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Abstract

We address the problem of few-shot pattern detection, which001
aims to detect all instances of a given pattern, typically002
represented by a few exemplars, from an input image. Al-003
though similar problems have been studied in few-shot ob-004
ject counting and detection (FSCD), previous methods and005
their benchmarks have narrowed patterns of interest to ob-006
ject categories and often fail to localize non-object patterns.007
In this work, we propose a simple yet effective detector008
based on template matching and regression, dubbed TMR.009
While previous FSCD methods typically represent given tar-010
get exemplars as a spatially collapsed prototype, losing011
their spatial structure, we revisit and refine classic template012
matching and regression. It effectively preserves and lever-013
ages the spatial layout of exemplars through a minimalistic014
structure with only a few learnable convolutional or pro-015
jection layers on top of a frozen backbone. We also intro-016
duce a new dataset, dubbed RPINE, which covers a wider017
range of patterns than existing object-centric datasets. Ex-018
periments on three benchmarks, RPINE, FSCD-147, FSCD-019
LVIS, demonstrate that our method outperforms recent020
state-of-the-art methods, showing an outstanding general-021
ization ability on cross-dataset evaluation.022

1. Introduction023

Few-shot detection aims to identify target patterns with024
minimal labeled examples. While significant progress has025
been made in few-shot object detection [8, 9, 20, 72, 73],026
most existing methods remain object-centric, focusing pri-027
marily on identifying object-level patterns with relatively028
clear boundaries. However, many real-world applications029
require detecting arbitrary target patterns that extend be-030
yond objects to include structural, geometric, or abstract031
patterns across diverse visual data. Despite recent progress032
based on deep neural networks, current methods still fall033
short in addressing these broader pattern detection tasks.034
Furthermore, the object-centric design of conventional few-035
shot detectors may lead to performance degradation when036
the target object lacks clear boundaries or when occlusion037
and deformation cause its boundaries to become indistinct.038

one-shot exemplars ground-truth pattern detection

Figure 1. Few-shot pattern detection. Given a few exemplar for
each target pattern (left), the task is to detect all matching instances
of each pattern (right). This example include non-object patterns
(e.g., green and blue) as well as object patterns (e.g., red).

The task of few-shot pattern detection is illustrated in 039
Fig. 1. Recent related research topics for few-shot detec- 040
tion include few-shot counting and detection [51] and few- 041
shot object detection [8]. Both aim to reduce the annotation 042
cost of object detection [13, 36, 61, 68] by learning to de- 043
tect all instances of given support exemplars. Consequently, 044
many of these methods are heavily biased on object-centric 045
benchmarks prior [7, 17, 34, 50]. In addition, many recent 046
approaches [8, 19, 25, 56, 72, 73] represent the support ex- 047
emplars as the spatially pooled vector, often named as a pro- 048
totype [64]. While this pooling strategy is effective for de- 049
tecting objects, it collapses the geometric properties, such 050
as the shape and structure of the support exemplars. As 051
a consequence, these methods tend to underperform when 052
detecting non-object geometric patterns such as object parts 053
or shape-intensive elements as shown in Fig. 3. 054

In this work, we propose a simple yet effective few-shot 055
detector for arbitrary patterns, revisiting and refining the 056
classic template matching strategy. The proposed method, 057
dubbed template matching and regression (TMR), is de- 058
signed to be aware of the structure and shape of given ex- 059
emplars. Given an input image, TMR first extracts a feature 060
map using a backbone network. It then crops a template 061
feature from the support exemplar’s bounding box using a 062
template extraction technique based on RoIAlign [24]. This 063
template is correlated with the image feature map to pro- 064
duce a template matching feature map. Using this correla- 065
tion map, the model learns bounding box regression param- 066

1



ICCV
#20

ICCV
#20

ICCV 2025 Submission #20. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

R
P

IN
E

(P
ro

p
o
se

d
 d

at
as

et
)

F
S

C
D

-1
4

7

Figure 2. Annotation examples of FSCD-147 [51] and RPINE. FSCD-147 is annotated with the repetitive object-level patterns but disre-
gards the repetition of non-object patterns such as the egg tray pattern under the eggs in the first image. RPINE is annotated with arbitrarily
noticed repeated patterns which include non-object patterns and nameless parts of objects. Plus, FSCD-147 is annotated with a single
pattern, while RPINE is annotated with all existing repetitions (marked with different colors) recognized by three different annotators.

red: exemplar
blue: GT

red: exemplar
green: predictions

red: exemplar
blue: GT

red: exemplar
green: predictions

Figure 3. Few-shot detectors trained with strong object prior are
often biased to objects instances and struggle to detect non-objects.

eters to rectify the template box size adaptively. This pro-067
cess, termed template-conditioned regression, enables the068
model to handle support exemplars of varying sizes more069
effectively. Notably, TMR consists only of a few 3× 3 and070
linear projections without any complicated modules such as071
cross-attention, commonly used in prior work [50, 56].072

Existing benchmarks (e.g., FSCD-147 [50], FSCD-LVIS073
[50]) mainly target object-level patterns, limiting the eval-074
uation of general pattern detection. To address this, we in-075
troduce a new dataset, Repeated Patterns IN Everywhere076
(RPINE), which covers diverse repeated patterns in the077
real world. RPINE contains images with varying degrees078
of objectness, from well-defined object-level patterns to079
non-object patterns, all annotated with bounding boxes via080
crowd-sourcing. Compared to FSCD datasets, RPINE pro-081
vides broader coverage, including both non-object patterns082
and nameless parts of objects, as illustrated in Fig. 2.083

TMR demonstrates strong performance in detecting re-084
peated patterns, not only on RPINE but also on the FSCD085
benchmarks, FSCD-147 and FSCD-LVIS [51]. In particu-086
lar, TMR is especially effective on RPINE, includes diverse087
patterns with minimal object priors. Notably, our simple088
architecture contributes to improved generalization across089
datasets. Our contribution is summarized as follows:090

• We generalize the few-shot object counting and detection091
to a pattern detection task that does not assume objectness092
in either the target patterns or exemplars.093

• We present a simple yet effective pattern detector by refin-094

ing template matching, which efficiently detects coherent 095
patterns guided by exemplars. 096

• We introduce a new densely annotated dataset, RPINE, 097
which covers diverse repetitive patterns in the real world, 098
ranging from object-level patterns to non-object patterns. 099

• TMR not only outperforms the state-of-the-art FSCD 100
models on RPINE and FSCD-LVIS but also achieves 101
strong cross-dataset generalization. 102

2. Related work 103

Few-shot object detection (FSOD) aims to detect objects 104
of novel classes using only a few support images of novel 105
classes. Existing methods can be roughly categorized into 106
two groups: finetuning based [9, 16, 67, 71, 72] and meta- 107
learning based [8, 18, 19, 21, 26, 73, 75] approaches. De- 108
spite significant progress, finetuning methods require re- 109
training whenever new classes are added. This becomes 110
more severe when low-level semantics repeat, as they are 111
difficult to define as distinct classes, requiring the model to 112
learn each exemplar separately. In contrast, meta-learning 113
methods typically construct prototypes from support images 114
and utilize the prototypes to classify the bounding boxes 115
query images, avoiding fine-tuning through online adapta- 116
tion. However, while spatially collapsed prototypes may ef- 117
fectively capture object-level repetition, they struggle with 118
non-object patterns that require spatial understanding. 119

Few-shot counting (FSC) aims to count objects in an im- 120
age given a few exemplars (typically 1 to 3) from the 121
same image. Previous methods [32, 43, 59, 60, 74] have 122
tackled this problem using density-map regression without 123
bounding box prediction for individual instances. How- 124
ever, relying solely on density maps limits their abil- 125
ity to localize instances precisely. To mitigate this lim- 126
itation, detection-based FSC, i.e., FSCD methods, have 127
been proposed, e.g., Counting-DETR [51], SAM-C [45], 128
DAVE [55], PseCo [25], and GeCo [56]. However, similar 129
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Figure 4. Template Matching and Regression (TMR). A template feature map is cropped from the image feature map and then correlated
with the image feature map via channel-wise template matching. The TM feature map and the image feature map are concatenated. For
each feature map point, the box regressor predicts the shifting & scaling parameters of the template box size, and the presence classifier
scores the binary presence map. Both of them consist of a 3× 3 convolution and a linear projection without any complicated layers.

to FSOD methods, these models typically generate a proto-130
type by spatially averaging exemplar bounding boxes. This131
discards the spatial structure of the exemplars, potentially132
losing important cues and fine-grained details for accurate133
counting and detection. In contrast, our method preserves134
the spatial structure of exemplar boxes during matching,135
enabling more accurate counting and localization of both136
object and non-object patterns.137

Template matching. Template matching [23, 28, 47–138
49, 69, 70] has been widely used from the beginning of139
computer vision and pattern recognition and also adopted140
in convolution-based neural detectors with additional re-141
gression [13, 36]. Given a 2D template, template matching142
identifies the matching region by sliding-window fashion.143

Repetitive pattern detection. While humans effortlessly144
recognize repetitive patterns, detecting them remains a145
fundamental yet challenging problem in computer vision.146
Early research focused on geometrically constrained set-147
tings where patterns are nearly regular and aligned [15,148
22, 33, 54]. Using this near-regularity, early methods as-149
sumed a global repetitive structure and discovered the rep-150
etition [23, 33, 40, 41, 53]. However, such strong assump-151
tions about geometric regularity led to a new line of research152
that relaxed these constraints. Later methods [12, 37, 65]153
defined the smallest repeating unit, called texel [2, 30, 38]154
and identified all matching subparts based on identified tex-155
els. In our context, the texel corresponds to the given exem-156
plars as a user interface to the system.157

3. Few-shot pattern detection158

Given an input image I ∈ RH0×W0×3, the goal of few-159
shot pattern detection is to predict matching patterns with160
a given set of support exemplars. With an abuse of161
notations, the model is given the set of support exem-162
plar, E = {e1, · · · , eNs

} and aims to predict the cor-163
responding ground-truth bounding boxes of pattern B =164
{b1, · · · , bNp}, where Np and Ns denotes the number of165
ground-truth bounding boxes of the pattern and the number166
of exemplars (typically referred to as the “shot”), respec-167

tively. The input exemplars and the output patterns are both 168
represented as bounding boxes parameterized by the center 169
coordinates and the box size: bi, ei ∈ R4. 170

4. Template matching and regression (TMR) 171

For clarity, we primarily focus on the one-shot, single-scale 172
pattern detection setting, where a single support exemplar 173
is given and a single-resolution image feature map is used. 174
However, TMR can be effortlessly extended to few-shot and 175
multi-scale scenarios, as described in Sec.4.3 and Sec.9. 176

The overall architecture TMR is illustrated in Fig. 4. 177
The input image I is first encoded by a backbone such as 178
ViT [27] to extract a feature map F ∈ RH×W×D. The tem- 179
plate feature T ∈ Rth×tw×D is then cropped by the bound- 180
ing box size of support exemplar using ROIAlign [24] on 181
the image feature map. In RoIAlign, unlike previous fixed 182
size pooling methods [51, 56], the model adaptively deter- 183
mine the size of T to fit the corresponding size on F by 184
rounding up the size of the support exemplars on F as de- 185
scribed in Sec. 8.2. This preserves the spatial alignment 186
between T and F with translation. The image feature map 187
F and template feature T are correlated by template match- 188
ing (Sec. 4.1), which outputs the template-matching feature 189
FTM. The concatenation of the feature maps F , FTM is 190
fed to the subsequent box prediction module, which con- 191
sists of a pattern box regressor and a pattern presence clas- 192
sifier. The pattern box regressor predicts the localization 193
bounding boxes: B̂, which is parameterized by scaling and 194
shifting factors of the given template size. The pattern pres- 195
ence classifier predicts the presence score of pattern: P̂ . A 196
box proposal is then generated on each feature map point 197
based on the combination of B̂ and P̂ (Sec. 4.2). At infer- 198
ence, bounding boxes with low presence scores are removed 199
by Non-Maximum Suppression (NMS). SAM decoder [27] 200
can be optionally applied for box refinement before NMS. 201

4.1. Template matching (TM) 202

We are motivated to encourage detecting non-object pat- 203
terns given a support exemplar. Non-object patterns often 204
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lack high-level semantics yet exhibit low-level structural205
features, thus, preserving the spatial structure of the support206
exemplar is crucial. Inspired by traditional template match-207
ing [28, 47, 69], we compute the matching score between208
the image and the support exemplar to detect the locations209
of the pattern.210

Specifically, TM cross-correlates the feature map F and211
the template feature T by centering T at each (x, y) posi-212
tion in F to obtain the TM feature FTM. The TM feature213
map then encodes the spatial structure of the template and214
is obtained as follows:215

FTM(x, y) =
1

twth

∑
x′,y′

F (x+x′−⌊tw
2
⌋, y+y′−⌊th

2
⌋)T (x′, y′),

(1)216
where ⌊·⌋ denotes the floor operation used for centering T at217
each (x, y), and (x′, y′) ranges within the template coordi-218
nates: ∈ [0, tw)× [0, th). Note that Eq. 1 computes the cor-219
relation by channel-wise multiplication, resulting in FTM ∈220
RH×W×D. Finally, the TM feature FTM is concatenated221
with the feature map F : FP = [FTM;F ] ∈ RH×W×2D.222
The concatenated feature map FP is fed to the subsequent223
box prediction module.224

4.2. Box regression225

Our box prediction module consists of a pattern box regres-226
sor and a pattern presence classifier following the architec-227
ture of the anchor-free detection methods [68].228

The pattern box regressor gB consists of a 3×3 convolu-229
tional layer followed by a linear layer and predicts the four230
localization parameters (∆x,∆y, αw, αh) for each feature231
map point. Unlike the previous work [51, 56] that di-232
rectly regresses absolute box parameters, our method per-233
forms template-conditioned regression such that the pre-234
dicted bounding box regression is parameterized by the235
template size. Since targets vary in size from small to large,236
leveraging the template size as a prior and dynamically ad-237
justing it allows the model to better adapt to varying object238
scales, leading to improved localization accuracy and ro-239
bustness compared to directly predicting bounding boxes.240
A predicted bounding box at a feature point (x, y) shifts241
and scales the template size (tw, th) such as:242

(x+ tw∆x, y + th∆y, eαw tw, e
αhth). (2)243

The pattern presence classifier gP consists of a linear244
layer and predicts presence scores, which represent the con-245
fidence of the predicted bounding boxes at each feature map246
point. The aforementioned procedure of the box regressor247
gB and the presence classifier gP is summarized as:248

B̂ = gB(FP), B̂ ∈ RH×W×4, (3)249

P̂ = σ(gP(FP)), P̂ ∈ RH×W×1, (4)250

where σ denotes the sigmoid function.251

4.3. Inference 252

At inference, we first remove bounding boxes whose 253
presence score is below a threshold τ to filter out low- 254
confidence predictions. Afterward, we can optionally apply 255
box localization refinement via the SAM decoder [27] as of- 256
ten adopted by the FSCD work [25, 45, 56]. Exactly follow- 257
ing [25, 56], we input the predicted box coordinates into the 258
SAM prompt encoder to obtain the prompt feature. The ob- 259
tained prompt feature and the image feature extracted from 260
the SAM backbone are fed to the SAM decoder that slightly 261
refines input box coordinates. To obtain the final box pre- 262
diction, B̂, we apply NMS on the bounding boxes. 263

TMR is easily extended for few-shot inference without 264
re-training. When multiple support exemplars are given, we 265
perform the above process for each exemplar individually 266
and then aggregate the results before applying NMS. 267

4.4. Learning objective 268

The train loss is composed of LP, which penalizes the pres- 269
ence score, and LB, which penalizes the bounding box re- 270
gression. To calculate the presence loss LP, we first define 271
the set of coordinates (x, y) that correspond to the ground- 272
truth (GT) locations of the pattern. Specifically, a location 273
(x, y) is set to a GT location if it falls within a margin δ 274
around the center of any GT bounding box of the pattern, as 275
the centers of GT bounding boxes are not strictly localized 276
to a single point: 277

XP = {(x, y) | ∃(xp, yp) ⊂ B, |x−xp| ≤ δ, |y−yp| ≤ δ},
(5) 278

where (xp, yp) is the center point of the GT bounding box 279
in B. Finally, the GT presence label P (x, y) is defined as: 280

P (x, y) =

{
1, if (x, y) ∈ XP,

0, otherwise,
(6) 281

where (x, y) ∈ [0,W )× [0, H). 282
To calculate LB, we match the GT bounding box for 283

(x, y), where the corresponding GT bounding box at (x, y), 284
denoted as B(x, y), is assigned only if P (x, y) = 1. With 285
these sets, we can naturally define the classification loss LP 286
using the binary cross-entropy function (BCELoss) over all 287
possible coordinates, and the bounding box loss LB using 288
the generalized IoU (gIoU) loss [62] over the regression GT 289
bounding box in XP: 290

LP =

∀(x,y)∑
(x,y)

BCELoss(P̂ (x, y),P (x, y)), (7) 291

LB =

(x,y)∈XP∑
(x,y)

gIoULoss(B̂(x, y),B(x, y)). (8) 292

The overall training loss is the sum of them: L = LP + LB. 293
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dataset pattern tiling repetition object bias multi-pattern annotations per image

Wallpaper [39] near regular [41] high low
Pascal [6], COCO [35] - low high ✓(multi-category)
Wikiart [63], Frieze [10], Counting bench [52] arbitrary mid high
FSCD-147 [51], FSCD-LVIS [51] arbitrary high high
RPINE arbitrary high low to high ✓

Table 1. Benchmark dataset comparison of related work. RPINE covers pattern or object repetitions in the real world. We classify ‘pattern-
tiling’ as near-regular following [41], i.e., elements with an almost periodic lattice with minor variations in shape, color or lighting, and as
arbitrary otherwise. The ‘repetition’ is classified based on the average number of repeated same class instances on an image: low if ≤ 5,
mid if ≤ 20, and high otherwise. The ‘object-bias’ is high if the dataset annotations correspond to a predefined class set, and low otherwise.

Figure 5. TMR predictions (green) with different exemplars (red)
from RPINE, which is the only dataset containing multiple pat-
terns for each image among FSCD datasets. GTs are annotated
with blue boxes.

5. Proposed dataset: RPINE294

Existing benchmarks (e.g., FSCD-147 [50], FSCD-LVIS295
[50]) focus on object-level patterns, limiting their use for296
general pattern detection. Therefore, we introduce a new297
pattern dataset, RPINE: Repeated Patterns In Everywhere.298

We collect images from the repetitive pattern detec-299
tion literature and annotate them to contain various repet-300
itive patterns in the wild. Images are collected from FSC-301
147 [51], FSCD-LVIS [51], Countbench [52], Wikiart [63],302
Frieze [46], and Wallpaper [39]. Tab. 1 shows where RPINE303
stands among related datasets. The dataset contains 4,362304
images, divided into 3,925 and 435 for training and testing,305
respectively. As shown in Fig. 5, RPINE is annotated with306
multiple patterns per image. RPINE is a suitable evaluation307
benchmark for multi-pattern detection within an image.308

In the real world, a pattern cannot be rigorously defined.309
We thus define the following criteria inspired by the defini-310
tion of the translation symmetry [66] to minimize the sub-311
jective variance among different annotators.312

• Number of patterns: max 3 different patterns are anno-313
tated per image if the image exhibits multiple patterns.314

• Number of pattern instances: has no upperbound.315
• Minimum Size: the width and height of a pattern instance316

must be at least 3% of the shorter side of the image.317
• Appearance variance: visually similar patterns with dif-318

ferent scales/colors/semantics/rotation angles are anno-319
tated as the same pattern.320

• Reflection: visually similar patterns but reflection sym-321
metric patterns are annotated in different patterns.322

• Occlusion: if visually similar patterns are occluded from323

each other, the visible parts are annotated. 324
We ask annotators to carefully draw bounding boxes on 325
the recognized patterns by the above instructions as consis- 326
tently as they can. Despite of the instruction details, pattern 327
are not pixel-perfectly defined across annotators. Therefore, 328
we assign three individual annotators per image and include 329
all the annotated patterns as ground truth. 330

6. Experiments 331

6.1. Dataset and metrics 332

We evaluate our model on RPINE as well as on the two 333
standard FSCD benchmarks: FSCD-147 [51] and FSCD- 334
LVIS [51]. FSCD-147 contains a total of 6,135 images, 335
with 3,659 for training, 1,286 for validation, and 1,190 for 336
testing. FSCD-LVIS seen-split contains a total of 6,195 im- 337
ages, with 4,000 for training, 1,181 for validation, and 1,014 338
for testing, covering 372 object categories. FSCD-LVIS 339
unseen-split contains a total of 6,201 images, with 3,959 340
for training and 2,242 for testing where test-time object cat- 341
egories are not observed during training. 342

Following the evaluation protocol [51, 56], we report 343
Mean Absolute Error (MAE) and Root Mean Squared Er- 344
ror (RMSE) for counting. For detection, we report average 345
precision with IoU thresholds of 0.5 and 0.75, denoted as 346
AP50 and AP75, respectively, along with the averaged AP 347
over IoU thresholds from 0.5 to 0.95 in increments of 0.05. 348

6.2. Implementation details 349

We use the pre-trained SAM-ViT/H [27] of the patch size 350
16 as the backbone and set it frozen during training, which 351
returns the 64 × 64 × 256 feature map. Due to the input 352
patchification encapsulated in the ViT backbones [5], we 353
find the receptive field of the raw feature map too coarse 354
to detect small instances. We thus bilinearly interpolate the 355
feature map resolution from 64×64 to 128×128 to produce 356
a higher-resolution correlation map, which enables denser 357
predictions and leads to better performance. (Tab. 11) 358

The channel dimension is expanded to 512 via a learn- 359
able linear projection. TMR is trained with the learning rate 360
of 10−4 with AdamW [42] and the batch size of 16 on four 361
Nvidia RTX 3090 GPUs with 24 GB VRAM for 24 hours. 362
The box presence threshold τ for NMS set to 0.4, 0.3 for 363
RPINE and FSCD-147, respectively. 364
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Method SD MAE(↓) RMSE(↓) AP(↑) AP50(↑) AP75(↑)

C-DETR [51] 9.58 21.24 13.88 32.20 10.22
SAM-C [45] ✓ 18.77 37.14 18.80 34.04 18.74
PseCo [25] ✓ 48.20 88.16 23.18 44.54 21.24
GeCo [56] ✓ 9.57 17.07 23.33 45.93 21.19
TMR (ours) 8.45 19.87 33.59 64.05 30.52
TMR (ours) ✓ 8.30 19.40 29.66 58.94 25.41

Table 2. One-shot pattern counting and detection results on the
RPINE dataset. SD denotes box refinement with the SAM de-
coder. All the models are trained by the official code.

6.3. Comparison with state-of-the-art methods365

RPINE. To demonstrate the effectiveness of our method in366
counting and detecting non-object patterns, we evaluate it367
on RPINE. In Tab. 2, TMR surpasses the previous FSCD368
methods with a large margin. As the previous FSCD meth-369
ods rely on prototypes for matching, they tend to strug-370
gle with non-object patterns that require an understand-371
ing of spatial details rather than semantics. In contrast,372
TMR effectively detects non-object patterns by incorporat-373
ing spatial details in the template matching process. Note374
that RPINE is the only dataset equipped with multiple pat-375
tern annotations for each image in FSCD. Figure 5 demon-376
strates the bounding box predictions with different exem-377
plars, where TMR predicts bounding boxes adaptively to378
the given exemplars. Figure 7 shows the qualitative com-379
parisons with other FSCD methods where TMR accurately380
localize target patterns.381

FSCD-LVIS and FSCD-147. We compare TMR with ex-382
isting methods that are dedicated to FSCD under the FSCD383
setting on FSCD-LVIS and FSCD-147. The results in Tab. 3384
demonstrate that TMR significantly outperforms previous385
state-of-the-art approaches. Notably, when evaluated on the386
unseen split, where test-time object categories are not ob-387
served during training, TMR surpasses prior methods. This388
suggests that TMR is less biased to object semantics during389
training potentially because TMR leverages the exemplar’s390
spatial structure that generalizes across different categories.391
In addition to FSCD-LVIS, Tab. 6 compares methods on392
FSCD-147, where TMR performs on par with the previous393
methods on both one-shot and three-shot settings.394

6.4. Analyses and ablation study395

TMR learns with less semantic object bias and gen-396
eralizes well across datasets. We compare TMR and397
GeCo [56] in the cross-dataset scenarios by evaluating the398
trained models on different datasets that are unseen during399
training. As shown in Tab. 4, TMR presents overwhelm-400
ing performances, showing its strong generalization abil-401
ity. Specifically, when GeCo is trained on FSCD-147, its402
performance drops significantly when evaluated on differ-403
ent datasets compared to when tested on FSCD-147 itself.404
GeCo, like previous FSCD methods, relies on prototypes405
for both counting and detection. We also suspect this lower406

Method
Seen Unseen

AP(↑) AP50(↑) AP(↑) AP50(↑)

FSDetView-PB [72] 2.72 7.57 1.03 2.89
AttRPN-PB [8] 4.08 11.15 3.15 7.87
C-DETR [51] 4.92 14.49 3.85 11.28
DAVE [55] 6.75 22.51 4.12 14.16
PseCo [25] 22.37 42.56 - -
GeCo [56] - - 11.47 24.49
TMR (ours) 27.49 48.48 22.71 39.68

Table 3. Three-shot counting detection-based methods on the
FSCD-LVIS seen and unseen split.

AP AP50

Train Test cross-eval GeCo TMR GeCo TMR

F-147
F-147 43.42 44.43 75.06 73.83
F-LVISseen ✓ 13.96 21.25 25.87 37.18
RPINE ✓ 19.47 26.21 38.69 52.01

RPINE
F-147 ✓ 36.99 41.39 60.38 69.19
F-LVISseen ✓ 10.01 20.92 17.44 37.87
RPINE 23.33 29.66 45.93 58.94

Table 4. Cross-dataset comparison of GeCo [56] and TMR, where
F-147, F-LVIS indicate FSCD-147 and FSCD-LVIS.

Method
One-shot Three-shot

AP(↑) AP50(↑) AP(↑) AP50(↑)

GeCo [56] 32.71 69.95 32.49 70.51
TMR (ours) 36.01 71.19 38.57 72.61

Table 5. Comparison without optional SAM decoder on FSCD147

generalization ability than ours originates from prototype 407
matching, which is prone to overfitting to the training ob- 408
ject semantics. GeCo struggles when evaluated on datasets 409
with different object semantics. In contrast, TMR utilizes 410
the structural information for matching instead of relying 411
on semantic-intensive prototypes and generalizes more ef- 412
fectively on unseen datasets. 413

SAM decoder is biased to edges. Table 2 shows the neg- 414
ative impact of the optional box refinement using the SAM 415
decoder [27] on RPINE. Figure 6 visualizes two represen- 416
tative examples when the SAM decoder (SD) degrades per- 417
formance. We observe that SD tends to align box predic- 418
tions with the nearest edge, which is expected given that 419
SAM is a segmentation model. The edge-sensitive predic- 420
tion is particularly harmful for non-typical objects, such 421
as objects that are loosely bounded by edges or patterns 422
with many confusing edges. The SD refinement is seem- 423
ingly good at edge detection for typical object exemplars 424
with clear boundaries, and this is why the existing FSCD 425
methods [25, 45, 56] benefit from adopting SD for box re- 426
finement. However, arbitrary patterns are not necessarily 427
bounded by clear edges. Hence, edge-driven refinement 428
may be even harmful as verified on RPINE. We emphasize 429
that SD is an additional box post-processor, and we option- 430
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Method SAM decoder
One-shot Three-shot

MAE(↓) RMSE(↓) AP(↑) AP50(↑) MAE(↓) RMSE(↓) AP(↑) AP50(↑)

FSDetView-PB [72] - - - - 37.54 147.07 13.41 32.99
AttRPN-PB [8] - - - - 32.42 141.55 20.97 37.19
C-DETR† [51] 16.99 125.22 19.14 47.63 16.79 123.56 22.66 50.57
SAM-C† [45] ✓ 33.17 141.77 35.09 56.02 27.97 131.24 27.99 49.17
PseCo [25] ✓ 14.86 118.64 41.63 70.87 13.05 112.86 42.98 73.33
DAVE [55] 11.54 86.62 19.46 55.27 10.45 74.51 26.81 62.82
GeCo [56] ✓ 8.10 60.16 43.11 74.31 7.91 54.28 43.42 75.06
TMR (ours) ✓ 11.63 57.46 43.15 71.55 13.78 51.87 44.43 73.83

Table 6. Comparison with few-shot detection and counting methods on FSCD-147. The one-shot performance of the models with † are
evaluated using the official code.

examplar, GT, prediction w/o SDInput,   examplar, GT examplar, GT, prediction w/ SD

Figure 6. TMR without vs. with SAM decoder [27] (w/o SD vs. w/ SD) for box refinement. SAM decoder tends to blindly attach the
prediction box to the closest edges. The edge-sensitive prediction is harmful for non-objects, objects that have loose boundaries, or
patterns with many confusing edges. The exemplar in the first image loosely contains an arched window, but the SAM decoder shrinks the
box toward the window boundaries.

feature FP
RPINE FSCD-147

AP AP50 AP AP50

(a) F 11.44 24.02 20.95 55.59
(b) FTM 32.55 57.43 31.96 63.03

(c) F ⊕ FTM-cos 29.74 57.85 24.73 60.29
(d) F ⊕ FPM 20.94 47.96 28.91 66.93

(e) F ⊕ FTM 33.59 64.05 36.01 71.19

Table 7. Effect of template matching features (Sec. 4.1). FPM

is the correlation with average-pooled prototype. FTM-cos is the
cosine similarity of the template and image feature.

ally add SD to TMR to compare with the SD-based state of431
the arts. Table 5 compares models by taking out SD, where432
TMR shows powerful performance.433

Effectiveness of template matching features. We verify434
the effectiveness of 2D template matching, which preserves435
the spatial structure of exemplar bounding boxes for corre-436
lation. We experiment with different input feature FP to the437
box regression module. Table 7 compares our final model438
(e) and its variants. The lower bound model (a) observes439
zero information on the exemplar. Model (b) shows that440
correlating with 2D templates is greatly beneficial. The fi-441
nal model (e) concatenates the template-matching and the442
image feature, providing the correlation and appearance in-443
formation for pattern matching regression. The models (c,444

box regression RPINE FSCD-147

shift scale AP AP50 AP AP50

(a) (0, 0) (0, 0) 26.20 55.20 22.81 57.30
(b) (∆x,∆y) (eαw , eαh) 23.88 51.25 17.01 55.14
(c) (∆x,∆y) (eαw tw, e

αhth) 31.29 59.52 35.08 70.23

(d) (tw∆x, th∆y) (eαw tw, e
αhth) 33.59 64.05 36.01 71.19

Table 8. Effect of box regression methods (Sec. 4.2)

d) replace the variants of the template matching feature FTM 445
with something else. Model (c) replaces the channel-wise 446
correlation of (e) to cosine similarity, i.e., FTM-cos, show- 447
ing that retaining the channel dimension helps. Model (d) 448
first performs average-pooling of the template and uses the 449
prototype matching feature, FPM, for correlation. Note that 450
this average-pooled feature is often used in previous FSC 451
methods [25, 56]. The result shows that preserving the spa- 452
tial structure of exemplar bounding boxes is more effective. 453
The representative failure cases are shown in Fig. 9 in supp. 454
material. The pooled prototype feature loses the geomet- 455
ric layout of the template and struggle to detect patterns 456
where geometric clues are crucial. Comparing (d) and (e) 457
verifies our hypothesis that prototype-based matching relies 458
on the object priors; Model (d) drops more significantly on 459
RPINE, which is less object-centric than FSCD-147. 460

Effectiveness of template-conditioned regression. Ta- 461
ble 8 compares different attempts on the pattern box re- 462
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An exemplar and GT SAM-C (Ma et al.) PseCo (Huang et al.) GeCo (Pelhan et al.) TMR (ours)

Figure 7. Qualitative comparison with the state-of-the-art models on RPINE (the first two images) and FSCD-147 (the last two images).
More visualization examples on three datasets are included in the supplementary materials Figs 14-13.

Method Trainable params Total params FLOPS

PseCo [25] 56.99M 0.70B 5.08T
GeCo [56] 7.98M 0.65B 4.72T
TMR (ours) 19.01M 0.66B 3.04T

Table 9. Comparison on the computational complexity

gression and validates the effectiveness of our template-463
conditioned box regression method. As shown in (b), sim-464
ply performing box regression without considering the tem-465
plate size results in poor localization. Notably, it even466
performs worse than (a), which directly uses the template467
bounding box without any regression. These results demon-468
strate that incorporating the template size in both shift and469
width/height scaling is crucial for accurate localization.470
Thus, when we incorporated the template size in predict-471
ing the width and height, there was a significant perfor-472
mance gain shown in (c). Additionally, using the template473
size for scaling further improved performance shown in (d),474
demonstrating the effectiveness of template-conditioned re-475
gression in detecting the given pattern.476

Comparison on computational complexity. Table 9 com-477
pares the complexity of TMR with state-of-the-art FSCD478
methods, demonstrating its efficiency and effectiveness.479
Compared to PseCo [25], which introduces a large num-480
ber of trainable parameters and FLOPs, TMR introduces481
only about 19M trainable parameters, which is detailed in482
Tab. 10. Although TMR has more trainable parameters than483
GeCo [56], its total parameter count remains comparable.484
Thanks to the simple architecture, TMR is significantly ef-485

ficient in terms of FLOPs (3.04T), which is notably lower 486
than PseCo (5.08T) and GeCo (4.72T). This reduction in 487
computational cost not only enhances training efficiency but 488
also results in faster inference. In contrast, the high FLOPs 489
of PseCo and GeCo contribute to longer inference, making 490
them less practical for real-time applications. 491

7. Discussion 492

Conclusion. We have proposed a simple template-matching 493
based method for few-shot pattern detection. We also in- 494
troduce a new dataset with bounding box annotations that 495
covers various patterns around the world across non-object 496
patterns to typical objects from various image domains from 497
nature and human-made products. 498

Discussion. We observed that the widely used SAM de- 499
coder improves our performance by 7% AP points on 500
FSCD-147 by leveraging object-level edge priors, but it 501
degrades performance on RPINE, which contains more 502
general patterns. This suggests a promising future direc- 503
tion that combines the powerful pre-trained knowledge of 504
foundation models with detection mechanisms less depen- 505
dent on object-level edge priors. In parallel, exploring 506
a lightweight, pattern-specific architecture that efficiently 507
captures fine-grained repetitive structures without relying 508
on object semantics could further improve generalization 509
and efficiency. 510
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