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Abstract: Pepper production is a critical component of the global agricultural economy, with
exports reaching a remarkable $6.9B in 2023. This underscores the crop’s importance as a major
economic driver of export revenue for producing nations. Botrytis cinerea, the causative agent
of gray mold, significantly impacts crops like fruits and vegetables, including peppers. Early
detection of this pathogen is crucial for a reduction in fungicide reliance and economic loss
prevention. Traditionally, visual inspection has been a primary method for detection. However,
symptoms often appear after the pathogen has begun to spread. This study employs the Deep
Learning algorithm YOLO for single-class segmentation on plant images to extract spatial
details of pepper leaves. The dataset included hyperspectral images at discrete wavelengths
(460 nm, 540 nm, 640 nm, 775 nm, and 875 nm) from derived vegetation indices (CVI, GNDVI,
NDVI, NPCI, and PSRI) and from RGB. At an Intersection over Union with a 0.5 threshold, the
Mean Average Precision (mAP50) achieved by the leaf-segmentation solution YOLOv11-Small
was 86.4%. The extracted leaf segments were processed by multiple Transformer models,
each yielding a descriptor. These descriptors were combined in ensemble and classified
into three distinct classes using a K-nearest neighbor, a Long Short-Term Memory (LSTM),
and a ResNet solution. The Transformer models that comprised the best ensemble classifier
were as follows: the Swin-L (P:4 x 4-W:12 x 12), the ViT-L (P:16 x 16), the VOLO (D:5),
and the XCIT-L (L:24-P:16 x 16), with the LSTM-based classification solution on the RGB,
CVI, GNDVI, NDVI, and PSRI image sets. The classifier achieved an overall accuracy of
87.42% with an F1-Score of 81.13%. The per-class F1-Scores for the three classes were 85.25%,
66.67%, and 78.26%, respectively. Moreover, for B. cinerea detection during the initial as well as
quiescent stages of infection prior to symptom development, qPCR-based methods (RT-qPCR)
were used for quantification of in planta fungal biomass and integrated with the findings
from the Al approach to offer a comprehensive strategy. The study demonstrates early and
accurate detection of B. cinerea on pepper plants by combining segmentation techniques
with Transformer model descriptors, ensembled for classification. This approach marks a
significant step forward in the detection and management of crop diseases, highlighting the
potential to integrate such methods into in situ systems like mobile apps or robots.

Keywords: deep learning; segmentation; descriptor classification; image classification;
vision transformers; Botrytis cinerea; gray mold; RT-qPCR; fungal biomass; precision
agriculture
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1. Introduction

The demand for efficient farming practices in the horticulture and food industries is
growing rapidly. The success of horticulture relies heavily on both the quality and quantity
of its products. Fungal diseases can affect various plant parts, such as stems, leaves,
flowers, and fruits, leading to reduced yields and lower overall crop production, which
results in economic losses. Gray mold, caused by Botrytis cinerea (teleomorph Botryotinia
fuckeliana), is one of the most destructive diseases globally. The pathogen infects over
1400 plant species, including economically important crops such as grapes, greenhouse
vegetables, ornamental plants, and various fruits [1,2]. Efforts to develop eco-friendly
control methods, such as RNA interference, biological control, and plant resistance inducers,
are ongoing but have not yet matched the effectiveness of fungicides, which remain the
primary management strategy. However, the success of chemical control is increasingly
challenged by the development of fungicide resistance in B. cinerea populations, leading to
the reduced or complete loss of control efficacy. Resistance has emerged globally against all
site-specific fungicides due to mutations in the genes encoding the target sites [3].

Currently, diagnosis of B. cinerea Pers. is mainly based on the visual assessment of
disease symptoms, as well as the isolation and identification of the pathogen from infected
plant tissues [4]. This process is not only time-consuming and labor-intensive but also
requires expertise. Early detection is crucial for enabling timely and effective management,
which helps limit disease spread, reduce yield loss, and minimize chemical use [5]. Inves-
tigating a pathogen’s gene expression patterns (expression profiles) at different stages is
essential for understanding its behavior and progression. In recent times, the introduction
of real-time polymerase chain reaction (qPCR) techniques to detect damaging pathogens
has greatly improved quantitative analysis, combining the sensitivity of conventional
PCR with the generation of a specific fluorescence signal only when the probe forms a
stable hybrid with the complementary sequence of the amplicon. Reverse transcription
quantitative PCR (RT-qPCR) is highly regarded as a benchmark for the high-precision,
high-sensitivity, and fast measurement of gene expression. RT-qPCR has been extensively
utilized for the detection of pathogens, including bacteria, viruses, and fungi, in plant
tissues and soil [6,7]. The method is particularly advantageous for identifying latent in-
fections where the pathogen load may be low and conventional detection methods may
fail. By quantifying pathogen-specific nRNA, researchers can determine the presence and
activity of pathogens in host tissues, which is crucial for effective disease management.
Additionally, researchers can track the dynamic gene expression changes that occur as
fungi colonize their hosts, adapt to environmental conditions, and respond to plant defense
mechanisms, offering a clearer understanding of fungal-host interactions [8]. These studies
are critical for advancing our knowledge of fungal pathogenicity and potential control
strategies.

Recent advancements in computer vision utilizing deep learning (DL), have increas-
ingly proven to be a valuable approach for detecting crop diseases [1]. When combined
with hyperspectral imaging, detection performance shows improvement, with classification
methods including decision tree-based classifiers, the K-nearest neighbor (KNN) algorithm,
Support Vector Machine (SVM) models, Convolutional Neural Networks (CNNs), etc. [1].
Another emerging approach in this domain is the use of ensemble methods, which aim
to improve performance in comparison to singular models. These methods encompass
a variety of structural configurations and variations, making them a dynamic area of
study [9].

The Transformer methodology was initially proposed by Vaswani et al. [10] in 2017 for
Natural Language Processing tasks. Later, in 2020, it was also proposed as an applicable
solution model for computer vision tasks by Dosovitskiy et al. [11], going by the name
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Vision Transformer (ViT). This model demonstrated the ability to outperform the previously
dominant Convolutional Neural Networks (CNNs) when provided with sufficiently large
datasets. Of course, this model still had some drawbacks, like the quadratic compute-cost
growth with the image resolution. Subsequent studies resulted in other transformer per-
mutations based on the ViT, like the following: (a) the Swin Transformer model [12], with a
focus on handling the computational complexity of ViT and the fixed scale; (b) the DeiT
model [13], with a similar aim and an approach that involved utilizing a down-sampled
pretrained ViT; (c) the VOLO model [14], targeting finer-level feature and context encoding
in contrast with the coarse-level global dependency modeling performed by ViT; (d) the
XCiT model [15], which applies a cross-covariance attention layer, granting a linear com-
plexity to a task of quadratic complexity in the ViT model; and (e) the MaxViT model [16],
which applies linear scaling in relation to image resolution, while also attempting to enable
a global view of the entire network by the model.

In a recent study, Giakoumoglou et al. (2024) [17], approached the early detection of
gray mold in cucumber plants. They utilized five multispectral images for each capture,
combined with image-segmentation techniques using CNNs and ViT encoders. This
method achieved an overall accuracy of 90.1% with a Dice Coefficient (DC) of 67.7% at
an Intersection over Union (IoU) of 0.656. Subsequently, Christakakis et al. (2024) [18]
focused on addressing dataset imbalance through the implementation of the augmentation
technique Cut-and-Paste, enabling their model to manage an overall accuracy of 92%
with a DC of 79.2% at the higher IoU of 0.816. Additionally, Scarboro et al. (2021) [19]
approached B. cinerea detection in lettuce plants, using bispectral imaging as the base
for single-pixel classification. Under laboratory conditions, their model performed with
a True Positive rate of 95.25% while the False Positive rate was 9.316%. Qasrawi et al.
(2021) [20] attempted the detection and classification of five tomato diseases, including B.
cinerea, using smartphone imaging with a dataset of 3000 images. The models employed
included neural networks, logistic regression, and clustering techniques, achieving 70.3%,
68.9%, and 70% classification accuracies, respectively. Regarding image classification,
Lorente et al. (2021) [21] approached the task by applying standardized methods for
descriptor extraction such as SIFT and SURF [22]. Then, they applied Bag of Visual Words
(BoVW) [23] classification through an array of algorithms, and, based on the model and
configuration, they reached accuracies ranging from 0.6 to 0.96. Nagasubramanian et al.
(2019) [24] effectively applied hyperspectral imaging and a deep CNN architecture to
classify soybean stems infected by Macrophomina phaseolina, a fungus that causes charcoal
rot, an economically important disease of soybean worldwide. The model reached an
accuracy of 95.73% with an 87% F1-Score regarding the infected class. This study showed
that the near-infrared (NIR) wavelengths were most critical for detecting infected samples,
while the physiological relevance of spectral regions was demonstrated through tests with
wavelengths in the visible spectrum (400700 nm) for disease detection. Similarly, Nguyen
et al. (2021) [25] combined DL with hyperspectral imaging to enable the early detection of
grapevine vein clearing virus (GVCV). The study demonstrated efficacy in differentiating
healthy grapevines from those infected with GVCV, even in the early asymptomatic stages.
Key wavelengths regions, including the NIR region (900-940 nm) and the visible spectrum
(449461 nm), were identified as critical for differentiation. Physiological changes, including
decreased leaf water availability and a decline in the leaf pigment content, influenced
reflectance patterns and proved integral to disease detection. These studies highlight the
capability of hyperspectral imaging to enable the early detection of plant pathogens, and
align with our approach to detect B. cinerea.

In our previous study, Kapetas et al. (2024) [26], an ensemble classification of de-
scriptors through two approaches (KNN and LSTM) was effectively applied to classify
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tomato leaves for the early detection of B. cinerea. This method involved the use of five
hyperspectral images and one RGB image for each capture. The main goal of the current
study is to build upon and enhance the previous methodology. The focus has shifted
from tomato plants to pepper plants, with the main objective of this study still remaining
the effective detection of B. cinerea, particularly during the early stages of infection or in
latent infections where symptoms are not yet visible. A combination of molecular methods
(RT-gPCR) for estimating the biomass accumulation of B. cinerea in host tissues, analyzing
the expression of genes involved in fungal adaptation such as plant-pathogen interactions
and pathogenicity, and computer vision techniques was applied. An imagery dataset was
captured, consisting of leaf images covering all three classes to be distinguished: healthy;,
invisible-botrytis, and visible-botrytis. Each capture consisted of eleven images: five cap-
tured on hyperspectral wavelengths (460, 540, 640, 775, and 875 nm), one in RGB, and
five from derived vegetation indices (CVI, GNDVI, NDVI, NPCI, NPCI). In comparison
to our previous study, the introduction of the vegetation indices was an important step
towards a more robust classification approach. YOLO [27] was utilized to segment and
extract each leaf from these images. Subsequently, a descriptor was generated for each
leaf for each of the 11 images of each capture using a suite of Transformer models. Also, a
further preprocessing step that augmented the leaf-image quantity was introduced before
the descriptor extraction to enhance the approach of our previous research. Finally, three
descriptor classification solutions were applied, a KNN [28] algorithm, an LSTM-based
(Long Short-Term Memory) [29] model, and a ResNet-based [30] model, to assign each leaf
into one of the three distinct classes. As a further step towards improving the performance
of the approach for classification and to ensure robustness, the multiple results obtained for
each capture (one for each of the eleven images for each of the Transformer models) were
ensembled via a weighted voting algorithm. This ensembling method effectively combined
multiple image-classification predictions to yield the most accurate result.

2. Materials and Methods

A high-level flowchart is presented in Figure 1, outlining the key stages of the proposed
methodology, which are discussed in detail in the following sections.

2.1. Biological Material and Inoculation Protocol

The bioassays were conducted following a completely randomized design in two
controlled-environment plant growth chambers at Benaki Phytopathological Institute
premises; one chamber housed B. cinerea-inoculated plants while the other contained
mock-inoculated (non-inoculated) plants. Both chambers were maintained under the same
environmental conditions (21 & 1 °C, 16 h of light with a photosynthetic photon flux of
352.81 pmol/s, and 85-90% relative humidity).

The B. cinerea used in the study was isolated from naturally infected cucumber plants.
For conidial suspension (10° conidia ml~!) preparation, conidia were harvested by scraping
the surface of 12-day-old culture gently and were suspended in sterile distilled water
(SDW) supplemented with 2% sucrose and 0.01% Tween® 20 (Sigma-Aldrich, St. Louis,
MO, USA) [17].

Pepper (Capsicum annuum L. cv. "Soroksari’) cv. KAPTUR F1 plants (Plantas S.A., Thiva,
Greece) were artificially inoculated with the pathogen at the stage of four fully expanded
leaves. Specifically, the second true leaf was inoculated by spraying the adaxial surface
with the conidial suspension until it reached the point of run-off [17]. For mock-inoculated
plants, the same method was carried out with the only difference being the omission of B.
cinerea inoculum.
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Figure 1. A high-level overview of the proposed methodology. The process begins with feeding the
RGB image, five hyperspectral images, and five derived indices into the YOLO model to perform
single-leaf segmentation across all images. The segmented leaf images are then processed through
Transformer models to generate descriptors for each leaf. These descriptors are subsequently classified
on a per-leaf, per-wavelength, and per-model basis. A weighted voting ensemble integrates these
classifications to determine the final class for each leaf. Finally, the classifications are visualized on
the original image, providing a comprehensive overview of the results. The leaves are categorized
into three classes: green (healthy), blue (botrytis-invisible), and red (botrytis-visible).

2.2. In Planta Assays for Disease Intensity and Image Acquisition

The bioassays consisted of two sets of pepper plants: six plants inoculated with the
B. cinerea (labeled 1-6) and three control plants that received a mock inoculation (labeled
1-3). The severity of disease was assessed twice weekly, based on the percentage of leaf
area showing visible symptoms, and continued until the plants reached the end of their
growth cycle. For each leaf, disease severity was assessed over a period of 65 days post-
inoculation (dpi). The data were analyzed using a logit transformation to linearize disease
progression over time [17]. Linear regression was then applied to determine the rate of
disease progression and estimate the onset time of infection for each leaf.

Disease ratings were plotted over time to construct disease progress curves. The area
under the disease progress curve (AUDPC) was calculated using the trapezoidal integration
method [31,32]. Disease severity was expressed as a percentage of the maximum possible
AUDPC for the whole period of the experiment, which is referred to as the relative AUDPC.
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Initial and advanced symptoms of B. cinerea were captured using multispectral imag-
ing. The images were subsequently captured at 1, 2, 5, 13, 20, 27, 34, 41, 48, 55, and 62 dpi,
and included detailed views of individual leaves as well as the entire plants, showcas-
ing all their foliage. The total number of captures obtained from B. cinerea-infected and
mock-inoculated plants was 413 and 372, respectively. For imaging, a customized Qcell
Phenocheck camera, Chania, Greece [33] was utilized, capturing six images from the visible
and NIR spectrum (five images at the wavelengths 460 nm, 540 nm, 640 nm, 775 nm,
and 875 nm and one RGB image), and generating the images of the derived indices (CVI,
GNDVI, NDVI, NPCI, NPCI). The captured images had a resolution of 3000 x 1900 pixels.
An example of the individual 11 images that comprised a capture of a B. cinerea-inoculated

plant is shown in Figure 2.

Figure 2. The eleven images that comprised a single capture: (a) RGB, (b) 460 nm, (c) 540 nm,
(d) 640 nm, (e) 775 nm, (f) 875 nm, (g) CVI, (h) GNDV]I, (i) NDVI, (j) NPCI, (k) PSRI.

2.3. Bioassays for Gene Expression Analyses and Image Acquisition at Early Stages of Infection

For gene expression analyses, the bioassays consisted of three plants (biological repli-
cates) per treatment (mock-inoculated and B. cinerea-inoculated) and per time-point (1, 2
and 5 dpi). The second true leaf of each plant was sprayed with the conidial suspension as
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described previously. At each time point, the mock- and B. cinerea-inoculated leaves were
collected from each pepper plant, immediately used for multispectral imaging, flash frozen,
ground in liquid nitrogen, and stored at —80 °C.

Total RNA was extracted using the NucleoSpin® RNA Plant and Fungi Kit (Macherey-
Nagel GmbH & Co., Dueren, Germany) following the manufacturer’s protocol. The
concentration and purity of the RNA were assessed using a NanoDrop® ND-1000 Spec-
trophotometer (Thermo Fisher Scientific, Wilmington, NC, USA), and its integrity was
confirmed through agarose gel electrophoresis [31,32].

cDNA synthesis, along with the removal of any residual genomic DNA, was carried
out using the PrimeScript™ RT Reagent Kit with gDNA Eraser for Perfect Real Time (Takara
Bio Inc., Kusatsu, Shiga Japan), following the manufacturer’s protocol. Real-time PCR was
performed using the StepOnePlus Real-time PCR system (Applied Biosystems, Thermo
Fisher Scientific, Wilmington, NC, USA) with SYBR green (KAPA SYBR® FAST qPCR
Master Mix (2X), KAPA Biosystems (Pty) Ltd., Cape Town, South Africa) as the fluorescent
reporter. Each reaction mixture in 10 pL consisted of 5 uL of FAST qPCR Master Mix (2X),
0.2 uL of 10 uM of each gene-specific primer pair, 0.2 uL of 50X ROX High, and 1 puL of
cDNA template.

Fungal biomass was quantified by assessing the relative expression of B. cinerea refer-
ence gene BcRPL5 (Bcin01g09620) [34]. The relative expression of two defense-related genes
in pepper, Pathogenesis-related protein 1 (PR1) and Defensin 1, related to the salicylic acid
(SA) and jasmonic acid (JA) pathways in pepper, respectively, were also estimated in both
pathogen-inoculated and mock-inoculated samples [35]. Ubiquitin-conjugating protein
CaUbi3 (Accession Number: AY486137.1) was used as an internal reference [36]. The
relative expression level of the selected genes was calculated with the 2-AACT method [32].
The sequences of all primers utilized in this study are listed in Supplementary Table S1. All
reactions were performed in duplicate. Additionally, melting curve analysis was performed
to confirm the absence of non-specific products and primer dimers.

2.4. Image Annotation and Segmentation Techniques

Roboflow [37] was employed to annotate the 785 captures for a polygon encapsulation
of each leaf’s area in the images. According to the development of B. cinerea disease, each
leaf was assigned a class. Leaves with 0.1-5% infected leaf area were labeled as “botrytis-
invisible” while those with 5-100% infected leaf area were categorized as “botrytis-visible”.
All other leaves were labeled as “healthy.” For simplicity and ease of reference, the classes
were renamed as follows: “healthy” leaves as “Class 0”, “botrytis-invisible” leaves as
“Class 1”7 and “botrytis-infected” leaves as “Class 2”. A depiction of the true annotations
mask, overlaid over an RGB image, is depicted in Figure 3.

Image segmentation is the process of identifying and partitioning distinct regions
within an image, where each segment represents a specific object or area of interest [38]. In
this study, segmentation was performed using a DL model based on the YOLO architecture.

This model is capable of recognizing image features by learning generalizable object
representations from image datasets. To achieve a balance between accuracy and inference
speed, a pretrained YOLO-Small model was selected from the Ultralitics library [39] and
fine-tuned. The fine-tuning process involved training models from the YOLOv8 and
YOLOWV11 architectures for 100 epochs using the SGD optimizer with a learning rate of 0.01.
Fine-tuned models were tested at resolutions of 1024 x 1024 and 1600 x 1600, with batch
sizes of 4 and 8.
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Figure 3. RGB image overlaid with the ground truth annotations. The leaves are categorized into
three classes: green (healthy), blue (botrytis-invisible), and red (botrytis-visible).

2.5. Data Processing and Augmentation Technigues

This study approached leaf classification by isolating each leaf on its own separate
new image, given that each original image shows more than one leaves. The area on the
image that was not occupied by that one leaf was fully transparent (dataset-a). To facilitate
compatibility with the Transformer models outlined in Section 2.6, the individual leaf
images were resized to a uniform dimension of 384 x 384 pixels. Down-sampling from
the original resolution of 3200 x 1900 pixels to the resolution of 384 x 384 pixels led to
a severe loss of information for the single leaf, particularly for leaves occupying a small
part of the original image. Additionally, the resulting images contained a large number
of transparent pixels that essentially provided almost no information. To address these
issues, two zooming techniques were employed. The first method effectively represents
a four-times zoom (dataset-b), which is achieved by cropping each leaf image to half its
original width and height before resizing. This approach aimed to preserve finer details
while ensuring even the largest leaves of the dataset were still fully visible within the
images. The second method (dataset-c) focused on cropping the images closely around
each leaf’s bounding box area which maximized the preserved leaf-pixel information to the
final image but, as each leaf fully occupied the available image space, all leaf-size context
was lost. Figure 4 illustrates how datasets-a, -b, and -c were derived from the original
images.

Dataset-a Dataset-b Dataset-c

) ¥ —eees) U )

(a) (b) (o)

Figure 4. A depiction of an example image of a leaf from datasets (a): as extracted directly from
the original image; (b): with a four-times zoom; (c): with a crop around the leaf area. Additionally,
(a) portrays how the leaf image was extracted from the original image in a visual manner.
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The resulting dataset from extracting single-leaf images contained 107,481 images
in the “healthy” class, 473 in the “botrytis-invisible” class, and 1309 in the “botrytis-
visible” class. This dataset included eleven images per capture (five from hyperspectral
wavelengths, one RGB image, and five from derived indices) and included only leaves
occupying a minimum of 0.2% of the image area, as smaller leaves provided insufficient
pixel quantity to contain meaningful information for analysis by the models.

Since the classification approach (outlined in Section 2.7) required a relatively balanced
count of images in each class, the disproportionately large number of “healthy” class images
was reduced. During this reduction, a key point was that at least one capture from each
day of the experiment remained in the “healthy” class, preserving all eleven images per
capture. After reduction, the “healthy” class contained 1507 images, while the other two
classes remained unchanged.

To further enhance model performance, additional preprocessing was applied. Specifi-
cally, before reducing the “healthy” class, data augmentation was performed to expand
the “botrytis-invisible” and “botrytis-visible” classes by increasing their image count. This
augmentation involved the randomized scaling and rotation of individual leaves to create
realistic variations, while further common augmentations such as blurring, brightness,
exposure, or other color-based modifications were rejected as they would undermine the
objective of using separate wavelengths where the coloring is an important part of the in-
formation. Augmentation factors of 3.7 and 2 were applied to the “botrytis-invisible” class
and the “botrytis-visible” class, respectively. Although these factors may seem high, they
were necessary due to the low original image counts, especially in the “botrytis-invisible”
class, which had only 43 separate captures. Then, applying an appropriate reduction to
the images of the “healthy” class, like described before, the final counts of the dataset were
2882, 1749, and 2575 images for each of the classes.

Finally, the dataset was divided into training and testing subsets leading to 1133, 352,
and 1023 training images and 374, 121, and 286 testing images for each class, respectively,
for the original dataset with the reduced “healthy” images, while for the dataset where
the data augmentation was applied, the split led to 2266, 1320, and 1957 training images
and 616, 143, and 407 testing images. A key criterion during the splitting process was that
at least one capture for each day and for each class was included in both the training and
testing sets, with all 11 images per capture to be assigned together to either set.

2.6. Transformer Models for Descriptor Extraction

A machine learning model’s layer produces a descriptor as output, which is a vector
formed to characterize the input data, which, in this case, is an image, while a global
descriptor is the output of the final layer before the model’s output layer [40]. In this study,
an array of 9 Transformer models was utilized to extract 9 global descriptors for each of
the eleven images of each capture. More specifically, the timm [41] library’s models were
employed, which are pretrained on ImageNet-1K [42]. The nine transformer models were
as follows: ViT-L (P:16 x 16), ViT-L (P:32 x 32), ViT-B (P:16 x 16-C), ViT-B (P:32 x 32-C),
Swin-L (P:4 x 4-W:12 x 12), VOLO (D:5), XCIT-L (L:24-P16 x 16), DEIT-L (P16 x 16), and
MaxViT-L.

2.7. Classification Methods

In Section 2.6, it is described that a different descriptor was extracted on a per-image
basis for the images that refer to specific singular leaves. Since there were 11 descriptors
for each leaf image, 11 classification actions would be performed independently. Three
different approaches were employed in order to classify these extracted descriptors.
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KNN classification was the first selected approach. In this method, a separate BoOVW
was created for each of the eleven images forming a capture. Each BoVW served as a library
of visual features for all descriptors from the training set. Then, to classify descriptors in
the testing set, using a distance metric, each descriptor was sequentially compared to all
items in the corresponding BoVW for the same wavelength. The distances obtained were
listed and the classification was achieved averaging the K smallest distances. This study
used three different distance metrics: Euclidean, Bray—Curtis, and Cosine.

The second method involved an LSTM model, built using Keras [43]. In this setup,
an LSTM network was trained on the descriptors to capture significant features, using an
LSTM layer, a Batch Normalization layer, and then another LSTM layer. A dense layer
with a linear activation function mapped the output to the corresponding image label. The
LSTM model was trained on descriptors extracted from one of the Transformers for all
training images for each wavelength, and separate LSTM models were trained for each
Transformer model. This led to the creation of 9 LSTM models in total, one for each of
the Transformer models. The learning rate of the models was set to 0.001 initially, with a
learning rate scheduler in place. Training spanned 12 epochs for each wavelength, and the
batch size was set to 128.

The third solution was to use a ResNet architecture, developed again with Keras.
The ResNet model consisted of several residual blocks, each configured with Conv1D
layers, Batch Normalization, and ReLU activations to refine the feature extraction process.
Each residual block included a skip connection to mitigate the vanishing gradient problem,
allowing gradients to flow more effectively during backpropagation. The model began with
an initial Conv1D layer with 512 filters and a kernel size of 3, followed by a sequence of
residual blocks with varying filter sizes and strides to capture hierarchical features. Dropout
layers were integrated between blocks to improve generalization and reduce overfitting.
The feature representations were then compressed using Global Average Pooling, and
the final dense layer with a softmax activation function mapped these features to the
3 class labels. Similarly to the LSTM models, a separate ResNet model was trained for
each descriptor set coming from each of the 9 Transformer models, while each ResNet
model was trained on descriptors from all 11 images per capture. Again, like in the LSTM
approach, the initial learning rate was initialized at 0.001, with a learning rate scheduler in
place. The model was trained for 12 epochs for each wavelength.

To tackle the class imbalance issue due to the different numbers of images per class,
a Per-Class Confidence Multiplier (PCCM) was used on the classification outcomes. The
PCCM was calculated by taking the inverse of the number of images in each class and
multiplying it by the number of images in the class with the most images. Equation (1)
illustrates the PCCM calculation, while Table 1 provides the resulting PCCM values.

Nmax

1

PCCM; =

,1€10,2] (1)

where N; represents the number of training images in class i and Ny, represents the
number of training images in the class with the most images.

Table 1. Confidence multiplier per class.

Dataset Without Data Augmentation Dataset with Data Augmentation
Class Training Images Confidence Training Images Confidence
Multiplier Multiplier
O0—healthy 1133 1 2266 1
1—botrytis-invisible 352 3.25 1320 1.716
2—botrytis-visible 1023 1.118 1957 1.157
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2.8. Evaluation Metrics

For the evaluation of the results of the classification approaches utilized in this study that
differentiated images into three classes, an important note is that the results classified each
image into one and only one class. The metrics that were derived from those results were True
Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN).

The performance metrics for the models—accuracy, precision, recall, and F1-
Score [44]—were calculated. The formulas for these metrics are as follows:

Accuracy = IN+ TP
Y= TIN+FP+TP+EN
Precision = L
~ TP+FP
TP
Recall = —————
Ot = TP Y EN
F1 Score — 2 x Precision x Recall

Precision + Recall

The TP, FP, TN, and FN metrics were calculated for each descriptor in the testing set for
all three classification approaches (KNN, LSTM, ResNet) by comparing the predictions with
the ground truth class. The derived performance metrics were calculated on all abstraction
levels, including per-class per-day, per-class for all days, and per-day for all classes.

2.9. Classification Ensemble

As described in Section 2.6, each of the 11 images of a capture had its own descriptor
for each of the 9 Transformer models. During classification, a different prediction was made
for each descriptor from a single capture. However, the final output should be one and
only one prediction for the class of each capture. Therefore, a method was necessary to
consolidate these multiple predictions into one definitive result. That method should offer
higher classification performance compared to any one standalone descriptor set from a
single image set and Transformer model.

To achieve that, an ensemble approach was employed, aggregating the multiple
predictions relevant to each capture and producing the final result. The calculations
for the ensemble were stored separately for multiple wavelengths and multiple model
combinations. This structure enabled the possibility of calculating the ensemble results of
multiple ensemble calculations for producing the final outcome.

To calculate the ensemble result of multiple predictions, the formula in Equation (2)
was used to determine the confidence of each class as the weighted sum of predictions for
that class, where each prediction was multiplied with that class’s Fl1-score for that image
set (out of the 11) of the corresponding descriptor set (out of the 9). Then, the class with
the highest confidence among the three was declared as the selected option. To determine
which combination of descriptor sets and image sets yielded the best final prediction results,
this process was iteratively applied to all combinations of the 9 descriptor sets, meaning
that not all sets were required to achieve the best result, and the method was also applied
across multiple multi-image-set combinations.

Ci= <Pj,k'Aj,k> 2)

]

Il
—_

™=
L=

k

where C; corresponds to the confidence score for class i across all models and wavelengths,
pjx indicates whether the prediction of model j for wavelength k corresponds to class i (1 if
it does, 0 otherwise), A; refers to the F1-Score of model j for wavelength k, M represents
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the total number of models, and W represents the total number of images per capture that
are employed.

3. Results and Discussions
3.1. Assessment of Gray Mold Severity in Pepper Plants

Disease severity was evaluated as the percentage of leaf area showing gray mold symptoms
for the total leaf area per leaf of all nine leaves per pepper plant, and was periodically recorded
over 65 dpi. Disease progress was monitored at intervals of 3 to 5 days.

Concerning the second artificially inoculated leaf, disease symptoms were observed
only in two out of six pepper plants used in the bioassay at 9 and 16 dpi, while disease
progress was recorded only in one of them (plant No. 4) (Figure 5). The other inoculated
leaves were naturally infected later, with the exception of one leaf that remained uninfected
(Figure 5).

Percentage of infected leaf area (%)

100
90
80
70
60
50
40
30
20
10

No.of plant #1 =2 3 =4 =5 «6

9 13 16 20 27 34 41 48 55 62 65
Days post inoculation (dpi)

Figure 5. Disease severity (% of leaf area showing gray mold symptoms) as recorded over a period of
65 dpi on the 2nd artificially inoculated leaf of six plants.

The disease severity in the pepper leaves progressed at a slow rate, with the AUDPC
reaching 17% for the second artificially inoculated leaf. Additionally, the remaining leaves,
which were naturally and accidentally infected by B. cinerea, showed AUDPC values rang-
ing from 4% to 13% (Figure 6). On the contrary, flowers and fruits were more susceptible to
the pathogen, displaying severe symptoms such as rot, with their tissues covered by dense
gray masses of conidia and mycelia (Figure 7D,E). Quiescent infections in asymptomatic
leaves are critical, as they may transition to an aggressive state as the leaves age and enter
senescence [45].

The progression of the disease was influenced by a combination of factors, such as leaf
developmental stage, spatial arrangement on the stems, nutritional composition of the leaf
tissue, plant defense mechanisms against the invading pathogen, and secondary disease
cycles initiated by airborne B. cinerea conidia released not only from the initial fungal
infections on the artificially inoculated leaf tissues but also from other more susceptible
plant tissues, such as flowers and fruits (Figure 7). The pathogen is most destructive on
mature or senescent host tissues, but when it invades these tissues at an earlier stage of
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crop development it remains quiescent for extended periods and becomes active once envi-
ronmental conditions become favorable and host physiology changes [46]. The occurrence

of latency or quiescent infections represents an important component of the disease cycle
and complicates disease management efforts.

30 -
b
ab

2 20
(]
2 ab
[}
2 ab
% ab ab a a
- ﬁ i ﬁ

0 I I I 1 ﬁ 1 I I

2nd 3rd 4th 5th 6th 7th 8th 9th
Leaf

Figure 6. Disease severity expressed as the percentage of the maximum possible area under disease
progress curve (AUDPC) for the whole period of the experiment (65 dpi) on the 2nd artificially
inoculated leaf (yellow column) and on the 3rd and up to the 9th naturally and accidentally infected
leaves (blue columns) of the six plants used in the bioassay. Bars indicate standard deviation. Columns
with the same letter are not different according to Fisher’s LSD multiple range test (p < 0.05).

Figure 7. Gray mold symptoms: (A) Early and (B,C) late stages of leaf infection. (D,E) Flower and
fruit infection.
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3.2. Pepper Response to Botrytis cinerea Infection

Due to the challenge of the visual detection of gray mold symptoms in the initial
stages of infection, fungal progression was evaluated by the relative expression of the
fungal reference gene BcRPL5 (Bcin01g09620). Specifically, the biomass of B. cinerea in
the plant tissues of mock- and B. cinerea-inoculated second pepper leaves was quantified
through the relative transcript abundance of BcRPL5 via RT-qPCR. The results showed
that the inoculated leaves exhibited a significant increase in fungal biomass within their
tissues compared to mock-inoculated ones at all time points (1, 2, and 5 dpi) (Figure 8). The
relative transcript levels of the BcRPL5 gene increased significantly day by day, reaching
their highest levels at 5 dpi (Figure 8). This gradual increase in the relative transcript levels
of the fungal reference gene indicates that B. cinerea was actively expressing its genes over
time, reflecting the pathogen’s growth and pathogenicity, particularly during the early
stages of infection when no visible symptoms were present.

2 BCRPL5 ‘
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Figure 8. The relative Botrytis cinerea fungal abundance determined by RT-qPCR analysis of the fungal
reference gene BcRPL5 (Bcin01g09620) in mock- and Botrytis cinerea-inoculated second pepper leaves
at1, 2, and 5 dpi. Columns represent the means of three independent leaf samples per treatment
(mock- and B. cinerea-inoculated). Columns with different letters are statistically different according
to Fisher’s LSD multiple range test (p < 0.05).

Additionally, we conducted analyses of the expression of Capsicum annuum defense-
related genes to understand the hosts’ responses to B. cinerea infection. Specifically, real-time
RT-PCR analyses were performed to investigate the relative expression of the jasmonic
acid-dependent gene DEF1, encoding the Capsicum annuum defensin 1 protein, and the
SA-dependent gene PRI, encoding the Capsicum annuum pathogenesis-related protein
1 [47]. Upon fungal infection, DEF1 expression was downregulated in B. cinerea-inoculated
leaves compared to mock-inoculated ones at 2 and 5 dpi (Figure 9, left diagram). On the
contrary, PR1 was overexpressed in inoculated leaves at 5 dpi (Figure 9, right diagram). The
downregulation of DEF1, a marker associated with the JA signaling pathway, suggests that
JA-mediated defense responses were suppressed in response to B. cinerea infection. This
could indicate a strategy by the pathogen to evade the plant’s defenses that are typically
effective against necrotrophic pathogens. The overexpression of PR1, a hallmark of the
SA signaling pathway, highlights a shift in the plant’s defense strategy. This indicates
that, although JA-mediated defenses may be compromised, the SA pathway is activated
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to combat the fungal infection, suggesting a complex interplay between these two path-
ways. The contrasting regulation of DEF1 and PR1 supports the notion of antagonistic
interactions between the SA and JA signaling pathways. While JA is generally associated
with defense against herbivores and necrotrophic pathogens like B. cinerea [48,49], the
activation of the SA pathway indicates a localized immune response to fungal infection.
The observed alterations in gene expression at different time points (2 and 5 dpi) suggest
that the plant’s defense response is dynamic. The initial downregulation of DEFI might
benefit the pathogen, but as the infection progresses, the activation of PRI indicates a robust
activation of the SA pathway to manage the growing threat posed by the pathogen.
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Figure 9. The relative expression of the disease-responsive pepper genes DEF1 (Defensin 1) and
PR1 (Pathogenesis-related protein 1) in mock- and Botrytis cinerea-inoculated second pepper leaves at
1, 2, and 5 dpi via RT-qPCR. Columns represent the means of three independent leaf samples per
treatment (mock- and B. cinerea-inoculated). Bars indicate standard deviation and columns with the
same letter are not different according to Fisher’s LSD multiple range test (p < 0.05).

These temporal changes in gene expression highlight a dynamic defense mechanism
where the host adjusts its strategy based on the pathogen’s progression. Thus, the observed
variations in B. cinerea biomass in pepper tissues and the hosts” responses to the pathogen’s
attack align with the observed patterns of disease progression, illustrating the complexity
of plant-pathogen interactions.

3.3. Performance Evaluation of Segmentation

From the YOLO-Small models that were trained, the best proved to be the YOLOv11-
Small, trained with a resolution of 1600 x 1600 pixels and batch size set to four reaching an
86.4% mAPsg. Table 2 presents the metric results for the trained models. Also, Figure 10
provides visualized examples of the leaf segmentation in action.

Table 2. Performance metrics (mAP50, recall, and precision) for the YOLO models.

Model Image Size Batch Size mAPs5, mAP5q.95 Recall Precision
YOLOv8-Small 1024 4 0.859 0.611 0.76 0.849
YOLOv8-Small 1024 8 0.853 0.599 0.753 0.855
YOLOvV8-Small 1600 4 0.860 0.624 0.767 0.865
YOLOv11-Small 1024 4 0.861 0.613 0.768 0.864

YOLOvV11-Small 1024 8 0.857 0.601 0.756 0.859
YOLOvV11-Small 1600 4 0.864 0.625 0.770 0.869
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(b)

Figure 10. (a) RGB images captured by the camera and (b) corresponding YOLO predictions visual-

ized in red.

3.4. Performance Evaluation of Classification

All three classification methods (KNN, LSTM, and ResNet) were applied to all three
datasets (the original dataset-a, the 4x zoomed dataset-b, and the leaf-zoomed dataset-c),
and all descriptors from all nine Transformer models were classified. Subsequently, an
ensemble classification of the eleven separate descriptors for each capture was performed.
The evaluation metrics included accuracy, precision, recall and F1-Score. The F1-Score
was chosen as the decisive metric to evaluate the model’s performance, since it provides a
balanced measure by considering both precision and recall, whereas accuracy alone can
sometimes give a misleading representation of a model’s effectiveness. Table 3 shows in
detail the F1-Scores (%) of each classification method for each of the three datasets for
each descriptor set derived from the nine Transformer models across all classes. Based
on that data, dataset-b outperformed dataset-a and dataset-c by 1.76% and 1.46% on aver-
age, respectively. This suggests that dataset-a was always outperformed by the zooming
counterparts and that the leaf original shape and size information were important to be
preserved in balance rather than maximizing pixel information, which was preserved in
dataset-c. Based on that outcome, all subsequent experiments focused only on dataset-b,
while the other two datasets were excluded. Additionally, it is worth mentioning that the
KNN solution in this case was calculated using a K value of 3 and the Euclidian distance
function.

Table 3.  Fl-Score (F1) percentage metrics on a per-Transformer model, per-solution
(KNN/LSTM/ResNet), and per-dataset basis.

(a) No-Zoom Dataset (b) 4-Times-Zoom Dataset (c) Leaf-Zoom Dataset

Models KNN LSTM ResNet KNN LSTM ResNet KNN LSTM ResNet
ViT-L (P:16 x 16) 71.01% 75.36% 56.52% 69.57% 71.83% 67.61% 68.20% 71.01% 66.28%
ViT-L (P:32 x 32) 66.67% 69.57% 49.28% 71.01% 69.01% 47.89% 75.61% 60.87% 46.94%
ViT-B (P:16 x 16-C) 68.12% 65.22% 63.77% 71.01% 70.42% 47.89% 68.20% 69.57% 46.94%
ViT-B (P:32 x 32-C) 69.57% 71.01% 49.28% 71.01% 70.42% 60.56% 72.65% 71.01% 59.37%

Swin-L 0, o, ) 0, o, 0, 0, 0, )
(P4 x 4-W:12 x 12) 65.22% 71.01% 68.12% 69.57% 69.01% 50.70% 65.23% 68.12% 49.71%
VOLO (D:5) 71.01% 60.87% 49.28% 71.01% 77.46% 49.30% 69.68% 73.91% 48.33%
XCIT-L (L:24-P16 x 16) 75.36% 69.57% 49.28% 65.22% 64.79% 61.97% 72.65% 69.57% 60.75%
DEIT-L (P16 x 16) 71.01% 60.87% 36.23% 68.12% 69.01% 47.89% 65.23% 71.01% 46.94%
MaxViT-L 68.12% 68.12% 49.28% 71.01% 67.61% 47.89% 63.75% 65.22% 46.94%




Agriculture 2025, 15, 164

17 of 25

Table 4 shows the results of applying the PCCM. The data demonstrate an average
of a 1.83% improvement compared to cases where the PCCM was not applied. Thus, any
further experiments will always include the PCCM.

Table 4. F1-Score (F1) percentage metrics on a per-Transformer model, per-solution
(KNN/LSTM/ResNet), and per-dataset basis, when applying the PCCM.

(b) 4-Times-Zoom Dataset

Models KNN LSTM ResNet

ViT-L (P:16 x 16) 66.67% 70.42% 69.45%
ViT-L (P:32 x 32) 76.81% 69.01% 49.19%
ViT-B (P:16 x 16-C) 72.46% 67.61% 49.19%
ViT-B (P:32 x 32-C) 75.36% 67.61% 62.22%
Swin-L (P:4 x 4-W:12 x 12) 73.91% 70.42% 52.09%
VOLO (D:5) 68.12% 73.24% 50.64%
XCIT-L (L:24-P16 x 16) 68.12% 69.01% 63.66%
DEIT-L (P16 x 16) 71.01% 73.24% 49.19%
MaxViT-L 72.46% 70.42% 49.19%

Applying the data augmentations to dataset-b, a noticeable average improvement of
4.44%, 1.07%, and 24.3% was observed for each of the KNN, LSTM, and ResNet classification
solutions, respectively. Table 5 shows the F1-Scores on the same level as the previous table
with the data augmentations applied. Based on this performance improvement, all further
experiments will have the data augmentation applied.

Table 5. F1-Score (F1) percentage metrics on a per-Transformer model, per-solution
(KNN/LSTM/ResNet), and per-dataset basis, with the data augmentations applied.

(b) 4-Times-Zoom Dataset

Models KNN LSTM ResNet

ViT-L (P:16 x 16) 73.58% 66.98% 69.81%
ViT-L (P:32 x 32) 72.64% 69.81% 66.04%
ViT-B (P:16 x 16-C) 75.47% 72.64% 66.98%
ViT-B (P:32 x 32-C) 77.36% 74.53% 69.81%
Swin-L (P:4 x 4-W:12 x 12) 75.47% 75.47% 58.49%
VOLO (D:5) 73.58% 72.64% 73.58%
XCIT-L (L:24-P16 x 16) 71.70% 70.75% 72.64%
DEIT-L (P16 x 16) 77.36% 69.81% 71.70%
MaxViT-L 76.42% 65.09% 66.04%

The KNN solution did not undergo training since it is an algorithmic solution. As
explained in Section 2.7, a separate BOVW was created for each of the 11 descriptors
corresponding to each capture from the 9 Transformer models. This modularity allowed
classifications of different image sets with no residual effect from any other image set. The
per-image-set, per-Transformer model F1-Scores (%) of the KNN solution are presented in
Table 6.

On the other hand, for the LSTM and ResNet models, nine separate models were
trained, one for each Transformer model. All descriptors from all the different image sets
(11 up to this point) contributed to the model training and, thus, to the result. This approach
introduces a challenge: if one or more image sets underperformed in comparison to the
others during training, the performance of the whole model would have been brought
down. Observing the average F1-Score values in Table 6 reveals noticeable performance
variations across the 11 image sets.
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Table 6. F1-Scores (%) of the KNN solution on a per-Transformer model, per-image-set basis.

Models RGB CVI GNDVI NDVI NPCI PSRI 460 nm 540 nm 640 nm 775 nm 875 nm
ViT-L (P:16 x 16) 58.49 67.30 63.84 64.15 61.01 62.89 52.52 57.23 55.35 62.58 58.49
VAT-L (P:32 x 32) 56.60 67.61 64.15 61.32 59.12 61.95 58.18 62.26 50.00 60.69 58.18
ViT-B (P:16 x 16-C) 64.15 63.52 59.12 64.47 61.64 64.47 57.23 66.35 59.12 59.43 62.26
VAT-B (P:32 x 32-C) 64.78 65.09 63.21 55.03 61.32 65.72 57.86 59.43 54.72 58.81 59.12
Swin-L
(P X W2 x 12) 59.12 64.78 56.92 62.26 61.64 68.24 55.97 58.81 55.03 59.43 60.69
VOLO (D:5) 61.01 63.52 69.81 61.01 62.26 59.43 50.63 58.49 55.66 54.72 52.52
XCIT-L (L:24-P16 x 16) 6698 68.87 60.69 61.64 61.64 63.84 55.97 62.89 62.58 57.86 54.72
DEIT-L (P16 x 16) 63.84 67.92 64.15 53.46 57.86 55.35 54.09 60.06 61.32 59.43 61.01
MaxViT-L 62.26 59.12 60.06 65.72 59.75 65.41 56.60 67.61 56.92 55.97 57.55
Average Value Across 61.91 65.30 62.44 61.01 60.69 63.03 55.45 61.46 56.74 58.77 58.28
All Models

To further improve the performance of the models, the selective removal of some of the
worse-performing image sets from the training data was explored. An iterative process was
employed that tested the removal of all combinations of image sets from the wavelengths
460, 640, 775, and 875 nm. For the LSTM approach, the best performing results were yielded
by models where the image sets from the 460 and 640 nm wavelengths were discarded.
This approach outperformed the previous solution by a per-model average F1-Score of
2.36%. For the ResNet approach, however, the case with all 11 image sets proved best.
Subsequent analysis with the LSTM approach included neither the 460 nor the 640 nm
wavelengths. Table 7 shows the updated F1-Scores (%) on a per-model basis for the LSTM
models trained without the image sets of the 460 or the 640 nm wavelengths.

Table 7. The per-model F1-Scores (F1) percentage for the LSTM and ResNet solutions, without
utilizing any images from the 460 and 640 nm image sets.

Models (b) 4-Times-Zoom Dataset
ViT-L (P:16 x 16) 72.64%
ViT-L (P:32 x 32) 64.15%
ViT-B (P:16 x 16-C) 70.75%
ViT-B (P:32 x 32-C) 79.24%
Swin-L (P:4 x 4-W:12 x 12) 75.47%
VOLO (D:5) 77.35%
XCIT-L (L:24-P16 x 16) 71.69%
DEIT-L (P16 x 16) 73.58%
MaxViT-L 67.92%

Table 8 provides detailed performance metrics on a per-descriptor-set level for the nine
Transformer models for the KNN solution, for multiple distance functions and K values. The
table presents the F1-Score for the Euclidian, Cosine, and Bray—Curtis distance functions for
a K value of 3, and the F1-Score for 1, 3, 5, and 7 K values for the Euclidian distance function.
The results demonstrate that the Euclidian distance function was better by 0.91% and 1.19%
than the Bray—Curtis and the Cosine functions, respectively. Additionally, a K value of
3 was 0.18%, 1.13%, and 1.42% more effective than a K value of 1, 5, or 7, respectively.
Therefore, these findings validated the choice of a K value of 3 and the Euclidian distance
function that were applied in Tables 3—6 for the KNN solution.
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Table 8. A performance comparison of the F1-Scores of the different Transformer models for (a) Eu-
clidian, Bray—Curtis, Cosine distance functions for the K value of 3; and (b) 1, 3, 5, 7 K values for the
Euclidian distance function.

(a) Distance Function (b) K Value

Models Bray—Curtis Cosine Euclidian 1 3 5 7
ViT-L (P:16 x 16) 73.96% 72.11% 73.58% 69.81% 73.58% 71.70% 72.64%
ViT-L (P:32 x 32) 71.19% 72.11% 72.64% 76.41% 72.64% 75.47% 73.58%
ViT-B (P:16 x 16-C) 73.96% 71.19% 75.47% 76.42% 75.47% 71.70% 71.70%
ViT-B (P:32 x 32-C) 72.11% 72.11% 77.36% 73.48% 77.36% 73.58% 75.47%
Swin-L (P:4 x 4-W:12 x 12) 76.74% 77.66% 75.47% 76.22% 75.47% 74.53% 75.47%
VOLO (D:5) 75.81% 75.81% 73.58% 75.17% 73.58% 77.36% 74.53%
XCIT-L (L:24-P16 x 16) 74.89% 73.96% 71.70% 73.28% 71.70% 72.64% 72.64%
DEIT-L (P16 x 16) 74.89% 76.74% 77.36% 76.42% 77.36% 74.53% 73.58%
MaxViT-L 73.96% 73.96% 76.42% 75.17% 76.42% 74.53% 74.53%

Ensemble Results

The best classification F1-Score for the KNN, LSTM, and ResNet approaches across
all classes were 77.36%, 79.24%, and 73.58%, respectively. The ensemble methodology
outlined in Section 2.9 achieved a peak F1-Score across all classes with dataset-b and the
LSTM classification solution. The overall F1-Score for this best model combination was
81.13%, while on a per-class level, the F1-Scores were 85.25%, 66.67%, and 78.26% for the
“healthy”, “botrytis-invisible”, and “botrytis-visible” classes, respectively. Table 9 presents
all the per-class metrics available for a better insight into the classification performance.

Table 9. Performance metrics on a per-class level from the best ensemble model, based on the LSTM
classification approach.

Class Healthy Botrytis-Invisible Botrytis-Visible
Accuracy 83.01% 93.39% 85.84%

Recall 78.78% 87.50% 84.37%
Precision 92.85% 53.84% 72.97%
F1-Score 85.25% 66.67% 78.26%

This ensemble result was obtained by aggregating the predictions of multiple descrip-
tors sets, but not all nine of them. More specifically, the descriptors of four Transformer
models proved to yield the best combination for the best outcome. These four models were
as follows: the Swin-L (P:4 x 4-W:12 x 12), the ViT-L (P:16 x 16), the VOLO (D:5), and the
XCIT-L (L:24-P:16 x 16) models. Also, the aggregation was performed on a per-image-set
level. This best result was the combination of only the RGB, CVI, GNDVI, NDV], and PSRI
image sets, while the rest of the image sets, excluding the ones from 460 and 640 nm, were
utilized only during training. This proves that the inclusion of the vegetation indices was
an important step for improvement. Table 10 shows the combinations of image sets that
were tested and their results in the F1-Score metric overall and individually for each class.

For comparison, the best KNN ensemble model yielded an overall F1-Score of 80.18%
with the per-class values being 84.90%, 66.67%, and 77.64% for the “healthy”, “botrytis-
invisible”, and “botrytis-visible” classes, respectively. The best ResNet ensemble model
delivered an F1-Score of 82.07% overall and 89.28%, 40.00%, and 82.50% on a per-class level.
Although the overall F1-Score was a little bit higher for the ResNet compared to the LSTM
solution, the low F1-Score (<60%) in the “botrytis-invisible” class was considered a large
disadvantage, rendering the ResNet model less viable as a superior alternative.
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Table 10. F1-Score (F1) percentages derived from the best ensemble model from the LSTM classifi-
cation approach on dataset-b for multiple combinations of image set(s) across all classes and on a
per-class level. The bold line highlights the image set and the metrics of the best result.

Image Set(s) Total Class 0 Class 1 Class 2

RGB 79.25% 85.45% 54.55% 77.50%

CVI 67.92% 76.69% 26.67% 59.38%

GNDVI 70.75% 77.69% 52.63% 63.89%

NDVI 68.87% 75.97% 40.00% 63.49%

NPCI 60.38% 65.93% 14.29% 61.68%

PSRI 69.81% 78.46% 0.00% 66.67%

540 75.47% 85.25% 12.50% 72.97%

775 75.47% 84.75% 14.29% 72.50%

875 75.47% 83.46% 13.33% 74.29%

RGB,540 76.42% 85.22% 13.33% 75.61%
RGB,775,875 76.42% 84.48% 13.33% 76.54%
RGB,540,775,875 76.42% 85.47% 13.33% 75.00%

RGB, GNDVI, NDVI, PSRI 77.36% 85.47% 44.44% 72.73%
RGB, CVI, NDVI, NPCI, PSRI 77.36% 84.75% 52.63% 72.00%
RGB, CVI, GNDVI, NPCI, PSRI 75.47% 83.93% 47.06% 69.88%
RGB, CVI, GNDVI, NDVI, PSRI 81.13% 85.25% 66.67% 78.26%
RGB, CVI, GNDVI, NDVI, NPCI 76.42% 83.19% 50.00% 73.42%
RGB, GNDVI, NDVI, PSRI 74.53% 80.65% 44.44% 71.43%
CVI, GNDVI, NDVI, NPCI, PSRI 77.36% 85.47% 44.44% 72.73%

3.5. Result Visualization

This study aims to tackle the crucial task of plant disease diagnosis in crop manage-
ment, specifically aiming to precisely detect B. cinerea in pepper plants. Figure 11 presents
a comparative visualization of the leaf classification, contrasting (a) the manual annotated
process and (b) the results produced by the proposed methodology in this study. As shown,
the model either successfully detected the pathogen, or, in some cases, it misclassified some
“healthy” leaves as infected. It is worth mentioning that these misclassifications could
potentially highlight inaccuracies in the manual annotation process and further research
could include re-examining and validating some of these cases.

healthy healthy healthy
botrytis-invisible botrytis-invisible botrytis-invisible
I botrytis-visible I votrytis-visible I botrytis-visile

] healthy healthy ] healthy
botrytis-invisible botrytis-invisible botrytis-invisible

I bouytisvisible I bouytisvisible I bouytisvisible

Figure 11. A comparative visualization of three images with their leaf classes drawn on the leaves
from (a) the manual annotated process and the (b) result of the whole methodology of this study. The
green leaves represent the “healthy” class, the blue leaves represent the “botrytis-invisible” class, and
the red leaves represent the “botrytis-visible” class.
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Furthermore, validation was performed by comparing the fungal abundance de-
termined by RT-qPCR with the output results from the proposed approach (Figure 12).
Specifically, in Figure 12, images (a—c) demonstrate the precise classification of detached
healthy leaves, showing no symptoms of the disease. Images (d—e) highlight the model’s
capability to detect and classify the presence of B. cinerea in the early stages of infection,
as early as 1 dpi. Notably, image (f) presents a case observed at 5 dpi, where the model
classified a “botrytis-invisible” detached leaf as “botrytis-visible”. This classification is in
line with the gradual increase in BcRPL5 expression, confirming the model’s sensitivity
in detecting the pathogen during the early stages of infection or in latent periods where
symptoms have not yet appeared.

[ heathy
[ botrytis-invisible
I botrytis-visible

[ heaithy
[ botrytis-invisible
I botrytis-visible

[ healthy
I botrytis-invisible
I votrytis-visible

(e) ()

Figure 12. Classification visualization of individual detached leaves used for estimating fungal

[ heaithy
[ botrytis-invisible
I totrytis-visible

biomass via RT-qPCR. Images (a—c) represent mock-inoculated leaves, while images (d—f) depict
Botrytis cinerea-inoculated leaves at 1, 2, and 5 dpi, respectively.

4. Conclusions and Future Work

In natural environments, plants encounter a range of biotic and abiotic stressors,
including pests, pathogens, and environmental disorders which often produce similar
stress symptoms. However, these symptoms alone may not be sufficient to accurately
identify their specific causes, making laboratory tests necessary to pinpoint the disease
agent—a process that is both time-consuming and labor-intensive. Implementing early-
detection strategies for B. cinerea in crops is crucial for effective disease management.
Additionally, latent infections can lead to sudden outbreaks if not effectively monitored.
A promising approach is the use of Artificial Intelligence (AI), particularly DL techniques
to enhance detection capabilities and develop protocols for targeted responses, such as
the precise application of fungicides or other preventive measures based on Al-generated
alerts.

This study focused on detecting B. cinerea at various stages of gray mold disease
development on pepper plants using 11 image sets (RGB, multispectral, and derived
indices) and a two-stage approach: (1) Leaf segmentation using YOLOv11 achieved an
mAP50 of 86.4%, effectively locating pepper leaves in images. (2) Leaf classification by
stage of infection utilized three zoomed datasets, data augmentation, and Transformer-
based descriptors. LSTM-based classification outperformed KNN and ResNet models, with
dataset-b yielding the best performance compared to datasets-a and -c. Data augmentation
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improved the average F1-Score by 1.07%, while excluding images at 460 and 640 nm
improved performance by an average of 2.36%.

The optimal ensemble, which combined descriptors from the Swin-L, ViT-L, VOLO,
and XCIT-L models, improved the average F1-Score by 2.38%. Overall, the approach
utilized the RGB, CVI, GNDVI, NDVI, and PSRI image sets, and achieved an F1-Score of
81.13%, with class-level performances of 85.25%, 66.67%, and 78.26% for the three classes,
respectively. These ensemble results highlight that the solution performed well on the
“healthy” class with a high recall, a very high precision, and, consequently, a strong F1-Score.
For the “botrytis-invisible” class, the solution showed high recall but average precision,
indicating the presence of False Positives. Finally, for the “botrytis-visible” class, the high
recall and above-average precision underscored the solution’s ability to handle visible
symptoms effectively. Overall, the solution demonstrated a solid performance.

The results of this study highlight the importance of monitoring not only visible
symptoms, but also the early stages of B. cinerea infection, when symptoms are not present,
by using molecular markers in combination with DL and multispectral image segmentation.
Specifically, the early detection of gray mold infection prior to symptom onset was achieved
by quantifying B. cinerea biomass in plant tissues, quantified as the relative transcript levels
of the BcRPL5 fungal reference gene, and analyzing the expression of pepper defense-
related genes in conjunction with the outputs of the proposed architecture. Notably, the
relative transcript levels of BcRPLS5 increased progressively each day during the first 5 dpi,
reflecting the pathogen’s growth and pathogenicity in the initial infection stages when
visible symptoms were not yet present. The contrasting regulation of DEF1 and PR1
reflects antagonistic interactions between the SA and JA signaling pathways, highlighting
a dynamic plant defense response. The initial downregulation of DEF1 may benefit the
pathogen, while the later activation of PR1 indicates a strong SA-mediated response to
counter the threat. These changes in gene expression, along with variations in B. cinerea
biomass, illustrate the host’s adaptive strategy and the complexity of plant—pathogen
interactions during disease progression.

The above integrated approach provides valuable new tools for the identification of
gray mold disease in commonly cultivated crops at early and late stages. Notably, this study
represents efforts to apply DL techniques to plants developed in controlled environments
resembling greenhouse conditions. Moreover, it facilitates timely interventions to protect
crop health while reducing the reliance on chemical inputs, as the proposed approach
managed to perform the accurate detection of B.cinerea on leaves as early as the first dpi.

Computer vision and soft computing techniques, such as those using leaf images,
have been utilized by several researchers to automate the detection of plant diseases [50].
According to our study, disease severity progresses more slowly in pepper leaves compared
to flowers and fruits, which are more vulnerable to the pathogen. This finding emphasizes
the need for the targeted monitoring of these reproductive structures, as they play a crucial
role in disease spread and crop losses. Therefore, future studies should focus on investigat-
ing the application of these tools to other plant parts beyond leaves. Additionally, further
work could focus on areas such as expanding data gathering, manual data validation, and
data augmentation. Also, current classification solutions like LSTM and ResNet could
be optimized further due to their modular nature, while exploring other classification
solutions such as CNN variations and SVMs, or their combinations with the approaches in
this study, could enhance detection capabilities.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/agriculture15020164/s1, Supplementary Table S1: Primers used
in this study.


https://www.mdpi.com/article/10.3390/agriculture15020164/s1
https://www.mdpi.com/article/10.3390/agriculture15020164/s1

Agriculture 2025, 15, 164 23 of 25

Author Contributions: Conceptualization, E.M.P,; Data curation, C.K.; Formal analysis, D.K. and
E.K.; Funding acquisition, E.M.P; Investigation, D.K., E.K. and P.C.; Methodology, D.K., EK., P.C. and
E.M.P; Project administration, E.M.P.; Resources, C.K. and E.M.P; Software, D.K,; Supervision, EM.P.;
Validation, P.C.; Visualization, D.K. and E.K.; Writing—original draft, D.K. and E.K.; Writing—review
and editing, P.C., C.K. and E.M.P. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Data Availability Statement: Data are available on request.

Acknowledgments: This work is partially supported by the Green Deal PestNu project, funded by
the European Union’s Horizon 2020 research and innovation program under the grant agreement No.
101037128, and partially supported by the E-SPFdigit project, funded by the European Union’s Hori-
zon Europe research and innovation program under the grant agreement No. 101157922. We thank
E. Fotopoulou and Emilia Markelou from Benaki Phytopathological Institute for their invaluable
technical support in molecular experiments. We extend our sincere thanks to Nikolaos Gaikoumoglou
for his assistance in capturing the multispectral images and data annotation.

Conflicts of Interest: Author Christos Klaridopoulos was employed by the company iKnowHow S.A.
The remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

References

1.

10.

11.

12.

13.
14.

Molly, EM.D.; Grant-Downton, R. Botrytis-biology, detection and quantification. In Botrytis—The Fungus, the Pathogen and
Its Management in Agricultural Systems; Fillinger, S., Elad, Y., Vivier, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 17-34.
[CrossRef]

Shaw, M.W.; Emmanuel, C.J.; Emilda, D.; Terhem, R.B.; Shafia, A.; Tsamaidi, D.; Emblow, M.; van Kan, J.A.L. Analysis of cryptic,
systemic Botrytis infections in symptomless hosts. Front. Plant Sci. 2016, 7, 625. [CrossRef] [PubMed]

Sofianos, G.; Samaras, A.; Karaoglanidis, G. Multiple and multidrug resistance in Botrytis cinerea: Molecular mechanisms of
MLR/MDR strains in Greece and effects of co-existence of different resistance mechanisms on fungicide sensitivity. Front. Plant
Sci. 2023, 14, 1273193. [CrossRef] [PubMed]

Huang, Y.; Duan, C.X,; Lu, M.; Yang, D.E; Zhu, Z.D. Identification of the pathogens causing chocolate spot on the broad bean.
Plant Prot. 2012, 6, 025.

Terentev, A.; Badenko, V.; Shaydayuk, E.; Emelyanov, D.; Eremenko, D.; Klabukov, D.; Fedotov, A.; Dolzhenko, V. Hyperspectral
Remote Sensing for Early Detection of Wheat Leaf Rust Caused by Puccinia triticina. Agriculture 2023, 13, 1186. [CrossRef]
Lépez, M.M.; Bertolini, E.; Olmos, A.; Caruso, P.; Gorris, M.T.; Llop, P,; Penyalver, R.; Cambra, M. Innovative tools for detection of
plant pathogenic viruses and bacteria. Int. Microbiol. 2003, 6, 233-243. [CrossRef]

Schneider, S.; Widmer, E; Jacot, K.; Koelliker, R.; Enkerli, J. Spatial distribution of Metarhizium clade 1 in agricultural landscapes
with arable land and different semi-natural habitats. Appl. Soil Ecol. 2012, 52, 20-28. [CrossRef]

Rezaei, A.; Mahdian, S.; Babaeizad, V.; Hashemi-Petroudi, S.H.; Alavi, S.M. RT-qPCR Analysis of Host Defense-Related Genes in
Nonhost Resistance: Wheat-Bgh Interaction. Russ. J. Genet. 2019, 55, 330-336. [CrossRef]

Mohammed, A.; Kora, R. A comprehensive review on ensemble deep learning: Opportunities and challenges. J. King Saud Univ.
Comput. Inf. Sci. 2023, 35, 757-774. [CrossRef]

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need.
arXiv 2023, arXiv:1706.03762. [CrossRef]

Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929.
[CrossRef]

Liu, Z.; Lin, Y.;; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using
Shifted Windows. arXiv 2021, arXiv:2103.14030. [CrossRef]

Touvron, H.; Cord, M.; Jégou, H. DeiT III: Revenge of the ViT. arXiv 2022, arXiv:2204.07118. [CrossRef]

Yuan, L.; Hou, Q.; Jiang, Z.; Feng, J.; Yan, S. VOLO: Vision Outlooker for Visual Recognition. arXiv 2021, arXiv:2106.13112.
[CrossRef] [PubMed]


https://doi.org/10.1007/978-3-319-23371-0_
https://doi.org/10.3389/fpls.2016.00625
https://www.ncbi.nlm.nih.gov/pubmed/27242829
https://doi.org/10.3389/fpls.2023.1273193
https://www.ncbi.nlm.nih.gov/pubmed/37868315
https://doi.org/10.3390/agriculture13061186
https://doi.org/10.1007/s10123-003-0143-y
https://doi.org/10.1016/j.apsoil.2011.10.007
https://doi.org/10.1134/S102279541903013X
https://doi.org/10.1016/j.jksuci.2023.01.014
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.48550/arXiv.2103.14030
https://doi.org/10.48550/arXiv.2204.07118
https://doi.org/10.1109/TPAMI.2022.3206108
https://www.ncbi.nlm.nih.gov/pubmed/36094970

Agriculture 2025, 15, 164 24 of 25

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.

39.

El-Nouby, A.; Touvron, H.; Caron, M.; Bojanowski, P.; Douze, M.; Joulin, A.; Laptev, I.; Neverova, N.; Synnaeve, G.; Verbeek, J.;
et al. XCiT: Cross-Covariance Image Transformers. arXiv 2021, arXiv:2106.09681. [CrossRef]

Tu, Z.; Talebi, H.; Zhang, H.; Yang, F; Milanfar, P; Bovik, A.; Li, Y. MaxViT: Multi-Axis Vision Transformer. arXiv 2022,
arXiv:2204.01697. [CrossRef]

Giakoumoglou, N.; Kalogeropoulou, E.; Klaridopoulos, C.; Pechlivani, E.M.; Christakakis, P.; Markellou, E.; Frangakis, N.;
Tzovaras, D. Early detection of Botrytis cinerea symptoms using deep learning multi-spectral image segmentation. Smart Agric.
Technol. 2024, 8, 100481. [CrossRef]

Christakakis, P.; Giakoumoglou, N.; Kapetas, D.; Tzovaras, D.; Pechlivani, E.-M. Vision Transformers in Optimization of Al-Based
Early Detection of Botrytis cinerea. Al 2024, 5, 1301-1323. [CrossRef]

Scarboro, C.G.; Ruzsa, S.M.; Doherty, C.J.; Kudenov, M.W. Quantification of gray mold infection in lettuce using a bispectral
imaging system under laboratory conditions. Plant Direct 2021, 5, €00317. [CrossRef]

Qasrawi, R.; Amro, M.; Zaghal, R.; Sawafteh, M.; Polo, S.V. Machine Learning Techniques for Tomato Plant Diseases Clustering,
Prediction and Classification. In Proceedings of the 2021 International Conference on Promising Electronic Technologies (ICPET),
Deir El-Balah, Palestine, 17-18 November 2021; pp. 40—45. [CrossRef]

Lorente, O.; Riera, I; Rana, A. Image Classification with Classic and Deep Learning Techniques. arXiv 2021, arXiv:2105.04895.
Available online: http://arxiv.org/abs/2105.04895 (accessed on 14 June 2024).

Mistry, D.; Banerjee, A. Comparison of Feature Detection and Matching Approaches: SIFT and SURE. GRD J. Glob. Res. Dev. ].
Eng. 2017, 2, 7-13.

Mansoori, N.S.; Nejati, M.; Razzaghi, P.; Samavi, S. Bag of visual words approach for image retrieval using color information.
In Proceedings of the 2013 21st Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 14-16 May 2013; pp. 1-6.
[CrossRef]

Nagasubramanian, K,; Jones, S.; Singh, A K.; Sarkar, S.; Singh, A.; Ganapathysubramanian, B. Plant disease identification using
explainable 3D deep learning on hyperspectral images. Plant Methods 2019, 15, 98. [CrossRef] [PubMed]

Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning. Available online: https://www.mdpi.
com/1424-8220/21/3/742 (accessed on 19 September 2024).

Kapetas, D.; Kalogeropoulou, E.; Christakakis, P.; Klaridopoulos, C.; Pechlivani, E.M. Multi-spectral image transformer descriptor
classification combined with molecular tools for early detection of tomato grey mould. Smart Agric. Technol. 2024, 9, 100580.
[CrossRef]

Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2016,
arXiv:1506.02640. [CrossRef]

Cunningham, P; Delany, S.J. k-Nearest Neighbour Classifiers: 2nd Edition (with Python examples). ACM Comput. Surv. 2022, 54,
1-25. [CrossRef]

Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735-1780. [CrossRef]

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [CrossRef]
Kalogeropoulou, E.; Beris, D.; Tjamos, S.E.; Vloutoglou, I.; Paplomatas, E.J. Arabidopsis 3-amylase 3 affects cell wall architecture
and resistance against Fusarium oxysporum. Physiol. Mol. Plant Pathol. 2023, 124, 101945. [CrossRef]

Kalogeropoulou, E.; Aliferis, K.A.; Tjamos, S.E.; Vloutoglou, I.; Paplomatas, E.J. Combined Transcriptomic and Metabolomic
Analysis Reveals Insights into Resistance of Arabidopsis bam3 Mutant against the Phytopathogenic Fungus Fusarium oxysporum.
Plants 2022, 11, 3457. [CrossRef]

Qcell—Spectral Vision Camera Systems. Available online: https://qcell.tech/ (accessed on 11 September 2024).

Petrasch, S.; Silva, C.J.; Mesquida-Pesci, S.D.; Gallegos, K.; van den Abeele, C.; Papin, V.; Fernandez-Acero, E]J.; Knapp, S.J.;
Blanco-Ulate, B. Infection Strategies Deployed by Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer as a Function of
Tomato Fruit Ripening Stage. Front. Plant Sci. 2019, 10, 223. [CrossRef]

Poveda, J.; Calvo, J.; Barquero, M.; Gonzalez-Andrés, F. Activation of sweet pepper defense responses by novel and known
biocontrol agents of the genus Bacillus against Botrytis cinerea and Verticillium dahlige. Eur. |. Plant Pathol. 2022, 164, 507-524.
[CrossRef]

Wan, H.J.; Yuan, W.; Ruan, M,; Ye, Q.; Wang, R.; Li, Z.; Zhou, G.; Yao, Z.; Zhao, |.; Liu, S.; et al. Identification of reference genes for
reverse transcription quantitative real-time PCR normalization in pepper (Capsicum annuum L.). Biochem. Biophys. Res. Commun.
2011, 416, 24-30. [CrossRef] [PubMed]

Roboflow: Computer Vision Tools for Developers and Enterprises. Available online: https://roboflow.com/ (accessed on 2 July
2024).

Minaee, S.; Boykov, Y.Y,; Porikli, F,; Plaza, A.].; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A
Survey. arXiv 2020, arXiv:2001.05566. [CrossRef] [PubMed]

Ultralytics. Home. Available online: https://docs.ultralytics.com/ (accessed on 14 June 2024).


https://doi.org/10.48550/arXiv.2106.09681
https://doi.org/10.48550/arXiv.2204.01697
https://doi.org/10.1016/j.atech.2024.100481
https://doi.org/10.3390/ai5030063
https://doi.org/10.1002/pld3.317
https://doi.org/10.1109/ICPET53277.2021.00014
http://arxiv.org/abs/2105.04895
https://doi.org/10.1109/IranianCEE.2013.6599562
https://doi.org/10.1186/s13007-019-0479-8
https://www.ncbi.nlm.nih.gov/pubmed/31452674
https://www.mdpi.com/1424-8220/21/3/742
https://www.mdpi.com/1424-8220/21/3/742
https://doi.org/10.1016/j.atech.2024.100580
https://doi.org/10.48550/arXiv.1506.02640
https://doi.org/10.1145/3459665
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/arXiv.1512.03385
https://doi.org/10.1016/j.pmpp.2022.101945
https://doi.org/10.3390/plants11243457
https://qcell.tech/
https://doi.org/10.3389/fpls.2019.00223
https://doi.org/10.1007/s10658-022-02575-x
https://doi.org/10.1016/j.bbrc.2011.10.105
https://www.ncbi.nlm.nih.gov/pubmed/22086175
https://roboflow.com/
https://doi.org/10.1109/TPAMI.2021.3059968
https://www.ncbi.nlm.nih.gov/pubmed/33596172
https://docs.ultralytics.com/

Agriculture 2025, 15, 164 25 of 25

40.

41.
42.

43.
44.

45.

46.

47.

48.

49.

50.

Zhang, P; Wu, Y;; Liu, B. Leveraging Local and Global Descriptors in Parallel to Search Correspondences for Visual Localization.
arXiv 2020, arXiv:2009.10891. [CrossRef]

timm (PyTorch Image Models). Available online: https://huggingface.co/timm (accessed on 3 July 2024).

Papers with Code-ImageNet-1K Dataset. Available online: https://paperswithcode.com/dataset/imagenet-1k-1 (accessed on 2
July 2024).

Keras: Deep Learning for Humans. Available online: https://keras.io/ (accessed on 2 July 2024).

Harikrishnan, N.B. Confusion Matrix, Accuracy, Precision, Recall, F1 Score. Analytics Vidhya. Available online: https://medium.
com/analytics-vidhya/confusion-matrix-accuracy-precision-recall-f1-score-ade299cf63cd (accessed on 2 July 2024).

Braun, P; Sutton, J. Infection cycles and population dynamics of Botrytis cinerea in strawberry leaves. Can. J. Plant Pathol. 1988, 10,
133-141. [CrossRef]

Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A.L. Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol.
2007, 8, 561-580. [CrossRef]

Kim, D.S.; Hwang, B.K. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent
signalling of the defence response to microbial pathogens. J. Exp. Bot. 2014, 65, 2295-2306. [CrossRef]

Pieterse, C.M.].; van der Does, D.; Zamioudis, C.; Leon-Reyes, A.; van Wees, S.C.M. Facilitated Adaptation to Stress: SA-JA
Interaction and Crosstalk. Plant Physiol. 2012, 158, 1743-1754.

Thomma, B.P.H.J.; Nurnberger, T.; Joosten, M.H.A J. Signal Interactions in the Establishment of Plant Immunity. Curr. Opin. Plant
Biol. 2011, 14, 482-489.

Vishnoi, V.K.; Kumar, K.; Kumar, B. Plant disease detection using computational intelligence and image processing. J. Plant Dis.
Prot. 2021, 128, 19-53. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1016/j.patcog.2021.108344
https://huggingface.co/timm
https://paperswithcode.com/dataset/imagenet-1k-1
https://keras.io/
https://medium.com/analytics-vidhya/confusion-matrix-accuracy-precision-recall-f1-score-ade299cf63cd
https://medium.com/analytics-vidhya/confusion-matrix-accuracy-precision-recall-f1-score-ade299cf63cd
https://doi.org/10.1080/07060668809501745
https://doi.org/10.1111/j.1364-3703.2007.00417.x
https://doi.org/10.1093/jxb/eru109
https://doi.org/10.1007/s41348-020-00368-0

	Introduction 
	Materials and Methods 
	Biological Material and Inoculation Protocol 
	In Planta Assays for Disease Intensity and Image Acquisition 
	Bioassays for Gene Expression Analyses and Image Acquisition at Early Stages of Infection 
	Image Annotation and Segmentation Techniques 
	Data Processing and Augmentation Techniques 
	Transformer Models for Descriptor Extraction 
	Classification Methods 
	Evaluation Metrics 
	Classification Ensemble 

	Results and Discussions 
	Assessment of Gray Mold Severity in Pepper Plants 
	Pepper Response to Botrytis cinerea Infection 
	Performance Evaluation of Segmentation 
	Performance Evaluation of Classification 
	Result Visualization 

	Conclusions and Future Work 
	References

