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Abstract

We address the problem of few-shot pattern detection, which
aims to detect all instances of a given pattern, typically
represented by a few exemplars, from an input image. Al-
though similar problems have been studied in few-shot ob-
ject counting and detection (FSCD), previous methods and
their benchmarks have narrowed patterns of interest to ob-
ject categories and often fail to localize non-object patterns.
In this work, we propose a simple yet effective detector
based on template matching and regression, dubbed TMR.
While previous FSCD methods typically represent target ex-
emplars as spatially collapsed prototypes and lose struc-
tural information, we revisit classic template matching and
regression. It effectively preserves and leverages the spatial
layout of exemplars through a minimalistic structure with a
small number of learnable convolutional or projection lay-
ers on top of a frozen backbone. We also introduce a new
dataset, dubbed RPINE, which covers a wider range of pat-
terns than existing object-centric datasets. Our method out-
performs the state-of-the-art methods on the three bench-
marks, RPINE, FSCD-147, and FSCD-LVIS, and demon-
strates strong generalization in cross-dataset evaluation.

1. Introduction

Few-shot detection aims to identify target patterns with

minimal labeled examples. While significant progress has

been made in few-shot object detection [7, 8, 18, 68, 69],

most existing methods remain object-centric, focusing pri-

marily on identifying object-level patterns with relatively

clear boundaries. However, many real-world applications

require detecting arbitrary target patterns that extend be-

yond objects to include structural, geometric, or abstract

patterns across diverse visual data. Despite recent progress

based on deep neural networks, current methods still fall

short in addressing these broader pattern detection tasks.

Furthermore, the object-centric design of conventional few-

shot detectors may lead to performance degradation when

the target object lacks clear boundaries or when occlusion

and deformation cause its boundaries to become indistinct.

one-shot exemplars ground-truth pattern detection

Figure 1. Few-shot pattern detection. Given a few exemplar for

each target pattern (left), the task is to detect all matching instances

of each pattern (right). This example include non-object patterns

(e.g., green and blue) as well as object patterns (e.g., red).

The task of few-shot pattern detection is illustrated in

Fig. 1. Recent related research topics for few-shot detec-

tion include few-shot counting and detection [47], and few-

shot object detection [7]. Both aim to reduce the annotation

cost of object detection [12, 33, 57, 64] by learning to de-

tect all instances of given support exemplars. Consequently,

many of these methods are heavily biased on object-centric

benchmarks prior [6, 16, 32, 47]. In addition, many recent

approaches [7, 18, 23, 52, 68, 69] represent the support ex-

emplars as the spatially pooled vector, often named as a pro-

totype [60]. While this pooling strategy is effective for de-

tecting objects, it collapses the geometric properties, such

as the shape and structure of the support exemplars. As

a consequence, these methods tend to underperform when

detecting non-object geometric patterns such as object parts

or shape-intensive elements as shown in Fig. 3.

In this work, we revisit the classic template matching

strategy and propose a simple yet effective few-shot detec-

tor for arbitrary patterns. The proposed method, dubbed

template matching and regression (TMR), is designed to be

aware of the structure and shape of given exemplars. Given

an input image, TMR first extracts a feature map using a

backbone network. It then crops a template feature from

the support exemplar’s bounding box using a template ex-

traction technique based on RoIAlign [22]. This template

is correlated with the image feature map to produce a tem-

plate matching feature map. Using this correlation map, the
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Figure 2. Annotation examples of FSCD-147 [47] and RPINE. FSCD-147 is annotated with the repetitive object-level patterns but disre-

gards the repetition of non-object patterns such as the egg tray pattern under the eggs in the first image. RPINE is annotated with arbitrarily

noticed repeated patterns which include non-object patterns and nameless parts of objects. Plus, FSCD-147 is annotated with a single

pattern, while RPINE is annotated with all existing repetitions (marked with different colors) recognized by three different annotators.

Figure 3. Few-shot detectors trained with strong object prior are

often biased to objects instances and struggle to detect non-objects.

model learns bounding box regression parameters to rectify

the support exemplar’s box size adaptively. This process,

termed support-conditioned regression, enables the model

to handle support exemplars of varying sizes more effec-

tively. Notably, TMR consists only of a few 3×3 and linear

projections without any complicated modules such as cross-

attention, commonly used in prior work [47, 52].

Although TMR is designed for general pattern detection,

existing benchmarks (e.g., FSCD-147 [47], FSCD-LVIS

[47]) mainly target object-level patterns, limiting compre-

hensive evaluation. To address this, we introduce a new

dataset, Repeated Patterns IN Everywhere (RPINE), which

covers diverse repeated patterns in the real world. RPINE

contains images with varying degrees of objectness, from

well-defined object-level patterns to non-object patterns, all

annotated with bounding boxes via crowd-sourcing. Com-

pared to FSCD datasets, RPINE provides broader coverage,

including both non-object patterns and nameless parts of

objects, as illustrated in Fig. 2.

TMR demonstrates strong performance in detecting re-

peated patterns, not only on RPINE but also on the FSCD

benchmarks, FSCD-147 and FSCD-LVIS [47]. In particu-

lar, TMR is especially effective on RPINE, includes diverse

patterns with minimal object priors. Notably, our simple

architecture contributes to improved generalization across

datasets. Our contribution is summarized as follows:

• We generalize the few-shot object counting and detection

to a pattern detection task that does not assume objectness

in either the target patterns or exemplars.

• We present a simple yet effective pattern detector by refin-

ing template matching, which efficiently detects coherent

patterns guided by exemplars.

• We introduce a new densely annotated dataset, RPINE,

which covers diverse repetitive patterns in the real world,

ranging from object-level patterns to non-object patterns.

• TMR not only outperforms the state-of-the-art FSCD

models on RPINE and FSCD-LVIS but also achieves

strong cross-dataset generalization.

2. Related work

Few-shot object detection (FSOD) aims to detect objects

of novel classes using only a few support images of novel

classes. Existing methods can be roughly categorized into

two groups: finetuning based [8, 15, 63, 67, 68] and meta-

learning based [7, 17–19, 24, 69, 71] approaches. Despite

significant progress, finetuning methods require retraining

for every new classes. For pattern detection, it is not desired

to fine-tune each arbitrary pattern with indistinct object cat-

egorization. In contrast, meta-learning methods avoid class-

specific fine-tuning and typically construct prototypes from

support images for classifying the bounding boxes of the

query image. These methods often apply global average

pooling to obtain prototypes from each support exemplar,

which collapses the spatial structure of the exemplar. While

such spatially collapsed prototypes may effectively capture

object-level bounding boxes, they struggle with non-object

patterns that exhibit complex spatial structures.

Few-shot counting (FSC) aims to count objects given a

few exemplars (typically 1 to 3) within an image. Previ-

ous methods [30, 40, 55, 56, 70] have tackled this task us-

ing density-map regression without detecting the individual

bounding boxes. Towards localization-based counting, few-

shot counting and detection (FSCD) is proposed to com-

bine FSC and detection. Such models include Counting-
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Figure 4. Template Matching and Regression (TMR). A template feature map is cropped from the image feature map and then correlated

with the image feature map via channel-wise template matching. The TM feature map and the image feature map are concatenated. For

each feature map point, the box regressor predicts the shifting and scaling parameters of the support exemplar’s size, and the presence

classifier scores the presence map. Both of them consist of a 3× 3 convolution and a linear projection without any complicated layers.

DETR [47], SAM-C [42], DAVE [51], PseCo [23], and

GeCo [52]. However, similar to the FSOD methods, these

models typically generate a prototype by spatially averaging

exemplar bounding boxes. This discards the spatial struc-

ture of the exemplars, potentially losing important cues and

details for accurate counting and detection. In contrast, our

pattern-detection method preserves the spatial structure of

the exemplar for pattern matching.

Template matching. Template matching [21, 26, 44–

46, 65, 66] has been widely used from the beginning of

computer vision and pattern recognition and also adopted

in convolution-based neural detectors with additional re-

gression [12, 33]. Given a 2D template, template matching

identifies the matching region by sliding-window fashion.

Repetitive pattern detection. Detecting repetitive pat-

terns is trivial for humans but remains challenging in com-

puter vision. Early research focused on geometrically

constrained settings where patterns are nearly regular and

aligned [14, 20, 31, 50]. Based on this near-regularity, early

methods assumed a global repetitive structure and discov-

ered the repetition [21, 31, 37, 38, 49] in a top-down man-

ner. In contrast, later methods [11, 34, 61] define the small-

est repeating unit, called a texel [2, 28, 35] and identify all

matching subparts based on the identified texels. In our con-

text, the texel corresponds to the given exemplar.

3. Few-shot pattern detection
Given an input image I ∈ R

H0×W0×3, the goal of few-

shot pattern detection is to predict matching patterns with

a given set of support exemplars. With an abuse of

notations, the model is given the set of support exem-

plar, E = {e1, · · · , eNs
} and aims to predict the cor-

responding ground-truth bounding boxes of pattern B =
{b1, · · · , bNp

}, where Np and Ns denotes the number of

ground-truth bounding boxes of the pattern and the number

of exemplars (typically referred to as the “shot”), respec-

tively. The input exemplars and the output patterns are both

represented as bounding boxes parameterized by their cen-

ter coordinates, width, and height: bi, ei ∈ R
4.

4. Template matching and regression (TMR)

For clarity, we primarily focus on the one-shot, single-scale

pattern detection setting, where a single support exemplar

is given and a single-resolution image feature map is used.

However, TMR can be effortlessly extended to few-shot and

multi-scale scenarios, as described in Sec.4.3 and Sec.9.

The overall architecture of TMR is illustrated in Fig. 4.

The input image I is first encoded by a backbone such as

ViT [25] to extract a feature map F ∈ R
H×W×D. The tem-

plate feature T ∈ R
th×tw×D is then obtained through the

template extraction process, which uses RoIAlign [22] to

crop a region from the image feature map F based on the

support exemplar’s size (sh, sw). In RoIAlign, unlike pre-

vious fixed-size pooling methods [47, 52], the model adap-

tively determines the size of T to fit the corresponding size

on F by rounding up the size of the exemplars on F as

described in Sec. 8.2. This preserves the spatial alignment

between T and F with translation. The image feature map

F and template feature T are correlated by template match-

ing (Sec. 4.1), which outputs the template-matching feature

FTM. The concatenation of the feature maps F , FTM is fed

to the subsequent box prediction module, which consists

of a pattern box regressor and a pattern presence classifier.

The pattern box regressor predicts the localization bounding

boxes: B̂, which is parameterized by scaling and shifting

factors of the given exemplar’s size. The pattern presence

classifier predicts the presence score of the pattern: P̂ . A

box proposal is then generated on each feature map point

based on the combination of B̂ and P̂ (Sec. 4.2). At infer-

ence, bounding boxes with low presence scores are removed

by Non-Maximum Suppression (NMS). SAM decoder [25]

can be optionally applied for box refinement before NMS.

4.1. Template matching (TM)
We are motivated to detect arbitrary patterns given a sup-

port exemplar of either an object or not. Non-object pat-

terns often lack high-level semantics yet exhibit low-level

structural features, thus, preserving the spatial structure of

the support exemplar is crucial. Inspired by traditional tem-



plate matching [26, 44, 65], we compute the matching score

between the image and the support exemplar to detect the

locations of the pattern. Specifically, template matching

cross-correlates the feature map F and the template feature

T by centering T at each (x, y) position in F . The resultant

template-matching (TM) feature FTM is obtained as:

FTM(x, y) =
1

twth

∑

x′,y′
F (x+x′−�tw

2
�, y+y′−�th

2
�)T (x′, y′),

(1)

where �·� denotes the floor operation used for centering T at

each (x, y), and (x′, y′) ranges within the template coordi-

nates: ∈ [0, tw)× [0, th). Note that Eq. 1 computes the cor-

relation by channel-wise multiplication, resulting in FTM ∈
R

H×W×D. Finally, the TM feature FTM is concatenated

with the feature map F : FP = [FTM;F ] ∈ R
H×W×2D.

The concatenated feature map FP is fed to the subsequent

box prediction module.

4.2. Support-conditioned box regression
Our box prediction module consists of a pattern box regres-
sor and a pattern presence classifier following the architec-

ture of an anchor-free detection methods [64].

The pattern box regressor gB consists of a 3×3 convolu-

tional layer followed by a linear layer and predicts the four

localization parameters (Δx,Δy, αw, αh) for each feature

map point. Unlike the methods [47, 52] that directly regress

absolute box parameters, our method performs support-
conditioned regression. Bounding box parameters are pre-

dicted by scaling and shifting the support exemplar’s size.

This helps to dynamically adjust the exemplar’s size to pre-

dict a target box size. A predicted bounding box at a feature

point (x, y) shifts and scales the support exemplar’s size

(sw, sh) such as:

(x+ swΔx, y + shΔy, eαwsw, e
αhsh). (2)

The pattern presence classifier gP consists of a linear

layer and predicts presence scores, which represent the con-

fidence of the predicted bounding boxes at each feature map

point. The aforementioned procedure of the box regressor

gB and the presence classifier gP is summarized as:

B̂ = gB(FP), B̂ ∈ R
H×W×4, (3)

P̂ = σ(gP(FP)), P̂ ∈ R
H×W×1, (4)

where σ denotes the sigmoid function.

4.3. Inference
At inference, we first remove bounding boxes whose pres-

ence score is lower than a threshold τ to filter out low-

confidence predictions. Afterward, we can optionally ap-

ply box localization refinement via the SAM decoder [25]

as often adopted by the FSCD work [23, 42, 52]. Follow-

ing [23, 52], we input the predicted box coordinates into the

SAM prompt encoder to obtain the prompt feature. The ob-

tained prompt feature and the image feature extracted from

the SAM backbone are fed to the SAM decoder, which fur-

ther refines input box coordinates. To obtain the final box

prediction, B̂, we apply NMS on the bounding boxes.

TMR is easily extended for few-shot inference without

re-training. When multiple support exemplars are given, we

perform the above process for each exemplar individually

and then aggregate the results before applying NMS.

4.4. Learning objective
The training loss is composed of LP, which penalizes the

presence score, and LB, which penalizes the bounding box

regression. The presence loss LP is the binary cross-entropy

loss (BCELoss) between the predicted and the ground-truth

center points of the pattern bounding boxes. Instead of guid-

ing the presence with a single pixel, we add a margin around

each ground-truth center point and define the extended cen-

ter point set as XP. We detail this in Sec. 8.3. The ground-

truth presence label P at a position (x, y) is set to 1 if the

position is in XP, and 0 otherwise.

The bounding box regression loss LB is defined as the

generalized IoU (gIoU) loss [58] between the predicted and

the ground-truth bounding boxes. This loss is defined on the

positions where the ground-truth patterns exist. For each

center point of the pattern bounding box, the adjacent area

of the center within the margin shares the corresponding

bounding box parameter B. The two loss functions are de-

fined as the following:

LP =

∀(x,y)∑

(x,y)

BCELoss(P̂ (x, y),P (x, y)), (5)

LB =

(x,y)∈XP∑

(x,y)

gIoULoss(B̂(x, y),B(x, y)). (6)

The overall training loss is the sum of them: L = LP +LB.

5. Proposed dataset: RPINE
Existing benchmarks (e.g., FSCD-147 [47], FSCD-LVIS

[47]) focus on object-level patterns, limiting their use for

general pattern detection. Therefore, we introduce a new

pattern dataset, RPINE: Repeated Patterns In Everywhere.

We collect images from the repetitive pattern detec-

tion literature and annotate them to contain various repet-

itive patterns in the wild. Images are collected from FSC-

147 [47], FSCD-LVIS [47], Countbench [48], Wikiart [59],

Frieze [43], and Wallpaper [36]. Tab. 1 shows where RPINE

stands among related datasets. The dataset contains 4,362

images, divided into 3,925 and 435 for training and testing,

respectively. As shown in Fig. 5, RPINE is annotated with

multiple patterns per image. RPINE is a suitable evaluation

benchmark for multi-pattern detection within an image.



dataset pattern tiling repetition object bias multi-pattern annotations per image

Wallpaper [36] near regular [38] high low

Pascal [6], COCO [32] - low high �(multi-category)

Wikiart [59], Frieze [9], Counting bench [48] arbitrary mid high

FSCD-147 [47], FSCD-LVIS [47] arbitrary high high

RPINE arbitrary high low to high �

Table 1. Benchmark dataset comparison of related work. RPINE covers pattern or object repetitions in the real world. We classify ‘pattern-

tiling’ as near-regular following [38], i.e., elements with an almost periodic lattice with minor variations in shape, color or lighting, and as

arbitrary otherwise. The ‘repetition’ is classified based on the average number of repeated same class instances on an image: low if ≤ 5,

mid if ≤ 20, and high otherwise. The ‘object-bias’ is high if the dataset annotations correspond to a predefined class set, and low otherwise.

Figure 5. GTs (blue) and TMR predictions (green) with different

exemplars (red) from RPINE, which is the only dataset containing

multiple patterns for each image among FSCD datasets.

In the real world, a pattern cannot be rigorously defined.

We thus define the following criteria inspired by the defini-

tion of the translation symmetry [62] to minimize the sub-

jective variance among different annotators.

• Number of patterns: max 3 different patterns are anno-

tated per image if the image exhibits multiple patterns.

• Number of pattern instances: has no upperbound.

• Minimum Size: the width and height of a pattern instance

must be at least 3% of the shorter side of the image.

• Appearance variance: visually similar patterns with dif-

ferent scales/colors/semantics/rotation angles are anno-

tated as the same pattern.

• Reflection: visually similar patterns but reflection sym-

metric patterns are annotated in different patterns.

• Occlusion: if visually similar patterns are occluded from

each other, the visible parts are annotated.

We ask annotators to carefully draw bounding boxes on

the recognized patterns by the above instructions as consis-

tently as they can. Despite of the instruction details, pattern

are not pixel-perfectly defined across annotators. Therefore,

we assign three individual annotators per image and include

all the annotated patterns as ground truth.

6. Experiments
6.1. Dataset and metrics
We evaluate our model on RPINE as well as on the two

standard FSCD benchmarks: FSCD-147 [47] and FSCD-

LVIS [47]. FSCD-147 contains a total of 6,135 images,

with 3,659 for training, 1,286 for validation, and 1,190 for

testing. FSCD-LVIS seen-split contains a total of 6,195 im-

ages, with 4,000 for training, 1,181 for validation, and 1,014

for testing, covering 372 object categories. FSCD-LVIS

unseen-split contains a total of 6,201 images, with 3,959

for training and 2,242 for testing where test-time object cat-

egories are not observed during training.

Following the evaluation protocol [47, 52], we report

Mean Absolute Error (MAE) and Root Mean Squared Er-

ror (RMSE) for counting. For detection, we report average

precision with IoU thresholds of 0.5 and 0.75, denoted as

AP50 and AP75, respectively, along with the averaged AP

over IoU thresholds from 0.5 to 0.95 in increments of 0.05.

6.2. Implementation details
We use the pre-trained SAM-ViT/H [25] of the patch size

16 as the backbone and set it frozen during training, which

returns the 64 × 64 × 256 feature map. Due to the input

patchification encapsulated in the ViT backbones [5], we

find the receptive field of the raw feature map too coarse

to detect small instances. We thus bilinearly interpolate the

feature map resolution from 64×64 to 128×128 to produce

a higher-resolution correlation map, which enables denser

predictions and leads to better performance. (Tab. 11)

The channel dimension is expanded to 512 via a learn-

able linear projection. TMR is trained with the learning rate

of 10−4 with AdamW [39] and the batch size of 16 on four

Nvidia RTX 3090 GPUs with 24 GB VRAM for 24 hours.

The box presence threshold τ for NMS set to 0.4, 0.3 for

RPINE and FSCD-147, respectively.

6.3. Comparison with state-of-the-art methods
RPINE. To demonstrate the effectiveness of our method in

counting and detecting non-object patterns, we evaluate it

on RPINE. In Tab. 2, TMR surpasses the previous FSCD

methods with a large margin. As the previous FSCD meth-

ods rely on prototypes for matching, they tend to strug-

gle with non-object patterns that require an understand-

ing of spatial details rather than semantics. In contrast,

TMR effectively detects non-object patterns by incorporat-

ing spatial details in the template matching process. Note

that RPINE is the only dataset equipped with multiple pat-

tern annotations for each image in FSCD. Figure 5 demon-

strates the bounding box predictions with different exem-

plars, where TMR predicts bounding boxes adaptively to

the given exemplars. Figure 7 shows the qualitative com-



Method SD MAE(↓) RMSE(↓) AP(↑) AP50(↑) AP75(↑)

C-DETR [47] 9.58 21.24 13.88 32.20 10.22

SAM-C [42] � 18.77 37.14 18.80 34.04 18.74

PseCo [23] � 48.20 88.16 23.18 44.54 21.24

GeCo [52] � 9.57 17.07 23.33 45.93 21.19

TMR (ours) 8.45 19.87 33.59 64.05 30.52
TMR (ours) � 8.30 19.40 29.66 58.94 25.41

Table 2. One-shot pattern counting and detection results on the

RPINE dataset. SD denotes box refinement with the SAM de-

coder. All the models are trained by the official code.

parisons with other FSCD methods where TMR accurately

localize target patterns.

FSCD-LVIS and FSCD-147. We compare TMR with ex-

isting methods that are dedicated to FSCD under the FSCD

setting on FSCD-LVIS and FSCD-147. The results in Tab. 3

demonstrate that TMR significantly outperforms previous

state-of-the-art approaches. Notably, when evaluated on the

unseen split, where test-time object categories are not ob-

served during training, TMR surpasses prior methods. This

suggests that TMR is less biased to object semantics during

training potentially because TMR leverages the exemplar’s

spatial structure that generalizes across different categories.

In addition to FSCD-LVIS, Tab. 6 compares methods on

FSCD-147, where TMR performs on par with the previous

methods on both one-shot and three-shot settings.

6.4. Analyses and ablation study

TMR learns with less semantic object bias and gen-
eralizes well across datasets. We compare TMR and

GeCo [52] in the cross-dataset scenarios by evaluating the

trained models on different datasets that are unseen during

training. As shown in Tab. 4, TMR presents overwhelm-
ing performances, showing its strong generalization abil-
ity. Specifically, when GeCo is trained on FSCD-147, its

performance drops significantly when evaluated on differ-

ent datasets compared to when tested on FSCD-147 itself.

GeCo, like previous FSCD methods, relies on prototypes

for both counting and detection. We also suspect this lower

generalization ability than ours originates from prototype

matching, which is prone to overfitting to the training ob-

ject semantics. GeCo struggles when evaluated on datasets

with different object semantics. In contrast, TMR utilizes

the structural information for matching instead of relying

on semantic-intensive prototypes and generalizes more ef-

fectively on unseen datasets.

SAM decoder is biased to edges. Table 2 shows the neg-

ative impact of the optional box refinement using the SAM

decoder [25] on RPINE. Figure 6 visualizes two represen-

tative examples when the SAM decoder (SD) degrades per-

formance. We observe that SD tends to align box predic-

tions with the nearest edge, which is expected given that

SAM is a segmentation model. The edge-sensitive predic-

Method
Seen Unseen

AP(↑) AP50(↑) AP(↑) AP50(↑)

FSDetView-PB [68] 2.72 7.57 1.03 2.89

AttRPN-PB [7] 4.08 11.15 3.15 7.87

C-DETR [47] 4.92 14.49 3.85 11.28

DAVE [51] 6.75 22.51 4.12 14.16

PseCo [23] 22.37 42.56 - -

GeCo [52] - - 11.47 24.49

TMR (ours) 27.49 48.48 22.71 39.68

Table 3. Three-shot counting detection-based methods on the

FSCD-LVIS seen and unseen split.

AP AP50

Train Test cross-eval GeCo TMR GeCo TMR

F-147

F-147 43.42 44.43 75.06 73.83

F-LVISseen � 13.96 21.25 25.87 37.18
RPINE � 19.47 26.21 38.69 52.01

RPINE

F-147 � 36.99 41.39 60.38 69.19
F-LVISseen � 10.01 20.92 17.44 37.87
RPINE 23.33 29.66 45.93 58.94

Table 4. Cross-dataset comparison of GeCo [52] and TMR, where

F-147, F-LVIS indicate FSCD-147 and FSCD-LVIS.

Method
One-shot Three-shot

AP(↑) AP50(↑) AP(↑) AP50(↑)

GeCo [52] 32.71 69.95 32.49 70.51

TMR (ours) 36.01 71.19 38.57 72.61

Table 5. Comparison without optional SAM decoder on FSCD147

tion is particularly harmful for non-typical objects, such

as objects that are loosely bounded by edges or patterns

with many confusing edges. The SD refinement is seem-

ingly good at edge detection for typical object exemplars

with clear boundaries, and this is why the existing FSCD

methods [23, 42, 52] benefit from adopting SD for box re-

finement. However, arbitrary patterns are not necessarily

bounded by clear edges. Hence, edge-driven refinement

may be even harmful as verified on RPINE. We emphasize

that SD is an additional box post-processor, and we option-

ally add SD to TMR to compare with the SD-based state of

the arts. Table 5 compares models by taking out SD, where

TMR shows powerful performance.

Effectiveness of template matching features. We verify

the effectiveness of 2D template matching, which preserves

the spatial structure of exemplar bounding boxes for corre-

lation. We experiment with different input feature FP to the

box regression module. Table 7 compares our final model

(e) and its variants. The lower bound model (a) observes

zero information on the exemplar. Model (b) shows that

correlating with 2D templates is greatly beneficial. The fi-

nal model (e) concatenates the template-matching and the

image feature, providing the correlation and appearance in-

formation for pattern matching regression. The models (c,



Method SAM decoder
One-shot Three-shot

MAE(↓) RMSE(↓) AP(↑) AP50(↑) MAE(↓) RMSE(↓) AP(↑) AP50(↑)

FSDetView-PB [68] - - - - 37.54 147.07 13.41 32.99

AttRPN-PB [7] - - - - 32.42 141.55 20.97 37.19

C-DETR† [47] 16.99 125.22 19.14 47.63 16.79 123.56 22.66 50.57

SAM-C† [42] � 33.17 141.77 35.09 56.02 27.97 131.24 27.99 49.17

PseCo [23] � 14.86 118.64 41.63 70.87 13.05 112.86 42.98 73.33

DAVE [51] 11.54 86.62 19.46 55.27 10.45 74.51 26.81 62.82

GeCo [52] � 8.10 60.16 43.11 74.31 7.91 54.28 43.42 75.06
TMR (ours) � 11.63 57.46 43.15 71.55 13.78 51.87 44.43 73.83

Table 6. Comparison with few-shot detection and counting methods on FSCD-147. The one-shot performance of the models with † are

evaluated using the official code.

examplar, GT, prediction w/o SDInput,   examplar, GT examplar, GT, prediction w/ SD
Figure 6. TMR without vs. with SAM decoder [25] (w/o SD vs. w/ SD) for box refinement. SAM decoder tends to align box predictions

with the nearest edges. The edge-sensitive prediction is harmful for non-objects, objects that have loose boundaries, or patterns with many

confusing edges. The exemplar in the first row loosely contains an arched window, but the SAM decoder snaps the box tightly its edges.

feature FP
RPINE FSCD-147

AP AP50 AP AP50

(a) F 11.44 24.02 20.95 55.59

(b) FTM 32.55 57.43 31.96 63.03

(c) F ⊕ FTM-cos 29.74 57.85 24.73 60.29

(d) F ⊕ FPM 20.94 47.96 28.91 66.93

(e) F ⊕ FTM 33.59 64.05 36.01 71.19

Table 7. Effect of template matching features (Sec. 4.1). FPM

is the correlation with average-pooled prototype. FTM-cos is the

cosine similarity of the template and image feature.

d) replace the variants of the template matching feature FTM

with something else. Model (c) replaces the channel-wise

correlation of (e) to cosine similarity, i.e., FTM-cos, show-

ing that retaining the channel dimension helps. Model (d)

first performs average-pooling of the template and uses the

prototype matching feature, FPM, for correlation. Note that

this average-pooled feature is often used in previous FSC

methods [51, 52, 70]. The result shows that preserving the

spatial structure of exemplar bounding boxes is more effec-

tive. The representative failure cases are shown in Fig. 11 in

supp. material. The pooled prototype feature loses the geo-

metric layout of the template and struggle to detect patterns

where geometric clues are crucial. Comparing (d) and (e)

verifies our hypothesis that prototype-based matching relies

on the object priors; Model (d) drops more significantly on

RPINE, which is less object-centric than FSCD-147.

box regression RPINE FSCD-147

shift scale AP AP50 AP AP50

(a) (0, 0) (0, 0) 26.20 55.20 22.81 57.30

(b) (Δx,Δy) (eαw , eαh) 23.88 51.25 17.01 55.14

(c) (Δx,Δy) (eαwsw, e
αhsh) 31.29 59.52 35.08 70.23

(d) (swΔx, shΔy) (eαwsw, e
αhsh) 33.59 64.05 36.01 71.19

Table 8. Effect of box regression methods (Sec. 4.2)

Effectiveness of support-conditioned regression. Table 8

compares different variants for box regression and validates

the effectiveness of our support-conditioned box regression

method. As shown in (b), regressing bounding boxes with-

out considering the support exemplar’s size leads to poor lo-

calization. Notably, it even performs worse than (a), which

directly uses the exemplar box without performing any re-

gression. However, as shown in (c), incorporating the sup-

port exemplar’s size when predicting the width and height

leads to a significant performance gain. This improvement

is further enhanced by using the exemplar’s size for shift-

ing, as demonstrated in (d). These results demonstrate the

effectiveness of support-conditioned regression, guided by

the exemplar’s size, in achieving accurate localization.

Comparison on computational complexity. Table 9 com-

pares the complexity of TMR with state-of-the-art FSCD

methods, demonstrating its efficiency and effectiveness.

Compared to PseCo [23], which introduces a large num-



An exemplar and GT SAM-C (Ma et al.) PseCo (Huang et al.) GeCo (Pelhan et al.) TMR (ours)

Figure 7. Qualitative comparison with the state-of-the-art models on RPINE (the first two images) and FSCD-147 (the last two images).

More visualization examples on three datasets are included in the supplementary materials Figs 16-18.

Method Trainable params Total params FLOPS

PseCo [23] 56.99M 0.70B 5.08T

GeCo [52] 7.98M 0.65B 4.72T

TMR (ours) 19.01M 0.66B 3.04T

Table 9. Comparison on the computational complexity

ber of trainable parameters and FLOPs, TMR introduces

only about 19M trainable parameters, which is detailed in

Tab. 10. Although TMR has more trainable parameters than

GeCo [52], its total parameter count remains comparable.

Thanks to the simple architecture, TMR is significantly ef-

ficient in terms of FLOPs (3.04T), which is notably lower

than PseCo (5.08T) and GeCo (4.72T). This reduction in

computational cost not only enhances training efficiency but

also results in faster inference. In contrast, the high FLOPs

of PseCo and GeCo contribute to longer inference, making

them less practical for real-time applications.

Real-world application. We evaluate TMR, trained

on RPINE, on scanning electron microscope (SEM) im-

ages [1], which are widely used in microprocessor inspec-

tion. Despite the domain shift, our method performs effec-

tively and demonstrates its potential to generalize to real-

world, non-object pattern scenarios (Fig. 8).

7. Conclusion and discussion
We have proposed a simple template-matching based

method for few-shot pattern detection. We also introduce a

new dataset with bounding box annotations that covers var-

ious patterns around the world across non-object patterns

Figure 8. Application example of TMR on the SEM dataset [1].

to typical objects from various image domains from nature

and human-made products.

We observed that the widely used SAM decoder im-

proves our performance by 7% AP points on FSCD-147

by leveraging object-level edge priors, but it degrades per-

formance on RPINE, which contains more general patterns.

This suggests a promising future direction that combines the

powerful pre-trained knowledge of foundation models with

detection mechanisms less dependent on object-level edge

priors. In parallel, exploring a lightweight, pattern-specific

architecture that efficiently captures fine-grained repetitive

structures without relying on object semantics could further

improve generalization and efficiency.
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