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Abstract

Physics-informed neural networks (PINNs) stand out for their ability in supervised
learning tasks that align with physical laws, especially nonlinear partial differ-
ential equations (PDEs). In this paper, we introduce "PINNs-Torch", a Python
package that accelerates PINNs implementation using the PyTorch framework and
streamlines user interaction by abstracting PDE issues. While we utilize PyTorch’s
dynamic computational graph for its flexibility, we mitigate its computational over-
head in PINNs by compiling it to static computational graphs. In our assessment
across 8 diverse examples, covering continuous, discrete, forward, and inverse con-
figurations, naive PyTorch is slower than TensorFlow; however, when integrated
with CUDA Graph and JIT compilers, training speeds can increase by up to 9
times relative to TensorFlow implementations. Additionally, through a real-world
example, we highlight situations where our package might not deliver speed im-
provements. For community collaboration and future developments, our package
code is accessible at: https://github.com/rezaakb/pinns-torch.

1 Introduction

Physics-informed neural networks (PINNs) have recently emerged as a powerful approach to super-
vised learning tasks, ensuring that solutions adhere to the laws of physics, particularly as represented
by nonlinear partial differential equations (PDEs) [19]. Their effectiveness spans a diverse range of
applications [21, 2, 6, 10, 23]. In this paper, we introduce “PINNs-Torch”, a new Python package
designed to accelerate PINNs using the PyTorch framework [14] and also simplify user interaction
by abstracting PDE problems.

While PyTorch [14] is a popular framework for deep learning, its dynamic computational graph
technique, which constructs and evaluates the graph in real-time, can introduce computational
overheads, especially in PINNs. This is because PINNs often require multiple gradient computations
of network outputs with respect to inputs to define PDEs [13]. This overhead can hinder the efficiency
and speed of PINN implementations.

Extending prior works [9, 3, 8, 1], we present the “PINNs-Torch” package. It optimizes PINNs
training and inference speed by leveraging static computational graphs with CUDA Graph [22]
and JIT compilers, particularly for smaller batch sizes. Similar to [1], we leverage Hydra [27] to
streamline problem definitions, and additionally, we use Lightning [5] to enhance scalability. This
not only simplifies user interactions but also abstracts PDE problems.

Our findings indicate that combining CUDA Graph with JIT provides an optimal balance of speed
and accuracy, eliminating repetitive graph creation for gradient calculations in PyTorch’s dynamic
framework. However, through our experiments, we highlight instances where the use of CUDA
Graph falls short. We hope our package will drive advancements in PINNs acceleration.
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Figure 1: Simplified PINNs-Torch framework: Users input a config file and define data reading
and PDE functions. The system then parses files, JIT compiles conditions (e.g., initial conditions,
collection points), captures the computational graph, and trains the model through graph replay.

2 PINNs-Torch Package

In this section, we offer a concise overview of the problem setup and describe the implementation of
our package.

2.1 Problem Setup

We follow the problem formulation introduced in [19]. The paper deals with a scenario where we
examine parametric and nonlinear PDEs characterized by the following general structure:

ut +N [u;λ], x ∈ Ω, t ∈ [0, T ]

Here, u(t, x) represents the underlying solution that is not directly observable, N [.;λ] stands for
a nonlinear operator controlled by the parameter λ, and Ω is a subset of RD. Two key problems
are discussed: the first is concerned with data-driven solution (forward problems) [18, 17], aiming
to elucidate the concealed state u(t, x) of the system given fixed model parameters λ. The second
involves data-driven discovery (inverse problem) [18, 16, 24], aiming to ascertain the parameter
values λ that provide the best explanation for the observed data.

Two algorithm types have been developed based on the data: continuous time models and discrete
time models. The former efficiently handles data with new spatio-temporal function approximators,
while the latter uses Runge-Kutta [7] methods with flexible staging. For more details, see [19].

2.2 Implementation

PINNs-Torch Workflow. Our package simplifies the solving of forward and inverse problems
in discrete and continuous modes related to nonlinear partial differential equations. Following
the architecture used by [1], it begins by parsing configuration files to extract parameters like
spatial/temporal domains, sample count, boundary conditions, and neural network details. The
user-defined PDE function and config files are then read. However, instead of a custom trainer, we
use Lightning. Based on these, conditions are compiled and a computational graph is captured using
CUDA Graph. Training is executed by replaying this graph. Figure 1 provides a workflow overview.

CUDA Graphs. CUDA Graphs [22] were introduced to the PyTorch API, enabling the represen-
tation of tasks through a directed acyclic graph (DAG), as opposed to individual kernel operations.
A CUDA Graph comprises nodes that symbolize actions such as memory operations and kernel
launches. These nodes are linked by edges that indicate dependencies for the order of execution. This
approach facilitates an execution sequence characterized by creating the graph once and utilizing it
multiple times, achieved by decoupling graph creation from execution. This separation empowers the
reuse of graphs for multiple launches [28, 15].

JIT Compiler. In our package, we leverage TorchScript [4], an integral feature of PyTorch, to
facilitate smooth transitions between eager execution and graph-based modes, thereby enhancing the
performance of models. With dynamic batches (constant input shape but varying data), we employ
the TorchScript API for scripting PDE functions. For static batches (unchanging data and input
shape), we trace each condition. We use compiled functions for capturing the graph.

AMP. AMP is a popular PyTorch API that dynamically adjusts the numerical precision in deep
learning models during training or inference [11]. We utilize 16-bit precision to evaluate its impact
on training speed.
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Table 1: Comparison of average speed-ups across eight examples discussed in Section 3.1 using
various acceleration methods relative to TensorFlow and PyTorch. The table indicates that naive
PyTorch underperforms compared to TensorFlow, with the most effective speed-up achieved through
the combination of CUDA Graph and JIT Compiler. CG: CUDA Graph.

PyTorch JIT AMP CG CG+AMP CG+JIT
Avg. speed-up w.r.t. TF1 0.74 0.77 0.74 5.29 4.83 5.43
Avg. speed-up w.r.t. PyTorch 1 0.99 0.93 7.63 6.68 7.82

3 Experiments

In this section, we delve into the experiments conducted to evaluate the performance of CUDA Graph
under various conditions, especially its interplay with batch sizes. We also compare its efficacy
against other acceleration techniques, such as JIT and AMP, to determine the optimal approach for
PINNs and their applications. In all experiments, we only use the Adam optimizer.

Hardware Setup. All experiments were conducted on a single NVIDIA Quadro RTX 8000 GPU to
ensure consistency and reproducibility.

Speed-up Metric. We determine the median time taken for a single iteration in each scenario and
contrast this with the time required in the original TensorFlow V1 (TF1) implementations1. The
speed-up is computed by dividing the time from the TF1 implementation by the time from each
scenario. However, in Table 1, the speed-up is assessed relative to the PyTorch as well.

Mean Relative Error Metric. We compute the average relative errors for each example. It’s
important to note that the nature of errors can vary by problem; further discussions on this are
available in the Supplementary Materials Section D.

3.1 Evaluation of Various Acceleration Techniques

We evaluate the effectiveness of various acceleration techniques using distinct examples, including the
Continuous Forward Schrodinger Equation, Discrete Forward Allen–Cahn (AC) Equation, Continuous
Inverse Navier-Stokes (NS) Equation, and Discrete Inverse Korteweg-de Vries (KdV) Equation.
Notably, Burgers’ Equation is examined in all combinations of continuous, discrete, forward, and
inverse configurations. In all the provided examples, we have static batches and employ tracing for
JIT compilation. For more information, please refer to Supplementary Materials Section E and the
original paper [19]. Our benchmarks span different scenarios, contrasting combinations of CUDA
Graph, JIT compiler, and AMP against a baseline without any acceleration.

Figure 2 demonstrates that the combination of CUDA Graph and JIT Compiler achieves a notable
speed-up, averaging 5.43, without sacrificing accuracy. The highest speed-up observed is 9.07,
achieved in the KdV example. Although the pairing of AMP and CUDA Graph enhances speed-up in
some examples, it introduces greater error. Our findings also show that TensorFlow’s basic implemen-
tation outperforms PyTorch’s (with an average speed-up of 0.74 for naive PyTorch), emphasizing the
efficacy of static graphs. In Table 1, we present the average speed-up of our implemented examples
against both TensorFlow and naive PyTorch. The results indicate that, aside from the CUDA Graph,
other acceleration methods alone might not offer significant improvements in training speed.

3.2 Assessing the Impact of Batch Size and Number Trainable Parameters

In this subsection, we examine how variations in batch sizes and the number of trainable parameters
impact the efficiency of a model utilizing CUDA Graph. We focus on simulating three-dimensional
physiological blood flow within a realistic intracranial aneurysm (ICA) model, based on the 3D
Navier-Stokes equation. The dataset contains 29 million data points across spatial and temporal
domains for five solutions. In this example, given dynamic batches and random sampling in each
iteration, we only script the PDE function for JIT compilation. For additional details about the
example, readers are directed to Supplementary Materials Section E and the original papers [20, 21].

1For examples in section 3.1, we refer to implementations from github.com/maziarraissi/PINNs, and for the
example in section 3.2, we use the implementation from github.com/maziarraissi/HFM.
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Figure 2: Each subplot corresponds to a distinct problem, with its iteration count displayed at the
top. The logarithmic x-axis denotes the speed-up factor w.r.t TF1, and the y-axis illustrates the mean
relative error. The plots reveal that using CUDA Graph with JIT Compiler can enhance speed without
elevating the error. In contrast, combining CUDA Graph with AMP results in a higher mean error.
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Figure 3: The left plot illustrates how the efficiency gains from using CUDA Graph diminish as the
batch size increases. The right plot shows that varying the number of trainable parameters—achieved
by changing the number of layers in the neural network—does not significantly affect gain perfor-
mance across different configurations. The y-axis uses a log scale.

We again evaluate speed-up metrics under different configurations. First, keeping all attributes
constant except batch size, the efficiency of CUDA Graph decreases as batch size grows, as seen
in Figure 3’s left plot. Using CUDA Graph reduces the CPU overheads more effectively when
processing smaller batches. Next, with a fixed batch size of 8192 and varying neural network layers,
performance is consistent across configurations (Figure 3 right plot). Changes in the total number
of trainable parameters affect all methods similarly, but only CUDA Graph’s performance notably
varies with batch size changes. Thus, based on our results, for large datasets and dynamic batches,
the JIT compiler alone is optimal. All configurations tested in PyTorch outperformed the original
TensorFlow implementation. This could be attributed to our minor changes in the data loaders.

4 Conclusions and Limitations

In our package, we sought to boost execution speed using PyTorch APIs. Acceleration varies based on
the problem and batch size, with potential speed enhancements up to 9x for static batches. However,
current compilation APIs don’t consistently enhance performance, especially for larger batches,
highlighting a need for more efficient PyTorch compilers. Though PyTorch 2.0 [26] introduced a
new compilation function, it doesn’t support higher-order gradients, making it unsuitable for our
use. Additionally, PyTorch’s new experimental XLA compiler (used in TensorFlow [25]) wasn’t
incorporated due to GPU compatibility issues. We believe our package will be valuable for research
purposes, and we plan to incorporate these compilers in future iterations of our package.
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Figure 4: A simplified config file and user-defined functions for the continuous forward Burgers’
equation are provided as an example. User should define a config file and function that enable the
package to read the data and calculate PDE.
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Figure 5: Total elapsed time per iteration in the example from Section 3.2. The plot illustrates that
with a smaller batch size (512), CPU processing time significantly exceeds GPU time, suggesting
CPU overhead as a primary bottleneck. CUDA Graph effectively reduces this overhead, enhancing
training efficiency. Conversely, with larger batch sizes, CPU and GPU times are comparable, thus
diminishing the impact of CPU overhead reduction on overall duration.

A Appendix

This document supplements the main paper as follows:

1. More details about the PINNs-Torch Workflow (supplements Section 2.2).

2. Insights into relative errors and mean squared errors used for training and testing for each
problem (supplements Section 3).

3. More details explaining the limited performance of CUDA Graph with larger batch sizes
(supplements Section 3.2).

4. Extended details, including problem setup, relative errors, and speed-ups, on the examples
tested with our package (supplements Section 3).

B PINNs-Torch Workflow

Users need to create a config file that Hydra interprets, subsequently initializing the appropriate
classes. They also have to define functions for data retrieval and PDE specifications. Figure 4
illustrates a simplified example of such a file and the user-defined functions. The package uses these
definitions to solve the PDE.
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C The Effect of CUDA Graph

Figure 5 shows the results of the elapsed time per iteration for different batch sizes in naive PyTorch
and PyTorch accelerated with CUDA Graph. With large batches, the CPU and GPU contribute
similarly to total execution time, making CPU optimization less critical. In contrast, smaller batches
see higher CPU overhead, outpacing GPU runtime and causing GPU idleness. This issue is most
acute at very small batch sizes, where CPU overhead significantly affects overall performance. CUDA
Graph is designed to minimize this CPU overhead [12].

D Errors

Mean Squared Error and Sum Squared Error. In this paper, we introduce a unified notation,
Err, to represent error measures which could be either the mean squared error (MSE) or the sum
squared error (SSE). The specific interpretations of Err are as follows: Err0 signifies the error in the
initial condition, Errb denotes the error related to the boundary condition, Errc highlights the error
in collection points, Errs captures the error in the sampled exact and predicted solutions, and Erri
indicates the error at the time step i.

Relative Errors. To compute the errors between the predicted and exact solutions, we employ the
relative L2-norm:

∥upred − utarget∥2
∥utarget∥2

For additional variables trained in the inverse problem, we utilize:

|λpred − λtarget|
|λtarget|

E Examples

In this section, we provide a brief overview of the examples discussed in our main paper. We strongly
encourage readers to consult the original paper [19] for comprehensive details on the first 8 examples
and the original paper [20, 21] for the 3D Navier-Stokes equation that was implemented in section
3.2.

Continuous Forward Schrodinger Equation. Following the setting introduced in [19], the nonlin-
ear Schrodinger equation is described as:

iht + 0.5hxx + |h|2h = 0,

h(0, x) = 2sech(x),
h(t,−5) = h(t, 5),

hx(t,−5) = hx(t, 5),

where x ∈ [−5, 5], t ∈ [0, π/2], and the function h(t, x) represents the complex solution. By setting
a complex-valued neural network foundation on h(t, x) and considering u as the real segment of h
and v as its imaginary segment, our foundation on h(t, x) can be expressed as [u(t, x), v(t, x)]. Table
2 summarizes the problem setup for this equation.

The prediction error from each code is assessed against the test data for this issue, using the relative
L2-norm as the metric. Table 3 displays the relative L2-norm errors for h(t, x), v(t, x), u(t, x), along
with the mean error referenced in the main paper.

Continuous Inverse Navier-Stokes Equation. The 2D nonlinear Navier-Stokes equation is articu-
lated as:

ut + λ1(uux + vuy) = −px + λ2(uxx + uyy),

vt + λ1(uvx + vvy) = −py + λ2(vxx + vyy),
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Table 2: The problem setup for continuous forward Schrodinger equation.
Continuous Forward Schrodinger Equation

PDE equations
fu = ut + 0.5vxx + v(u2 + v2),

fv = vt + 0.5uxx + u(u2 + v2)

Initial condition
u(0, x) = 2sech(x),

v(0, x) = 0

Periodic boundary conditions

u(t,−5) = u(t, 5),

v(t,−5) = v(t, 5),

ux(t,−5) = ux(t, 5),

vx(t,−5) = vx(t, 5)

The output of net [u(t, x), v(t, x)]

Layers of net [2] + 4× [100] + [2]

Sample count from collection points 20000

Sample count from the initial condition 50

Sample count from boundary conditions 50

Loss function MSE0 + MSEb + MSEc

Table 3: Comparison of different methods in terms of individual errors, mean error, and speed-up
factor for continuous forward Schrodinger equation.

Method Relative Errors Mean Relative Error Speed-up
h(t, x) v(t, x) u(t, x)

Original Code (TF1) 0.017 0.104 0.064 0.061 1
PyTorch 0.024 0.102 0.064 0.064 1.10
AMP 0.022 0.097 0.061 0.060 1.25
JIT 0.018 0.098 0.059 0.058 0.84
CUDAGraph 0.022 0.110 0.063 0.065 1.69
CUDAGraph + AMP 0.124 0.735 0.501 0.453 2.90
CUDAGraph + JIT 0.016 0.095 0.056 0.056 1.70

Table 4: The problem setup for the continuous inverse Navier-Stokes equation.
Continuous Inverse Navier-Stokes Equation

PDE equations
f = ut + λ1(uux + vuy) + px − λ2(uxx + uyy),

g = vt + λ1(uvx + vvy) + py − λ2(vxx + vyy)

Assumptions
u = ψy,

v = −ψx

The output of net [ψ(t, x, y), p(t, x, y)]

Layers of net [3] + 8× [20] + [2]

Sample count from collection points 5000∗

Sample count from solutions 5000∗

Loss function SSEs + SSEc

*Same points used for collocation and solutions.
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Table 5: Comparison of different methods in terms of individual errors, mean error, and speed-up
factor for continuous inverse Navier-Stokes equation.

Method Relative Errors Mean Relative Error Speed-up
v(t, x) u(t, x) λ1 λ2

Original Code (TF1) 0.018 0.009 0.002 0.054 0.021 1
PyTorch 0.024 0.009 0.002 0.062 0.024 1.11
AMP 0.023 0.007 0.001 0.033 0.016 1.04
JIT 0.021 0.007 0.002 0.049 0.020 1.53
CUDAGraph 0.025 0.008 0.001 0.051 0.021 4.30
CUDAGraph + AMP 0.052 0.018 0.009 0.106 0.046 5.36
CUDAGraph + JIT 0.021 0.007 0.002 0.059 0.022 4.44

Table 6: The problem setup for discrete forward Allen-Cahn equation.
Discrete Forward AC Equation

PDE equations fn+cj = 5.0un+cj − 5.0(un+cj )3 + 0.0001un+cj
xx

Periodic boundary conditions
u(t,−1) = u(t, 1),

ux(t,−1) = ux(t, 1)

The output of net [un+c1(x), . . . , un+cq (x), un+1(x)]

Layers of net [1] + 4× [200] + [101]

The number of stages (q) 100

Sample count from collection points at t0 200∗

Sample count from solutions at t0 200∗

t0 → t1 0.1 → 0.9

Loss function SSE0
s + SSE0

c + SSE1
b

*Same points used for collocation and solutions.

Here, u(t, x, y) represents the x-component of the velocity field, v(t, x, y) signifies the y-component,
and p(t, x, y) indicates the pressure. The unknown parameters are denoted by λ = (λ1, λ2). Depend-
ing on the specific problem, we also incorporate the following equations:

0 = ux + vy,

u = ψy,

v = −ψx, (1)

We then approximate [ψ(t, x, y), p(t, x, y)] using a neural network with dual outputs. This assumption,
combined with equations (1), gives rise to a physics-informed neural network [f(t, x, y), g(t, x, y)].
Table 4 summarizes the problem setup.

The prediction discrepancies from each code are evaluated against the test dataset. Table 5 lists
the relative L2-norm errors for u(t, x) and v(t, x), as well as the relative errors for λ1 and λ2,
complemented by the average error as mentioned in the primary paper.

Discrete Forward Allen-Cahn Equation. The non-linear AC equation can be expressed as:

ut − 0.0001uxx + 5u3 − 5u = 0,

u(0, x) = x2 cos(πx),

u(t,−1) = u(t, 1),

ux(t,−1) = ux(t, 1),

where x ∈ [−1, 1], t ∈ [0, 1]. Due to the fact that this problem is discrete, we follow terminology
from [19, 7] for defining Runge–Kutta methods with q stages. Thus, the output of the neural network

9



Table 7: The problem setup for discrete inverse Korteweg–de Vries equation.
Discrete Inverse KdV Equation

PDE equations fn+cj = −λ1un+cjun+cj
x − λ2u

n+cj
xxx

The output of net [un+c1(x), . . . , un+cq (x)]

Layers of net [1] + 3× [50] + [50]

The number of stages (q) 50

Sample count from solutions at t0 199∗

Sample count from collection points at t0 199∗

Sample count from solutions at t1 201∗

Sample count from collection points at t1 201∗

t0 → t1 0.2 → 0.8

Loss function SSE0
s + SSE0

c + SSE1
s + SSE1

c

*Same points used for collocation and solutions.

Table 8: Comparison of different methods in terms of individual errors, mean error, and speed-up
factor for discrete forward Allen-Cahn equation.

Method Relative Error Mean Relative Error Speed-up
u(t, x)

Original Code (TF1) 0.047 0.047 1
PyTorch 0.106 0.106 0.51
AMP 0.027 0.027 0.48
JIT 0.067 0.067 0.59
CUDAGraph 0.075 0.075 5.43
CUDAGraph + AMP 0.150 0.150 4.27
CUDAGraph + JIT 0.135 0.135 5.55

for this problem is:

[un+c1(x), . . . , un+cq (x), un+1(x)]

In this context, un+cj = u(tn + cj∆t, x) for j = 1, . . . , q represents the information at time-step tn

and un+1 represent the prediction at time-step tn+1. Table 6 summarizes the problem setup for this
equation. In this specific instance, we selectively extract data from the precise solution at t0 = 0.1,
with the objective of forecasting the solution at t1 = 0.9. This is achieved by employing a solitary
time-step of magnitude ∆t = 0.8. Table 8 displays L2-norm errors for u(x) at t1.

Discrete Inverse Korteweg–de Vries Equation. The non-linear KdV equation can be expressed
as:

ut + λ1uux + λ2uxxx = 0

We employ Runge–Kutta methods with q stages to learn the parameters λ = (λ1, λ2) of the KdV
equation. The network’s output in this problem is represented as:

[un+c1(x), . . . , un+cq (x)]

where un+cj = u(tn + cj∆t, x) for j = 1, . . . , q indicate the data at time-step tn. We sample two
solution snapshots at times tn = 0.2 and tn+1 = 0.8. The problem setup is summarized in Table7.
Also, Table 9 presents the relative errors for λ1 and λ2.

Continuous Forward Burgers’ Equation. The Burgers’ equation is given by:

ut + uux − (0.01/π)uxx = 0,

10



Table 9: Comparison of different methods in terms of individual errors, mean error, and speed-up
factor for discrete inverse Korteweg–de Vries equation.

Method Relative Errors Mean Relative Error Speed-up
λ1 λ2

Original Code (TF1) 0.003 0.0005 0.002 1
PyTorch 0.001 0.006 0.004 0.88
AMP 0.001 0.005 0.003 1.02
JIT 0.001 0.006 0.004 0.89
CUDAGraph 0.001 0.006 0.004 8.75
CUDAGraph + AMP 0.003 0.008 0.005 8.79
CUDAGraph + JIT 0.001 0.006 0.004 9.07

Table 10: The problem setup for continuous forward Burgers’ equation.
Continuous Forward Burgers’ Equation
PDE equations f = ut + uux − (0.01/π)uxx

Initial conditions u(0, x) = − sin(πx)

Dirichlet boundary conditions u(t,−1) = u(t, 1) = 0

The output of net [u(t, x)]

Layers of net [2] + 8× [20] + [1]

Sample count from collection points 10000

Sample count from the initial condition 50

Sample count from boundary conditions 50

Loss function MSE0 + MSEb + MSEc

where x ∈ [−1, 1], t ∈ [0, 1]. The initial and boundary conditions are:

u(0, x) = − sin(πx),

u(t,−1) = 0,

u(t, 1) = 0.

In this problem, our goal is to find the solution u(t, x). The problem setup is summarized in Table 10,
and Table 11 presents the relative error for u(t, x).

Continuous Inverse Burgers’ Equation. In this scenario, we are dealing with the equation:

ut + λ1uux − λ2uxx = 0.

Table 11: Comparison of different methods in terms of individual errors, mean error, and speed-up
factor for continuous forward Burgers’ equation.

Method Relative Error Mean Relative Error Speed-up
u(t, x)

Original Code (TF1) 0.045 0.045 1
PyTorch 0.029 0.029 0.56
AMP 0.025 0.025 0.52
JIT 0.024 0.024 0.59
CUDAGraph 0.066 0.066 3.79
CUDAGraph + AMP 0.252 0.252 3.47
CUDAGraph + JIT 0.047 0.047 3.76
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Table 12: The problem setup for continuous inverse Burgers’ equation.
Continuous Inverse Burgers’ Equation
PDE equations f = ut + λ1uux − λ2uxx

The output of net [u(t, x)]

Layers of net [2] + 8× [20] + [1]

Sample count from collection points 2000∗

Sample count from solutions 2000∗

Loss function MSEs + MSEc

*Same points used for collocation and solutions.

Table 13: Comparison of different methods in terms of individual errors, mean error, and speed-up
factor for continuous inverse Burgers’ equation.

Method Relative Errors Mean Relative Error Speed-up
λ1 λ2

Original Code (TF1) 0.003 0.196 0.100 1
PyTorch 0.004 0.174 0.089 0.79
AMP 0.006 0.202 0.104 0.63
JIT 0.003 0.178 0.091 0.66
CUDAGraph 0.004 0.172 0.088 5.65
CUDAGraph + AMP 0.013 0.572 0.292 4.16
CUDAGraph + JIT 0.003 0.176 0.090 5.94

Our objective is twofold: to predict the complete solution denoted as u(t, x), and to estimate the
unknown parameters λ = (λ1, λ2). You can find the problem setup details in Table 12, while Table
13 presents the relative errors for u(t, x), λ1, and λ2.

Discrete Forward Burgers’ Equation. In this problem, we gather data from time step t1 = 0.1
and aim to predict solutions at time t2 = 0.9 using Runge-Kutta methods with q stages. The equation
is defined as:

fn+cj = ut + un+cjun+cj
x − (0.01/π)un+cj

xx

where un represents the information at time-step tn. The specific configuration of the problem is
available in Table 15, and you can also refer to Table 14 for the relative errors concerning u(t, x).

Table 14: Comparison of different methods in terms of individual errors, mean error, and speed-up
factor for discrete forward Burgers’ equation.

Method Relative Error Mean Relative Error Speed-up
u(t, x)

Original Code (TF1) 0.008 0.008 1
PyTorch 0.010 0.010 0.67
AMP 0.009 0.009 0.49
JIT 0.024 0.024 0.53
CUDAGraph 0.009 0.009 5.52
CUDAGraph + AMP 0.016 0.016 4.11
CUDAGraph + JIT 0.010 0.010 5.78

12



Table 15: The problem setup for discrete forward Burgers’ equation.
Discrete Forward Burgers’ Equation

PDE equations fn+cj = ut + un+cjun+cj
x − (0.01/π)un+cj

xx

Dirichlet boundary conditions u(t,−1) = u(t, 1) = 0

The output of net [un+c1(x), . . . , un+cq (x), un+1(x)]

Layers of net [1] + 3× [50] + [501]

The number of stages (q) 500

Sample count from collection points at t0 250∗

Sample count from solutions at t0 250∗

t0 → t1 0.1 → 0.9

Loss function SSE0
s + SSE0

c + SSE1
b

*Same points used for collocation and solutions.

Table 16: Comparison of different methods in terms of individual errors, mean error, and speed-up
factor for discrete inverse Burgers’ equation.

Method Error Mean Error Speed-up
λ1 λ2

Original Code (TF1) 0.003 0.239 0.121 1
PyTorch 0.003 0.273 0.138 0.56
AMP 0.003 0.273 0.138 0.50
JIT 0.006 0.278 0.142 0.61
CUDAGraph 0.003 0.276 0.140 7.16
CUDAGraph + AMP 0.005 0.404 0.205 5.55
CUDAGraph + JIT 0.003 0.273 0.138 7.23

Discrete Inverse Burgers’ Equation. Much like the discrete forward Burgers’ equation, we employ
Runge-Kutta methods with q stages. However, in this instance, the equation is formulated as:

fn+cj = ut + λ1u
n+cjun+cj

x − λ2u
n+cj
xx

The aim is to predict the unknown variables of λ1 and λ2. Data are randomly sampled from t = 0.1
and t = 0.9. You can refer to Table 17 for the problem setup details and Table 16 for the associated
relative errors.

Continuous Forward 3D Navier-Stokes Equation. In this example, the fluid’s dynamics are
represented by the non-dimensional Navier-Stokes and continuity equations:

ct + ucx + vcy + wcz = Pec−1(cxx + cyy + czz),

ut + uux + vuy + wuz = −px + Re−1(uxx + uyy + uzz),

vt + uvx + vvy + wvz = −py + Re−1(vxx + vyy + vzz),

wt + uwx + vwy + wwz = −pz + Re−1(wxx + wyy + wzz),

ux + vy + wz = 0.

This describes the development of the normalized concentration c(t, x, y, z) in a passive scalar carried
by an incompressible Newtonian fluid. The velocity components are represented by u = (u, v, w),
and p denotes pressure. See Table 18 for the original problem setup. We adjusted the batch sizes
for collection points and solutions, and modified the number of hidden layers to alter trainable
parameters.
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Table 17: The problem setup for discrete inverse Burgers’ equation.
Discrete Inverse Burgers’ Equation

PDE equations fn+cj = ut + λ1u
n+cjun+cj

x − λ2u
n+cj
xx

The output of net [un+c1(x), . . . , un+cq−1(x), un+cq (x)]

Layers of net [1] + 4× [50] + [81]

The number of stages (q) 81

Sample count from collection points at t0 199∗

Sample count from solutions at t0 199∗

Sample count from collection points at t1 201∗

Sample count from solutions at t1 201∗

t0 → t1 0.1 → 0.9

Loss function SSE0
s + SSE0

c + SSE1
s + SSE1

c

*Same points used for collocation and solutions at each time step.

Table 18: The problem setup for continuous forward 3D Navier Stokes equation.
Continuous Forward 3D NS

PDE equations

e1 =ct + (ucx + vcy + wcz)

− (1.0/Pec)(cxx+ cyy + czz)

e2 =ut + (uux + vuy + wuz) + px
− (1.0/Rey)(uxx+ uyy + uzz)

e3 =vt + (uvx + vvy + wvz) + py
− (1.0/Rey)(vxx+ vyy + vzz)

e4 =wt + (uwx + vwy + wwz) + pz
− (1.0/Rey)(wxx+ wyy + wzz)

e5 =ux + vy + wz

The output of net
[c(t, x, y, z), u(t, x, y, z), v(t, x, y, z),

w(t, x, y, z), p(t, x, y, z)]

Layers of net [4] + 10× [250] + [5]

Batch size of collection points 10000

Batch size of solutions in c(t, x, y, z) 10000

Loss function MSEs + MSEc
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