denoising steps
745 for efficiency. In addition, we adopted a cosine learning rate scheduler for diffusion-based models.
746 We also conducted ablation studies to analyze the impact of different noise disturbances, diffusion
747 schedulers, the number of queries, and inference decoder evaluations.
748749 In the baseline DINO and DiffuDINO models, we employed 300 CDN denoising queries. For
750 DiffuDETR, which is built upon Deformable DETR, we did not adopt the two-stage variant but
751 instead incorporated the encoder loss to enhance representation learning. Furthermore, we applied
752 exponential moving average (EMA) updates to both DiffuDETR and DiffuDINO, as EMA stabilizes
753 training and improves convergence under the diffusion denoising objective.
754

755

756
757 A.2 VISUALIZATION OF PREDICTIONS WITH DIFFERENT DECODER EVALUATION STEPS ON
758 COCO759 Figure 6 illustrates the effectiveness of DiffuDINO under varying numbers of decoder evaluation
760 steps. Increasing the number of evaluations enables the model to detect more objects, particularly
761 in complex and crowded scenes. Notably, even with a single evaluation step, DiffuDINO already
762 surpasses the baseline DINO, demonstrating stronger localization and recall in challenging scenar-
763 os. This highlights the model’s robustness and its ability to scale detection quality with additional
764 decoding steps. The quantitative results are summarized in Table 9.792 Figure 6: Qualitative comparison of object detection results on COCO 2017 validation set across
793 different numbers of decoder evaluation steps ($t = 1, 3, 5, 10$), showing DiffuDINO, baseline DINO
794 with ResNet-50 backbone, and ground truth annotations. Only predictions with confidence scores
795 above 50% are shown.
796797 Table 9: Comparison of DINO and DiffuDINO with different decoder evaluation steps on the COCO
798 2017 validation set.
799800
801

Model	Decoder Evaluation	AP	AP ₅₀	AP ₇₅	AP _S	AP _M	AP _L
DINO	1	50.9	69.0	55.3	34.3	54.1	64.6
DiffuDINO	1	51.6	69.2	55.8	35.5	55.5	66.9
DiffuDINO	3	51.9	69.5	56.3	35.9	55.8	67.1
DiffuDINO	5	51.8	69.2	56.2	35.8	55.7	67.0
DiffuDINO	10	51.4	68.5	56.0	35.5	55.4	66.8

810 A.3 VISUALIZATION OF PREDICTIONS ON LVIS
811

812 Figure 7 presents qualitative examples from the LVIS validation set, showing how DiffuDINO
813 benefits from additional decoder evaluation steps. The model consistently produces more accurate
814 detections in dense and diverse scenes, capturing objects that DINO often misses. Even at a single
815 evaluation step, DiffuDINO demonstrates clear improvements over the baseline, highlighting its
816 advantage in handling long-tail distributions and fine-grained categories. The corresponding quan-
817 titative results are provided in Table 10.

818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
Figure 7: Qualitative comparison of object detection results on LVIS validation set across different
859 numbers of decoder evaluation steps ($t = 1, 3, 5$), showing DiffuDINO, baseline DINO with ResNet-
860 50 backbone, and ground truth annotations. Only predictions with confidence scores above 50% are
861 shown.

Table 10: Comparison of DINO and DiffuDINO with different decoder evaluation steps on the LVIS validation set.

Model	Decoder Evaluation	AP	AP ₅₀	AP ₇₅	AP _s	AP _m	AP _l	AP _r	AP _c	AP _f
DINO	1	26.5	35.9	27.8	20.0	35.2	40.9	9.2	24.6	36.2
DiffuDINO	1	27.0	36.4	28.6	19.5	35.8	44.1	12.0	26.1	34.7
DiffuDINO	3	28.9	38.5	30.8	20.7	37.5	46.4	13.7	27.6	36.9
DiffuDINO	5	28.2	37.6	30.2	20.2	36.5	45.6	11.9	26.9	36.7

864 A.4 NUMBER OF QUERIES
865

866 We ablate on the number of queries in Table 11 varying the number of queries on DiffuDINO per-
867 formance on the COCO 2017 validation set, with all models trained under a linear noise scheduler.
868 Increasing the number of queries from 300 to 900 yields noticeable improvements, particularly for
869 small (35.6 AP_s) and medium (55.8 AP_m) objects. As expected, scaling more to 1500 queries pro-
870 vides the best overall AP (51.9), demonstrating that our approach continues to scale effectively with
871 more queries. For consistency and fair comparison with baselines, however, all main experiments in
872 this work are conducted with the conventional 900 queries.

873
874 Table 11: DiffuDINO performance with different numbers of queries on the COCO 2017 validation
875 set. All models are trained with a linear noise scheduler.
876

No. of Queries	AP	AP ₅₀	AP ₇₅	AP _s	AP _m	AP _l
300	51.2	68.8	55.6	35.0	55.2	66.4
900	51.6	69.1	56.2	35.6	55.8	66.4
1500	51.9	69.5	56.4	35.0	55.5	66.6

881
882 A.5 NOISE DISTRIBUTIONS
883

884 In section 4.3.1 we ablate on different noise distributions. We use the following PDFs for sampling
885 Gaussian Distribution
886

$$887 f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \quad -\infty < x < \infty, \mu = 0.5, \sigma = 0.5. \quad (6)$$

888 and beta distribution
889

$$890 f_X(x) = \frac{1}{B(\alpha, \beta)} x^{\alpha-1} (1-x)^{\beta-1}, \quad 0 < x < 1, \quad \alpha = 2, \beta = 2. \quad (7)$$

891 Sigmoid Gaussian is simply
892

$$893 f_X(x) = \text{sigmoid}\left(\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)\right), \quad -\infty < x < \infty, \mu = 0, \sigma = 1. \quad (8)$$

894 Notice that due to the nature of gaussian distribution, noise would need to be clipped to ensure that
895 normalized reference points are between 0 and 1. Beta and Sigmoid Gaussian ensure that the limit
896 is within the distribution itselfs and our chosen hyperparameters.
897

904 A.6 COMPUTATIONAL COMPARISON OF DETR VARIANTS.
905

906 In Table 12, we provide a detailed comparison of computational requirements across several DETR-
907 based detection models, all using a ResNet-50 backbone. We report both FLOPs (in GigaFLOPs)
908 and activations (in millions). As shown, models that introduce denoising mechanisms such as DN
909 DETR and DN Deformable DETR incur a noticeable increase in computation compared to their
910 non-denoising counterparts. This trend is consistent with the broader progression of DETR variants:
911 newer models typically achieve stronger performance by introducing architectural refinements or
912 additional training signals, but at the cost of increased FLOPs and activation memory.

913 Within this landscape, DiffuDINO follows a predictable computational pattern. With a single de-
914 coder evaluation, its cost matches that of its baseline DINO. Increasing the number of denoising
915 steps naturally increases computation, yet the growth is linear and controllable, allowing practition-
916 ers to balance accuracy and efficiency depending on deployment constraints. This extended compar-
917 ison provides a clear view of the trade-offs across DETR variants and demonstrates that DiffuDINO
918 fits cleanly within the expected computational spectrum of modern DETR models.

918 Table 12: Compute cost comparison across detection models using ResNet-50. FLOPs are reported
 919 in GigaFLOPs and activations in millions (mean \pm std).

Model	D.E.	FLOPs (G)	Activations (M)
DETR	1	83.7 ± 9.3	222.93 ± 24.25
DN DETR	1	89.2 ± 9.5	253.87 ± 26.10
Deformable DETR	1	171.3 ± 18.6	484.02 ± 52.16
DN Deformable DETR	1	231.3 ± 25.1	602.40 ± 64.72
Align DETR	1	244.5 ± 25.5	673.05 ± 66.46
MR Deformable DETR	1	258.0 ± 27.4	709.06 ± 73.95
DINO	1	244.5 ± 25.5	673.06 ± 66.46
Diffu-DINO	1	244.5 ± 25.5	673.06 ± 66.46
Diffu-DINO	3	285.2 ± 27.1	870.96 ± 72.74
Diffu-DINO	5	326.0 ± 28.7	1068.86 ± 79.01
Diffu-DINO	10	427.9 ± 32.7	1563.61 ± 94.70

933 Table 13: COCO results for DINO (baseline) and DiffuDINO across 5 seeds under varying numbers
 934 of decoder evaluations using ResNet-50 backbone.

Model	D.E.	Seed	AP	AP50	AP75	APs	APm	API
DINO	1	1	50.58	68.41	55.46	34.26	53.85	65.25
DiffuDINO	1	1	51.64	69.25	55.83	35.38	55.60	66.92
DiffuDINO	1	2	51.71	69.28	55.94	35.64	55.52	67.08
DiffuDINO	1	3	51.68	69.28	55.87	35.53	55.59	66.80
DiffuDINO	1	4	51.70	69.33	55.89	35.51	55.63	67.00
DiffuDINO	1	5	51.68	69.29	55.93	35.47	55.60	67.02
DiffuDINO	3	1	51.97	69.55	56.30	35.85	55.81	67.21
DiffuDINO	3	2	51.98	69.55	56.36	35.95	55.84	67.26
DiffuDINO	3	3	51.95	69.52	56.36	35.93	55.79	67.11
DiffuDINO	3	4	51.96	69.58	56.36	36.06	55.82	67.21
DiffuDINO	3	5	51.90	69.51	56.23	35.84	55.80	67.14
DiffuDINO	5	1	51.85	69.28	56.25	35.86	55.65	66.97
DiffuDINO	5	2	51.82	69.22	56.11	35.93	55.66	67.08
DiffuDINO	5	3	51.85	69.29	56.24	35.78	55.77	67.07
DiffuDINO	5	4	51.84	69.21	56.26	35.77	55.79	66.99
DiffuDINO	5	5	51.81	69.21	56.20	35.79	55.69	66.82
DiffuDINO	10	1	51.40	68.43	55.97	35.53	55.29	66.82
DiffuDINO	10	2	51.60	68.68	56.11	35.44	55.65	66.85
DiffuDINO	10	3	51.56	68.58	56.13	35.60	55.59	66.85
DiffuDINO	10	4	51.48	68.54	55.98	35.76	55.36	66.86
DiffuDINO	10	5	51.45	68.48	55.95	35.50	55.42	66.76

A.7 COMPREHENSIVE MULTI-SEED RESULT

960 To provide a complete view of model stability under different scene complexities and data distri-
 961 butions, we report full results for three evaluation settings: COCO Dense scenes, COCO Sparse
 962 scenes, and the full COCO validation set. The results are in Tables 13, 14, and 15, where the first
 963 row of each table contains the baseline DINO scores, followed by DiffuDINO performance under
 964 different numbers of decoder evaluations. Across all three tables, DiffuDINO consistently surpasses
 965 the baseline DINO model both in Dense scenes and Sparse scenes while exhibiting remarkably small
 966 seed-to-seed variability.

A.8 USE OF LARGE LANGUAGE MODELS

967 Large Language Models (LLMs) were utilized for minor edits and revisions during the writing of
 968 this paper, primarily to correct grammar, spelling and improve clarity in certain passages. No content
 969 was generated or substantively altered by the LLMs.

972
973
974
975

Table 14: COCO sparse scenes results for DINO (baseline) and DiffuDINO across 5 seeds under varying numbers of decoder evaluations using ResNet-50 backbone.

976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996

Model	D.E.	seed	AP	AP50	AP75	APs	APm	API
DINO	1	1	57.00	73.38	62.64	36.14	55.90	59.26
DiffuDINO	1	1	58.47	74.70	63.51	37.91	57.62	68.22
DiffuDINO	1	2	58.52	74.70	63.52	37.69	57.73	68.35
DiffuDINO	1	3	58.42	74.66	63.51	37.87	57.59	68.23
DiffuDINO	1	4	58.47	74.65	63.55	37.68	57.60	68.40
DiffuDINO	1	5	58.56	74.72	63.57	37.76	57.78	68.54
DiffuDINO	3	1	58.65	74.75	63.86	38.10	57.91	68.53
DiffuDINO	3	2	58.64	74.72	63.91	37.77	57.80	68.59
DiffuDINO	3	3	58.72	74.77	63.89	38.31	57.78	68.63
DiffuDINO	3	4	58.63	74.80	63.81	38.08	57.78	68.46
DiffuDINO	3	5	58.65	74.73	63.80	38.11	57.79	68.55
DiffuDINO	5	1	58.57	74.57	63.82	37.81	57.64	68.45
DiffuDINO	5	2	58.50	74.56	63.66	37.92	57.48	68.42
DiffuDINO	5	3	58.44	74.45	63.61	37.51	57.53	68.44
DiffuDINO	5	4	58.52	74.55	63.78	37.65	57.79	68.48
DiffuDINO	5	5	58.48	74.49	63.72	37.73	57.43	68.54
DiffuDINO	10	1	58.15	73.95	63.33	37.54	57.27	68.03
DiffuDINO	10	2	58.18	73.96	63.35	37.30	57.05	68.13
DiffuDINO	10	3	58.22	73.99	63.49	37.42	57.43	68.10
DiffuDINO	10	4	58.18	73.90	63.41	37.40	57.40	68.14
DiffuDINO	10	5	58.11	73.92	63.48	37.14	57.22	68.13

997
998
999
1000

Table 15: COCO dense scenes results for DINO (baseline) and DiffuDINO across 5 seeds under varying numbers of decoder evaluations using ResNet-50 backbone.

1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

Model	D.E.	seed	AP	AP50	AP75	APs	APm	API
DINO	1	1	43.72	62.30	47.81	33.99	51.96	66.63
DiffuDINO	1	1	44.47	63.22	47.77	34.30	53.26	61.47
DiffuDINO	1	2	44.51	63.25	47.81	34.46	53.00	61.48
DiffuDINO	1	3	44.64	63.29	47.99	34.50	53.36	61.24
DiffuDINO	1	4	44.48	63.12	47.82	34.38	52.98	61.68
DiffuDINO	1	5	44.59	63.34	47.98	34.61	53.16	61.58
DiffuDINO	3	1	44.88	63.71	48.53	35.01	53.40	61.54
DiffuDINO	3	2	44.93	63.65	48.44	34.88	53.48	61.62
DiffuDINO	3	3	44.86	63.63	48.30	35.02	53.31	61.63
DiffuDINO	3	4	44.88	63.65	48.37	34.85	53.43	61.69
DiffuDINO	3	5	44.89	63.66	48.31	35.07	53.39	61.55
DiffuDINO	5	1	44.83	63.36	48.29	34.83	53.40	61.63
DiffuDINO	5	2	44.77	63.22	48.28	34.89	53.39	61.60
DiffuDINO	5	3	44.88	63.37	48.46	34.90	53.50	61.70
DiffuDINO	5	4	44.88	63.45	48.44	35.00	53.45	61.63
DiffuDINO	5	5	44.91	63.44	48.53	34.99	53.58	61.50
DiffuDINO	10	1	44.49	62.59	48.16	34.74	53.29	61.32
DiffuDINO	10	2	44.64	62.71	48.38	34.61	53.54	61.35
DiffuDINO	10	3	44.63	62.86	48.27	34.91	53.32	61.16
DiffuDINO	10	4	44.63	62.64	48.25	34.98	53.35	61.31
DiffuDINO	10	5	44.49	62.66	48.10	34.73	53.29	61.42

1024
1025