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Abstract

Recent studies on semi-supervised learning (SSL) have achieved great success. Despite their
promising performance, current state-of-the-art methods tend toward increasingly complex
designs at the cost of introducing more network components and additional training pro-
cedures. In this paper, we propose a simple method named Ensemble Projectors Aided
for Semi-supervised Learning (EPASS), which focuses mainly on improving the learned em-
beddings to boost the performance of the existing contrastive joint-training semi-supervised
learning frameworks. Unlike standard methods, where the learned embeddings from one pro-
jector are stored in memory banks to be used with contrastive learning, EPASS stores the en-
semble embeddings from multiple projectors in memory banks. As a result, EPASS improves
generalization, strengthens feature representation, and boosts performance. For instance,
EPASS improves strong baselines for semi-supervised learning by 39.47%/31.39%/24.70%
top-1 error rate, while using only 100k/1%/10% of labeled data for SimMatch, and achieves
40.24%/32.64%/25.90% top-1 error rate for CoMatch on the ImageNet dataset. These im-
provements are consistent across methods, network architectures, and datasets, proving the
general effectiveness of the proposed methods.

1 Introduction

Deep learning has shown remarkable success in a variety of visual tasks such as image classification He et al.
(2016), speech recognition Amodei et al. (2016), and natural language processing Socher et al. (2012). This
success benefits from the availability of large-scale annotated datasets Hestness et al. (2017); Jozefowicz et al.
(2016); Mahajan et al. (2018); Radford et al. (2019); Raffel et al. (2020). Large amounts of annotations are
expensive or time-consuming in real-world domains such as medical imaging, banking, and finance. Learning
without annotations or with a small number of annotations has become an essential problem in computer
vision, as demonstrated by Zhai et al. (2019); Chen et al. (2020a;c;b); Grill et al. (2020); He et al. (2020);
Laine & Aila (2017); Lee et al. (2013); Sohn et al. (2020); Li et al. (2021); Zheng et al. (2022); Berthelot
et al. (2019; 2020); Tarvainen & Valpola (2017); Xie et al. (2020b).

Contrastive self-supervised learning (CSL) is based on instance discrimination, which attracts positive sam-
ples while repelling negative ones to learn the representation He et al. (2020); Wu et al. (2018); Chen et al.
(2020a). Inspired by CSL, contrastive joint-training SSL methods such as CoMatch Li et al. (2021) and
SimMatch Zheng et al. (2022) leverage the idea of a memory bank and momentum encoder from MoCo He
et al. (2020) to support representational learning. In the current mainstream contrastive joint-training SSL
methods, a multi-layer perceptron (MLP) is added after the encoder to obtain a low-dimensional embedding.
Training loss and accuracy evaluation are both performed on this embedding. The previously learned em-
beddings from a low-dimensional projector are stored in a memory bank. These embeddings are later used
in the contrastive learning phase to aid the learning process and improve the exponential moving average
(EMA) teacher Tarvainen & Valpola (2017). Although previous approaches demonstrate their novelty with
state-of-the-art benchmarks across many datasets, there are still concerns that need to be considered. For
instance, conventional methods such as CoMatch Li et al. (2021) and SimMatch Zheng et al. (2022) are based
on the assumption that the learned embeddings are correct, regardless of confirmation bias. This
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Figure 1: Quantity vs quality of pseudo-labels on ImageNet 10% with and without EPASS.
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Figure 2: Training phase for contrastive joint-training SSL without/with the proposed EPASS. 2a represents
the conventional training phase without EPASS Li et al. (2021); Zheng et al. (2022). Unlike 2a, in 2b, instead
of using only one projector to learn the embeddings, EPASS uses multiple projectors to ensemble the
embeddings, which is less biased and more generalized.

assumption is directly adopted from CSL; however, in a joint-training scheme, the easy-to-learn representa-
tion could easily dominate the hard-to-learn representation, leading to biased distributions and embeddings.
This would become even worse when confirmation bias happens and the embeddings are driven away by the
incorrect pseudo-labels. As a result, the embeddings stored in the memory bank are also affected, causing
the confirmation bias issue and the erroneous EMA teacher.

The confirmation bias could be seen in Figure 1, where CoMatch only has 80.56% correct pseudo-labels and
SimMatch has 90.61% correctness for pseudo-labels. When the embedding bias happens at the instance level
and the confirmation bias happens at the semantic level, they degrade the performance of the EMA teacher.
As a result, the well-learned embeddings at the instance level could be driven away by the confirmation bias
at the semantic level during backward propagation, and vice versa.

To address these limitations, we propose Ensemble Projectors Aided for Semi-supervised Learning (EPASS),
a plug-and-play module to strengthen the EMA teacher as well as to improve the generalization of the learned
embeddings, as illustrated in Figure 2. Adding a projector helps mitigate the overfitting problem, and the
generated features are more distinguishable for classification Li et al. (2021); Zheng et al. (2022). Chen et al.
(2022b) proves the strengths of ensemble projectors in teacher-student frameworks via knowledge distillation.
Therefore, we leverage those strengths with SSL, especially contrastive joint-training frameworks. Although
there has been study about ensemble for SSL Chen et al. (2022a), they only discover it in the classification
head, thus resulting in a large number of parameter overheads as shown in Table 1. Unlike Chen et al. (2022a),
we specifically enrich the learned embeddings from the model by employing multiple projectors rather than

2



Under review as submission to TMLR

Method WRN-28-2 WRN-28-8

Original 1.4 M 23.4 M
Chen et al. (2022a) 3.7 M (↑ 2.3) 19.9 M (*, ↓ 3.5)
CoMatch Li et al. (2021) 1.5 M 23.71 M
SimMatch Zheng et al. (2022) 1.5 M 23.74 M

CoMatch + EPASS (3 projs) 1.54 M (↑ 0.04) 24.30 M (↑ 0.59)
SimMatch + EPASS (3 projs) 1.56 M (↑ 0.06) 24.39 M (↑ 0.65)

Table 1: Comparison with multi-head co-training. ’*’ indicates different architecture as Chen et al. (2022a)
modified the number of channels of the final block from 512 to 256.

only one, as it is common in conventional methods. Using ensemble projectors in contrastive learning, where
multiple projectors are used instead of a single one, may improve the performance and robustness of the
learned representations. By using multiple projectors, the model can learn different feature representations
from different perspectives, which can be combined to produce more informative representations of the data.
Additionally, using ensemble projectors can help to improve the generalization performance of the model, by
reducing the risk of overfitting to the specific characteristics of a single projector.

Using ensemble projectors can also increase the robustness of the model against variations in the data
distribution, as the multiple projectors can learn different features that are less sensitive to changes in the
data distribution. This can be especially useful in situations where the data distribution is not well-defined
or changes over time. Therefore, the embeddings of the model would be the ensemble ones, which are less
biased and more robust than conventional methods. Our comprehensive results show that such a simple
ensemble design brings a sweet spot between model performance and efficiency.

By incorporating the ensemble projectors in a contrastive-based SSL fashion, the proposed EPASS makes
better use of embeddings to aid contrastive learning as well as to improve the classification performance
simultaneously. In addition, ensemble multiple projectors introduce a relatively smaller number of param-
eters compared with ensemble multiple classification heads. Extensive experiments justify the effectiveness
of EPASS, which produces a less biased feature space. Specifically, EPASS achieves a state-of-the-art per-
formance with 39.47%/31.39%/24.70% top-1 error rate, while using only 100k/1%/10% of labeled data
for SimMatch; and achieves 40.24%/32.64%/25.90% top-1 error rate for CoMatch on ImageNet dataset.

The contributions of this paper are summarized as follows:

• We hypothesize that the conventional contrastive joint-training SSL frameworks are sub-optimal
since the multi-objective learning could harm the learned embeddings when confirmation bias occurs.

• We propose EPASS, a simple plug-and-play module that improves a generalization of the model by
imposing the ensemble of multiple projectors, which encourages the model to produce less biased
embeddings.

• To the best of our knowledge, this is the first work to enhance the performance of contrastive
joint-training SSL methods by considering the embedding bias.

• Extensive experiments on many benchmark datasets demonstrate that EPASS consistently improves
the performance of contrastive joint-training methods.

2 Related Work

2.1 Semi-supervised Learning

Semi-supervised learning is an essential method to leverage a large amount of unlabeled data to enhance the
training process. Pseudo-label Lee et al. (2013) is the pioneer of nowadays popular methods, including self-
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training-based or consistency-based SSL approaches. In the pseudo-label-based methods, the model is first
trained on a small amount of labeled data. Then, the model is used to make predictions for unlabeled data.
The unlabeled data and their corresponding pseudo-labels are then used to train the model simultaneously
with labeled data, forming the self-training-based methods Lee et al. (2013); Arazo et al. (2020); McLach-
lan (1975); Tarvainen & Valpola (2017); Zhang et al. (2019); Bachman et al. (2014); Xie et al. (2020b).
Consistency-based methods Sohn et al. (2020); Zhang et al. (2021); Berthelot et al. (2019; 2020); Miyato
et al. (2019); Zheng et al. (2022); Li et al. (2021) use a high threshold to determine the reliable predictions
from weakly augmented samples. Then, they will be used as pseudo-labels for strongly augmented examples,
and the low-confidence predictions will be discarded. However, those approaches suffer from confirmation
bias Arazo et al. (2020) since they overfit the incorrect pseudo-labels during training. Moreover, methods
using the high threshold to filter noisy data only use a small amount of unlabeled data during training, and
when the model suffers from confirmation bias, it leads to the Matthew effect.

Sohn et al. (2020) introduces a hybrid method named FixMatch, which combines pseudo-labeling with a
consistency regularization method. By using a high threshold to filter out noisy pseudo-labels, FixMatch
lets the model learn from only confident predictions, thus improving its performance. FlexMatch Zhang et al.
(2021) introduces a Curriculum Pseudo Labeling (CPL) method based on the Curriculum Learning (CL)
Bengio et al. (2009). CPL configures a dynamic threshold for each class after each iteration, thus letting the
model learn better for either hard-to-learn or easy-to-learn classes.

2.2 Contrastive joint-training SSL

Li et al. (2021) proposes CoMatch, which combines two contrastive representations on unlabeled data.
However, CoMatch is extremely sensitive to the hyperparameter setting. Especially during training, CoMatch
requires a large memory bank to store the embedded features. Recently, Zheng et al. (2022) published work
that takes semantic similarity and instance similarity into account during training. It shows that forcing
consistency at both the semantic level and the instance level can bring an improvement, thus achieving
state-of-the-art benchmarks. Along this line of work, Yang et al. (2022); Zhao et al. (2022) also leverage the
benefit of Class-aware Contrastive loss to the training process of SSL.

Previous methods might fail to provide the correct embeddings due to confirmation bias. Conventionally,
confirmation bias does not exist in CSL; however, it occurs in contrastive joint-training SSL by the use
of a threshold. It leads to the degradation of the classifier and the projector, thus providing incorrect
predictions and embeddings. Our EPASS exploits the ensemble strategy for multiple projectors, imposing
consistency and improving generalization for the learned embeddings, thus enhancing the correctness of
model predictions.

3 Method

3.1 Preliminaries

We first define notations used in the following sections. For semi-supervised image classification problem,
let X = {(xb, yb) : b ∈ (1, . . . , B)} be a batch of B labeled examples, where xb is training examples and yb

is one-hot labels, and U = {ub : b ∈ (1, . . . , µB)} be a batch of µB unlabeled examples where µ is a hyper-
parameter determining the relative sizes of X and U . For labeled samples, we apply weak augmentation
(Aw) to obtain the weakly augmented samples. Then, an encoder f (·) and a fully-connected classifier h (·)
are applied to get the distribution over classes as p (y | x) = h (f (x)). The supervised cross-entropy loss for
labeled samples is defined as:

Ls = 1
B

B∑
b=1
H (yb, pb) (1)

where H is a standard cross-entropy loss function.

Conventionally, CoMatch and SimMatch apply a weak (Aw) and strong (As) augmentation on unlabeled sam-
ples, then use the trained encoder and fully-connected classifier to get the predictions as pw

b = p (y | Aw (ub))
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and ps
b = p (y | As (ub)). Following CoMatch Li et al. (2021) and SimMatch Zheng et al. (2022), the pre-

dictions that surpassing confidence threshold τ would be directly used as pseudo-labels to compute the
unsupervised classification loss as:

Lu = 1
µB

µB∑
b=1

1 (max (p̂w
b ) ≥ τ) H (p̂w

b , ps
b) (2)

where p̂w
b = DA (pw

b ) is the pseudo-label for input Aw (ub) and DA is the distribution alignment strategy Li
et al. (2021); Zheng et al. (2022) to balance the pseudo-labels distribution.

Besides, a non-linear projector head g (·) is used to map the representation from encoder f (·) into a low-
dimensional embeddings space z = g ◦ f . The embeddings then are used to compute contrastive loss, which
we simplify as:

Lc = 1
µB

µB∑
b=1
H (qw

b , qs
b) (3)

where q = ϕ (norm (z)) is the result after the transformation ϕ (·) of CoMatch or SimMatch on the L2
normalized vector. The momentum embeddings stored in the memory bank and the EMA model are then
defined as:

zt ←− mzt−1 + (1−m)zt; θt ←− mθt−1 + (1−m)θt (4)

where z is the embeddings, θ is the model’s parameters, t is the iteration, and m is the momentum parameter.
The overall training objective is:

L = Ls + λuLu + λcLc (5)

3.2 EPASS

We propose a simple yet effective method to boost the performance of the conventional contrastive-based
SSL that maximizes the correctness of the embeddings from different projections by using the ensemble
technique.

Unlike conventional methods such as CoMatch and SimMatch, which assume that the learned embeddings
from one projector are absolutely correct, we propose using the ensemble embeddings from multiple pro-
jectors to mitigate the bias. While there could be diverse options to combine multiple embeddings (e.g.,
concatenation, summation), we empirically found that simply averaging the selected embeddings works rea-
sonably well and is computationally efficient. As each projector is randomly initialized, it provides a different
view of inputs, which benefits the generalization of the model. This intuition is similar to that of multi-view
learning. However, since we generate views with multiple projectors instead of creating multiple augmented
samples, we introduce far less overhead to the pipeline. The ensemble of multiple projectors helps mitigate
the bias in the early stages of training. In the joint-training scheme, the correct learned embeddings help
improve the performance of the classification head and vice versa, thus reducing the confirmation bias effect.
The embeddings stored in the memory bank by Equation 5 therefore are updated as:

zt ←− mzt−1 + (1−m)z̄t; z̄t = norm

(∑P
p=1 zt,p

P

)
(6)

where P is the number of projectors.

3.2.1 Application

SimMatch: Using our ensemble embeddings, we re-define instance similarity in SimMatch Zheng et al.
(2022) and CoMatch Li et al. (2021) as:

q̄w
i = exp (sim (z̄w

b , z̄i) /T )∑K
k=1 exp (sim (z̄w

b , z̄k) /T )
(7)
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where T is the temperature parameter controlling the sharpness of the distribution, K is the number of
weakly augmented embeddings, and i represents the i − th instance. Similarly, we can compute q̄s

i by
calculating the similarities between the strongly augmented embeddings z̄s and z̄i.

q̄s
i = exp (sim (z̄s

b , z̄i) /T )∑K
k=1 exp (sim (z̄s

b , z̄k) /T )
(8)

The Equation 3 then is rewritten as:

Lc = 1
µB

µB∑
b=1
H (q̄w

b , q̄s
b) (9)

CoMatch: In CoMatch, the embeddings are used to construct a pseudo-label graph that defines the
similarity of samples in the label space. Specifically, the instance similarity is also calculated as Equation 7
for weakly augmented samples. Then, a similarity matrix W q is constructed as:

W q
bj =


1 if b = j

q̄b · q̄j if b ̸= j and q̄b · q̄j ≥ τc

0 otherwise
(10)

where τc indicates the similarity threshold. Also, an embedding graph W z is derived as:

W z
bj =

{
exp (z̄b · z̄′

b/t) if b = j

exp (z̄b · z̄j/t) if b ̸= j
(11)

where zb = g ◦ f (As (ub)) and z′
b = g ◦ f (A′

s (ub)). The Equation 3 then is rewritten as:

Lc = 1
µB

µB∑
b=1
H
(

Ŵ q
b , Ŵ z

b

)
(12)

where H
(

Ŵ q
b , Ŵ z

b

)
can be decomposed into:

H
(

Ŵ q
b , Ŵ z

b

)
=− Ŵ q

bb log
(

exp (z̄b · z̄′
b/T )∑µB

j=1 Ŵ z
bj

)

−
µB∑

j=1,j ̸=b

Ŵ q
bj log

(
exp (z̄b · z̄j/T )∑µB

j=1 Ŵ z
bj

)

4 Experiments

4.1 Implementation Details

We evaluate EPASS on common benchmarks: CIFAR-10/100 Krizhevsky et al. (2009), SVHN Netzer et al.
(2011), STL-10 Coates et al. (2011), and ImageNet Deng et al. (2009). We conduct experiments with varying
amounts of labeled data, using previous work Sohn et al. (2020); Zhang et al. (2021); Li et al. (2021); Zheng
et al. (2022); Xu et al. (2021); Berthelot et al. (2019; 2020); Xie et al. (2020a); Miyato et al. (2019).

For a fair comparison, we train and evaluate all methods using the unified code base USB Wang et al. (2022)
with the same backbones and hyperparameters. We use Wide ResNet-28-2 Zagoruyko & Komodakis (2016)
for CIFAR-10, Wide ResNet-28-8 for CIFAR-100, Wide ResNet-37-2 Zhou et al. (2020) for STL-10, and
ResNet-50 He et al. (2016) for ImageNet. We use SGD with a momentum of 0.9 as an optimizer. The initial
learning rate is 0.03 with a cosine learning rate decay schedule of η = η0 cos

( 7πk
16K

)
, where η0 is the initial

learning rate and k(K) is the total training step. We set K = 220 for all datasets. During the testing phase,
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Dataset CIFAR-10 CIFAR-100 SVHN STL-10

Label Amount 40 250 4000 400 2500 10000 40 250 1000 40 250 1000

UDA Xie et al. (2020a) 10.20±5.05 5.40±0.28 4.27±0.05 51.96±1.27 29.47±0.52 23.59±0.32 2.39±0.53 1.99±0.02 1.91±0.05 53.69±4.38 28.96±1.02 7.25±0.50
MixMatch Berthelot et al. (2019) 38.84±8.36 20.96±2.45 10.25±0.01 80.58±3.38 47.88±0.21 33.22±0.06 26.61±13.10 4.48±0.35 5.01±0.12 52.32±0.91 36.34±0.84 25.01±0.43
ReMixMatch Berthelot et al. (2020) 8.13±0.58 6.34±0.22 4.65±0.09 41.60±1.48 25.72±0.07 20.04±0.13 16.43±13.77 5.65±0.35 5.36±0.58 27.87±3.85 11.14±0.52 6.44±0.15
FixMatch Sohn et al. (2020) 12.66±4.49 4.95±0.10 4.26±0.01 45.38±2.07 27.71±0.42 22.06±0.10 3.37±1.01 1.97±0.01 2.02±0.03 38.19±4.76 8.64±0.84 5.82±0.06
FlexMatch Zhang et al. (2021) 5.29±0.29 4.97±0.07 4.24±0.06 40.73±1.44 26.17±0.18 21.75±0.15 5.42±2.83 8.74±3.32 7.90±0.30 29.12±5.04 9.85±1.35 6.08±0.34
Dash Xu et al. (2021) 9.29±3.28 5.16±0.28 4.36±0.10 47.49±1.05 27.47±0.38 21.89±0.16 5.26±2.02 2.01±0.01 2.08±0.09 42.00±4.94 10.50±1.37 6.30±0.49
CoMatch Li et al. (2021) 6.51±1.18 5.35±0.14 4.27±0.12 53.41±2.36 29.78±0.11 22.11±0.22 8.20±5.32 2.16±0.04 2.01±0.04 13.74±4.20 7.63±0.94 5.71±0.08
SimMatch Zheng et al. (2022) 5.38±0.01 5.36±0.08 4.41±0.07 39.32±0.72 26.21±0.37 21.50±0.11 7.60±2.11 2.48±0.61 2.05±0.05 16.98±4.24 8.27±0.40 5.74±0.31
AdaMatch Berthelot et al. (2021) 5.09±0.21 5.13±0.05 4.36±0.05 38.08±1.35 26.66±0.33 21.99±0.15 6.14±5.35 2.13±0.04 2.02±0.05 19.95±5.17 8.59±0.43 6.01±0.02
FreeMatch Wang et al. (2023) 4.90±0.12 4.88±0.09 4.16±0.06 39.52±0.01 26.22±0.08 21.81±0.17 10.43±0.82 8.23±3.22 7.56±0.25 28.50±5.41 9.29±1.24 5.81±0.32
SoftMatch Chen et al. (2023) 5.11±0.14 4.96±0.09 4.27±0.05 37.60±0.24 26.39±0.38 21.86±0.16 2.46±0.24 2.15±0.07 2.09±0.06 22.23±3.82 9.18±0.68 5.79±0.15

CoMatch + EPASS 5.55±0.21 5.31±0.13 4.23±0.05 50.73±0.33 29.51±0.16 22.16±0.12 2.98±0.02 1.93±0.05 1.85±0.04 9.15±3.25 6.27±0.03 5.40±0.12
SimMatch + EPASS 5.31±0.10 5.08±0.05 4.37±0.03 38.88±0.24 25.68±0.33 21.32±0.14 2.31±0.04 2.04±0.02 2.02±0.02 15.71±2.48 8.08±0.26 5.58±0.04

Fully-Supervised 4.62±0.05 19.30±0.09 2.13±0.02 None

Table 2: Error rate on CIFAR-10/100, SVHN, and STL-10 datasets on 3 different folds. Bold indicates best
result and Underline indicates the second best result.

we employ an exponential moving average with a momentum of 0.999 on the training model to perform
inference for all algorithms. The batch size for labeled data is 64, with the exception of ImageNet, which has
a batch size of 128. The same weight decay value, pre-defined threshold τ , unlabeled batch ratio µ and loss
weights are used for Pseudo-Label Lee et al. (2013), Π model Rasmus et al. (2015), Mean Teacher Tarvainen
& Valpola (2017), VAT Miyato et al. (2019), MixMatch Berthelot et al. (2019), ReMixMatch Berthelot et al.
(2020), UDA Xie et al. (2020a), FixMatch Sohn et al. (2020), FlexMatch Zhang et al. (2021), CoMatch Li
et al. (2021), SimMatch Zheng et al. (2022), AdaMatch Berthelot et al. (2021), and FreeMatch Wang et al.
(2023).

We use the same parameters as in Xu et al. (2021); Wang et al. (2022) for Dash method. For other methods,
we follow the original settings reported in their studies. In Appendix A, you can find a comprehensive
description of the hyperparameters used. To ensure the robustness, we train each algorithm three times
with different random seeds. Consistent with Zhang et al. (2021), we report the lowest error rates achieved
among all checkpoints.

4.2 CIFAR-10/100, STL-10, SVHN

The best error rate of each method is evaluated by averaging the results obtained from three runs with dif-
ferent random seeds. The results are presented in Table 2, where we report the classification error rates on
the CIFAR-10/100, STL-10, and SVHN datasets. EPASS is shown to improve the performance of SimMatch
and CoMatch significantly on all datasets. For instance, even though EPASS does not achieve state-of-the-
art results in CIFAR-10/100, it still boosts the performance of conventional SimMatch and CoMatch. It
should be noted that CIFAR-10/100 are small datasets where prior works have already achieved high per-
formance, leaving little room for improvement. Moreover, ReMixMatch performs well on CIFAR-100 (2500)
and CIFAR-100 (10000) due to the mixup technique and the self-supervised learning part. Additionally,
on the SVHN and STL-10 datasets, SimMatch and CoMatch with EPASS surpass all prior state-of-the-art
results by a significant margin, achieving a new state-of-the-art performance. These results demonstrate the
effectiveness of EPASS in mitigating bias, particularly on imbalanced datasets such as SVHN and STL-10,
where overfitting is a common issue.

4.3 ImageNet

EPASS is evaluated on the ImageNet ILSVRC-2012 dataset to demonstrate its effectiveness on large-scale
datasets. In order to assess the performance of EPASS, we sample 100k/1%/10% of labeled images in a
class-balanced manner, where the number of samples per class is 10, 13, or 128, respectively. The remaining
images in each class are left unlabeled. Our experiments are conducted using a fixed random seed, and the
results are found to be robust across different runs.

As presented in Table 3, EPASS outperforms the state-of-the-art methods, achieving a top-1 error rate
of 39.47%/31.39%/24.70% for SimMatch and a top-1 error rate of 40.24%/32.64%/25.90% for CoMatch,
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Method Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

100k 1% 10%

FixMatch Sohn et al. (2020) 43.66 21.80 - - 28.50 10.90
FlexMatch Zhang et al. (2021) 41.85 19.48 - - - -
CoMatch Li et al. (2021) 42.17 19.64 34.00 13.60 26.30 8.60
SimMatch Zheng et al. (2022) 41.15 19.23 32.80 12.90 25.60 8.40
FreeMatch Wang et al. (2023) 40.57 18.77 - - - -
SoftMatch Chen et al. (2023) 40.52 - - - - -

CoMatch + EPASS 40.24 18.40 32.64 12.71 25.90 8.48
SimMatch + EPASS 39.47 18.24 31.39 12.41 24.70 7.44

Table 3: ImageNet error rate results. Bold indicates best result and Underline indicates the second best
result.

respectively. The results clearly demonstrate the effectiveness of EPASS in improving the performance of
SSL methods on large-scale datasets like ImageNet.

5 Ablation Study

5.1 ImageNet convergence speed
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Figure 3: Convergence analysis of SimMatch with and without EPASS.

The convergence speed of the proposed EPASS is extremely noticeable through our extensive experiments.
When training on ImageNet, we observe that EPASS achieves over 50% of accuracy in the first few iterations,
indicating that the model is able to quickly learn meaningful representations from the unlabeled data.
This is likely due to the fact that EPASS encourages the model to focus on the most informative and
diverse instances during training, which helps the model learn more quickly and effectively. Additionally,
we find that the accuracy of SimMatch and CoMatch with EPASS is consistently increasing with iterations,
outperforming conventional SimMatch and CoMatch with the same training epochs. This suggests that
the use of EPASS enables the model to continue learning and improving over time, rather than plateauing
or becoming overfitted. Overall, these results demonstrate the effectiveness of EPASS in improving the
convergence speed and performance of SSL methods.
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Figure 4: Reliability diagrams (top) and confidence histograms (bottom) for ImageNet dataset. The first
row and second row are conducted with 10% and 1% of labels, respectively.

5.2 Calibration of SSL

Chen et al. (2022a) propose a method for addressing confirmation bias from the calibration perspective. To
evaluate the effectiveness of EPASS in this regard, we measure the calibration of CoMatch and SimMatch
on the ImageNet dataset with and without EPASS, using 10% labeled data 1. Several common calibration
indicators, including Expected Calibration Error (ECE), confidence histogram, and reliability diagram, are
utilized in this study.

Figure 4 illustrates that when EPASS is used with 10% of labels, the ECE value of the model decreases.
Moreover, under the 1% label scheme, CoMatch and SimMatch without EPASS are significantly overconfident
and overfitted due to confirmation bias. However, when EPASS is employed, it helps to reduce the ECE
by a large margin and also mitigate the overconfidence of the model. Notably, models with EPASS have
average accuracy and average confidence that are approximately equal, whereas the average confidence of
models without EPASS is usually higher than the accuracy.

It is worth mentioning that since CoMatch does not impose the interaction between semantic and instance
similarity like SimMatch, the effect of introducing EPASS to CoMatch for calibration is not as significant as
that for SimMatch. Additionally, the model with EPASS becomes underfit and may benefit from additional
training.

5.3 Number of projectors

This section studies the effectiveness of the proposed projectors ensemble method and how different ensemble
strategies affect performance. In this experiment, we study the effect of different numbers of projectors on

1https://github.com/hollance/reliability-diagrams
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performance. The top-1 classification accuracy of the proposed EPASS with different numbers of projectors
is shown in Table 4.

Method
# projectors 1 2 3 4

CoMatch + EPASS 73.6 73.8 74.1 73.9
SimMatch + EPASS 74.4 74.8 75.3 75.2

Table 4: Top-1 accuracy (%) on ImageNet 10% using different numbers of projectors.

In Table 5, we record the results of different ensemble strategies for EPASS. Overall, averaging the embed-
dings results in better performance than concatenation and summation.

Method

Ensemble
strategy Concatenate Sum Mean

CoMatch + EPASS 74.0 73.9 74.1
SimMatch + EPASS 75.1 74.8 75.3

Table 5: Top-1 accuracy (%) on ImageNet 10% using different ensemble strategies.

5.4 Imbalanced SSL

Dataset CIFAR-10-LT CIFAR-100-LT
Imbalance λ λ = 50 λ = 150 λ = 20 λ = 100

FixMatch Sohn et al. (2020) 18.5±0.48 31.2±1.08 49.1±0.62 62.5±0.36
FlexMatch Zhang et al. (2021) 17.8±0.24 29.5±0.47 48.9±0.71 62.7±0.08
FreeMatch Wang et al. (2023) 17.7±0.33 28.8±0.64 48.4±0.91 62.5±0.23
SoftMatch Chen et al. (2023) 16.6±0.29 27.4±0.46 48.1±0.55 61.1±0.81
CoMatch Li et al. (2021) 16.3±0.24 30.1±0.31 46.2±0.41 60.0±0.21
SimMatch Zheng et al. (2022) 20.3±0.31 28.7±0.48 45.4±0.55 60.1±0.21
CoMatch + EPASS 16.1±0.22 29.6±0.41 45.9±0.45 59.8±0.01
SimMatch + EPASS 18.2±0.34 28.4±0.43 45.2±0.51 59.6±0.11

FixMatch + ABC Lee et al. (2021) 14.0±0.22 22.3±1.08 46.6±0.69 58.3±0.41
FlexMatch + ABC Lee et al. (2021) 14.2±0.34 23.1±0.70 46.2±0.47 58.9±0.51
FreeMatch + ABC Lee et al. (2021) 13.9±0.03 22.3±0.26 45.6±0.76 58.9±0.55
CoMatch + ABC Lee et al. (2021) 14.1±0.21 23.1±0.32 43.0±0.52 59.0±0.31
SimMatch + ABC Lee et al. (2021) 14.5±0.25 20.5±0.21 43.3±0.44 58.9±0.50
CoMatch + EPASS + ABC Lee et al. (2021) 14.0±0.19 22.4±0.41 42.7±0.55 58.5±0.41
SimMatch + EPASS + ABC Lee et al. (2021) 13.3±0.09 20.2±0.26 42.7±0.41 58.8±0.37

Table 6: Error rates (%) of imbalanced SSL using 3 different random seeds. Bold indicates best result and
Underline indicates the second best result.

To provide additional evidence of the effectiveness of EPASS, we assess its performance in the imbalanced
semi-supervised learning scenario Lee et al. (2021); Wei et al. (2021); Fan et al. (2022), where both the labeled
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Dataset CIFAR-100 STL-10 Euro-SAT TissueMNIST Semi-Aves

Label Amount 200 400 20 40 20 40 100 500 3959

UDA Xie et al. (2020a) 30.75±1.03 19.94±0.32 39.22±2.87 23.59±2.97 11.15±1.20 5.99±0.75 55.88±3.26 51.42±2.05 32.55±0.26
MixMatch Berthelot et al. (2019) 37.43±0.58 26.17±0.24 48.98±1.41 25.56±3.00 29.86±2.89 16.39±3.17 55.73±2.29 49.08±1.06 37.22±0.15
ReMixMatch Berthelot et al. (2020) 20.85±1.42 16.80±0.59 30.61±3.47 18.33±1.98 4.53±1.60 4.10±0.37 59.29±5.16 52.92±3.93 30.40±0.33
FixMatch Sohn et al. (2020) 30.45±0.65 19.48±0.93 42.06±3.94 24.05±1.79 12.48±2.57 6.41±1.64 55.95±4.06 50.93±1.23 31.74±0.33
FlexMatch Zhang et al. (2021) 27.08±0.90 17.67±0.66 37.58±2.97 23.40±1.50 7.07±2.32 5.58±0.57 57.23±2.50 52.06±1.78 33.09±0.16
Dash Xu et al. (2021) 30.19±1.34 18.90±0.420 43.34±1.46 25.90±0.35 9.44±0.75 7.00±1.39 57.00±2.81 50.93±1.54 32.56±0.39
CoMatch Li et al. (2021) 35.68±0.54 26.10±0.09 29.70±1.17 21.46±1.34 5.25±0.49 4.89±0.86 57.15±3.46 51.83±0.71 41.39±0.16
SimMatch Zheng et al. (2022) 23.26±1.25 16.82±0.40 34.12±1.63 22.97±2.04 6.88±1.77 5.86±1.07 57.91±4.60 51.14±1.83 34.14±0.30
AdaMatch Berthelot et al. (2021) 21.27±1.04 17.01±0.55 36.25±1.89 23.30±0.73 5.70±0.37 4.92±0.87 57.87±4.47 52.28±0.79 31.54±0.10

CoMatch + EPASS 35.10±0.55 25.53±0.50 29.56±2.50 21.14±0.31 3.41±0.24 2.91±0.41 56.88±4.93 51.06±1.09 41.19±0.43
SimMatch + EPASS 22.52±0.83 16.78±0.59 30.03±0.71 22.65±1.94 5.35±0.81 3.81±0.37 57.22±5.97 50.40±1.44 33.83±0.04

Fully-Supervised 8.90±0.12 - 0.85±0.06 33.91±0.03 -

Table 7: Error rate on CIFAR-10/100, SVHN, and STL-10 datasets on 3 different folds. Bold indicates best
result and Underline indicates second best result.

and unlabeled data are imbalanced. Our experiments are conducted on CIFAR-10-LT and CIFAR-100-LT,
using varying degrees of class imbalance ratios. For the CIFAR datasets, the imbalance ratio is defined as
follows: λ = Nmax/Nmin where Nmax is the number of samples on the head (frequent) class and Nmin the
tail (rare). Note that the number of samples for class k is computed as Nk = Nmaxλ− k−1

C−1 , where C is the
number of classes. Following Lee et al. (2021); Fan et al. (2022), we set Nmax = 1500 for CIFAR-10 and
Nmax = 150 for CIFAR-100, and the number of unlabeled data is twice as many for each class. We use a
WRN-28-2 Zagoruyko & Komodakis (2016) as the backbone. We use Adam as the optimizer. The initial
learning rate is 0.002 with a cosine learning rate decay schedule as η = η0 cos

( 7πk
16K

)
, where η0 is the initial

learning rate, k(K) is the current (total) training step and we set K = 2.5× 105 for all datasets. The batch
size of labeled and unlabeled data is 64 and 128, respectively. Weight decay is set as 4e−5. Each experiment
is run on three different data splits, and we report the average of the best error rates.

The results are summarized in Table 6. Compared with other standard SSL methods, EPASS achieves the
best performance across all settings. Especially on CIFAR-100 at an imbalance ratio 100, SimMatch with
EPASS outperforms the second-best by 0.6%. Moreover, when plugged in the other imbalanced SSL method
Lee et al. (2021), EPASS still attains the best performance in most of the settings.

5.5 Result using USB

In this section, we evaluate the effectiveness of EPASS within the context of the USB Wang et al. (2022)
framework, adhering strictly to the USB settings for CV tasks that utilize pre-trained Vision Transformers
(ViT). For a detailed overview of hyperparameters used in these experiments, please refer to Appendix A.

As Table 7 indicates, EPASS improves the performance of SimMatch and CoMatch on all datasets, albeit
marginally. These experiments utilize pre-trained ViT models, which provide a strong representation initial-
ization on unlabeled data, leaving little room for improvement when applying SSL methods with this kind
of model. Notably, ReMixMatch Berthelot et al. (2020) achieves the highest performance among all SSL al-
gorithms due to its usage of mixup Zhang et al. (2017), Distribution Alignment, and rotation self-supervised
loss. However, on CIFAR-100, STL-10, Euro-SAT, and TissueMNIST datasets, EPASS outperforms ReMix-
Match.

6 Conclusion

Our proposed method, EPASS, enhances the performance and reliability of conventional contrastive joint-
training SSL methods. EPASS achieves this by mitigating confirmation bias and embedding bias, which
leads to simultaneous performance improvement and reduced overconfidence. EPASS outperforms strong
competitors across a variety of SSL benchmarks, especially in the large-scale dataset setting. Additionally,
EPASS introduces minimal overhead to the overall pipeline.
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A Hyperparameter setting

We report the detailed hyperparameters setting with a specific model for each dataset in Table 8 and Table
9.

A.1 Setup for Table 2

For classic CV tasks, we follow the setup from the original papers using USB codebase. The details setup
hyperparameters are listed in Table 8.

Dataset CIFAR-10 CIFAR-100 STL-10 SVHN ImageNet

Model WRN-28-2 WRN-28-8 WRN-37-2 WRN-28-2 ResNet-50

Weight Decay 5e-4 1e-3 5e-4 5e-4 3e-4

Labeled Batch Size 64 128

Unlabeled Batch Size 448 128

Learning Rate 0.03

SGD Momentum 0.9

EMA Momentum 0.999

Scheduler η = η0 cos
(

7πk
16K

)
Weak Augmentation Random Crop, Random Horizontal Flip

Strong Augmentation RandAugment Cubuk et al. (2020)

Unsupervised Loss Weight 1

Table 8: Dataset-wise hyperparameters for classic CV tasks.

A.2 Setup for Table 7

Pre-trained ViT models Dosovitskiy et al. (2020) are used for CV tasks in USB. For TissueMNIST, CIFAR-
100, and Euro-SAT, we use ViT-Tiny and ViT-Small with a patch size of 4 and an image size of 32, while
for Semi-Aves, we use ViT-Small with a patch size of 16 and an image size of 224. For STL10, which is a
subset of ImageNet, we use unsupervised pre-training MAE He et al. (2022) of ViT-Base with an image size
of 96 to prevent cheating.

Following USB CV tasks, we adopt layer-wise learning rate decay as in Liu et al. (2021). The cosine annealing
scheduler is used with a total step of 204,800 and warm-up for 5,120 steps. Both labeled and unlabeled batch
sizes are set to 16, and other algorithm-related hyper-parameters remain the same as in the original papers.

B ImageNet detailed results

Table 10 shows the detailed results from Table 3. EPASS achieves 75.3% of top-1 accuracy with the same
training duration (∼ 400 epochs) on 10% of labels for SimMatch, and 74.1% of top-1 accuracy for CoMatch.
These improvements are also noticeable when EPASS is deployed on 1% of labels, achieving 67.4% and 68.6%
top-1 accuracy for CoMatch and SimMatch, respectively.

C Precision, Recall, F1 and AUC

We further report precision, recall, F1-score, and AUC (area under curve) results on the CIFAR-10/100,
SVHN, and STL-10 datasets. As shown in Table 11 and Table 12, EPASS also has the best performance on
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Dataset CIFAR-100 STL-10 Euro-SAT TissueMNIST Semi-Aves

Image Size 32 96 32 32 224

Model ViT-S-P4-32 ViT-B-P16-96 ViT-S-P4-32 ViT-T-P4-32 ViT-S-P16-224

Weight Decay 5e-4

Labeled Batch Size 16

Unlabeled Batch Size 16

Learning Rate 5e-4 1e-4 5e-5 5e-5 1e-3

Layer Decay Rate 0.5 0.95 1.0 0.95 0.65

Scheduler η = η0 cos
(

7πk
16K

)
Model EMA Momentum 0.0

Prediction EMA Momentum 0.999

Weak Augmentation Random Crop, Random Horizontal Flip

Strong Augmentation RandAugment Cubuk et al. (2020)

Table 9: Dataset-wise hyperparameters for USB Wang et al. (2022) CV tasks.

Self-supervised Method Epochs Parameters 1% labels 10% labels
Pre-training (train/test) top-1 top-5 top-1 top-5

None
FixMatch ∼ 300 25.6M/25.6M - - 71.5 89.1
CoMatchLi et al. (2021) ∼ 400 30.0M/25.6M 66.0 86.4 73.6 91.6
SimMatchZheng et al. (2022) ∼ 400 30.0M/25.6M 67.2 87.1 74.4 91.6

MoCo V2Chen et al. (2020c) CoMatchLi et al. (2021) ∼ 1200 30.0M/25.6M 67.1 87.1 73.7 91.4
MoCo-EMANCai et al. (2021) FixMatch-EMANCai et al. (2021) ∼ 1100 30.0M/25.6M 63.0 83.4 74.0 90.9

None CoMatch + EPASS ∼ 400 30.0M/25.6M 67.4 87.3 74.1 91.5
None SimMatch + EPASS ∼ 400 30.0M/25.6M 68.6 87.6 75.3 92.6

Table 10: Accuracy results on ImageNet with 1% and 10% labeled examples.

precision, recall, F1-score, and AUC on all datasets except CIFAR. Especially on the STL-10 dataset, the
improvement from EPASS for CoMatch and SimMatch is very noticeable by a large margin.

Dataset CIFAR-10 (40) CIFAR-100 (400)

Criteria Precision Recall F1 Score Precision Recall F1 Score

UDA 0.9333 0.9311 0.9302 0.5813 0.5484 0.5087
FixMatch 0.9351 0.9307 0.9297 0.5574 0.5430 0.4946
Dash 0.8847 0.8486 0.8210 0.5833 0.5649 0.5215
FlexMatch 0.9505 0.9507 0.9505 0.6135 0.6193 0.6107
FreeMatch 0.9510 0.9512 0.9510 0.6243 0.6261 0.6137
CoMatch 0.9441 0.9445 0.9441 0.4543 0.3979 0.4067
SimMatch 0.9434 0.9438 0.9434 0.5101 0.5133 0.5017
CoMatch + EPASS 0.9447 0.9450 0.9447 0.5588 0.4927 0.4978
SimMatch + EPASS 0.9493 0.9494 0.9491 0.6084 0.6061 0.6003

Table 11: Precision, recall, F1-score and AUC results on CIFAR-10/100.
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Dataset SVHN (40) STL-10 (40)

Criteria Precision Recall F1 Score Precision Recall F1 Score

UDA 0.9781 0.9777 0.9780 0.6385 0.5319 0.4765
FixMatch 0.9731 0.9706 0.9716 0.6590 0.5830 0.5405
Dash 0.9779 0.9777 0.9778 0.8117 0.6020 0.5448
FlexMatch 0.9566 0.9691 0.9625 0.6403 0.6755 0.6518
FreeMatch 0.9551 0.9665 0.9605 0.8489 0.8439 0.8354
CoMatch 0.9542 0.9677 0.9605 - - -
SimMatch 0.9718 0.9782 0.9748 - - -
CoMatch + EPASS 0.9647 0.9724 0.9684 0.9100 0.9085 0.9075
SimMatch + EPASS 0.9782 0.9778 0.9780 0.8026 0.8029 0.7977

Table 12: Precision, recall, F1-score and AUC results on SVHN and STL-10.

D List of Data Transformations

We report the detailed augmentations used in our method in Table 13. This list of transformations is similar
to the original list used in FixMatch Sohn et al. (2020) and FlexMatch Zhang et al. (2021).

Transformation Description Parameter Range

Autocontrast Maximizes the image contrast by setting the darkest
(lightest) pixel to black (white).

Brightness Adjusts the brightness of the image. B = 0 returns a
black image, B = 1 returns the original image.

B [0.05, 0.95]

Color Adjusts the color balance of the image like in a TV. C = 0
returns a black & white image, C = 1 returns the original
image.

C [0.05, 0.95]

Contrast Controls the contrast of the image. A C = 0 returns a
gray image, C = 1 returns the original image.

C [0.05, 0.95]

Equalize Equalizes the image histogram.
Identity Returns the original image.
Posterize Reduces each pixel to B bits. B [4, 8]
Rotate Rotates the image by θ degrees. θ [-30, 30]
Sharpness Adjusts the sharpness of the image, where S = 0 returns

a blurred image, and S = 1 returns the original image.
S [0.05, 0.95]

Shear_x Shears the image along the horizontal axis with rate R. R [-0.3, 0.3]
Shear_y Shears the image along the vertical axis with rate R. R [-0.3, 0.3]
Solarize Inverts all pixels above a threshold value of T . T [0, 1]
Translate_x Translates the image horizontally by (λ×image width)

pixels.
λ [-0.3, 0.3]

Translate_y Translates the image vertically by (λ×image height) pix-
els.

λ [-0.3, 0.3]

Table 13: List of transformations used in RandAugment
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E Qualitative Analysis

We present the T-SNE visualization of features on STL-10 test dataset with 40-label split in Figure 5,6. The
visualization is using trained models from SimMatch and CoMatch with EPASS.

Figure 5: T-SNE visualization of SimMatch + EPASS features on STL-10 dataset with 40-label split.

Figure 6: T-SNE visualization of CoMatch + EPASS features on STL-10 dataset with 40-label split.

We also illustrate the T-SNE visualization of features on SVHN test dataset and CIFAR-10 test dataset with
40-label split in Figure 7,8 and Figure 9,10, respectively.

Furthermore, we sketch the T-SNE visualization for the embeddings on those three datasets, as shown in
Figures 11, 12, 13, 14, 15, 16, respectively.
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Figure 7: T-SNE visualization of SimMatch + EPASS features on SVHN dataset with 40-label split.

Figure 8: T-SNE visualization of CoMatch + EPASS features on SVHN dataset with 40-label split.
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Figure 9: T-SNE visualization of SimMatch + EPASS features on CIFAR-10 dataset with 40-label split.

Figure 10: T-SNE visualization of CoMatch + EPASS features on CIFAR-10 dataset with 40-label split.

21



Under review as submission to TMLR

Figure 11: T-SNE visualization of SimMatch + EPASS embeddings on STL-10 dataset with 40-label split.

Figure 12: T-SNE visualization of CoMatch + EPASS embeddings on STL-10 dataset with 40-label split.
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Figure 13: T-SNE visualization of SimMatch + EPASS embeddings on SVHN dataset with 40-label split.

Figure 14: T-SNE visualization of CoMatch + EPASS embeddings on SVHN dataset with 40-label split.
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Figure 15: T-SNE visualization of SimMatch + EPASS embeddings on CIFAR-10 dataset with 40-label split.

Figure 16: T-SNE visualization of CoMatch + EPASS embeddings on CIFAR-10 dataset with 40-label split.
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F Algorithm

We apply EPASS to recent state-of-the-art SSL (CoMatch Li et al. (2021) and SimMatch Zheng et al. (2022))
and self-supervised learning (MoCo He et al. (2020)). Applying EPASS to these methods only requires a few
lines of code as shown in Algorithm 1.

Algorithm 1: EPASS
Input: Encoder f , projector gk and the number of projectors K.

1 for b = 1 to µB do
2 Generate prediction distribution as a conventional pipeline by forward propagation.
3 for k = 1 to K do
4 zb,k = gk (fb) // Compute embeddings by different projectors.

5 zb = norm

(∑K

k=1
zb,k

K

)
// Compute the aggregated embeddings.

6 Calculate the overall training objective.
7 Optimize the model and update the memory bank.

Output: The optimized model fs, hs and gs,k.
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