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Abstract

Despite advancements in Text-to-Video (T2V) generation, producing videos with
realistic motion remains challenging. Current models often yield static or mini-
mally dynamic outputs, failing to capture complex motions described by text. This
issue stems from the internal biases in text encoding, which overlooks motions,
and inadequate conditioning mechanisms in T2V generation models. To address
this, we propose a novel framework called DEcomposed MOtion (DEMO), which
enhances motion synthesis in T2V generation by decomposing both text encoding
and conditioning into content and motion components. Our method includes a
content encoder for static elements and a motion encoder for temporal dynamics,
alongside separate content and motion conditioning mechanisms. Crucially, we
introduce text-motion and video-motion supervision to improve the model’s under-
standing and generation of motion. Evaluations on benchmarks such as MSR-VTT,
UCF-101, WebVid-10M, EvalCrafter, and VBench demonstrate DEMO’s superior
ability to produce videos with enhanced motion dynamics while maintaining high
visual quality. Our approach significantly advances T2V generation by integrating
comprehensive motion understanding directly from textual descriptions. Project
page: https://PR-Ryan.github.io/DEMO-project/

1 Introduction

The field of Text-to-Video (T2V) generation [21, 46, 7, 8, 19, 56, 26, 74, 3, 59, 70] has seen significant
advancements, especially with the advent of diffusion models. These models have demonstrated
impressive capabilities in generating visually appealing videos from textual descriptions. However, a
persistent challenge remains: generating videos with realistic and complex motions. Most existing
T2V models produce outputs that resemble static animations or exhibit minimal camera movement,
falling short of capturing the intricate motions described in textual inputs [21, 46, 7, 19, 56, 74].

This limitation arises from two primary challenges. The first challenge is the inadequate motion
representation in text encoding. Current T2V models utilize large-scale visual-language models
(VLMs), such as CLIP [40], as text encoders. These VLMs are highly effective at capturing static
elements and spatial relationships but struggle with encoding dynamic motions. This is primarily
due to their training focus, which biases them towards recognizing nouns and objects [35], while
verbs and actions are less accurately represented [17, 69, 38]. The second challenge is the reliance
on spatial-only text conditioning. Existing models often extend Text-to-Image (T2I) generation
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techniques to T2V tasks [21, 46, 7, 19, 56, 74, 3], applying text information through spatial cross-
attention on a frame-by-frame basis. While effective for generating high-quality static images, this
approach is insufficient for videos, where motion is a critical component that spans both spatial and
temporal dimensions. A holistic approach that integrates text information across these dimensions is
essential for generating videos with realistic motion dynamics.

Recent efforts to address these challenges have involved incorporating additional control signals
such as sketches [15], strokes [9, 23, 60, 51, 68], database samples [72], depth maps [33], and
human poses [71, 6, 12], reference videos [62, 73, 34, 65], and bounding boxes [55] into the T2V
generation process. These signals are derived either from reference videos or pre-trained motion
generation models [36, 30]. While these approaches improve motion synthesis, they depend on
external references or pre-trained models, which may not always be practical. Moreover, they
introduce complexity and potential inefficiencies, as they require separate handling of additional data
sources.

To address these challenges, we introduce Decomposed Motion (DEMO), a novel framework designed
to enhance motion synthesis in T2V generation. DEMO adopts a comprehensive approach by
decomposing both text encoding and conditioning processes into content and motion components.
Addressing the first challenge, DEMO decomposes text encoding into content encoding and motion
encoding processes. The content encoding focuses on object appearance and spatial layout, capturing
static elements such as “a girl" and “the road" in the scenario “A girl is walking to the left on the
road." Meanwhile, the motion encoding captures the essence of object movement and temporal
dynamics, interpreting actions like “walking" and directional cues like “to the left." This separation
allows the model to better understand and represent the dynamic aspects of the described scenes.
Regarding the second challenge, DEMO decomposes the text conditioning process into content
and motion dimensions. The content conditioning module integrates spatial embeddings into the
video generation process on a frame-by-frame basis, ensuring that static elements are accurately
depicted in each frame. In contrast, the motion conditioning module operates across the temporal
dimension, infusing dynamic motion embeddings into the video. This separation enables the model to
capture and reproduce complex motion patterns described in the text. Moreover, DEMO incorporates
novel text-motion and video-motion supervision techniques to enhance the model’s understanding
and generation of motion. Text-motion supervision aligns cross-attention maps with the temporal
changes observed in ground truth videos, guiding the model to focus on motion information. Video-
motion supervision constrains the predicted video latent to mimic the motion patterns of real videos,
promoting the generation of coherent and realistic motion dynamics. These supervision techniques
ensure that the model not only generates visually appealing videos but also renders the intricate
motions described in the text.

To validate our framework, we conduct extensive experiments on several benchmarks, including MSR-
VTT [66], UCF-101 [50], WebVid-10M [1], EvalCrafter [31], and VBench [24]. DEMO achieves
substantial improvements in metrics related to motion dynamics and visual fidelity, indicating its
superior capability to generate videos that are both visually appealing and dynamically accurate.

2 Related Work

T2V Generation. The T2V domain has made substantial strides, building on the progress in
T2I generation. The first T2V model, VDM [21], introduces a space-time factorized U-Net for
temporal modeling, training on both images and videos. For high-definition videos, models like
ImagenVideo [19], Make-A-Video [46], LaVie [59], and Show-1 [70] use cascades of diffusion
models with spatial and temporal super-resolution. MagicVideo [74], Video LDM [4], and LVDM [16]
apply latent diffusion for video, working in a compressed latent space. VideoFusion [32] separates
video noise into base and residual components. ModelScopeT2V uses 1D convolutions and attention
to approximate 3D operations. Stable Video Diffusion (SVD) [3] divides the process into T2I
pre-training, video pre-training, and fine-tuning and demonstrate the necessity of a well-curated
high-quality pretraining dataset for developing a strong base model. Despite these advancements, the
generated videos still exhibit limited motion dynamics, often appearing largely static with minimal
motion, highlighting an ongoing challenge in achieving dynamic and realistic motions.

T2V Generation with Rich Motion. Generating video with rich motion is still an open challenge
in the field of T2V generation. Existing works [15, 9, 23, 60, 51, 68, 72, 33, 71, 6, 12, 62, 73, 34,
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Figure 1: Our Pilot Study. We generated a set of prompts (262144 in total) following a fixed
template, grouping them according to the different parts of speech (POS). These grouped texts are
then passed into the CLIP text encoder, and we calculate the sensitivity as the average sentence
distance within each group. As shown on the left-hand side, compared to POS representing content,
CLIP is less sensitive to POS representing motion. (Results are consistent across different templates
and different sets of words within each POS. Further details can be found in the appendix.)

65, 55] address this challenge by incorporating additional control signals that inherently contain
rich motion information. Tune-A-Video [65] proposes spatial-temporal self-attention into the T2I
backbone and trains the model on a single reference video. The model thus learns to generate
new videos with motions specified by the reference video. Materzynska et al. [34] follow the
idea of T2I customization [13, 42, 27] to fine-tune the model and a specific text token on a small
set of reference videos. The model can then recontextualize with that learned token to generate
new videos with specific motions. DreamVideo [62] further customizes both the appearances
and motions given reference images and videos. MotionDirector [73] proposes a dual-path Low-
Rank Adaptations [22] to decouple the motions and appearances residing in the reference videos.
MotionCtrl [60] incorporates object trajectories and camera poses into the T2V generation by
conditioning them in the convolution and temporal transformer layers, respectively. Contrasting with
these approaches, DEMO prioritizes the generation of videos that exhibit significant motions derived
solely from textual descriptions without relying on additional signals.

3 Method

Latent Video Diffusion Models (LVDMs). LVDMs build on the diffusion models [48, 20] by
training a 3D U-Net as the noise predictor, where a VQ-VAE [37] or a VQ-GAN [11] is employed
to compress the video into low-dimensional latent space. The 3D U-net consists of down-sample,
middle, and up-sample blocks. Each of these blocks comprises multiple convolution layers augmented
by spatial and temporal transformers. The spatial transformer consists of spatial self-attention, spatial
cross-attention, and feed-forward layers. The temporal transformer consists of temporal self-attention
and feed-forward layers. The 3D U-Net is trained with a text encoder to minimize the noise-prediction
loss in the latent space given as follows:

Ldiffusion = Et,z0,ϵ∼N (0,1),p[||ϵ− ϵθ(zt, t, E(p))||22] (1)
where z is the video latent corresponding to x in the pixel space, t is the time step, E is a text encoder,
p is a text prompt, and ϵ is noise sampled from Gaussian distribution. zt is noisy z0 after t steps
diffusion forward process given by:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, ᾱt =

t∏
s=1

αs (2)

where αt is a pre-defined noise schedule.

3.1 Decomposed Text Encoding

As shown in our pilot study in Figure 1, the CLIP text encoder can distinguish different motions,
but it is not as sensitive to motion as it is to content. Consequently, the text encoding focuses more
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Figure 2: Overview of DEMO Training. As shown in the left-hand side, DEMO incorporate
dual text encoding and text conditioning (for simplicity, other layers in the UNet are omitted). As
shown in the right-hand side, during training, the Ltext-motion is used to enhance motion encoding, the
Lreg is used to avoid catastrophic forgetting, the Lvideo-motion is to enhance motion integration. The
snowflakes and flames denote frozen and trainable parameters, respectively.

on content encoding rather than motion encoding. To preserve the generalization ability of the T2V
generation model, we retain the original text encoder, referring to it as the content encoder (denoted
as Ec). Additionally, we introduce a new text encoder, referred to as the motion encoder (denoted as
Em), which is specifically designed to capture object movement and temporal dynamics in textual
descriptions (as shown in the left-hand side of Figure 2). We initialize our motion encoder from a
CLIP text encoder and then fine-tune it using specialized text-motion supervision, as described below.

Text-Motion Supervision. Research [27, 28, 61] has shown that cross-attention maps represent
the structure of visual content. The cross-attention operation can be viewed as a projection of text
information into the visual structure domain. With this understanding, we aim to shift the text
encoder’s focus more toward motion information by constraining the temporal changes of cross-
attention maps to closely mimic those observed in ground truth videos, as illustrated by the red line in
Figure 2. Formally, given a noisy video latent zt at time step t and a text prompt p, the cross-attention
maps Ai ∈ RHi×W i×F×S , where Hi and W i are the height and width of video latent at the ith
cross-attention layer, F is the number of frames, S is the sequence length, for a cross-attention layer
i are defined as follows:

Ai =
1

N

N∑
n

softmax(
Q(n)(K(n))T√

dn
) (3)

Q(n) = W
(n)
Q · zt,K(n) = W

(n)
K · Em(p) (4)

where WQ and WK are projection matrices for query and key, i ∈ {1, 2, ...M} is layer index,
n ∈ {1, 2, ..., N} represents each head in multi-head cross-attention, and dn is the dimension of each
head.

We empirically find that the cross-attention maps corresponding to the “[eot]" token, which aggregate
the whole sentence’s semantics, play a pivotal role in generating motion. This aligns with the un-
derstanding that motion is a global concept and cannot be captured by a single word. For instance,
phrases like “A baby/dog is walking/running forwards/backward." demonstrate that different combi-
nations of words can result in significantly different motions. Hence, we focus on the cross-attention
maps related to the “[eot]" token and constrain them to mimic the motion patterns observed in the
ground truth videos. This approach forms the basis of our text-motion loss, defined as follows:

Ltext-motion = −Et,x0,ϵ∼N (0,1),p

[
1

M

M∑
i=1

cos(ϕ(Ai
[eot]), ϕ(x0))

]
(5)

where ϕ is a function to extract motion dynamics from a video. In our case, we use optical flow
to represent the motion dynamics (noting that optical flow is only used during training; during
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inference, we use only the text prompt as input). In light of the potential scale differences between
the cross-attention maps and video pixel values, we compute the cosine similarity between them.
Additionally, for cross-attention at different spatial resolutions, we downsample the ground truth
video to match the spatial resolution of the cross-attention maps.

Regularization. Recall that CLIP [40] is trained with a contrastive learning objective to match
texts and images from a group of text-image pairs. However, directly fine-tuning the CLIP text
encoder with Equation 1 and Equation 5, which differ significantly from the original contrastive
learning objective, can easily lead to catastrophic forgetting [29]. To mitigate this, we introduce a
regularization term in the fine-tuning objective to preserve its generalization ability. Specifically, we
penalize the text embedding if it diverges from the corresponding image embedding, maintaining
alignment with the original CLIP contrastive learning objective, as illustrated by the green line in
Figure 2. The regularization loss is defined as follows:

Lreg = −Ex0,p

[
cos(Em(p), E img(x

F/2
0 ))

]
(6)

where E img represents the CLIP image encoder. Given that there is only one text prompt for the
entire video, we select medium frame x

F/2
0 and compute its image embedding.

3.2 Decomposed Text Conditioning

DEMO employs separate content conditioning and motion conditioning modules to incorporate
content and motion information. To preserve the generative capabilities of our base model, we
maintain the original text conditioning module, referred to here as the content conditioning module.
We then strategically introduce a novel temporal transformer, referred to as the motion conditioning
module (detailed structure shown in Figure 2), to incorporate motion information along the temporal
axis. To encourage the motion conditioning module to generate and render motion dynamics, we
train this module under video-motion supervision, as described below.

Video-Motion Supervision. Recall that at each diffusion denosing step t, we can obtain the predicted
ẑ0,t at time step t, which is given by:

ẑ0,t(t, zt, Em(p), Ec(p)) =
zt −

√
1− ᾱtϵθ(zt, t, Em(p), Ec(p))√

ᾱt
(7)

This predicted ẑ0,t encapsulates the motion information in the video domain. We then prioritize the
motion generation by constraining the predicted ẑ0,t to mimic the motion pattern in the real video, as
illustrated by the yellow line in Figure 2. We define our video-motion loss as follows:

Lvideo-motion = Et,z0,ϵ∼N (0,1)∥Φ(z0)− Φ(ẑ0,t)∥22 (8)

where Φ is a function to extract motion features from a video. Given that Ldiffusion is a pixel-wise
denoising loss (whether raw pixel or latent pixel), choosing Φ as a general motion representation
that is not in pixel space may lead to conflicting objectives due to the differing representation spaces.
Instead, we choose Φ as the consecutive frame difference defined as follows:

Φ(z0) = z2:F0 − z1:F−1
0 (9)

where z2:F0 denotes the video latent from frame 2 to frame F , and z1:F−1
0 denotes the video latent

from frame 1 to frame F − 1.

3.3 Joint Training

Our final loss is a weighted combination of Ltext-motion, Lreg, Lvideo-motion, and original diffusion loss
Ldiffusion as follows:

L = Ldiffusion + αLtext-motion + βLreg + γLvideo-motion (10)

where α, β, and γ are scaling factors to balance different loss terms.
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Figure 3: Qualitative Comparison. Each video is generated with 16 frames. We display frames 1, 2,
4, 6, 8, 10, 12, 14, 15, and 16, arranged in two rows from left to right. Full videos are available in the
supplementary materials.
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4 Experiments

4.1 Implementation Details

To rule out potential dataset bias, we use the same training dataset as our base model ModelScopeT2V.
Specifically, we use WebVid-10M [1], a large-scale dataset of short videos with textual descriptions
as our fine-tuning dataset. The training details and hyperparameters can be found in the Appendix.

4.2 Qualitative Evaluations

In this subsection, we conduct a qualitative comparison among LaVie [59], VideoCrafter2 [8],
ModelScopeT2V [56], and DEMO. For a fair comparison, we use the same seed for each of these
methods. The comparative analysis is illustrated in Figure 3, where we showcase examples generated
by these methods. Upon examination, it is evident that these models are capable of producing high-
quality videos. However, a notable distinction arises in the dynamic representation of motion within
the generated videos. The ModelScopeT2V model, while visually appealing, predominantly generates
static scenes. For instance, in the scenario described as “Slow motion flower petals fall from a blossom,
landing softly on the ground” (the first example in Figure 3), the video generated by ModelScopeT2V
captures the petals landing on the ground but lacks the motion of the petals falling. In contrast, DEMO
significantly outperforms by capturing the essence of motion, producing a video where the petals fall
slowly and gently to the ground. Similarly, LaVie demonstrates a similar issue, as illustrated in the
third example, where the jockeys remain largely static. VideoCrafter2 exhibits relatively large motion
dynamics but suffers from motion blur, as shown in the third example. Conversely, DEMO vividly
captures the jockeys racing, thereby providing a more realistic representation. This underscores the
advanced capability of DEMO to generate videos that not only visually represent a scene but also
dynamically encapsulate the ongoing motion.

4.3 Quantitative Evaluations

Table 1: Results of zero-shot T2V generation on MSR-
VTT (Evaluation protocol comparison can be found in
the appendix).

Model FID (↓) FVD (↓) CLIPSIM (↑)

MagicVideo [74] - 1290 -
Make-A-Video [46] 13.17 - 0.3049
Show-1 [70] 13.08 538 0.3072
Video LDM [4] - - 0.2929
LaVie [59] - - 0.2949
PYoCo [14] 10.21-9.73 - -
VideoFactory [58] - - 0.3005
EMU VIDEO [45] - - -
SVD [3] - - -

ModelScopeT2V3 [56] 14.89 557 0.2941
ModelScopeT2V fine-tuned 13.80 536 0.2932
DEMO 11.77 422 0.2965

Table 2: Results of zero-shot T2V genera-
tion on UCF-101 (Evaluation protocol com-
parison can be found in the appendix).

Model IS (↑) FVD (↓)

MagicVideo [74] - 655.00
Make-A-Video [46] 33.00 367.23
Show-1 [70] 35.42 394.46
Video LDM [4] 33.45 550.61
LaVie [59] - 526.30
PYoCo [14] 47.76 355.19
VideoFactory [58] - 410.00
EMU VIDEO [45] 42.70 606.20
SVD [3] - 242.02

ModelScopeT2V [56] 37.55 628.17
ModelScopeT2V fine-tuned 37.21 612.53
DEMO 36.35 547.31

Zero-shot T2V Generation on MSR-VTT. We evaluate the performance of our model on the
MSR-VTT [66] test set by calculating FID [18], FVD [54, 39], and CLIPSIM [63] metrics. For FID
and FVD, in alignment with prior studies [56], we randomly sample 2048 videos and one prompt
for each video from the test set. For CLIPSIM, we follow previous works [46, 64, 56] and use
nearly 60k sentences from the entire test set to generate videos. As illustrated in Table 1, DEMO
demonstrates notable advancements over the ModelScopeT2V baseline in terms of video quality
metrics. Specifically, DEMO achieves an FID score of 11.77, showing marked improvement in
individual frame quality compared to the baseline score of 14.89. For FVD, DEMO achieves a score
of 422 compared to the baseline of 557, indicating improved overall video quality. It is important to
note that the FVD is calculated using an I3D model pre-trained on the Kinetics-400 dataset [5] for
action recognition. By computing the FVD over its logits, this metric not only reflects visual quality
but also emphasizes motion quality in video generation. Additionally, DEMO improves the CLIPSIM

3Results reproduced from our own evaluation.
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Table 3: Results of T2V generation on WebVid-10M (Val).
Model FID (↓) FVD (↓) CLIPSIM (↑)

ModelScopeT2V 11.14 508 0.2986
ModelScopeT2V fine-tuned 10.53 461 0.2952
DEMO 9.86 351 0.3083

Table 4: Results of zero-shot T2V generation on EvalCrafter.

Model Video Quality Motion Quality
VQAA (↑) VQAT (↑) IS (↑) Action Score (↑) Motion AC-Score (↑) Flow Score (↑)

ModelScopeT2V 15.12 16.88 14.60 75.88 44 2.51
ModelScopeT2V fine-tuned 15.89 16.39 14.92 74.23 40 2.72

DEMO w/o Lvideo-motion 18.78 15.12 17.13 76.20 48 3.11
DEMO 19.28 15.65 17.57 78.22 58 4.89

score from 0.2941 to 0.2965, further demonstrating its superior ability to generate high-quality videos
that are well-aligned with their textual descriptions.

Zero-shot T2V Generation on UCF-101. For UCF-101 [50], we report the IS [43] and FVD on the
101 action classes. For IS and FVD, we follow previous works [4, 14] to generate 100 videos for
each of the 101 classes. We directly use the class names as prompts. As shown in Table 2, compared
with baseline ModelScoprT2V, we improve the FVD from 628.17 to 547.31. However, we observed a
slight decrease in IS, which may be attributed to the limited textual information provided by UCF-101
class names, such as “baby crawling” and “cliff diving.” These prompts primarily suggest motion, and
our model, optimized to emphasize this motion, may have over-focused on this limited information.
This overemphasis potentially limited the diversity of generated content, lowering the IS.

T2V Generation on WebVid-10M (Val). For WebVid-10M [1], we perform T2V generation on the
validation set. As shown in Table 3, we evaluate the FID, FVD, and CLIPSIM, where we randomly
sample 5K text-video pairs from the validation set. Our model achieves an FID score of 9.86, an
FVD score of 351, and a CLIPSIM score of 0.3083. These outcomes underscore our framework’s
substantial enhancement of video quality.

Zero-shot T2V Generation on EvalCrafter. EvalCrafter [31] provides 700 diverse prompts across
categories like human, animal, objects, and landscape, each with a scene, style, and camera movement
description. For our evaluation, we generate one video for each of the 700 text prompts. As shown
in Table 4, we have obtained significant improvement over the baseline ModelScopeT2V in both
video quality and motion quality. In terms of video quality, DEMO enhances both the Video Quality
Assessment for Aesthetics (VQAA) and the IS, albeit with a slight decrease in the Video Quality
Assessment for Technical Quality (VQAT). For motion quality, EvalCrafter uses three metrics:
Action-Score, Flow-Score, and Motion AC-Score. The Action-Score, based on the VideoMAE V2
model [57] and MMAction2 toolbox, measures action recognition accuracy on Kinetics-400 classes,
with higher scores indicating better human action recognition. Flow-Score and Motion AC-Score,
derived from RAFT model [53] optical flows, evaluate motion dynamics. The Flow-Score measures
the general motion dynamics by calculating the average magnitude of optical flow in the video, while
the Motion AC-Score assesses how well the motion dynamics align with the text prompt. For motion
quality, our model surpasses the baseline across all metrics (Action-Score, Flow-Score, and Motion
AC-Score), showcasing DEMO’s superior ability to generate videos characterized by better motion
quality and higher motion dynamics.

Zero-shot T2V Generation on VBench. VBench [24] is a comprehensive benchmark to evaluate
video quality. In our evaluation of VBench, we focus specifically on motion quality. We report on

Table 5: Results of zero-shot T2V generation on VBench.
Model Motion Dynamics (↑) Human Action (↑) Temporal Flickering (↑) Motion Smoothness(↑)

ModelScopeT2V 62.50 90.40 96.02 96.19
ModelScopeT2V fine-tuned 63.75 90.40 96.35 96.38
DEMO 68.90 90.60 94.63 96.09
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four key metrics: Motion Dynamics, Human Action, Temporal Flickering, and Motion Smoothness.
As shown in Table 5, DEMO significantly improves motion dynamics from 62.50 to 68.90. However,
we observed only a slight improvement in human action recognition. This indicates that while our
model enhances the richness and complexity of motion, it provides limited benefit in improving the
accuracy of human action representation. Additionally, we note slight decreases in temporal flickering
and motion smoothness. This observation aligns with findings from the VBench paper, which suggest
that increased motion dynamics can conflict with temporal flickering and motion smoothness.

4.4 Ablation Studies

Impact of Lreg and Ltext-motion. As shown in Figure 1, we compute the sensitivity of our motion
encoder with different loss combinations. The red columns indicate the motion encoder with
Ltext-motion only completely loses its ability to distinguish different tokens, either motion or content,
indicating a serious catastrophic forgetting where the model loses its original knowledge. The green
columns show that fine-tuning the motion encoder with Lreg only preserves the model’s generalization
ability but does not increase the motion sensitivity. In contrast, the purple columns demonstrate that
when training the motion encoder with both Lreg and Ltext-motion, the model gain increased sensitivity
to tokens representing motion without losing sensitivity to tokens representing content.

Impact of Lvideo-motion. To validate the effectiveness of our video-motion loss, we perform an ablation
study on the EvalCrafter dataset. As shown in Table 4, without Lvideo-motion, the model shows a slight
improvement in motion quality compared to the baseline. This is because the motion encoder provides
the model with enriched motion information for generation. However, without explicitly constraining
the model to mimic realistic motion, it may still focus on generating high-quality individual frames
rather than coherent video sequences with rich motion dynamics. By introducing video-motion loss,
the model achieves significantly higher motion quality, demonstrating the importance of this loss in
guiding the model in producing videos with enhanced motion dynamics.

Table 6: Ablation study on additional parameters in motion encoder.
Benchmark Metric ModelScopeT2V ModelScopeT2V fine-tuned ModelScopeT2V + motion encoder DEMO

MSRVTT
FID (↓) 14.89 13.80 13.98 11.77
FVD (↓) 557 536 552 422
CLIPSIM (↑) 0.2941 0.2932 0.2935 0.2965

UCF-101 IS (↑) 37.55 37.21 37.66 36.35
FVD (↓) 628.17 612.53 601.25 547.31

WebVid-10M
FID (↓) 11.14 10.53 10.45 9.86
FVD (↓) 508 461 458 351
CLIPSIM (↑) 0.2986 0.2952 0.2967 0.3083

EvalCrafter

VQA_A (↑) 15.12 15.89 16.21 19.28
VQA_T (↑) 16.88 16.39 16.34 15.65
IS (↑) 14.60 14.92 15.02 17.57
Action Score (↑) 75.88 74.23 75.20 78.22
Motion AC-Score (↑) 44 40 46 58
Flow Score (↑) 2.51 2.72 2.44 4.89

Vbench

Motion Dynamics (↑) 62.50 63.75 63.50 68.90
Human Action (↑) 90.40 90.40 90.20 90.60
Temporal Flickering (↑) 96.02 96.35 95.45 94.63
Motion Smoothness (↑) 96.19 96.38 96.22 96.09

Impact of additional parameters in motion encoder. To rule out the effect of additional parameters
introduce by motion encoder, we evaluated the effect of training with a CLIP text encoder on
the overall model performance. We then compared three different variations: (1) the original
ModelScopeT2V, (2) a fine-tuned version of ModelScopeT2V without additional motion encoder
parameters, and (3) ModelScopeT2V with the motion encoder while maintaining its original training
loss. As shown in Table 6, we observed that the performance of the model with the additional motion
encoder parameters is comparable to the fine-tuned version without these extra parameters. This
suggests that, without specific supervision or additional constraints, the effect of the added text
encoder parameters is marginal. However, the DEMO model consistently outperforms all variations,
demonstrating the effectiveness of our method in improving both video quality and text-video
alignment.

Efficiency Analysis. To validate the efficiency of our proposed methods, we trained the baseline
model for the same number of iterations and compared its performance with ours. As shown in
Tables 1, 2, 3, 4, and 5, continuing to fine-tune the model results in only marginal improvements in
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A ma n is  s t a nd ing  in  a  kit c hen t a lking  a nd  t hen a  mixer  a nd  c a r t on  of  milk a r e  
shown.

Figure 4: Limitations. DEMO does not support creating videos containing sequential motions
specified by text. As shown in the example, two motions,“a man standing in a kitchen and talking"
and “a mixer and a carton of milk are shown", appear simultaneously.

video quality. Additionally, we observed a slight degradation in CLIPSIM, indicating that further
training may not benefit text-video alignment.

5 Limitations and Future Work

Despite DEMO’s efficiency in enhancing motion synthesis without relying on additional signals, it
faces significant challenges in generating different motions sequentially, as illustrated in Figure 4.
These challenges likely stem from the text encoder’s difficulty in comprehending the order of actions
and the motion generation model’s limited capability to generate different motions. A potential
solution to this issue involves annotating each frame with a specific prompt and training the model on
video clips of varying lengths rather than a fixed duration. We consider exploring this direction in our
future work.

6 Broader Impacts

Our model achieves higher visual fidelity and motion quality, which can benefit various fields such as
content creation and visual simulation. However, our model is fine-tuned on web data, specifically
WebVid-10M [1]. As a result, the model may not only learn how to generate videos but also
inadvertently learn societal biases present in the web data, which may include inappropriate or NSFW
content. Potential post-processing steps, such as applying a video classifier to filter out undesirable
content, could help mitigate this issue.

7 Conclusion

In this paper, we have presented DEMO, an innovative framework crafted to advance motion synthesis
in T2V generation. By separating text encoding and text conditioning into distinct content and motion
dimensions, DEMO facilitates the creation of static scenes and their dynamic evolution. To encourage
our model to focus on motion encoding and motion generation, we propose novel text-motion and
video-motion supervision. Our extensive evaluations across various benchmarks have illustrated
DEMO’s capability to significantly improve motion synthesis, showcasing its potential within the
field. In future work, we plan to augment T2V datasets with more detailed descriptions and delve into
advanced motion embedding techniques. By focusing on these areas, we aim to advance the frontiers
of research in this dynamic and rapidly evolving domain.
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9 Appendix

9.1 Training Details and Hyperparameters

As shown in Table 7, we train DEMO using the Adam optimizer [25] with a OneCycle scheduler [47].
Specifically, the learning rate varies within the range of [0.00001, 0.00005], while the momentum
oscillates between 0.85 and 0.99. We train our model using Deepspeed framework with stage 2 zero
optimization and cpu offloading. DEMO is trained on 4 NVIDIA Tesla A100 GPUs with a batch size
of 24 per GPU. DEMO takes 256×256 images as inputs and utilizes a VQGAN with a compression
rate of 8 to encode images into a latent space of 32× 32. DEMO is trained with 1000 diffusion steps.
We set the classifier-free guidance scale as 9 with the probability of 0.1 randomly dropping the text
during training. For inference, we use the DDIM sampler [49] with 50 inference steps.

Table 7: Training Hyperparameters
Hyperparameter DEMO

U-net

LDM ✓
Compression Rate 8
Latent Shape 32×32×16
Channels 320
Channel Multiplier 1,2,4,4
Attention Resolutions 16, 8, 4
Head Channels 32
# of Parameters 1.68B
Dropout Rate 0.1

Motion Encoder

Architecture CLIP ViT-H/14
Token Length 77
Token Dimension 1024
# of Parameters 354.03M

Motion Conditioning

Proj In & Proj Out Linear
Normalization GroupNorm 32
Activation GEGLU
Channels 320
Attention Resolutions 16, 8, 4
Head Channels 32
# of Parameters 238.32M

Training

DDPM Time Steps 0, 1000
Optimizer Adam
Learning Rate 0.00001, 0.00005
Scheduler OneCycle Scheduler
Classifier-free Guidance Scale 9
Loss Weight α 0.1
Loss Weight β 0.3
Loss Weight γ 0.1
Optical Flow Estimator Raft [53]

Inference DDIM Sampling Steps 50

9.2 Pliot Study Details

To test the sensitivity of the motion encoder to parts of speech (POS) representing con-
tent and motion information, we generated a set of prompts following the template:
A [ADJ][NOUN1][VERB][ADV][ADP] the [NOUN2]. We then grouped these prompts according
to their respective POS categories. Next, we calculated the pairwise sentence similarity within each
group using the “[eot]” token to determine sentence similarity. The average similarity within each
group, as well as across different groups, was reported. This setup groups different words with the
same POS under the same context, thereby eliminating potential biases introduced by the context.
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Table 8: Training dataset of current T2V models.
Model Base Model Training Dataset

MagicVideo [74] LDM [41] WebVid-10M [1] + 10M from HD-VILA-100M [67] + Interal 7M
Make-A-Video [46] - 2.3B from Laion-5B [44] + WebVid-10M [1] + 10M from HD-

VILA-100M[67]
Video LDM [4] LDM [41] RDS for driving/WebVid-10M [1] for T2V
ModelScopeT2V [56] LDM [41] 2.3B from Laion-5B [44] + WebVid-10M [1]
Show-1 [70] DeepFloyd4+ ModelScopeT2V [56] WebVid-10M [1]
LaVie [59] Stable Diffusion 1.4 [41] Laion5B [44] + WebVid-10M [1] + Vimeo-25M [59]
PyoCo [14] eDiff-I [2] 1.2B text-image dataset + 22.5M text-video dataset
VideoFactory [58] LDM [41] HD-VG-130M [58] + WebVid-10M [1]
EMU VIDEO [45] Emu [10] 34M licensed text-video dataset
SVD [3] Stable Diffusion 2.1 [41] LVD-F [3] (152M) + 250K pre-captioned video clips of high visual

fidelity.
DEMO ModelScopeT2V [56] WebVid-10M [1]

Table 9: Comparison of different evaluation protocol on MSR-VTT.
Model FID (↓) FID-CLIP (↓) FVD (↓) CLIPSIM (↑) Evaluation Protocol

MagicVideo [74] 36.50 - 1290 - Text prompt on test set; unknown
number.

Make-A-Video [46] - 13.17 - 0.3049 FID and CLIPSIM are evaluated on
59794 videos with text prompt from
test set.

Show-1 [70] - 13.08 538 0.3072 FID and FVD are evaluated with
2048 videos generated on test set.
CLIPSIM is evaluate on 59794
videos with prompts.

Video LDM [4] - - - 0.2929 CLIPSIM is calculate on 2990
videos with prompts from test set.

LaVie [59] - - - 0.2949 CLIPSIM is calculate on 2990
videos with prompts from test set.

PYoCo [14] 25.39-22.14 10.21-9.73 - - The same as Make-A-Video.
VideoFactory [58] - - - 0.3005 CLIPSIM is calculate on 2990

videos with prompts from test set.

ModelScopeT2V [56] 14.89 557 0.2941 FID and FVD are evaluated with
2048 videos generated on test set.
CLIPSIM is evaluate on 59794
videos with prompts.

ModelScopeT2V fine-tuned 13.80 536 0.2932 Same as ModelScopeT2V
DEMO 11.77 422 0.2965 Same as ModelScopeT2V

We define the sensitivity of our motion encoder as one minus this similarity. The full set of different
words within each POS category is defined as follows:

ADJ ={"big", "small", "tall", "short", "fat", "thin", "young", "old"}
NOUN1 ={"cat", "dog", "horse", "child", "man", "woman", "bird", "fish"}

VERB ={"walk", "run", "jump", "crawl", "eat", "swim", "fly", "climb"}
ADV ={"quickly", "slowly", "suddenly", "steadily", "cautiously",

"briskly", "gracefully", "clumsily"}
ADP ={"across", "over", "through", "beside", "against", "under", "above", "near"}

NOUN2 ={"river", "bridge", "mountain", "tree", "house", "lake", "field", "forest"}

Given these six categories with eight words each, we have a total of 86 = 262144 prompts. It is
noteworthy that we did not observe significant differences when using different templates or different
sets of words within each POS. The results were consistent across different setups, and we selected
these prompts to try to make these prompts meaningful.

9.3 Detailed Training and Evaluation for T2V Models

As shown in Table 8, existing T2V models are trained using diverse datasets and strategies, leading
to various evaluation standards across different datasets, as detailed in Table 9 and Table 10. Here,

4https://github.com/deep-floyd/IF
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Table 10: Comparison of different evaluation protocols on UCF-101.
Model IS (↑) FVD (↓) Evaluation Protocol

MagicVideo [74] - 655.00 Evaluated on videos generated with class labels;
unknown number.

Make-A-Video [46] 33.00 367.23 One template sentence per class label; 100 videos
per class.

Show-1 [70] 35.42 394.46 One template sentence per class label; 20 videos per
prompt for IS; FVD on 2048 sampled videos.

Video LDM [4] 33.45 550.61 Class label only; 100 videos per class.
LaVie [59] - 526.30 Class label only; 100 videos per class.
PYoCo [14] 47.76 355.19 One template sentence per class label; 20 videos per

prompt for IS; FVD on 2048 sampled videos.
VideoFactory [58] - 410.00 One template sentence per class label; 100 videos

per class.
EMU VIDEO [45] 42.70 606.20 One template sentence per class label; 100 videos

per class.
SVD [3] - 242.02 FVD on 13,320 videos using class labels only.

ModelScopeT2V [56] 37.49 630.23 100 videos per class using class labels only.
ModelScopeT2V fine-tuned 37.21 612.53 100 videos per class using class labels only.
DEMO 36.35 547.31 100 videos per class using class labels only.

we detail and justify our evaluation standards. For our evaluation on MSR-VTT, we follow the base
model’s approach to compute the CLIPSIM on the entire MSR-VTT dataset. For FID computation,
CLIP-ViT/B 32 is used to extract the frame features. For FID and FVD, we randomly sample 2048
videos, following the ModelScopeT2V paper’s methodology. For our evaluation on UCF-101, to
eliminate bias introduced by template sentences (as done in several previous works), we directly use
the class labels to compute the IS and FVD scores.

9.4 Extended Quantitative Evaluations

To evaluate the generalization of our methods, we applied DEMO on ZeroScope, we report the
performance as follows:

Table 11: Quantitative results on ZeroScope.
Benchmark Metric ZeroScope DEMO+ZeroScope

MSRVTT
FID (↓) 14.57 13.59
FVD (↓) 812 543
CLIPSIM (↑) 0.2833 0.2945

UCF-101 IS (↑) 37.22 37.01
FVD (↓) 744 601

WebVid-10M
FID (↓) 11.34 10.03
FVD (↓) 615 479
CLIPSIM (↑) 0.2846 0.2903

EvalCrafter

VQA_A (↑) 27.76 33.02
VQA_T (↑) 33.87 37.28
IS (↑) 14.20 15.28
ActionScore (↑) 67.78 72.55
MotionAC-Score (↑) 44 62
FlowScore (↑) 1.10 5.25

Vbench

MotionDynamics (↑) 42.72 70.28
HumanAction (↑) 67.36 88.34
TemporalFlickering (↓) 97.39 94.83
MotionSmoothness (↑) 97.92 95.72
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9.5 Extended Qualitative Evaluations

In this section, we provide extended qualitative comparison between our method and the baseline.

A bea r  is  c limbing  a  t r ee.

Mod e lS c op eT 2 V D E MO

La Vie Vid eoCr a f t e r 2

Mod e lS c op eT 2 V D E MO

La Vie Vid eoCr a f t e r 2

Mod e lS c op eT 2 V D E MO

La Vie Vid eoCr a f t e r 2

Bir d  view , f ly ing  over  a  snowy  f or es t .

A boa t  a c c e le r a t ing  t o ga in  sp eed .

Figure 5: Extended qualitative comparison. Each video is generated with 16 frames. We display
frames 1, 2, 4, 6, 8, 10, 12, 14, 15, and 16, arranged in two rows from left to right. Full videos are
available in the supplementary materials.
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Mod elS c op eT 2 V D E MO

La Vie Vid eoCr a f t e r 2

A woma n wea r ing  Ha nf u op ens a  p ap er  f a n  in  her  ha nd .

Mod e lS c op eT 2 V D E MO

La Vie Vid eoCr a f t e r 2

A r oa st  t ur ker y , c out er c loc kw ise

Mod e lS c op eT 2 V D E MO

La Vie Vid eoCr a f t e r 2

Ap p les  a nd  or a nges, c loc kw ise.

Figure 6: Extended qualitative comparison. Each video is generated with 16 frames. We display
frames 1, 2, 4, 6, 8, 10, 12, 14, 15, and 16, arranged in two rows from left to right. Full videos are
available in the supplementary materials.
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Mod elS c op eT 2 V D E MO

La Vie Vid eoCr a f t e r 2

T hr ee  ma j est ic  g ir a f f es  gr a ze  on t he  lea ves of  t a ll t r ees in  Af r ic a n sa va nna h.

Mod e lS c op eT 2 V D E MO

La Vie Vid eoCr a f t e r 2

S up er ma n sha king  ha nd s w it h Sp id er ma n w it h t he  s t y le  of  wa t er c olor .

Mod e lS c op eT 2 V D E MO

La Vie Vid eoCr a f t e r 2

A lion  is  c a t c hing  p r ey .

Figure 7: Extended qualitative comparison. Each video is generated with 16 frames. We display
frames 1, 2, 4, 6, 8, 10, 12, 14, 15, and 16, arranged in two rows from left to right. Full videos are
available in the supplementary materials.
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Mod elS c op eT 2 V D E MO

La Vie Vid eoCr a f t e r 2

A hoc key  p layer  exec ut es a  p er f ec t  hoc key  s t op , sp r ay ing  ic e  in  a ll d ir ec t ions a s  t hey  c ome t o a  sud d en ha lt .

Mod e lS c op eT 2 V D E MO

La Vie Vid eoCr a f t e r 2

A gr een minec r a f t  monst er  c a r r ies  a  gun.

Mod e lS c op eT 2 V D E MO

La Vie Vid eoCr a f t e r 2

A ma n is  looking  a t  a  d is t a n t  mount a in  in  sc i- f i s t y le.

Figure 8: Extended qualitative comparison. Each video is generated with 16 frames. We display
frames 1, 2, 4, 6, 8, 10, 12, 14, 15, and 16, arranged in two rows from left to right. Full videos are
available in the supplementary materials.

9.6 Human Evaluation

To further assess the qualitative performance of our proposed method, we conducted a user study
comparing our approach (DEMO) with several state-of-the-art video generation models. We randomly
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selected 50 prompts from EvalCrafter [31], ensuring diversity across scenes, styles, and objects.
For each comparison, 15 annotators evaluated the generated videos in terms of three main criteria:
text-video alignment, visual quality, and motion quality. The study compared our method with
ModelScopeT2V, LaVie, and VideoCrafter2.

The participants were asked to select their preferred video between the two models for each prompt.
The comparative results are summarized in Table 12. Specifically, DEMO consistently outperformed
ModelScopeT2V, LaVie, and VideoCrafter2, particularly in terms of motion quality, where it achieved
a preference rate of 74% over ModelScopeT2V. Additionally, DEMO was favored in text-video
alignment and visual quality by 62% and 66%, respectively. However, when compared to LaVie
and VideoCrafter2, DEMO showed a lower performance in visual quality, which can be attributed to
differences in training datasets. LaVie and VideoCrafter2 use higher-quality video and image datasets,
such as Vimeo-25M [59] and JDB [52], respectively, while DEMO and ModelScopeT2V are trained
on the WebVid10M dataset, which is lower in visual quality.

Furthermore, we conducted an additional user study to evaluate the effectiveness of our proposed
video-motion supervision term, Lvideo-motion. The results indicated that our method with motion
supervision outperformed the version without motion supervision, achieving win rates of 58%,
56%, and 72% in text-video alignment, visual quality, and motion quality, respectively. These
findings highlight the significant improvements brought by the video-motion supervision in generating
smoother and more realistic motion dynamics.

Table 12: User Study Results: Comparison between DEMO and Other Models
Methods Text-Video Alignment Visual Quality Motion Quality

DEMO vs ModelScopeT2V 62% 66% 74%
DEMO vs LaVie 56% 46% 62%
DEMO vs VideoCrafter2 60% 42% 52%

DEMO vs DEMO w/o Lvideo-motion 58% 56% 72%

In summary, the user study provides strong evidence that DEMO improves motion quality without
sacrificing text-video alignment. Despite the lower visual quality compared to models trained on
high-quality datasets, our method demonstrates its strength in motion generation, a key aspect of
video realism.
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• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted conform the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: As shown in broader impacts 6.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credited the models and dataset we used in the paper and we list their
licenses here.
ModelScopeT2V: cc-by-nc-4.0,
Open-CLIP: “https://github.com/mlfoundations/open_clip/blob/main/LICENSE"
WebVid-10M: custom license: “https://github.com/m-bain/webvid/blob/main/TERMS.md".

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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