
Dual-Personalizing Adapter for
Federated Foundation Models

Yiyuan Yang
Australian AI Institute,

Faculty of Engineering & IT
University of Technology Sydney

Yiyuan.Yang-1@student.uts.edu.au

Guodong Long
Australian AI Institute,

Faculty of Engineering & IT
University of Technology Sydney
Guodong.Long@uts.edu.au

Tao Shen
Australian AI Institute,

Faculty of Engineering & IT
University of Technology Sydney

Tao.Sheng@uts.edu.au

Jing Jiang
Australian AI Institute,

Faculty of Engineering & IT
University of Technology Sydney

Jing.Jiang@uts.edu.au

Michael Blumenstein
Australian AI Institute,

Faculty of Engineering & IT
University of Technology Sydney

Michael.Blumenstein@uts.edu.au

Abstract

Recently, foundation models, particularly large language models (LLMs), have
demonstrated an impressive ability to adapt to various tasks by fine-tuning diverse
instruction data. Notably, federated foundation models (FedFM) emerge as a
privacy preservation method to fine-tune models collaboratively under federated
learning (FL) settings by leveraging many distributed datasets with non-IID data. To
alleviate communication and computation overhead, parameter-efficient methods
are introduced for efficiency, and some research adapted personalization methods
to FedFM for better user preferences alignment. However, a critical gap in existing
research is the neglect of test-time distribution shifts in real-world applications,
and conventional methods for test-time distribution shifts in personalized FL are
less effective for FedFM due to their failure to adapt to complex distribution shift
scenarios and the requirement to train all parameters. To bridge this gap, we
refine the setting in FedFM, termed test-time personalization, which aims to learn
personalized federated foundation models on clients while effectively handling
test-time distribution shifts simultaneously. To address challenges in this setting,
we explore a simple yet effective solution, a Federated Dual-Personalizing Adapter
(FedDPA) architecture. By co-working with a foundation model, a global adapter
and a local adapter jointly tackle the test-time distribution shifts and client-specific
personalization. Additionally, we introduce an instance-wise dynamic weighting
mechanism that dynamically integrates the global and local adapters for each
test instance during inference, facilitating effective test-time personalization. The
effectiveness of the proposed method has been evaluated on benchmark datasets
across different NLP tasks with released code.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Lydia-yang/FedDPA

1 Introduction

Foundation models, especially the large language model (LLM) in natural language processing (NLP),
have nearly exhausted public data sources for training. This necessitates alternative solutions to further
improve these foundation models by leveraging private or protected data sources, such as business
data in companies, smartphones, and so on. Federated foundation models (FedFM)[44, 41] offer
a promising solution by integrating federated learning (FL) frameworks to enhance the foundation
models in a decentralized manner. Built upon existing Parameter-efficient fine-tuning (PEFT) methods
[33, 14, 13], FedFM is a collaboratively fine-tuning framework that leverages private datasets with
privacy preservation and avoiding overfitting from client-specific fine-tuning.

Test-time distribution shift in FL [16, 29] presents a significant challenge in practical scenarios, as
clients may encounter unseen learning tasks during the testing and model inference phases. For
example, a client accustomed to writing emails in English may require translation assistance when
working on a new project in Chinese. Therefore, it is imperative for the deployed machine learning
model to be capable of tackling the test-time distribution shifts from the training data, and our paper
addresses this critical issue of test-time distribution shifts within the FedFM scenario. Previous works
in test-time FL[29, 16] predominantly utilize conventional deep learning models that are trained from
scratch in federated settings. Recent FedFM methods mainly focus on addressing specific challenges
related to data heterogeneity [2, 15] and communication overheads [35, 27]. However, none of these
methods have discussed test-time distribution shifts in FedFM scenarios.

To fill this gap, we propose a novel FedFM framework that is robust to client-specific alignment
and test-time distribution shifts simultaneously. With the support of a foundation model with PEFT
methods, we first refine the federated setting, termed test-time personalization, which follows: 1) each
client needs to train a personalized model using its own data from a target task, and 2) during testing,
each client’s personalized model needs to be robust to tackle the receiving new tasks (unseen in
training) with different distributions (test-time distribution shift). Essentially, the proposed test-time
personalization in FL could be simply viewed as an optimization task to seek a sweet trade-off
between client-specific model personalization and model generalization to test data.

For test-time personalization in FedFM, two primary challenges—test-time distribution shifts and
personalization—necessitate learning tailored to distinct objectives, and the training cost of foundation
models also represents a significant concern. To address these issues, we explore a simple yet
effective method, dubbed Federated Dual-Personalizing Adapter (FedDPA), where each client learns
a global adapter to learn generic knowledge from the aggregation for test-time tasks and maintains
a local adapter for targeted ability personalization. During the inference phase, the local and
global adapters are dynamically integrated to facilitate prediction, where an instance-wise dynamic
weighting mechanism is proposed to autonomously adjudicate the proportional contribution of the
local and global adapters for each test instance. Experimental results demonstrate that our method
achieves state-of-the-art performance on benchmarks and all data and code are released 1. Our main
contributions are summarized as follows:

• We are the first to explore the test-time distribution shifts problem in federated foundation
models for practical application scenarios alignment.

• We introduce a new method, namely dual-personalizing adapter, to emphasize learning both
generic and personalized knowledge in the context of FedFM with test-time personalization.

• We conduct an exhaustive analysis using heterogeneous FL benchmarks across diverse NLP
tasks. The empirical outcomes reveal that our method attains state-of-the-art performance,
underscoring its superior test-time personalization capabilities than existing methods.

2 Related Work

2.1 Adapter-based PEFT Methods

Given the substantial computational and storage burdens associated with directly fine-tuning founda-
tion models, the community has shifted towards embracing parameter-efficient methods [33], with
the adapter family [14] being a notable exemplar. According to different architectures, methods in

1https://github.com/Lydia-yang/FedDPA

2

the adapter family can be categorized into four types. The first one is prompt-based learning [18, 21],
which is aimed at learning the continuous/soft prompt for discrete optimization. The second one
is reparametrization-based methods [13, 9], achieving parameter efficiency by utilizing low-rank
techniques to decompose the high-dimensional matrices. The third one is series Adapters [12], which
introduce additional learnable modules in a sequential manner within specific sublayers. The last one
is parallel Adapters [11], which focus on learning additional learnable modules in a parallel way with
distinct sublayers. In this context, our exploration delves into the adapter-based PEFT methods of
federated foundation models.

2.2 Federated Foundation Models

With the advent of foundation models, there has been a burgeoning interest [44, 41, 26, 5] in
integrating these models within the FL setting. Particularly, in light of the inherent computation and
communication cost, recent work [17, 43, 6] endeavors have delved deeper into integrating adapter-
based parameter-efficient tuning (PEFT) methods with federated foundation models. Building
upon this, a multitude of studies have emerged to navigate the challenges of incorporating federated
foundation models with adapter-based PEFT methods. The paper [42] stands at the forefront, initiating
the integration of instruction tuning within federated LLM frameworks. Addressing data-related
issues, the paper [2] introduced a data-driven initialization approach to mitigate the primary challenges
associated with LoRA in highly heterogeneous data scenarios. In addition, the research presented in
[15] proposed a method to annotate unlabeled client-side data by harnessing the prowess of large
models to address data scarcity concerns. To further optimize the communication and computational
overheads associated with federated foundation models, the works [35, 27, 34] emphasize advancing
gradient-free optimization methods suitable for devices with limited memory and computing power.
For personalization, paper [38] focused on designing a specific training paradigm for LoRA to
achieve more effective personalization in visual model-heterogeneous scenarios. Diverging from
these approaches, our work delves into the realm of personalization with adapters in federated
foundation models, extending the scope of research in this area.

2.3 Personalized Federated Learning

To address the necessity of personalization for individual clients, personalized Federated Learning
(PFL) [28], which aims at training to cater to individual client preferences and needs, is proposed.
Broadly, existing PFL methods can be categorized into two primary types: fine-tuning the global
model for personalization or learning additional personalized models. Research works [10, 7] in
the first category fine-tuned the whole or part of the global model with each client’s local dataset
for personalization. While research works [19, 22] in the second category is to learn the additional
personalized layers or model through local aggregation. Nonetheless, a prevalent limitation among
these PFL approaches is their concentrated focus on a specifically targeted task, often at the expense
of performance when encountering test-time distribution shifts.

To fill this gap, recent research has shifted focus towards exploring different test-time distribution
shifts in PFL. In contrast to studies [39, 8] in federated continual/incremental learning possessing
ample annotated data from different distributions for training to address shifts, test-time FL focuses
on handling distribution shifts during testing without the availability of annotated data for further
training. One strand of research [3, 32] concentrates on addressing test-time distribution shifts that
occur when new clients are introduced during the testing phase by module/prior adaptation. Another
line of studies[29, 16] aims to tackle distribution shifts in existing clients during testing by aligning
test features with existing features. Our paper falls into the second type and differs from previous
work by exploring this challenge within the framework of foundation models, which are characterized
by extensive parameter scales and more complex test-time distribution shifts.

3 Problem Definition

3.1 Test-time Personalization in FedFM

Considering M clients in an FL system, each client possesses its distinct local training dataset Dm
train

and test dataset Dm
test, where m indexes a client. One data pair in datasets is denoted as (x,y), where

x is the input data and y is its corresponding label.

3

Client 1 Client 2 Client n

User: In which year was the Falklands War?
Response: 1982

Task:
Open QA

User: If A man sitting close to the center of a room that is
filled with pictures, does this mean that "man sits"?
Response: yes

Task:
Entailment

...

Server
A1 B1

A2 B2

...

A B

Global LoRA

User: "What are Cushman and Wakefield known for?"
What kind of thing would answer this question?
Response: description

Task:
Question Classification

Client to Server

Server to Client
 Communication

Offline

A1, B1

A, B A, BA2, B2

A, B

A3 , B3

Trainable LoRA

A1

B1

A'
1

B'
1

LocalGlobal

Frozen LLM Trainable LoRA

A2

B2

A'
2

B'
2

LocalGlobal

Frozen LLM Trainable LoRA

A3

B3

A'
3

B'
3

LocalGlobal

Frozen LLM

Figure 1: The overall framework of FedDPA. Each client contains a frozen LLM, a trainable global
adapter (LoRA) and a trainable local adapter (LoRA) with a specific task, where the global adapter
(LoRA) is for test-time tasks and the local adapter (LoRA) is for personalization. During the training,
only the parameters of the global adapter (LoRA) are transmitted to the server for aggregation.

In each client m, we will introduce the training and testing phases separately for our test-time
personalization setting. In the training phase, model training utilizes solely the local dataset Dm

train,
which is derived from the distribution Pm

s . While in the testing phase, the test dataset Dm
test comprises

two components: the test set Dm
s driven from the same distribution Pm

s as training data, and
additional test sets Dm

t under data distribution shifts Pm
s (x,y) ̸= Pm

t (x,y). Therefore, the test
dataset is Dm

test = Dm
s ∪ Dm

t , and we call these datasets Dm
t as test-time datasets. Unlike previous

works[29, 16] in test-time FL concentrating on either feature-level shifts Pm
s (x) ̸= Pm

t (x) or label
shifts Pm

s (y) ̸= Pm
t (y), we investigate a more complex scenario where various distribution shifts,

including semantic shifts, domain shifts and others, exist simultaneously. This is aligned with the
practical application of foundation models, which often encounter testing data originating from
diverse domains, backgrounds, or populations.

Therefore, the objective of the model in each client should not only perform well on the test set
Dm

s (refer to personalization) but also have comparable results on the test-time dataset Dm
t (refer to

test-time performance). This objective is consistent with the practical scenarios, since users primarily
focus on the abilities they often utilize (abundant data available for training) and occasionally also
introduce new tasks (limited to test data).

3.2 Challenges

The test-time personalization setting raises two pivotal considerations: personalization and test-time
distribution shifts. Personalization is the primary focus, followed by optimizing test-time tasks. Our
proposed method introduced in section 4 is designed to achieve personalization within FedFM while
ensuring comparable results for test-time tasks, and its vital intuition is illustrated below.

Considering a foundation model, it comprises a main body f(θ), which holds most of the parameters
and processes input x to produce output features h = f(x;θ). Additionally, there is a tail g(θt)
that maps these features to the output space (e.g., vocabulary), resulting in the predicted result
ŷ = g(h;θt). Typically, the focus in tuning and adaptations primarily lies on the main body f(θ)
because the tail g(θt), usually a linear function, remains unchanged (frozen) during tuning [14].

Discordance between Personalization and Test-time Tasks. The key to addressing test-time
distribution shifts lies in learning generic features universally applicable across disparate distributions
[1]. That is, learning a foundation model f(θ) to satisfy Ps(f(x;θ),y) = Pt(f(x;θ),y) although

4

Ps(x,y) ̸= Pt(x,y). FL is a methodology designed to learn generic features across diverse non-IID
data (different distributions) through aggregation algorithms [5, 29]. Therefore, we tailor FL training
for addressing test-time tasks with the objective minθ LPall

(θ), where LPall
represents the loss

function designed for learning generic features towards all clients’ distributions Pall. However,
personalization focuses on aligning the model with the specific distribution Ps, which means learning
a foundation model f(θ) with the objective minθ LPs

(θ), where LPs
represents the loss function de-

signed for learning personalized features towards the specific distribution. Therefore, the discordance
between specific distribution alignment for personalization and generic feature learning for test-time
tasks leads to inconsistent optimization objectives.

The above analysis motivates a dual model strategy—one model for test-time tasks and one model
for personalization—to realize test-time personalization in FedFM. This strategy, together with our
other techniques presented below for FedFM scenarios, constitutes the foundation of our method.

4 Proposed Method

To align with the application scenarios, we consider the test-time personalization setting in FedFM.
Following a similar assumption from a Mixture of Experts [23], any test-time task (distributions) to
a client can be approximated as a mixture of training tasks seen by other clients in the federated
learning system. Therefore, each client primarily personalizes its model based on its local training
task, while also tackling unseen test-time tasks by leveraging insights gained from other clients in the
federated learning system. Discussions of other scenarios can be found in Appendix C.

In test-time personalization, test-time distribution shifts and personalization are two main issues that
need to be addressed, and their optimization objectives toward different distributions are inconsistent.
To address these challenges and consider the efficient learning of FedFM, we propose a Federated
Dual-Personalizing Adapter (FedDPA) system for each client, as shown in Fig 1. During training, a
global adapter is employed to acquire generic features by FL training for test-time tasks (Sec. 4.1).
Meanwhile, to address personalization, a local adapter is maintained locally to align with the client’s
specific distribution, and leverages generic knowledge from the global adapter for faster learning
(Sec. 4.2). During the inference, the learned global and local adapters are dynamically combined
using a weight generated by the instance-wise dynamic weighting mechanism for each input test
instance, realizing test-time personalization (Sec. 4.3).

The Overall Objective. Considering the computation and communication cost of FedFM, we
utilize the adapter-based PEFT methods, which only learn a small part of parameters ∆θ while
keeping most of the parameters θ frozen. Our proposed FedDPA is to learn the global adapter ∆θg
and local adapters ∆θm

l simultaneously across M client to realize test-time personalization,

min
∆θg,{∆θm

l }

M∑
m=1

[L(x,y)∼Pm
s
(θ; ∆θg; ∆θm

l)]

s.t. ∆θ∗
g ∈ argmin

∆θg

L(x,y)∼Pall
(θ; ∆θg; ∆θm

l)

(1)

where the first part is a standard personalized FL loss to find optimal personalized models by minimiz-
ing the sum of loss on local training tasks L(x,y)∼Pm

s
(.), and the second part is a constraint term to

seek an optimal solution by minimizing the test-time loss L(x,y)∼Pall(.). Because we assume that the
test-time task is unseen to a client but observed by other clients, the test-time loss can be estimated
using the Empirical Risk Minimization of all client’s training tasks min∆θg

∑M
m=1 rmLm(θ; ∆θg),

where Pall denotes all distributions of tasks in all clients, rm denotes each client’s weight for ag-
gregation (e.g., in FedAvg, rm is the proportion of each client’s data number to all clients’ data
number) and Lm denotes the loss for each client over its local training dataset. Since the above
objective cannot be solved directly, we propose to alternatively learn the global and local adapters in
a sequential manner (FedDPA-F with local adapter fine-tuning) or iterative manner (FedDPA-T with
local adapter training). Detailed algorithms of these two methods are in Appendix A.3.

Remark. To simplify the illustration, we use LLM as the backbone and adopt LoRA [13] as the
adapter-based PEFT method in our framework. The overall framework is easy to adapt to other types
of backbone and other adapter-based PEFT methods. LoRA decomposes the training weight into

5

a frozen weight θ, and a trainable weight derived by the multiplication of two low-rank weights
∆θ = ∆θb∆θa. The data heterogeneity in FL with LLM primarily manifests as distribution shifts
across various NLP tasks among different clients, driven by diverse backgrounds, topics, and other
contextual factors, and local loss Lm for all NLP tasks is a standard language modeling objective [4].

4.1 Generic Learning of Global Model

Addressing test-time distribution shifts requires the acquisition of generic knowledge that is applicable
across various distributions [1]. The conventional federated learning process is inherently designed to
aggregate this generic knowledge among different non-IID data. Consequently, we utilize the adapter
trained within the FL context as the global adapter for addressing test-time tasks. To further enhance
generic learning, our model aggregation strategy is based on the client number rather than the number
of data by considering the potential biases stemming from different numbers of tasks.

At each client, there consists of a frozen LLM model f(x;θ) with a global lightweight global adapter
(LoRA) ∆θg = ∆θb

g∆θa
g . This global adapter is used for aggregation by sending to the server.

Notably, the server’s role is limited to computing the aggregated adapter ∆θg, thus obviating the
need for maintaining a large-scale model. Similar to the standard FL process, for each client m, the
adapter weight ∆θm

g is learned locally and sent to the server. Upon receipt of the adapter weights
from all clients, the server employs FedAvg [24] to aggregate them and sends ∆θ̄g back to each
client as their initialized parameter in a new round. It can be formulated as:

Server: ∆θ̄g =

M∑
m=1

1

M
∆θm

g , Client: ∆θm
g = argmin

∆θg

Lm(θ; ∆θg), initialized with ∆θ̄g (2)

Remark. Other federated algorithms like FedProx [20] can also be applied with LoRA tuning of
this global model learning (in Appendix B.1). In this paper, we just take FedAvg as an example.

4.2 Personalization of Local Model

The previously developed global model, which focuses on acquiring generic features across diverse
datasets, faces challenges with personalization due to inconsistent optimization objectives. To address
this, we integrate a local adapter to better align with each client’s specific distribution. We explore two
methods as shown in Fig 2, 1) Learning sequentially: after global adapter training, the local adapter
is initialized by the learned global adapter and directly fine-tuned; 2) Learning iteratively: during
each communication round of global adapter training, the local adapter is re-initialized from its last
state, fine-tuned alongside the frozen global adapter, and maintained locally without communication.

h

h'

LLM Global LoRA

B

A

Local LoRA

B

A

α

(b) Local LoRA Training

h

h'

LLM Local LoRA

B

A

(a) Local LoRA Fine-tuning

Local LoRA Learning Overall Learning Process

(a) FedDPA-F: global LoRA and local fine-tuning LoRA

(b) FedDPA-T: global LoRA and local training LoRA

Local LoRA Learning Process
Global LoRA Learning Process

All communication rounds

communication 1

communication 2

communication 3

......

Figure 2: Frameworks of two personalized methods for local adapter (LoRA) are shown on the left,
with their overall learning processes on the right.

To be more specific, a local adapter (LoRA) ∆θl = ∆θb
l∆θa

l is introduced. Thus, each client contains
three components: a frozen LLM θ, a global adapter (LoRA) ∆θg and a local adapter (LoRA) ∆θm

l .
As delineated in Fig 2 (a), for the first method, after global training, the local adapter is first initialized
by the global adapter denoted as ∆θm

l = ∆θg, then fine-tuned on local data to get the final local
adapter. As shown in Fig 2 (b), for the second method, during each communication round in training
for each adapter layer, upon receiving an input h, it simultaneously traverses the frozen LLM, the
frozen global adapter and the local adapter. The process entails an initial fusion of the outputs from

6

both the local and global adapters with a predefined weighting factor of α, followed by integration
with the output of the LLM to yield the final result h

′
= θh + ((1 − α) · ∆θgh + α · ∆θm

l h).
Therefore, the learning of the local adapter ∆θm

l for these two methods can be unified as:

∆θm
l = arg min

∆θm
l

Lm(θ; ∆θg; ∆θm
l), initialized with ∆θg or previous ∆θm

l (3)

4.3 LLM-enhanced Instance-wise Dynamic Weighting Mechanism

As discussed in previous test-time FL methods [16], a dynamic combination of global components
and personalized components can improve generalization while reducing the cost of hyper-parameter
tuning in the deployment stage. Considering the disparate data distributions that characterize test-time
tasks and local tasks and the wealth of training instances of local tasks available to each client, we
propose an instance-wise dynamic weighting mechanism to calculate the similarity between the input
instance and local instances, using this metric to determine the appropriate weight balance for the
global and local adapter combination. To facilitate this, the representation of each input instance
is essential. Leveraging the robust capability of pre-trained LLMs to abstract input sentences, we
utilize the hidden states from the final layer of the LLM as the representation. Given that the LLM is
decoder-based, with tokens attending only to preceding tokens, the embedding of the final token is
considered representative of the entire input for similarity evaluation. Furthermore, to enhance the
representation quality, the global adapter, which embodies generic knowledge, is incorporated into
this embedding process.

More specifically, during the inference stage, for each input instance x in a client, we randomly
sample S instances {x0,x1, ...,xs} from the local training dataset. These instances are then fed into
the LLM, augmented with the global adapter, to obtain the last token’s embeddings from the final
layer, denoted as wx and {wx0 ,wx1 , ...,wxs} respectively. Subsequently, we calculate the similarity
between the input representation wx and each sampled local representation in {wx0 ,wx1 , ...,wxs},
resulting in a score range of [0, 1]. Finally, we average all scores to obtain the final result, represented
as αt = λ ·

∑S
i=0

1
S Sim(wx,wxi

), where Sim represents the function to calculate the similarity,
and λ is a scale factor in (0, 1] to restrict the maximum similarity score (especially for FedDPA-T).

Through this method, the balancing of weights between the global and local adapters is dynamically
adjusted for each test instance, ensuring the model not only tailors to the individual client’s specific
needs but also benefits from the aggregated model’s generic knowledge across test-time tasks.

5 Experiment

5.1 Experiment Setting

Datasets. We construct two federated datasets from Flan [31], which is a collection of various NLP
tasks from over 60 datasets for instruction turning. In order to be better suitable for FL settings, we
randomly select 8 NLP tasks from different datasets for each federated dataset and downsample the
original datasets with more details in Appendix A.1. ROGUE-1 is taken as a metric.

Baselines and Implementation. We compare our methods with four baselines based on the same
model architecture: centralized model, Local-finetuned model, FedIT [42] and FedLoRA [38]. The
centralized model is trained on all data of tasks in one center. The local-finetuned model infers that
only local data are used to train the model without any communication with other clients or the server.

We distribute data between clients based on the NLP task for data heterogeneity, where different NLP
tasks generated from different contextual factors inherently suffer from various complex distribution
shifts. Since we select 8 NLP tasks, corresponding to M = 8 clients.For each client, the local
task serves as the primary focus for personalization, while the tasks from other clients are taken as
test-time tasks. To better evaluate the effectiveness of methods, we assume that all clients are activated
for every communication round and set the communication round K = 20. The alpaca-LoRA2 is
adapted as the base model initialized with LLaMA-7B.3 The updating weight of local LoRA training
(FedDPA-T) is α = 0.5 (λ = 0.5) for federated dataset 1 and α = 0.3 (λ = 0.3) for federated dataset

2https://github.com/tloen/alpaca-lora
3https://huggingface.co/huggyllama/llama-7b

7

2. We set S = 5 and choose cosine similarity for instance-wise dynamic weighting mechanism. More
details are in Appendix A.2.

Table 1: Personalization and test-time personalization results of different models on federated dataset
1. FedDPA-F represents the model with the local fine-tuning adapter and FedDPA-T represents the
model with the local training adapter. Linguistic represents the linguistic acceptability task, Word Dis
represents the word disambiguation task, and Question CLS represents question classification task.

Methods Federated Dataset 1
Para

-phrase
Entail
-ment

Structure
to Text

Text For
-matting

Linguistic
Acc

Word
Dis

Core
-ference

Question
CLS Average

Personalization
Centralized 77.00 82.00 72.58 96.59 70.50 63.50 77.59 89.00 78.60
FedIT 69.00 83.00 71.25 96.32 71.50 62.50 75.43 91.50 77.50
FedLoRA 77.50 84.00 71.49 96.69 73.50 65.00 75.27 92.00 79.43
Local-finetuned 74.50 80.00 73.71 97.36 75.00 54.50 68.55 89.50 76.64
FedDPA-F 79.00 84.50 72.06 96.90 72.00 65.00 73.86 92.50 79.48
FedDPA-T 80.50 84.50 72.79 96.51 73.50 62.00 77.93 94.00 80.22
Test-Time Personalization
Local-finetuned 48.99 47.24 27.53 22.66 48.86 49.07 46.45 52.09 42.86
FedLoRA 75.56 76.55 75.21 74.94 76.16 74.64 74.99 76.97 75.63
FedDPA-F 78.10 77.36 77.18 76.98 77.11 76.23 76.84 77.19 77.12
FedDPA-T 76.20 75.51 76.19 75.63 74.86 74.60 74.77 75.96 75.47

5.2 Main Results

We compare FedDPA with other baselines on two main evaluation facets: personalization (scores on
targeted local tasks) and test-time personalization (average scores on all tasks including test-time
tasks). As evidenced in Table 1 and Table 2, our proposed dual-personalizing adapter methods (both
fine-tuning and training) exhibit superior performance in personalization compared to other baseline
models, which demonstrates the effectiveness of local adapter maintenance for enhancing performance
on the targeted local task. For test-time personalization, the FedDPA-F method stands out as the most
effective among all personalized models, which suggests that incorporating learning from the global
adapter can be instrumental in adapting to test-time distribution shifts for a more comprehensive
model achievement. Additionally, given that the global adapter aggregated on different distributions
matin certain generalization capabilities, the local adapter of FedDPA-F has better generalization
performance than that of FedDPA-T, which leads to better performance on most test-time tasks.
More importantly, it is noteworthy that while centralized or global models may yield higher average

Table 2: Personalization and test-time personalization results of different models on federated dataset
2. FedDPA-F represents the model with the local fine-tuning adapter and FedDPA-T represents the
model with the local training adapter. Reading Com represents the reading comprehension task.

Methods Federated Dataset 2
Para

-phrase
Common

-sense
Entail
-ment

Text For
-matting

Summari
-zation

Reading
Com

Senti
-ment

Open
QA Average

Personalization
Centralized 87.00 64.67 77.00 90.65 29.12 76.00 72.50 76.17 71.64
FedIT 86.00 63.13 79.00 89.80 30.36 75.50 72.00 81.06 72.07
FedLoRA 87.00 64.12 84.50 89.52 27.13 76.50 73.50 79.62 72.74
Local-finetuned 75.00 53.51 81.00 91.28 27.51 69.00 72.50 79.31 68.64
FedDPA-F 88.00 64.80 84.25 89.82 29.58 78.50 72.00 80.89 73.48
FedDPA-T 90.50 70.54 82.00 91.81 30.75 81.00 75.00 91.07 75.33
Test-Time Personalization
Local-finetuned 48.21 49.07 49.75 21.86 17.35 48.57 44.04 48.19 40.88
FedLoRA 69.60 71.64 71.09 71.28 65.63 68.89 70.32 70.44 69.86
FedDPA-F 71.64 72.28 72.42 72.39 71.12 70.46 71.00 71.82 71.64
FedDPA-T 71.63 72.66 71.20 72.58 70.58 69.21 70.67 71.62 71.27

8

performances across all tasks, they fall short in excelling at specific tasks for personalization, aligning
with the conclusions of the previous study [30].

6 Analysis

6.1 Convergence Analysis

We present the convergence analysis of our methods in Figure 3. Figure 3 (a) compares our methods
with other baselines for personalization, with the results showcasing the average performance on
target local tasks across all clients. Notably, our methods exhibit a more rapid convergence compared
to FedIT and achieve notable performance enhancements after five communication rounds. Despite
sharing similar trends with FedLoRA, our approaches, particularly the FedDPA-T, ultimately out-
perform in personalization. For a more granular insight into test-time personalization convergence,
Figure 3 (b) compares average performance on all tasks, including each client’s targeted local and
test-time tasks. The results substantiate that our approaches demonstrate faster convergence rates,
further bolstering the efficacy of our methods.

Table 3: Ablation study of instance-wise dy-
namic weighting mechanism (Auto). P repre-
sents personalization, and TTP represents test-
time personalization.

Methods Auto Fed Dataset 1 Fed Dataset 2
P TTP P TTP

FedDPA-F ✗ 79.06 76.97 73.17 71.70
✓ 79.48 77.12 73.48 71.64

FedDPA-T ✗ 79.57 60.06 73.75 63.57
✓ 80.22 75.47 75.33 71.27

Table 4: Ablation study of updating weight. P
represents personalization, and TTP represents
test-time personalization.

Methods α
Fed Dataset 1 Fed Dataset 2

P TTP P TTP

FedDPA-T
0.3 79.69 75.85 75.33 71.27
0.5 80.22 75.47 74.10 70.72
0.7 79.88 75.01 74.04 69.95

Figure 3: Average accuracy varies as communi-
cation rounds.

Figure 4: Average accuracy varies as different
client participation numbers.

6.2 Ablation Study

Impact of Instance-Wise Dynamic Weighting Mechanism. To explore the impact of the instance-
wise dynamic weighting mechanism, we implemented experiments with FedDPA methods on different
datasets. As shown in Table 3, the incorporation of an instance-wise dynamic weighting mechanism
contributes significantly to enhancing performance in both personalization and test-time personaliza-
tion scenarios. More ablation studies are in Appendix B.2.

Impact of Updating Weight α. In this study, we investigated the influence of the updating weight
α during FedDPA-T training with its value α ∈ {03, 0.5, 0.7}. As can be seen in Table 4, for test-time
personalization, increasing updating weight α will decrease the performance due to the increased
proportion of the local adapter in the model, while for personalization, different updating weights α
are required for different datasets to achieve their optimal results.

Impact of Client Number. To better align with the FL setting in practical application, we scaled
up clients to 40 and implemented experiments with sample rate {0.2, 0.4, 0.6, 0.8, 1}. For each
communication round, the server will select clients from each task based on the sample rate (more
details in Appendix A.1). As shown in Figure 4, as the client participant rates increase, model accuracy
also increases as more participating clients provide more data for knowledge learning. Besides,

9

FedDPA-F outperforms all baselines, whereas FedDPA-T exhibits somewhat inferior performance,
potentially due to overfitting issues when handling a small dataset.

More experiments and analyses of scalability and efficiency can be found in Appendix B.3 and B.4.

7 Conclusion

Federated Foundation Model (FedFM) is a promising direction to enhance existing Foundation
Models, e.g. LLM, by leveraging private data sources. Test-time distribution shift is a critically
important problem to ensure the practicability of the FedFM system. This work is the first to
propose the test-time FedFM setting. To tackle this challenging scenario, we propose a novel dual-
personalizing adapter for the FedFM framework. The method is evaluated on public NLP tasks that
are adapted to mimic the test-time FedFM setting. This work is the first step towards this direction.
We focus on defining a new learning scenario, proposing a basic learning framework, and setting up
the benchmark datasets. Our future works will be in two directions: the first is to rethink this problem
from a theoretical perspective, and the second is to enhance the benchmark setting with more datasets
in real applications.

References
[1] Martin Arjovsky. Out of distribution generalization in machine learning. PhD thesis, New York

University, 2020.

[2] Sara Babakniya, Ahmed Roushdy Elkordy, Yahya H Ezzeldin, Qingfeng Liu, Kee-Bong Song,
Mostafa El-Khamy, and Salman Avestimehr. Slora: Federated parameter efficient fine-tuning of
language models. arXiv preprint arXiv:2308.06522, 2023.

[3] Wenxuan Bao, Tianxin Wei, Haohan Wang, and Jingrui He. Adaptive test-time personalization
for federated learning. Advances in Neural Information Processing Systems, 36, 2024.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[5] Zachary Charles, Nicole Mitchell, Krishna Pillutla, Michael Reneer, and Zachary Garrett.
Towards federated foundation models: Scalable dataset pipelines for group-structured learning.
Advances in Neural Information Processing Systems, 36, 2024.

[6] Haokun Chen, Yao Zhang, Denis Krompass, Jindong Gu, and Volker Tresp. Feddat: An
approach for foundation model finetuning in multi-modal heterogeneous federated learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 11285–11293,
2024.

[7] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared
representations for personalized federated learning. In International conference on machine
learning, pages 2089–2099. PMLR, 2021.

[8] Jiahua Dong, Lixu Wang, Zhen Fang, Gan Sun, Shichao Xu, Xiao Wang, and Qi Zhu. Federated
class-incremental learning. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 10164–10173, 2022.

[9] Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi
Rezagholizadeh. Krona: Parameter efficient tuning with kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022.

[10] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning
with theoretical guarantees: A model-agnostic meta-learning approach. Advances in Neural
Information Processing Systems, 33:3557–3568, 2020.

[11] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. To-
wards a unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366,
2021.

10

[12] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for nlp. In International Conference on Machine Learning, pages 2790–2799. PMLR, 2019.

[13] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[14] Zhiqiang Hu, Yihuai Lan, Lei Wang, Wanyu Xu, Ee-Peng Lim, Roy Ka-Wei Lee, Lidong Bing,
and Soujanya Poria. Llm-adapters: An adapter family for parameter-efficient fine-tuning of
large language models. arXiv preprint arXiv:2304.01933, 2023.

[15] Jingang Jiang, Xiangyang Liu, and Chenyou Fan. Low-parameter federated learning with large
language models. arXiv preprint arXiv:2307.13896, 2023.

[16] Liangze Jiang and Tao Lin. Test-time robust personalization for federated learning. In ICLR,
2023.

[17] Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan, Yuexiang
Xie, Yaliang Li, Bolin Ding, and Jingren Zhou. Federatedscope-llm: A comprehensive package
for fine-tuning large language models in federated learning. arXiv preprint arXiv:2309.00363,
2023.

[18] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691, 2021.

[19] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In International Conference on Machine Learning, pages
6357–6368. PMLR, 2021.

[20] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. Proceedings of Machine learning
and systems, 2:429–450, 2020.

[21] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

[22] Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated
learning on non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623,
2021.

[23] Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey. Artificial
Intelligence Review, 42:275–293, 2014.

[24] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

[25] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[26] Chao Ren, Han Yu, Hongyi Peng, Xiaoli Tang, Anran Li, Yulan Gao, Alysa Ziying Tan, Bo Zhao,
Xiaoxiao Li, Zengxiang Li, et al. Advances and open challenges in federated learning with
foundation models. arXiv preprint arXiv:2404.15381, 2024.

[27] Jingwei Sun, Ziyue Xu, Hongxu Yin, Dong Yang, Daguang Xu, Yiran Chen, and Holger R Roth.
Fedbpt: Efficient federated black-box prompt tuning for large language models. arXiv preprint
arXiv:2310.01467, 2023.

[28] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated
learning. IEEE Transactions on Neural Networks and Learning Systems, 2022.

11

[29] Yue Tan, Chen Chen, Weiming Zhuang, Xin Dong, Lingjuan Lyu, and Guodong Long. Is
heterogeneity notorious? taming heterogeneity to handle test-time shift in federated learning.
Advances in Neural Information Processing Systems, 36, 2024.

[30] Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi
Chandu, David Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels
go? exploring the state of instruction tuning on open resources. arXiv preprint arXiv:2306.04751,
2023.

[31] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv
preprint arXiv:2109.01652, 2021.

[32] Jian Xu and Shao-Lun Huang. A joint training-calibration framework for test-time personal-
ization with label shift in federated learning. In Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management, pages 4370–4374, 2023.

[33] Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui Tao, and Fu Lee Wang. Parameter-efficient
fine-tuning methods for pretrained language models: A critical review and assessment. arXiv
preprint arXiv:2312.12148, 2023.

[34] M Xu, D Cai, Y Wu, X Li, and S Wang. Fwdllm: Efficient fedllm using forward gradient. 2024.

[35] Mengwei Xu, Yaozong Wu, Dongqi Cai, Xiang Li, and Shangguang Wang. Federated fine-
tuning of billion-sized language models across mobile devices. arXiv preprint arXiv:2308.13894,
2023.

[36] Xiangpeng Yang, Linchao Zhu, Hehe Fan, and Yi Yang. Eva: Zero-shot accurate attributes and
multi-object video editing. arXiv preprint arXiv:2403.16111, 2024.

[37] Xiangpeng Yang, Linchao Zhu, Xiaohan Wang, and Yi Yang. Dgl: Dynamic global-local
prompt tuning for text-video retrieval. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 6540–6548, 2024.

[38] Liping Yi, Han Yu, Gang Wang, and Xiaoguang Liu. Fedlora: Model-heterogeneous personal-
ized federated learning with lora tuning. arXiv preprint arXiv:2310.13283, 2023.

[39] Jaehong Yoon, Wonyong Jeong, Giwoong Lee, Eunho Yang, and Sung Ju Hwang. Federated
continual learning with weighted inter-client transfer. In International Conference on Machine
Learning, pages 12073–12086. PMLR, 2021.

[40] Jun Yu, Yutong Dai, Xiaokang Liu, Jin Huang, Yishan Shen, Ke Zhang, Rong Zhou, Eashan
Adhikarla, Wenxuan Ye, Yixin Liu, et al. Unleashing the power of multi-task learning: A
comprehensive survey spanning traditional, deep, and pretrained foundation model eras. arXiv
preprint arXiv:2404.18961, 2024.

[41] Sixing Yu, J Pablo Muñoz, and Ali Jannesari. Federated foundation models: Privacy-preserving
and collaborative learning for large models. arXiv preprint arXiv:2305.11414, 2023.

[42] Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Guoyin Wang, and
Yiran Chen. Towards building the federated gpt: Federated instruction tuning. arXiv preprint
arXiv:2305.05644, 2023.

[43] Zhuo Zhang, Yuanhang Yang, Yong Dai, Qifan Wang, Yue Yu, Lizhen Qu, and Zenglin Xu.
Fedpetuning: When federated learning meets the parameter-efficient tuning methods of pre-
trained language models. In Annual Meeting of the Association of Computational Linguistics
2023, pages 9963–9977. Association for Computational Linguistics (ACL), 2023.

[44] Weiming Zhuang, Chen Chen, and Lingjuan Lyu. When foundation model meets federated
learning: Motivations, challenges, and future directions. arXiv preprint arXiv:2306.15546,
2023.

12

Appendix

A Implementation Details

A.1 Datasets

In this paper, we have developed two federated datasets derived from the Flan [31], and details to
construct these datasets are elucidated in this section. Flan encompasses a diverse array of NLP
tasks, each comprising multiple datasets. These tasks, generated from different contextual factors,
inherently experience various complex distribution shifts. To align with FL settings, we employed
a stratified selection process, randomly choosing one dataset from each of the eight distinct tasks
from Flan to form each federated dataset. In addition, to simulate client local data scarcity [24], we
implemented a downsampling strategy, reducing the size of each selected local dataset to 300 training
instances and 200 testing instances. Consequently, each constructed federated dataset encompasses
eight distinct NLP tasks, culminating in a whole dataset comprising 2400 training examples and 1600
testing examples across all tasks. The specific tasks and datasets included in each federated dataset
are cataloged in Table 5.

The NLP tasks within these datasets can be broadly divided into two types: generation tasks and
classification tasks. To facilitate uniform processing by LLM, all tasks are converted into a generative
format, employing distinct instructions for each dataset. Illustrative examples of these data for both
classification and generation tasks are provided in Table 6. For the input of the LLM, we adopted a
simple template, the details of which are delineated in Table 7.

Dataset Partitioning for Ablation Study. In our ablation study in section 6.2 examining the client
number to align with FL settings, we divided each task in our constructed federated datasets into five
subsets, each comprising an equal number of training data. Based on our assumption that each client
is associated with a single task, this division results in a total of 40 clients, with each client possessing
a local dataset of 60 training examples. To mimic real-world FL communication dynamics, we
employed a randomized selection process for clients (subsets) within each task according to specified
sample rates. Accordingly, for sample rates specified as {0.2, 0.4, 0.6, 0.8, 1}, we selected 1,2,3,4,
and 5 clients (subsets) per task, leading to 8, 16, 24, 32, and 40 clients participating in federated
communications, respectively. The evaluation phase involves computing the average results across
these selected clients for each specified sample rate, which provides a comprehensive analysis of how
client numbers influence the performance of our method.

Different with Multi-Task Learning. Although both multi-task learning and our test-time person-
alization setting involve multiple tasks during training and testing, multi-task learning operates in a
centralized setting, whereas our setting is based on federated learning, a distributed setting. More im-
portantly, our setting accounts for test-time distribution shifts, a challenge that is typically overlooked
in conventional multi-task learning. Additionally, fine-tuning on the combination of multi-task data
from a centralized foundation model serves as a strong baseline for multi-task learning. In foundation
models, all tasks are standardized into a uniform format, and the model benefits from task-agnostic
token embeddings learned through extensive pre-training on diverse data. Thus, directly fine-tuning
on this multi-task data represents the implementation of multi-task learning using foundation models
[40]. We have included this baseline, referred to as "Centralized," in our experimental comparisons.

A.2 Baselines and Implementation

In this section, detailed descriptions of the implementation of FedDPA and each baseline compared
in this study will be provided:

• Centralized model: This model is formulated by aggregating all available data from various
tasks at a single centralized center for training purposes, with 50 epochs to optimize.

• Local-finetuned model: This model trains independently without any external communi-
cation from other clients or a central server. It is specifically trained on data pertaining to
a single task, dedicating 50 epochs to optimize for task-specific performance without the
influence of external data.

13

Table 5: Tasks and datasets of constructed federated dataset 1 and federated dataset 2.

Federated Dataset 1 Federated Dataset 2
Task Dataset Task Dataset
Paraphrase glue_qqp Paraphrase paws_wiki
Entailment snli Commonsense hellaswag
Structure to text web_nlg_en Entailment qnli
Text formatting fix_punct Text formatting word_segment
Linguistic acceptability cola Summarization gigaword
Word disambiguation wic Reading comprehension bool_q
Coreference definite_pronoun_resolution Sentiment sentiment140
Question classification trec Open-domain QA acr_easy

Table 6: Examples of data in our constructed federated datasets.

Data Examples

Input:

The father convinced his son that it is possible for him to one day become a knight,
but he may never achieve such status coming from a peasant family.
Who is "he"?
OPTIONS:
- The father
- his son

Output: His son

Input:

Police are seeking a former village chief in north china for allegedly killing his
political rivals in an attack apparently motivated by local power plays, state press
reported monday .
Can you generate a short summary of the above paragraph?

Output: Former chinese village head wanted for political murders

• FedIT model [42]: The FedIT model is the final aggregated global model derived from
diverse local client datasets after training. It embodies the essence of collaborative learning
inherent to federated learning, assimilating knowledge from a multitude of client-specific
data sources.

• FedLoRA model [38]: Here, we adapt the training paradigm in paper [38] to NLP tasks by
focusing on training the lightweight LoRA for aggregation while keeping the majority of
the LLM parameters frozen. Subsequently, a personalized adaptation process is employed,
where the globally aggregated LoRA undergoes further local training on each local client’s
dataset to tailor the learning outcomes to individual client needs.

• FedDPA-F: FedDPA-F is the combination of the global adapter and the local fine-tuning
adapter. During the inference, the scale factor is set to λ = 1 in the instance-wise dynamic
weighting mechanism.

• FedDPA-T: FedDPA-T is the combination of the global adapter and the local training adapter.
Since the global adapter contributes to the training of the local adapter for personalization, it
is essential to restrict the similarity score during the inference. This adjustment is necessary
to ensure that the integration of the global and local adapters achieves optimal personalization
outcomes. Thus, the scale factor λ is set equal to the updating weight α used in the local
adapter training.

All models are implemented using LoRA to enhance learning efficiency, with the rank of LoRA set
as r = 8 and only applied to Wq and Wv. For FL methods, each client conducts 10 local epochs

Table 7: Prompt Template.

Template

Prompt Input Instruction: {instruction}
Response:

14

with a batch size of 32. We implement all the methods using PyTorch and conduct all experiments on
NVIDIA Quadro RTX 6000 GPU.

A.3 Algorithm

Algorithm 1: FedDPA-F
Require :Number of clients M ; number of communication rounds K; local step size η; freeze

foundation model θ; initial global adapter ∆θg and local adapters ∆θ1
l , · · · ,∆θM

l ;
local training datasets D1

train, · · · ,DM
train.

// Learn Global Adapter
for k ← 1 to K do

Sample clients S ⊆ {1, · · · ,M};
Communicate ∆θg to all clients m ∈ S;
for each client m ∈ S in parallel do

Initialize ∆θm
g ← ∆θg;

∆θm
g ← Client local training({θ,∆θg},Dm

train, η); [Equation 2]
Communicate ∆θm

g to the server;

Construct ∆θg =
∑

m∈S
1
|S|∆θm

g ; [Equation 2]

// Learn Local Adapters
for each client m ∈ {1, · · · ,M} in parallel do

Initialize ∆θm
l ← ∆θg;

∆θm
l ← Client local training({θ,∆θm

l },Dm
train, η); [Equation 3]

return ∆θg, {∆θ1
l , · · · ,∆θM

l }.

Algorithm 2: FedDPA-T
Require :Number of clients M ; number of communication rounds K; local step size η; freeze

foundation model θ; initial global adapter ∆θg and local adapters ∆θ1
l , · · · ,∆θM

l ;
local training datasets D1

train, · · · ,DM
train.

for k ← 1 to K do
Sample clients S ⊆ {1, · · · ,M};
Communicate ∆θg to all clients m ∈ S;
for each client m ∈ S in parallel do

Initialize ∆θm
g ← ∆θg and ∆θm

l ← ∆θm,k−1
l ;

// Learn Global Adapter
∆θm

g ← Client local training({θ,∆θg},Dm
train, η); [Equation 2]

// Learn Local Adapter
∆θm,k

l ← Client local training({θ,∆θg,∆θm
l },Dm

train, η); [Equation 3]
Communicate ∆θm

g to the server;
Maintain ∆θm,k

l locally;

Construct ∆θg =
∑

m∈S
1
|S|∆θm

g ; [Equation 2]

return ∆θg, {∆θ1
l , · · · ,∆θM

l }.

B Additional Experiments

B.1 Adaptability Analysis

To enhance applicability across diverse non-IID environments, our method is meticulously designed
with a high degree of flexibility for its adaption across various global learning frameworks, back-
bones and PEFT methods for different scenarios. This adaptability is simply achieved through the
straightforward substitution of the FedAvg, LLM and LoRA with alternative aggregation methods,
transformer-based foundation models and adapter-based PEFT methods during the training. In our
experiment, we employ FedAvg, LLM and LoRA as representative examples, demonstrating our
methods’ superior performance compared to other baselines as indicated in Table 1 and Table 2. To

15

further validate the effectiveness and versatility of our approach within different federated learning
contexts, we adapt our methods to include the FedProx[20] framework and also implement other
baselines (FedIT and FedLoRA) within FedProx to maintain a fair comparison.

Results presented in Table 8 indicate that our methods, both training and fine-tuning methods,
outperform competing approaches. Specifically, FedDPA-T excels in personalization, while FedDPA-
F leads in test-time personalization, maintaining consistent performance with FedAvg. These findings
underscore the robustness and consistent efficacy of our methods across various global learning
paradigms for different non-IID scenarios.

Table 8: Personalization and test-time personalization results of different models with FedProx
framework on federated dataset 1. FedDPA-F represents the model with the local fine-tuning adapter
and FedDPA-T represents the model with the local training adapter. Linguistic represents the linguistic
acceptability task, Word Dis represents the word disambiguation task, and Question CLS represents
question classification task.

Methods Federated Dataset 1
Para

-phrase
Entail
-ment

Structure
to Text

Text For
-matting

Linguistic
Acc

Word
Dis

Core
-ference

Question
CLS Average

Personalization
FedIT 71.00 83.00 70.38 96.32 69.50 63.50 73.55 91.50 77.34
FedLoRA 79.00 85.00 70.63 96.60 69.00 63.00 78.85 88.50 78.82
FedDPA-F 77.50 85.00 71.92 96.78 73.00 63.50 77.87 89.50 79.38
FedDPA-T 79.50 85.50 71.62 96.89 76.00 60.00 77.28 93.50 80.04
Test-Time Personalization
FedLoRA 76.76 75.82 74.11 74.36 75.01 72.27 77.16 74.87 75.05
FedDPA-F 77.25 76.01 76.72 76.95 77.21 75.48 77.31 76.14 76.63
FedDPA-T 75.64 74.62 75.58 75.01 74.90 74.21 74.80 75.35 75.01

B.2 Instance-Wise Dynamic Weighting Mechanism Analysis

In this section, we further examine the impact of the instance-wise dynamic weighting mecha-
nism, including the similarity metric, the selected local instance number and the type of instance
representation.

Impact of Similarity Metric. In Section 4.3, we employ the similarity metric to calculate the
average similarity scores of each input instance, which serves as the weight αt to dynamically balance
the global and local adapters. For this purpose, cosine similarity is selected in our experiment due
to its better robustness and normalization with high-dimensional vectors than other metrics, and its
superiority has been demonstrated in many NLP/CV works[25, 37, 36]. Additionally, we conducted
an ablation study comparing other metrics like L2-norm and Pearson correlation, and the results in
Table 9 demonstrate that cosine similarity outperforms other similarity metrics.

Impact of Instance Number S. In Section 4.3, the selection of S, representing the number of local
instances for similarity calculation, is pivotal. To comprehensively evaluate the effect of varying
the number of these instances, we conduct a series of experiments employing distinct local instance
numbers, specifically S ∈ {1, 3, 5, 7, 9}. The accuracy results, as depicted in Figure 5, illustrate the
dependency of model performance on different instance numbers S. As demonstrated in Figure 5 (a),
in the context of personalization, it is observed that our models attain a plateau in accuracy when the
instance number exceeds 5. This indicates a stabilization in model performance beyond this threshold
of local instances. Furthermore, Figure 5 (b) delves into the realm of test-time personalization. The
findings here reveal similar results, indicating that variations in the instance number do not markedly
impact the model’s performance in test-time personalization.

Impact of Instance Representation. In Section 4.3, our method entails utilizing the embedding
of the final token from the last hidden layer of the LLM, denoted as ’LAST’, as the input instance
representation for the purpose of similarity calculation. In this exploration, we delve into another
instance representation strategy, which involves employing the average embedding of all tokens from
the final hidden layer of the LLM, herein referred to as ’AVG’. The comparative analysis, as presented

16

Figure 5: Average accuracy varies as different instance numbers. TTP represents test-time personal-
ization.

in Table 10, demonstrates that employing the embedding of the last token yields superior performance
relative to the strategy of averaging the embeddings of all tokens. This observed difference in perfor-
mance can be attributed to the decoder structure inherent to LLMs, wherein the final token is capable
of attending to all preceding tokens, thereby encapsulating comprehensive sentence-level information.

Table 9: Ablation study of similarity metric
(Sim). P represents personalization, and TTP
represents test-time personalization. -L2 repre-
sents using the L2-Norm as metric, Pearson rep-
resents using the Pearson correlation as metric,
and Cosine represents using the cosine similarity
as the metric.

Methods Sim Fed Dataset 1
P TTP

FedDPA-F -L2 77.69 77.10
Pearson 79.09 76.78
Cosine 79.48 77.12

FedDPA-T -L2 77.58 77.30
Pearson 79.73 75.27
Cosine 80.22 75.47

Table 10: Ablation study of instance representa-
tions (Emb). P represents personalization, and
TTP represents test-time personalization. LAST
represents using the embedding of the final token
from the final hidden layer of LLM as instance
representation, and AVG represents using the
average embedding of all tokens from the final
hidden layer of LLM as instance representation.

Methods Emb Fed Dataset 1
P TTP

FedDPA-F AVG 79.30 76.77
LAST 79.48 77.12

FedDPA-T AVG 79.65 73.36
LAST 80.22 75.47

B.3 Model Scalability Analysis

In order to examine the effectiveness of model scalability, we conduct experiments based on a larger
model, LLaMA-13B. The outcomes, as presented in Table 11, elucidate that larger models exhibit
superior performance over their smaller counterparts across all personalization methods evaluated.
Furthermore, it is noteworthy that FedDPA-T surpasses FedDPA-F in terms of personalization and
achieves comparable results in test-time personalization. This analysis underscores the inherent
advantages of larger models in enhancing model performance, alongside the advance of the FedDPA-T
approach in the context of personalization and adaptability to test-time conditions.

Table 11: Ablation study of model size. P represents personalization, and TTP represents test-time
personalization.

Methods Size Fed Dataset 1
P TTP

FedDPA-F 7B 79.48 77.12
13B 81.52 80.55

FedDPA-T 7B 80.22 75.47
13B 82.76 80.47

17

B.4 Communication and Computation Analysis

In this section, we undertake a detailed examination of both the communication and computation
overhead associated with our proposed model in comparison to other baseline models. The results,
as detailed in Table 12, delineate the communication and computation burdens imposed by various
models. Given that these models are all based on the LoRA framework and exclusively transmit
LoRA weights for aggregation (with our methods specifically transmitting only the global LoRA
weights), they inherently sustain a minimal communication overhead. Regarding the computation
overhead, the LoRA architecture permits the training of both local and global LoRAs in parallel,
resulting in a marginal increase in computational demands for FedDPA-T. Conversely, FedDPA-F
learns the local LoRA through an additional fine-tuning phase, thereby not imposing any additional
computational overhead during the training phase.

Additionally, we have conducted an analysis of the inference time associated with our models. This
examination involved calculating the average inference time per instance for FedLoRA, FedDPA
without the instance-wise dynamic weighting mechanism, and FedDPA. As illustrated in Table 13, it is
observed that our methods incur slightly higher inference time compared to FedLoRA. This marginal
increase in inference time underscores the efficiency of our proposed methods, demonstrating that
the enhanced performance and capabilities are achieved with a minimal impact on computational
efficiency during inference.

Table 12: The communication and computation
overhead of FedDPA and other baselines on Feder-
ated Dataset 1.

Methods Comm.Overhead Comp.Overhead
FedIT 4.2M(0.06%) 0.277 TFLOPS
FedLoRA 4.2M(0.06%) 0.277 TFLOPS
FedDPA-F 4.2M(0.06%) 0.277 TFLOPS
FedDPA-T 4.2M(0.06%) 0.281 TFLOPS

Table 13: Average inference time per
instance. Auto represents the instance-
wise dynamic weighting mechanism.

Methods Time
FedLoRA 3.84s
FedDPA (w/o auto) 3.91s
FedDPA 4.13s

C Discussions

C.1 Extend to Other Scenarios of Test-Time FL

In this paper, we primarily consider an ideal scenario for our proposed test-time personalization
setting, where all tasks are included for all clients. In this section, we will discuss our methods under
alternative scenarios.

In practical applications, it is possible that some tasks remain unseen by all clients during training and
may only appear during the testing phase for certain clients. In this scenario, test-time distribution
shifts arise from these unseen tasks. According to previous works [5, 29], generic features learned
through FL are robust to distribution shifts, even those originating from unseen test-time tasks.
Consequently, our method can be directly adapted to this scenario. We conducted experiments
to evaluate our methods against other baselines on three unseen test-time tasks. All methods and
baselines are trained on our constructed Federated Dataset 1 and tested on three tasks not included in
Federated Dataset 1. For personalized methods, we report the average score across all clients and the
maximum score among all clients to provide a comprehensive comparison.

As shown in Table 14, FedDPA-T outperforms all other models, indicating the effectiveness of our
method on unseen test-time tasks. Additionally, FedDPA-F surpasses FedLoRA, suggesting that the
generic features learned through FL across diverse data distributions are robust to various distribution
shifts, consistent with the findings in [29]. Despite this, other techniques targeting these unseen
test-time tasks could further enhance our proposed methods, which we leave for future work to
explore.

Our methods are also applicable to scenarios involving the introduction of new clients. As previously
analyzed, our methods are robust to different distribution shifts. By computing the similarity
between instances from new clients and existing clients through our instance-wise dynamic weighting
mechanism, we can identify the most similar existing client. The model of this identified client can

18

Table 14: Test-time performance on unseen tasks. All models are trained on Federated Dataset 1, and
these unseen test-time tasks are not included in Federated Dataset 1. AVG represents the average
score across all clients for this task, while MAX represents the highest score among these clients for
this task. The best performance for AVG is bolded, and the best performance for MAX is underlined.

Test-Time Task FedIT FedLoRA FedDPA-F FedDPA-T
AVG MAX AVG MAX AVG MAX

Summarization 22.40 22.25 22.42 22.37 22.52 22.46 22.65
Reading Comprehension 69.50 68.88 73.00 69.44 72.00 71.88 76.00
Open Domain QA 78.32 76.46 78.96 78.01 79.61 78.76 79.92

then be used as the initial model for the new clients, providing a more effective starting point for
further training.

C.2 Limitations

The proposed dual-personalizing adapter architecture is limited by 1) model scales: the proposed
methods rely on the foundation model, presupposing that each client possesses sufficient memory
capacity and computational resources to store and train the foundation model with PEFT methods. 2)
secure issues: the framework operates under the assumption that all clients are trusted and legally
entitled to access and utilize data stored on them, and the whole process does not suffer from any
attacks.

19

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims have been made clearly in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to Appendix C.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

20

Justification: Our paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to the experiment section 5 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

21

Answer: [Yes]
Justification: Please refer to the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please refer to Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: All experiments are conducted in the same setting with stable results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to Appendix A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Although Federated Learning technology has positive societal impacts on
privacy preservation, our paper aims to enhance federated learning in the application scenario
with foundation models. We only use publicly available NLP datasets to evaluate the
effectiveness of the proposed method. Therefore, we would like to rate our work’s societal
impacts as N/A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

23

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Since our paper proposes a new framework for federated learning and the
models/datasets we use are publicly available, there are no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Please refer to the section 5.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

24

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Please refer to the supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Related Work
	 Adapter-based PEFT Methods
	Federated Foundation Models
	Personalized Federated Learning

	Problem Definition
	Test-time Personalization in FedFM
	Challenges

	Proposed Method
	Generic Learning of Global Model
	Personalization of Local Model
	LLM-enhanced Instance-wise Dynamic Weighting Mechanism

	Experiment
	Experiment Setting
	Main Results

	Analysis
	Convergence Analysis
	Ablation Study

	Conclusion
	Implementation Details
	Datasets
	Baselines and Implementation
	Algorithm

	Additional Experiments
	Adaptability Analysis
	Instance-Wise Dynamic Weighting Mechanism Analysis
	Model Scalability Analysis
	Communication and Computation Analysis

	Discussions
	Extend to Other Scenarios of Test-Time FL
	Limitations

