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ABSTRACT

Nash Learning from Human Feedback (NLHF) is a game-theoretic framework
for aligning large language models (LLMs) with human preferences by modeling
learning as a two-player zero-sum game. When the payoff is defined by the true
underlying preference, the framework guarantees desirable alignment properties.
However, the ground-truth preference matrix is often unavailable in practice due
to limited or noisy data, which substantially constrains the effectiveness of this
game-theoretic approach to LLM alignment. In this paper, we systematically study
what payoff based on the pairwise human preferences can yield desirable align-
ment properties. We establish necessary and sufficient conditions for Condorcet
consistency, diversity through mixed strategies, and Smith consistency. These
results provide a theoretical foundation for the robustness of game-theoretic LLM
alignment. Further, we show the impossibility of preference matching—i.e., no
smooth and learnable mappings of pairwise preferences can guarantee a unique
Nash equilibrium that matches a target policy, even under standard assumptions
like the Bradley-Terry-Luce model. This result highlights a fundamental limitation
of game-theoretic LLM alignment.

1 INTRODUCTION

Large language models (LLMs) such as OpenAI-o3 (OpenAI, 2025) and DeepSeek-R1 (DeepSeek-AI
et al., 2025) have demonstrated impressive capabilities across a wide range of domains, including
code generation, data analysis, elementary mathematics, and reasoning (Hurst et al., 2024; Anthropic,
2024; Chowdhery et al., 2023; Touvron et al., 2023; Ji et al., 2025). These models are increasingly
being used to tackle previously unsolved mathematical problems, drive scientific and algorithmic
discoveries, optimize complex codebases, and support decision-making processes that were once
considered unlikely to be automated in the near future (Bubeck et al., 2023; Eloundou et al., 2024;
Novikov et al., 2025).

A key factor behind the popularity and effectiveness of LLMs is alignment: the process by which
models learn to interact with human users and accommodate diverse human opinions and values by
aligning their outputs with human preferences (Christiano et al., 2017). The traditional method for
alignment, reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022; Casper et al.,
2023; Dong et al., 2024), typically begins by training a reward model on preference data collected
from human labelers, often using the Bradley-Terry-Luce (BTL) model (Bradley and Terry, 1952;
Luce, 2012),

P(y ≻ y′ | x) = exp(r(x, y))

exp(r(x, y)) + exp(r(x, y′))
, (1.1)

where r(x, y) is the reward function and P(y ≻ y′|x) is pairwise human preference, i.e., the fraction
of individuals who prefer y over y′ under prompt x. In this framework, a higher scalar score assigned
by the reward model to an LLM-generated response indicates a stronger preference by human labelers.
The LLM is then fine-tuned through maximizing the reward to produce responses that are more
likely to align with these preferences. However, Munos et al. (2024) pointed out that the reward
model cannot deal with preferences with cycles, and proposes an alternative alignment approach
called Nash learning from human feedback (NLHF). Unlike the reward-based methods, NLHF directly

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

uses preference data to train a preference model and formulates LLM finetuning as finding Nash
equilibrium in a two-player zero-sum game, also known as a von Neumann game (Myerson, 2013).
Specifically, for a given prompt x, the LLM’s policy π competes against an opposing policy π′ in
a pairwise preference contest, where the objective is to find a policy that maximizes its worst-case
preference score. Formally, NLHF solves the following min-max optimization problem:

max
π

min
π′

Ex∼ρ

[
Ey∼π(·|x),y′∼π′(·|x) [P (y ≻ y′ | x)]

]
,

where ρ is a given distribution over prompts. However, Munos et al. (2024) did not demonstrate the
advantages of using the preference as the payoff in the game.

Recently, criteria from both social choice theory (Conitzer et al., 2024; Dai and Fleisig, 2024;
Mishra, 2023) and principles related to diversity (Xiao et al., 2025; Chakraborty et al., 2024) have
been increasingly employed to scrutinize the alignment of LLM with human preference. Notably,
RLHF has been shown to fail both social choice theory considerations (Noothigattu et al., 2020;
Siththaranjan et al., 2024; Ge et al., 2024; Liu et al., 2025) and diversity considerations (Xiao et al.,
2025; Chakraborty et al., 2024). In contrast, NLHF has been proved to enjoy these desirable properties.
It is shown in Maura-Rivero et al. (2025) and Liu et al. (2025) that NLHF is Condorcet consistent (see
Axiom 3.1), meaning that the method always outputs the Condorcet winning response, a response
that beats every other alternative response in pairwise majority comparisons, whenever one exists.
Further, under a no-tie assumption (see Assumption 2.1), Liu et al. (2025) showed that NLHF is
Smith consistent (see Axiom 4.1), meaning that the method always outputs responses from the Smith
set, the smallest nonempty set of responses that pairwise dominate all alternatives outside the set.
Moreover, Liu et al. (2025) showed that when human preference is diverse, i.e., there does not exist
a single response that beat every other alternative, NLHF avoids collapsing to a single response by
adopting a mixed strategy.

In the above mentioned analysis, the payoff is defined by the true underlying preference. However,
the ground-truth preference model is often unavailable in practice and must be approximated from
preference data (Munos et al., 2024). Due to noisy data and limited optimization, the gap between the
practical preference model and the ground-truth preference significantly constrains the effectiveness
of this game-theoretic approach to LLM alignment. In this work, we systematically investigate the
fundamental limits of the game-theoretic LLM alignment framework by analyzing how variants of
payoff, for example, the preference model Pθ used in practice as an estimation of the true human
preference P , influence its ability to satisfy key alignment criteria. We consider the following general
game-theoretic alignment problem, involving a mapping applied to the preference denoted by Ψ:

max
π

min
π′

Ex∼ρ

[
Ey∼π(·|x)Ey′∼π′(·|x) [Ψ (P(y ≻ y′ | x))]

]
, (1.2)

where Ψ is allowed to be stochastic, providing a way to account for the uncertainty and noise inherent
in estimating human preferences. The general problem (1.2) encompasses a range of games. When
Ψ(t) = t is the identity mapping, the objective in Equation (1.2) is equivalent to the standard NLHF
objective. When Ψ(P) = Pθ, the objective reduces to the one that is practically used in NLHF. When
Ψ(t) = log(t/(1 − t)) and the preference is generated by a BTL model, Equation (1.2) recovers
the standard RLHF objective. It is worth noting that a similar formalism for non game-theoretic
approaches has been proposed in Azar et al. (2024), which used an non-decreasing mapping to
process the preference.

We first examine two axioms for aligning LLMs with majority preference, Condorcet consistency
and Smith consistency, in Sections 3 and 4, respectively. We then analyze under what conditions
the solution to problem (1.2) satisfies these axioms. Our results show that these desirable properties
are insensitive to the exact value of the payoff, revealing the robustness of game-theoretic alignment
approaches. As a special case, we discover a natural generalization of RLHF objective that satisfy all
these desirable properties.

Second, we examine one axiom for aligning LLMs with diverse or minority preference, namely
preference matching, meaning that the model output exactly matches a target policy which fully
accounts for the diversity of human preference. Our findings suggest diversity can be ensured by
mixed strategies, but exactly matching a target is difficult for any game-theoretic alignment approach.
This reveals a fundamental limitation of game-theoretic alignment approaches.
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1.1 SUMMARY OF CONTRIBUTIONS

We summarize our contributions as follows, with mathematical results provided in Table 1:

• We show that Condorcet consistency is insensitive to the exact value of the payoff (Theorem
3.1), revealing the robustness of game-theoretic alignment approaches. Beyond this, we also
derive the sufficient and necessary condition to output a mixed strategy.

• We show that Smith consistency can be ensured by further maintaining the symmetry of
the game (Theorem 4.2). Moreover, Smith consistent methods automatically preserve the
diversity in human preferences by adopting mixed strategies (Corollary 4.2).

• We show that preserving the diversity in human preference strictly, in the sense of preference
matching, is impossible in general (Theorem 5.1). This reveals a fundamental limitation of
game-theoretic alignment approaches.

• Technical Contribution: We develop novel proof techniques that can tackle a general
non-symmetric game directly, instead of relying crucially on the symmetric nature of NLHF
as in Liu et al. (2025).

Table 1: Summary of our mathematical results: the necessary and sufficient conditions on continuous
Ψ to guarantee certain desirable alignment axioms.

Axiom 3.1: Condorcet consistency Ψ(t) ⩾ Ψ(1/2) ,∀ 1/2 ⩽ t ⩽ 1 and Ψ(t) < Ψ(1/2) , ∀ 0 ⩽ t < 1/2
- Condorcet consistency & Mixed Ψ(t) + Ψ(1− t) ⩾ 2Ψ(1/2) , ∀ 1/2 ⩽ t ⩽ 1 and Ψ(t) < Ψ(1/2) , ∀ 0 ⩽ t < 1/2

Axiom 4.1: Smith consistency Ψ(t) + Ψ(1− t) = 2Ψ(1/2) ,∀ 1/2 ⩽ t ⩽ 1 and Ψ(t) < Ψ(1/2) , ∀ 0 ⩽ t < 1/2

Axiom 5.1: Preference Matching No Ψ exists

1.2 RELATED WORKS

A general mapping Ψ was first introduced in Azar et al. (2024) to facilitate the analysis of traditional
non game-theoretic LLM alignment methodologies. Their objective function, called ΨPO, applies a
general mapping Ψ to the original human preference. In this way, they were able to treat RLHF and
DPO as special cases of ΨPO under BTL model and argue that these methods are prone to overfitting.
To avoid overfitting, they took Ψ to be identity and arrive at a new efficient algorithm called IPO.
Our problem (1.2) can be regarded as the analogy of ΨPO in the context of game-theoretic LLM
alignment. Another difference is that rather than focusing on statistical properties like overfitting, our
focus is on the alignment properties such as Smith consistency and preference matching. Moreover,
they restricted Ψ to be a non-decreasing map, while we allow Ψ to be arbitrary, even stochastic.

Condorcet consistency is one of the dominant concept in the theory of voting (Gehrlein, 2006;
Balinski and Laraki, 2010), and Smith consistency is its natural generalization (Shoham and Leyton-
Brown, 2008; Börgers, 2010). They have not been studied in the context of LLM alignment until
recently (Maura-Rivero et al., 2025; Liu et al., 2025). In Maura-Rivero et al. (2025), the authors
showed that NLHF with a selection probability that deals with ties is Condorcet consistent. Under a
no-tie assumption, Liu et al. (2025) showed that NLHF is Condorcet consistent and Smith consistent,
whereas RLHF is not unless the preference satisfies a BTL model. Further, the paper showed that
the probability that the preference satisfies a BTL model is vanishing under the impartial culture
assumption, highlighting a key advantage of the NLHF framework.

Several recent works also focus on aligning LLMs with the diverse human preference (Chakraborty
et al., 2024; Xiao et al., 2025; Liu et al., 2025). In Chakraborty et al. (2024), the authors introduced a
mixture model to account for the opinion of minority group and arrive at the MaxMin-RLHF method.
In Xiao et al. (2025), the authors introduced the concept of preference matching and develop the
PM-RLHF objective to pursue this goal. Liu et al. (2025) demonstrated that the original NLHF yields
a mixed strategy when no Condorcet winning response exists, whereas standard RLHF produces
a deterministic strategy, highlighting a potential advantage of NLHF in preserving the diversity of
human preferences.
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2 PRELIMINARIES

Consider a general mapping Ψ : [0, 1] → R. We apply Ψ to the preference and study the max-min
problem (1.2) with this generalized payoff. Any solution π employed by the first player at the Nash
equilibrium,

π ∈ argmax
π

min
π′

Ex∼ρ

[
Ey∼π(·|x)Ey′∼π′(·|x) [Ψ (P(y ≻ y′ | x))]

]
, (2.1)

is called a Nash solution to the problem (1.2). The Nash solution is the policy which fully aligned
LLMs will perform. Note that the set of Nash solutions remain the same after an overall shift of
payoff, that is, changing Ψ to Ψ+ C for any constant C will not affect the problem. The original
NLHF objective (Munos et al., 2024) corresponds to the special case where Ψ(t) = t, equivalent to
Ψ(t) = t− 1/2, and the resulting game is symmetric (Duersch et al., 2012), meaning that the two
players are the same. However, for an arbitrary mapping Ψ, the game is usually not symmetric, and
we only focus on the Nash solution employed by the first player.

Given a prompt x, we consider the set of all possible responses generated by the LLM: {y1, . . . , yn},
where n is the total number of possible responses. Without any loss of generality, we drop the
dependence on the prompt x from now on. For any two distinct responses y and y′, recall that
P(y ≻ y′) denotes the preference of y over y′, defined as the expected proportion of individuals who
prefer y over y′. By definition, human preference satisfies the condition P(y ≻ y′) + P(y′ ≻ y) = 1
and naturally we let P(y ≻ y) = 1/2 (Munos et al., 2024). For any distinct pair of responses y and
y′, we say that y beats y′ if P(y ≻ y′) > 1/2. Additionally, following Liu et al. (2025), we adopt the
No-Tie assumption throughout this paper.
Assumption 2.1 (No-Tie). For any distinct responses y and y′, we assume that P(y ≻ y′) ̸= 1/2.

This assumption is both minimal and practically reasonable. First, if the number of labelers is odd,
it automatically holds. Even in cases where a tie occurs, it can always be resolved through a more
precise comparison.

Notation. For any set A, we denote its cardinality by |A|. For any n ∈ N+, we define [n] :=
{1, . . . , n}. We use δij := 1{i = j} for 1 ⩽ i, j ⩽ n. We represent high-dimensional vectors using
bold symbols. Any policy π over the set of possible responses {y1, . . . , yn} can be identified with a
vector in Rn, where each entry πi corresponds to the probability assigned to yi for i ∈ [n]. We then
define the support of a policy π as supp(π) := {yi | πi > 0 , i ∈ [n]}. We write π > 0 if πi > 0 for
all i ∈ [n], and similarly, π ⩾ 0 if πi ⩾ 0 for all i ∈ [n].

3 CONDORCET CONSISTENCY

In this section, we examine Condorcet consistency—a desirable property for LLM alignment inspired
by social choice theory—within the generalized game-theoretic LLM fine-tuning framework (1.2).
We begin by defining the Condorcet winning response and Condorcet consistency. We then present
Theorem 3.1, which characterizes the necessary and sufficient conditions on the mapping Ψ to
guarantee Condorcet consistency. Next, we examine the conditions under which Ψ preserves human
preference diversity when no Condorcet winner exists and introduce Theorem 3.2. Finally, we discuss
the continuity assumption underlying Theorem 3.2.

Following Liu et al. (2025), a response that is preferred over all others in pairwise comparisons by
the preference model is referred to as the Condorcet winning response.
Definition 3.1 (Condorcet Winning Response). A response y⋆ is called a Condorcet winning response
if P(y⋆ ≻ y) > 1/2 for all y ̸= y⋆.

It is clear that there can be at most one Condorcet winning response. When such a response exists, a
natural requirement for LLM alignment is that this response should be the output. This property is
known as Condorcet consistency.
Axiom 3.1 (Condorcet Consistency (Gehrlein, 2006)). Problem (1.2) is Condorcet consistent if it
satisfies the following conditional property: If there exists a Condorcet winning response, the Nash
solution to (1.2) is unique and corresponds to this Condorcet winning response.
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Liu et al. (2025) and Maura-Rivero et al. (2025) showed that the original NLHF objective, which
corresponds to the case where Ψ(·) is identity, is Condorcet consistent. In this paper, we proceed
further and investigate the following question:

Which forms of Ψ ensure Condorcet consistency?

We answer this question in Theorem 3.1. The proof is provided in Appendix B.

Theorem 3.1. Problem (1.2) is Condorcet consistent if and only if Ψ(·) satisfies{
Ψ(t) ⩾ Ψ(1/2) , 1 ⩾ t ⩾ 1/2

Ψ(t) < Ψ(1/2) , 1/2 > t ⩾ 0
. (3.1)

Note that this condition is much weaker than requiring Ψ to be increasing. It only demands that
Ψ maps any value greater than 1/2 to some value larger than Ψ(1/2), and any value less than 1/2
to some value smaller than Ψ(1/2). This implies that a wide range of mapping functions can be
used within the game-theoretic LLM alignment framework (1.2) to ensure Condorcet consistency. In
particular, we can view the estimation of the ground-truth preference model as Ψ(P(y ≻ y′)) in our
framework, namely, Pθ(y ≻ y′) = Ψ(P(y ≻ y′)). Enforcing the parameterized preference model to
satisfy Pθ(y ≻ y) = 1/2, our results show that as long as this estimation yields the correct pairwise
majority comparisons, the LLM alignment remains Condorcet consistent. This strongly highlights
the robustness of the game-theoretic LLM alignment approach in achieving Condorcet consistency,
summarized in the following corollary:

Corollary 3.2. Let P(y ≻ y′) be the ground truth preference model, and Pθ(y ≻ y′) be the
practically used preference model, which is estimated from data. We assume the approximation error
Pθ(y ≻ y′) − P(y ≻ y′) can be expressed as εθ(P(y ≻ y′)). Then, the practically used NLHF
framework with Pθ is Condorcet consistent if and only if εθ(P(y ≻ y′)) satisfies:{

εθ(P(y ≻ y′)) ⩾ 1/2− P(y ≻ y′) , 1/2 ⩽ P(y ≻ y′) ⩽ 1

εθ(P(y ≻ y′)) < 1/2− P(y ≻ y′) , 0 ⩽ P(y ≻ y′) < 1/2
. (3.2)

When a Condorcet winning response does not exist, human preferences are diverse and there is no
single response that is better than others. Therefore, in order to preserve the diversity inherent in
human preferences, it is natural to require the Nash solution not to collapse to a single response. This
motivation leads to the following characterization of diversity through mixed strategies.

Definition 3.3 (Mixed Strategies). A Nash solution π is called a mixed strategy if | supp(π)| > 1.

Liu et al. (2025) demonstrated that the original NLHF, which corresponds to the case where Ψ(·) is
identity, yields a mixed strategy when no Condorcet winning response exists. Assuming that problem
(1.2) is Condorcet consistent, we proceed further and investigate:

Which forms of Ψ lead to a mixed strategy in the absence of a Condorcet winning response?

We now focus on mappings Ψ that are continuous at 1/2, a condition commonly encountered in
practical learning setups. Under this mild assumption, we answer this question in Theorem 3.2 and
the proof is provided in Appendix C.

Theorem 3.2. Assume that the mapping Ψ(·) is continuous at 1/2. Assuming the Condorcet
consistency of problem (1.2), then any Nash solution is mixed when there is no Condorcet winning
response if and only if Ψ(·) satisfies

Ψ(t) + Ψ(1− t) ⩾ 2Ψ(1/2) ,∀ 0 ⩽ t ⩽ 1 and Ψ(t) < Ψ(1/2) ,∀ 0 ⩽ t < 1/2 . (3.3)

The first condition arises from the requirement of mixed strategies, while the second condition is a
reduction of the condition inherited from Theorem 3.1 under the assumption of Condorcet consistency
and the first condition.

Forms of payoff functions are harder to characterize when we relax the continuity assumption. The
following example investigates a special piece-wise constant mapping, which does not satisfy the
first condition in Theorem 3.2.
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Example 3.4. Let M− < Ψ(1/2) ⩽ M+ and take

Ψ(t) =


M− , 0 ⩽ t < 1/2

Ψ(1/2) , t = 1/2

M+ , 1/2 < t ⩽ 1

.

Then, any Nash solution is mixed when there is no Condorcet winning response.

The proof of Example 3.4 is deferred to Appendix D. This example implies that forms of payoff
functions are considerably richer when we relax the continuity assumption.

4 SMITH CONSISTENCY

In this section, we extend the discussion of Condorcet consistency to Smith consistency. First,
we define the Smith set and Smith consistency. Next, we present Theorem 4.2, which provides
the necessary and sufficient condition for the mapping Ψ to ensure Smith consistency. Finally, we
highlight that Smith-consistent methods inherently preserve the diversity present in human preferences
and discuss the continuity assumption in Theorem 4.2.

Condorcet consistency only ensures that the method captures the right response when there exists
a Condorcet winning response. In general, when there is no Condorcet winning response, we can
expect that there might be a set of responses satisfying a similar property, generalizing Definition 3.1.
Under Assumption 2.1, Liu et al. (2025) revealed a more detailed decomposition of the preference
structure. Specifically, the set of responses can be partitioned into distinct groups S1, . . . , Sk, where
every response in Si is preferred over all responses in Sj for i < j, summarized in the following
theorem.
Theorem 4.1 (Liu et al. (2025)). Under Assumption 2.1, the set of responses can be partitioned into
disjoint subsets S1, . . . , Sk such that:

1. Each Si either forms a Condorcet cycle or is a single response.

2. For any j > i, any response y ∈ Si and y′ ∈ Sj , P(y ≻ y′) > 1
2 .

Moreover, this decomposition is unique.

When |S1| = 1, the response in S1 is exactly the Condorcet winning response. Thus, S1 is the
generalization of Condorcet winning response, and is referred as the Condorcet winning set in Liu
et al. (2025). Traditionally, a subset with such property is known as the Smith set in the literature of
social choice theory (Shoham and Leyton-Brown, 2008). Here we choose to adopt the name Smith
set to distinguish with the concept of Condorcet winning response. Given this decomposition, it is
natural to desire that an aligned LLM adopts a strategy supported exclusively on the top group S1, as
any response outside S1 is strictly less preferred than any response inside S1. This desirable property
is referred to as Smith consistency:
Axiom 4.1 (Smith Consistency (Shoham and Leyton-Brown, 2008)). Problem (1.2) is Smith consistent
if the support of any Nash solution is contained in the Smith set S1.

Liu et al. (2025) showed that the original NLHF payoff, which corresponds to the case where
Ψ(t) = t, is Smith consistent. Here, we investigate this question for a general mapping Ψ:

Which forms of Ψ ensure Smith consistency?

Here, similar to Theorem 3.2, we answer this question in Theorem 4.2 for mappings that are
continuous at 1/2. The proof is provided in Appendix E.
Theorem 4.2. Suppose that the mapping Ψ(·) is continuous at 1/2, problem (1.2) is Smith consistent
if and only if Ψ(·) satisfies

Ψ(t) + Ψ(1− t) = 2Ψ(1/2) ,∀ t ∈ [0, 1] and Ψ(t) < Ψ(1/2) ,∀ 0 ⩽ t < 1/2 .

The first condition Ψ(t) + Ψ(1 − t) = 2Ψ(1/2) says nothing but the zero-sum game formed by
problem (1.2) is equivalent to a symmetric two-player zero-sum game1 (Duersch et al., 2012). By

1This can be seen by shifting the payoff by Ψ(1/2), which leaves the Nash solution unchanged.
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definition, Smith consistency implies Condorcet consistency because when there is a Condorcet
winning response, S1 is exactly the set whose only element is the Condorcet winning response. Thus,
the second condition is just a reduction of the condition in Theorem 3.1 under the first condition. It is
easy to see Ψ(t) = t satisfies these conditions, and thus our result generalize Theorem 3.6 in Liu et al.
(2025). More interestingly, Ψ(t) = log(t/(1− t)) also satisfies these conditions. This implies that

max
π

min
π′

Ex∼ρ

[
Ey∼π(·|x)Ey′∼π′(·|x)

[
log

(
P(y ≻ y′ | x)
P(y′ ≻ y | x)

)]]
,

which is a natural generalization of standard RLHF when human preferences do not satisfy BTL
model, is also Smith consistent.

The set of Ψ that ensures Smith consistency is quite broad. We can easily construct such a Ψ by first
defining Ψ(t) on [0, 1/2] to satisfy Ψ(t) < Ψ(1/2) for all t ∈ [0, 1/2), and then extending it to [0, 1]
by setting Ψ(t) = 2Ψ(1/2) − Ψ(1 − t) for all t ∈ (1/2, 1]. Moreover, as discussed in Section 3,
a practical preference model Pθ(y ≻ y′) can be seen as a mapping of the ground truth preference
via Ψ, i.e., Ψ(P(y ≻ y′)). Thus, the first condition in Theorem 4.2 requires the preference model
to satisfy Pθ(y ≻ y′) + Pθ(y

′ ≻ y) = 1, with Pθ(y ≻ y) = 1/2 enforced. We note that several
popular preference models (Munos et al., 2024; Jiang et al., 2023; Wu et al., 2024) do not satisfy
this condition. In contrast, the General Preference embedding Model (GPM) in (Zhang et al., 2025)
satisfies this condition, thus ensuring Smith consistency.

As any mapping satisfying the condition in Theorem 4.2 also satisfies the condition in Theorem 3.2,
we obtain the following corollary:

Corollary 4.2. Suppose that the mapping Ψ(·) is continuous at 1/2. Then if problem (1.2) is Smith
consistent, any Nash solution is also mixed.

This shows that when |S1| > 1, the Nash solution to problem (1.2) with any Ψ such that Smith
consistency holds will not only support on S1 but also be a mixed strategy on S1 without collapsing
to a single response. As a conclusion, a Smith consistent method can preserve the diversity inherent
in human preferences, at least partially.

Lastly, we discuss what happens if Ψ is not continuous at 1/2. Forms of mappings Ψ are considerably
richer and consequently harder to characterize when we relax the continuity assumption. The
following example shows that the piece-wise constant mapping in Example 3.4 also ensures Smith
consistency.

Example 4.3. Let M− < Ψ( 12 ) < M+, and we take

Ψ(t) =


M− 0 ⩽ t < 1/2

Ψ(1/2) t = 1/2

M+ 1/2 < t ⩽ 1

.

Then problem (1.2) is Smith consistent. The proof is provided in Appendix F.

5 PREFERENCE MATCHING

Having analyzed when an LLM aligns with majority preferences, we now turn to alignment with
diverse human preferences and the preservation of minority preferences. To this end, we introduce
and study preference matching, a property aimed at matching the full preference distribution and
thereby respecting minority preferences. Then, we establish a general impossibility result, as stated
in Theorem 5.1. Finally we apply this general result to problem (1.2), concluding that preference
matching is impossible.

Axiom 5.1 (Preference Matching (Xiao et al., 2025)). A policy is said to be a preference matching
policy, if for every prompt x and any pair of responses y, y′,

π(y | x) : π(y′ | x) = P(y ≻ y′ | x) : P(y′ ≻ y | x).

We say problem (1.2) is preference matching if it satisfies the following conditional property: If a
preference matching policy exists, then the Nash solution of (1.2) coincides with this policy.
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The underlying idea is that if human preference between y and y′ is, for example, in a 7:3 ratio,
then the LLM should not only learn to favor the majority response y but also preserve this ratio in
its outputs. However, a preference matching policy does not always exist. As shown by Xiao et al.
(2025), such a policy exist if and only if human preferences follow the BTL model2 specified in (1.1).
Thus, the Nash solution under this axiom should be

π∗(y | x) = exp (r(x, y))∑
y′ exp (r(x, y′))

, (5.1)

referred to as the preference matching policy.

It is easy to see that there exists a Condorcet winning response under BTL model. According to
Theorem 3.1, using preference Ψ(P(y ≻ y′ | x)) as payoff with Ψ(t) = t or Ψ(t) = log(t/(1− t))
will lead the Nash solution to collapse to a single response instead of matching with π∗. This shows
that both RLHF and NLHF do not account for the diversity inherent in human preferences from the
perspective of preference matching (Xiao et al., 2025; Liu et al., 2025).

To achieve alignment fully accounting for diversity, we would like to match the Nash solution with
the desired policy π∗. Here, we aim to explore the possibility of designing a new learnable payoff
matrix that aligns with the desired strategy in a game-theoretic framework for LLM alignment:

Which forms of Ψ ensure preference matching?

Although it is currently unknown how to generalize the notion of preference matching policy to a
general non-BTL preference, to maintain the generality of the discussion and drop the BTL model
assumption, we suppose there exists an ideal policy, denoted by π∗, which captures the diversity of
human preferences perfectly.

Given a prompt x, we consider the set of all possible responses generated by the LLM: {y1, . . . , yn}.
We further suppose that the policy π∗ has full support over these n responses, meaning π∗ > 0, as
we exclude responses not supported by π∗ from consideration. Then our goal is to construct a game,
represented by a payoff matrix {αij}ni,j=1, with its Nash solution the given policy π∗, i.e.,

π∗ = argmax
π

min
π′

n∑
i=1

n∑
j=1

αijπiπ
′
j .

To answer this question, we characterize the Nash solution under the given payoff matrix {αij}ni,j=1,
which is summarized by the following Karush–Kuhn–Tucker (KKT) conditions. The proof is deferred
to Appendix G.1.
Lemma 5.2 (KKT Conditions). Consider a game with payoff matrix {αij}ni,j=1. Then π∗ > 0 is a
Nash solution to the game if and only if there exists u∗ ∈ Rn with u∗ ⩾ 0 and

∑n
i=1 u

∗
i = 1, and

t∗ ∈ R such that the following KKT conditions hold:
∑n

i=1 π
∗
i αij − t∗ ⩽ 0 j = 1, · · · , n

u∗
j (
∑n

i=1 π
∗
i αij − t∗) = 0 j = 1, · · · , n∑n

j=1 αiju
∗
j = t∗ i = 1, · · · , n

.

According to Lemma 5.2, it is easy to verify that the payoff matrix

αij = π∗
i + π∗

j − δij ,∀ 1 ⩽ i, j ⩽ n , (5.2)

and the payoff matrix

αij = −
π∗
j

π∗
i

+ nδij ,∀ 1 ⩽ i, j ⩽ n , (5.3)

both guarantee that π∗ is a Nash solution (the details are provided in Appendix G.2). However, these
payoff matrices do not depend on the given policy π∗ in a reasonable way. The payoff matrix in
Equation (5.2) is symmetric, making it difficult to interpret. Even worse, it depends on the raw value

2Although the motivation of game-theoretic LLM alignment is to move beyond the BTL assumption and
accommodate general preference structures, its properties under BTL models are not fully clear.
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of π∗. In practice, π∗ is often only known up to a normalizing constant. For instance, the preference
matching policy (5.1) includes a normalizing constant in the denominator that involves summing
over n terms. This constant is hard to determine when n is large and unknown, as is often the case in
LLMs. The payoff matrix in Equation (5.3) faces a similar issue as it explicitly depends on n, which
is an extremely large and unknown value in practice.

In summary, the above two payoff matrices rely on information that is often unavailable in practice,
such as n and the raw value of π∗. What we can obtain in practice for the design of αij is the
preference information between two responses yi and yj , which we assume depends solely on the
ratio between π∗

i and π∗
j . When the preference satisfies the BTL model (1.1), this assumption is

justified by the fact that the preference between any two responses depends solely on the ratio of
the values assigned by their corresponding preference matching policies (5.1). From this practical
consideration, we assume that the payoff matrix satisfies the following assumptions:

Assumption 5.3. Given any π∗ > 0, the payoff matrix {αij}ni,j=1 satisfies the following conditions:

1. For all i ∈ [n], αii = C where C is a constant independent of π∗ and n. In other words,
the diagonal elements are the same constant.

2. For all i, j ∈ [n] with i ̸= j, αij = f
(

π∗
i

π∗
j

)
for some smooth function f that is independent

of π∗ and n. In other words, the off-diagonal elements depend on the ratio π∗
i

π∗
j

in the same

way for all pairs (i, j) with i ̸= j.

We emphasize that the above two assumptions are crucial for constructing a meaningful and practically
learnable payoff matrix. Furthermore, for effective alignment, the payoff matrix should not only
ensure π∗ to be a Nash solution, but π∗ must be the only Nash solution. The uniqueness requirement
excludes trivial payoff matrices such as αij = C, where every π∗ > 0 is a Nash solution.

Unfortunately, in Theorem 5.1, we prove that such a payoff matrix {αij}ni,j=1 does not exist generally.
The proof can be found in Appendix G.3.

Theorem 5.1 (Impossibility of Preference Matching for General Payoffs). There does not exist a
payoff matrix {αij}ni,j=1 satisfying Assumption 5.3 such that for any given π∗ > 0, the Nash solution
to the game is unique and equals to π∗.

Remark 5.4. If we relax Assumption 5.3 and allow the entries of the payoff matrix to depend on n,
then the design (5.3) is actually eligible for preference matching.

Theorem 5.1 implies that no simple mapping of the preference can yield a payoff that leads to
preference matching. As a special case of Theorem 5.1, under BTL model, the generalized game in
Equation (1.2) with a smooth mapping Ψ,

max
π

min
π′

Ex∼ρ

[
Ey∼π(·|x)Ey′∼π′(·|x) [Ψ (P(y ≻ y′ | x))]

]
,

cannot achieve preference matching. Therefore, we obtain the following corollary.

Corollary 5.5. Problem (1.2) with smooth mapping Ψ cannot achieve preference matching.

6 CONCLUSIONS

We have investigated several axioms motivated by social choice theory and diversity considerations
within the general game-theoretic LLM alignment framework (1.2), where the payoff is designed as a
mapping Ψ of the original preference. We have identified the necessary and sufficient conditions on Ψ
to guarantee Condorcet consistency and Smith consistency. These conditions allow for a considerably
broad class of choices for Ψ, demonstrating that these desirable alignment properties are not sensitive
to the exact values of the payoff, thereby providing a theoretical foundation for the robustness of
the game-theoretic LLM alignment approach. Additionally, we have examined conditions on Ψ that
ensure the resulting policy is a mixed strategy, preserving diversity in human preferences. Finally, we
have proved that achieving exact preference matching is impossible under the general game-theoretic
alignment framework with a smooth mapping, revealing a fundamental limitation of this approach.
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THE USE OF LLMS

The authors used LLMs only for proofreading, checking grammar, and correcting typos to improve
the readability of the paper.

A LIMITATIONS AND DISCUSSION

Our theoretical results rely on the no-tie assumption (Assumption 2.1), and relaxing this assumption
represents an interesting direction for future research. In addition, our findings suggest several promis-
ing directions for future research on LLM alignment. First, while we establish an impossibility result
for preference matching under the assumption that Ψ is smooth, it remains an open question whether
preference matching can be achieved when Ψ is merely continuous. Second, in practical settings,
regularization terms based on the reference model are often added to problem (1.2). Regularization
may be crucial for preference matching, for example, Xiao et al. (2025) modified the regularization
term in RLHF to achieve preference matching. Analyzing the alignment properties of game-theoretic
methods with such regularization is another interesting avenue for future work. Furthermore, how
to explicitly define a preference-matching policy for general preferences that do not satisfy the
BTL model, and how to develop alignment approaches capable of learning such a policy, remain
open problems. Finally, our results highlight that practical preference models must satisfy certain
anti-symmetry conditions to ensure Smith consistency—conditions that are not guaranteed by several
currently used models. Thus, designing preference model architectures that enforce anti-symmetry is
an important and interesting future direction.

B PROOF OF THEOREM 3.1

Notation. For simplicity, we denote Ψ(P(yi ≻ yj)) as Ψij for any 1 ⩽ i, j ⩽ n, and define the
payoff matrix as Ψ := {Ψij}1⩽i,j⩽n. We then define the total payoff by:

PΨ(π1,π2) :=

n∑
i=1

n∑
j=1

π1,iπ2,jΨij .

We denote by δi the policy supported solely on yi, i.e., supp(δi) = {yi}. The mixed policy
(δi1 + . . .+ δik)/k is then defined as the policy π such that

πi =

{
1/k , i ∈ {i1, · · · , ik}
0 , otherwise

,

for any subset {i1, . . . , ik} ⊆ [n].

Proof of Theorem 3.1. Without any loss of generality, we assume that y1 is the Condorcet winning
response. First, we show that a necessary condition that ensures the Condorcet consistency of problem
(1.2) is: {

Ψ(t) ⩾ Ψ(1/2) , 1 ⩾ t ⩾ 1/2

Ψ(t) < Ψ(1/2) , 0 ⩽ t < 1/2
. (B.1)

To show this, we examine the case where n = 2. For any 1 ⩾ t > 1/2, we consider the game with
the payoff in Table 2. By the definition of Condorcet consistency, all Nash equilibrium of this game
is of the form (δ1,π

⋆) for some π⋆.

Table 2: Payoff matrix with two responses {y1, y2}.
Ψ(P(y ≻ y′)) y′ = y1 y′ = y2

y = y1 Ψ(1/2) Ψ(t)
y = y2 Ψ(1− t) Ψ(1/2)
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Case 1. If Ψ(t) > Ψ(1/2), we have

π⋆ = argmin
π

PΨ(δ1,π) = argmin
π

{π1Ψ(1/2) + π2Ψ(t)} = δ1 .

Therefore, we have

Ψ(1/2) = PΨ(δ1, δ1) = max
π

PΨ(π, δ1) ⩾ PΨ(δ2, δ1) = Ψ21 = Ψ(1− t) ,

Ψ(1/2) = PΨ(δ1, δ1) = min
π

PΨ(δ1,π) ⩽ PΨ(δ1, δ2) = Ψ12 = Ψ(t) .

Hence, we have Ψ(1− t) ⩽ Ψ(1/2) < Ψ(t). If Ψ(1/2) = Ψ(1− t), notice that

PΨ(π, δ1) = π1Ψ(1/2) + π2Ψ(1− t) = Ψ(1/2) =⇒ δ2 ∈ argmax
π

PΨ(π, δ1) ,

PΨ(δ2,π) = π1Ψ(1− t) + π2Ψ(1/2) = Ψ(1/2) =⇒ δ1 ∈ argmin
π

PΨ(δ2,π) .

Therefore, (δ2, δ1) is also a Nash equilibrium, which causes a contradiction to the fact that problem
(1.2) is Condorcet consistent. Therefore, we have Ψ(t) > Ψ(1/2) > Ψ(1− t) for any 1 ⩾ t > 1/2.

Case 2. If Ψ(t) < Ψ(1/2), we have

π⋆ = argmin
π

PΨ(δ1,π) = argmin
π

{π1Ψ(1/2) + π2Ψ(t)} = δ2 .

However, notice that

Ψ(1/2) = PΨ(δ2, δ2) ⩽ max
π

PΨ(π, δ2) = PΨ(δ1, δ2) = Ψ(t) < Ψ(1/2) ,

which causes a contradiction.

Case 3. If Ψ(t) = Ψ(1/2). When Ψ(1− t) = Ψ(1/2), any (π1,π2) is a Nash equilibrium, which
causes a contradiction to the fact that problem (1.2) is Condorcet consistent. When Ψ(1 − t) >
Ψ(1/2), note that

PΨ(δ2,π) = π1Ψ(1− t) + π2Ψ(1/2) ⩾ Ψ(1/2) =⇒ δ2 ∈ argmin
π

PΨ(δ2,π) ,

PΨ(π, δ2) = π1Ψ(t) + π2Ψ(1/2) = Ψ(1/2) =⇒ δ2 ∈ argmax
π

PΨ(π, δ2) .

Therefore, (δ2, δ2) is a Nash equilibrium, which also causes a contradiction to the fact problem (1.2)
is Condorcet consistent. Hence, we have Ψ(1− t) < Ψ(1/2).

In summary, for any 1 ⩾ t > 1/2, we have Ψ(1 − t) < Ψ(1/2) ⩽ Ψ(t). Hence, (B.1) holds if
problem (1.2) is Condorcet consistent. Next, we prove that (B.1) is also sufficient for the Condorcet
consistency of problem (1.2). Recall that Ψi1 = Ψ(P(yi ≻ y1)) < Ψ(1/2), and Ψ1i = Ψ(P(y1 ≻
yi)) ⩾ Ψ(1/2) for any i ̸= 1. If (π⋆

1 ,π
⋆
2) is a Nash equilibrium. Notice that

PΨ(π
⋆
1 ,π

⋆
2) = max

π
PΨ(π,π

⋆
2) ⩾ PΨ(δ1,π

⋆
2) =

n∑
i=1

π⋆
2,iΨ1i ,

PΨ(π
⋆
1 ,π

⋆
2) = min

π
PΨ(π

⋆
1 ,π) ⩽ PΨ(π

⋆
1 , δ1) =

n∑
i=1

π⋆
1,iΨi1 .

Therefore, if π⋆
1 ̸= δ1, we have

Ψ(1/2) ⩽
n∑

i=1

π⋆
2,iΨ1i ⩽ PΨ(π

⋆
1 ,π

⋆
2) ⩽

n∑
i=1

π⋆
1,iΨi1 < Ψ(1/2) , (B.2)

which causes a contradiction. Therefore, π⋆
1 = δ1, i.e., problem (1.2) is Condorcet consistent. Hence,

we conclude our proof.
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C PROOF OF THEOREM 3.2

Proof of Theorem 3.2. First, according to Theorem 3.1, when the Nash solution is Condorcet consis-
tent, we have {

Ψ(t) ⩾ Ψ(1/2) , 1 ⩾ t ⩾ 1/2

Ψ(t) < Ψ(1/2) , 1/2 > t ⩾ 0
. (C.1)

In addition, we show that Ψ(·) must satisfy Ψ(t) + Ψ(1 − t) ⩾ 2Ψ(1/2) ,∀t ∈ [0, 1] for ensuring
that the Nash solution is mixed when there is no Condorcet winning response. We consider the
case where n = 4 and the game with the payoff in Table 3 for any t1, t2 > 1/2. Notice that if
Ψ(t1) + Ψ(1− t1) + Ψ(1/2) ⩽ 3Ψ(1− t2), we have

PΨ(δ4,π) = (π1 + π2 + π3)Ψ(1− t2) + π4Ψ(1/2) =⇒ δ1 + δ2 + δ3
3

∈ argmin
π

PΨ(δ4,π) ,

and

PΨ

(
π,

δ1 + δ2 + δ3
3

)
= (π1 + π2 + π3) ·

Ψ(1/2) + Ψ(t1) + Ψ(1− t1)

3
+ π4Ψ(1− t2)

=⇒ δ4 ∈ argmax
π

PΨ

(
π,

δ1 + δ2 + δ3
3

)
.

Therefore, (δ4, (δ1 + δ2 + δ3)/3) is a Nash equilibrium, which causes a contradiction to the fact
that the Nash solution is mixed. Hence, we have Ψ(t1) + Ψ(1 − t1) + Ψ(1/2) > 3Ψ(1 − t2) for
any t1, t2 > 1/2. Let t2 → 1/2, we have Ψ(t) + Ψ(1 − t) ⩾ 2Ψ(1/2) for any t ∈ [0, 1]. Hence,
combining (C.1), we have shown that the necessary condition for ensuring that the Nash solution is
mixed is:

Ψ(t) + Ψ(1− t) ⩾ 2Ψ(1/2) ,∀t ∈ [0, 1] and
{
Ψ(t) ⩾ Ψ(1/2) , 1 ⩾ t ⩾ 1/2

Ψ(t) < Ψ(1/2) , 1/2 > t ⩾ 0
. (C.2)

Next, we prove that the condition (C.2) is also sufficient. Suppose that (δi⋆ ,π⋆) is a Nash equilibrium,
then we have

PΨ(δi⋆ ,π
⋆) = max

π
PΨ(π,π

⋆) ⩾ PΨ(π
⋆,π⋆)

=

n∑
i=1

n∑
j=1

π⋆
i π

⋆
jΨij =

1

2

n∑
i=1

n∑
j=1

π⋆
i π

⋆
j (Ψij +Ψji) ⩾ Ψ(1/2) .

However, notice that for any j, we have

PΨ(δi⋆ ,π
⋆) = min

π
PΨ(δi⋆ ,π) ⩽ PΨ(δi⋆ , δj) = Ψi⋆j .

As there is no Condorcet winning response, there must exist j⋆ such that P(yi⋆ ≻ yj⋆) < 1/2, thus
Ψi⋆j⋆ < Ψ(1/2). Hence, Ψ(1/2) ⩽ PΨ(δi⋆ ,π

⋆) ⩽ Ψi⋆j⋆ < Ψ(1/2), which causes a contradiction.
Therefore, the Nash solution must be mixed.

D PROOF OF EXAMPLE 3.4

Proof of Example 3.4. We prove this conclusion by contradiction. Suppose that the Nash solution
is δi⋆ for some i⋆ ∈ [n], and the Nash equilibrium is (δi⋆ ,π⋆). As there is no Condorcet winning
response, by definition, there exists j′ such that P(yi⋆ ≻ yj′) < 1/2. Then we have

PΨ(δi⋆ ,π
⋆) = min

π
PΨ(δi⋆ ,π) ⩽ PΨ(δi⋆ , δj′) = Ψ (P (yi⋆ ≻ yj′)) = M− . (D.1)

However, choosing i′ such that π⋆
i′ > 0, we have

PΨ(δi⋆ ,π
⋆) = max

π
PΨ(π,π

⋆) ⩾ PΨ(δi′ ,π
⋆) =

n∑
i=1

π⋆
i Ψ(P (yi′ ≻ yi)) > M− ,

which causes a contradiction to (D.1). Hence, we conclude our proof.
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E PROOF OF THEOREM 4.2

Proof of Theorem 4.2. First, we show that the necessary condition for ensuring that problem (1.2) is
Smith consistent is:

Ψ(t) + Ψ(1− t) = 2Ψ(1/2) ,∀t ∈ [0, 1] and
{
Ψ(t) ⩾ Ψ(1/2) , 1 ⩾ t ⩾ 1/2

Ψ(t) < Ψ(1/2) , 0 ⩽ t < 1/2
. (E.1)

First, Condorcet consistency must hold when Smith consistency holds. According to Theorem 3.1,
we have {

Ψ(t) ⩾ Ψ(1/2) , 1 ⩾ t ⩾ 1/2

Ψ(t) < Ψ(1/2) , 0 ⩽ t < 1/2

Next, we show that when Ψ(·) is continuous at 1/2, Ψ(·) must satisfy Ψ(t) + Ψ(1− t) ⩾ 2Ψ(1/2)
(Lemma E.1) and Ψ(t)+Ψ(1− t) ⩽ 2Ψ(1/2) (Lemma E.2) for any t ∈ [0, 1]. Therefore, combining
the two results together, we obtain the condition (E.1).

Lemma E.1. When Ψ(·) is continuous at 1/2. Achieving Smith consistency only if

Ψ(t) + Ψ(1− t) ⩾ 2Ψ(1/2) ,∀t ∈ [0, 1] .

Proof of Lemma E.1. We consider the case where n = 4 and the game with the payoff in Table 3 for
any t1, t2 > 1/2. Notice that if Ψ(t1) + Ψ(1− t1) + Ψ(1/2) ⩽ 3Ψ(1− t2), we have

PΨ(δ4,π) = (π1 + π2 + π3)Ψ(1− t2) + π4Ψ(1/2) =⇒ δ1 + δ2 + δ3
3

∈ argmin
π

PΨ(δ4,π) ,

and

PΨ

(
π,

δ1 + δ2 + δ3
3

)
= (π1 + π2 + π3) ·

Ψ(1/2) + Ψ(t1) + Ψ(1− t1)

3
+ π4Ψ(1− t2)

=⇒ δ4 ∈ argmax
π

PΨ

(
π,

δ1 + δ2 + δ3
3

)
.

Therefore, (δ4, (δ1 + δ2 + δ3)/3) is a Nash equilibrium, which causes a contradiction to the fact that
the Nash solution supports on S1 := {y1, y2, y3}. Hence, we have Ψ(t1) + Ψ(1− t1) + Ψ(1/2) >
3Ψ(1 − t2) for any t1, t2 > 1/2. Let t2 → 1/2, we have Ψ(t) + Ψ(1 − t) ⩾ 2Ψ(1/2) for any
t ∈ [0, 1].

Table 3: Payoff matrix with four responses {y1, y2, y3, y4}.
Ψ(P(y ≻ y′)) y′ = y1 y′ = y2 y′ = y3 y′ = y4

y = y1 Ψ(1/2) Ψ(t1) Ψ(1− t1) Ψ(t2)
y = y2 Ψ(1− t1) Ψ(1/2) Ψ(t1) Ψ(t2)
y = y3 Ψ(t1) Ψ(1− t1) Ψ(1/2) Ψ(t2)
y = y4 Ψ(1− t2) Ψ(1− t2) Ψ(1− t2) Ψ(1/2)

Lemma E.2. When Ψ(·) is continuous at 1/2. Achieving Smith consistency only if

Ψ(t) + Ψ(1− t) ⩽ 2Ψ(1/2) ,∀t ∈ [0, 1] .

Proof of Lemma E.2. We consider the case where n = 6 and the game with the payoff in
Table 4 for any t1, t2 > 1/2. Notice that if Ψ(t1) + Ψ(1/2) + Ψ(1 − t1) > 3Ψ(t2)(⩾
3Ψ(1/2) > 3Ψ(1 − t2)), there exists positive µ = (µ1/3, µ1/3, µ1/3, µ2/3, µ2/3, µ2/3) and
µ′ = (µ′

1/3, µ
′
1/3, µ

′
1/3µ

′
2/3, µ

′
2/3, µ

′
2/3) such that µ1 + µ2 = µ′

1 + µ′
2 = 1, and

µ1 [Ψ(1/2) + Ψ(t1) + Ψ(1− t1)− 3Ψ(t2)] = µ2 [Ψ(1/2) + Ψ(t1) + Ψ(1− t1)− 3Ψ(1− t2)] ,

µ′
1 [Ψ(1/2) + Ψ(t1) + Ψ(1− t1)− 3Ψ(1− t2)] = µ′

2 [Ψ(1/2) + Ψ(t1) + Ψ(1− t1)− 3Ψ(t2)] .
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Hence, we have

µ1(Ψ(1/2) + Ψ(t1) + Ψ(1− t1)) + 3µ2Ψ(1− t2)

= µ2(Ψ(1/2) + Ψ(t1) + Ψ(1− t1)) + 3µ1Ψ(t2) := 3A ,

µ′
1(Ψ(1/2) + Ψ(t1) + Ψ(1− t1)) + 3µ′

2Ψ(t2)

= µ′
2(Ψ(1/2) + Ψ(t1) + Ψ(1− t1)) + 3µ′

1Ψ(1− t2) := 3B .

Thus, we have

PΨ(π,µ
′) = (π1 + π2 + π3)

[
µ′
1

3
(Ψ(1/2) + Ψ(t1) + Ψ(1− t1)) + µ′

2Ψ(t2)

]
+ (π4 + π5 + π6)

[
µ′
1Ψ(1− t2) +

µ′
2

3
(Ψ(1/2) + Ψ(t1) + Ψ(1− t1))

]
= B ,

and

PΨ(µ,π) = (π1 + π2 + π3)
[µ1

3
(Ψ(1/2) + Ψ(t1) + Ψ(1− t1)) + µ2Ψ(1− t2)

]
+ (π4 + π5 + π6)

[
µ1Ψ(t2) +

µ2

3
(Ψ(1/2) + Ψ(t1) + Ψ(1− t1))

]
= A .

Therefore, µ ∈ argmaxπ PΨ(π,µ
′) , µ′ ∈ argminπ PΨ(µ,π), which provides that (µ,µ′) is a

Nash equilibrium. However, this causes a contradiction to the fact that the Nash solution supports
on S1 := {y1, y2, y3}. Thus, it must hold that Ψ(t1) + Ψ(1/2) + Ψ(1 − t1) ⩽ 3Ψ(t2) for any
t1, t2 > 1/2. Let t2 → 1/2, we obtain Ψ(t) + Ψ(1− t) ⩽ 2Ψ(1/2) for any t ∈ [0, 1].

Table 4: Payoff matrix with six responses {y1, y2, y3, y4, y5, y6}.
Ψ(P(y ≻ y′)) y′ = y1 y′ = y2 y′ = y3 y′ = y4 y′ = y5 y′ = y6

y = y1 Ψ(1/2) Ψ(t1) Ψ(1− t1) Ψ(t2) Ψ(t2) Ψ(t2)
y = y2 Ψ(1− t1) Ψ(1/2) Ψ(t1) Ψ(t2) Ψ(t2) Ψ(t2)
y = y3 Ψ(t1) Ψ(1− t1) Ψ(1/2) Ψ(t2) Ψ(t2) Ψ(t2)
y = y4 Ψ(1− t2) Ψ(1− t2) Ψ(1− t2) Ψ(1/2) Ψ(t1) Ψ(1− t1)
y = y5 Ψ(1− t2) Ψ(1− t2) Ψ(1− t2) Ψ(1− t1) Ψ(1/2) Ψ(t1)
y = y6 Ψ(1− t2) Ψ(1− t2) Ψ(1− t2) Ψ(t1) Ψ(1− t1) Ψ(1/2)

Finally, we prove that the condition (E.1) is also sufficient for Smith consistency. Suppose that
(π⋆

1 ,π
⋆
2) is a Nash equilibrium, notice that

PΨ(π
⋆
1 ,π

⋆
2) = max

π
PΨ(π,π

⋆
2) ⩾ PΨ(π

⋆
2 ,π

⋆
2) = Ψ(1/2) ,

PΨ(π
⋆
1 ,π

⋆
2) = min

π
PΨ(π

⋆
1 ,π) ⩽ PΨ(π

⋆
1 ,π

⋆
1) = Ψ(1/2) ,

(E.2)

which follows from the following fact: for any π,

PΨ(π,π) =

n∑
i=1

n∑
j=1

πiπjΨij =
1

2

n∑
i=1

n∑
j=1

πiπj (Ψij +Ψji) = Ψ(1/2)

n∑
i=1

n∑
j=1

πiπj = Ψ(1/2) .

Thus, from (E.2), we have PΨ(π
⋆
1 ,π

⋆
2) = Ψ(1/2). Then we prove supp(π⋆

1) ⊆ S1. Hence, the Nash
solution is Smith consistent, i.e., only supports on S1.

Case 1. If supp(π⋆
1)
⋂
S1 = ∅, taking any j ∈ S1, we have

PΨ(π
⋆
1 ,π

⋆
2) = min

π
PΨ(π

⋆
1 ,π) ⩽ PΨ(π

⋆
1 , δj) =

n∑
i=1

π⋆
1,iΨij =

∑
i∈Sc

1

π⋆
1,iΨij < Ψ(1/2) ,

which causes a contradiction to the fact that PΨ(π
⋆
1 ,π

⋆
2) = Ψ(1/2).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Case 2. If supp(π⋆
1)
⋂
S1 ̸= ∅, and supp(π⋆

1)
⋂
Sc
1 ̸= ∅, taking π̃⋆

2 as:

π̃⋆
2,j = 1 {j ∈ S1} ·

π⋆
1,j∑

j∈S1
π⋆
1,j

.

Then we have

PΨ(π
⋆
1 ,π

⋆
2) = min

π
PΨ(π

⋆
1 ,π) ⩽ PΨ(π

⋆
1 , π̃

⋆
2)

=
∑
i∈S1

∑
j∈S1

π⋆
1,iπ̃

⋆
2,jΨij +

∑
i∈Sc

1

∑
j∈S1

π⋆
1,iπ̃

⋆
2,jΨij

<

∑
i∈S1

∑
j∈S1

π⋆
1,iπ

⋆
1,jΨij∑

j∈S1
π⋆
1,j

+Ψ(1/2)
∑
i∈Sc

1

∑
j∈S1

π⋆
1,iπ̃

⋆
2,j

= Ψ(1/2)
∑
i∈S1

π⋆
1,i +Ψ(1/2)

∑
i∈Sc

1

π⋆
1,i = Ψ(1/2) ,

(E.3)

which follows from the following fact:∑
i∈S1

∑
j∈S1

π⋆
1,iπ

⋆
1,jΨij =

1

2

∑
i∈S1

∑
j∈S1

π⋆
1,iπ

⋆
1,j (Ψij +Ψji)

= Ψ(1/2)
∑
i∈S1

∑
j∈S1

π⋆
1,iπ

⋆
1,j = Ψ(1/2)

(∑
i∈S1

π⋆
1,i

)∑
j∈S1

π⋆
1,j


However, (E.3) also causes a contradiction to the fact that PΨ(π

⋆
1 ,π

⋆
2) = Ψ(1/2).

Therefore, it must hold that supp(π⋆
1)
⋂
Sc
1 = ∅, i.e., supp(π⋆

1) ⊆ S1. We conclude our proof.

F PROOF OF EXAMPLE 4.3

Proof of Example 4.3. We prove this conclusion by contradiction. Suppose that the Nash solution is
π⋆
1 that satisfies supp(π⋆

1) ∩ Sc
1 ̸= ∅, and the Nash equilibrium is (π⋆

1 ,π
⋆
2).

Case 1. If supp(π⋆
1) ∩ S1 = ∅, taking j′ ∈ S1, we have

PΨ(π
⋆
1 ,π

⋆
2) = min

π
PΨ(π

⋆
1 ,π) ⩽ PΨ(π

⋆
1 , δj′) =

∑
i∈Sc

1

π⋆
1,iΨij′ = M− .

However, we have

PΨ(π
⋆
1 ,π

⋆
2) = max

π
PΨ(π,π

⋆
2) ⩾ PΨ(Unif(S1),π

⋆
2) =

∑
i∈S1

n∑
j=1

π⋆
2,j

|S1|
Ψij > M− ,

which causes a contradiction.

Case 2. If supp(π⋆
2) ∩ S1 = ∅ and supp(π⋆

1) ∩ S1 ̸= ∅, taking i′ ∈ supp(π⋆
1) ∩ S1, we have

PΨ(π
⋆
1 ,π

⋆
2) = max

π
PΨ(π,π

⋆
2) ⩾ PΨ(δi′ ,π

⋆
2) =

∑
j∈Sc

1

π⋆
2,jΨi′j = M+ .

However, we have

PΨ(π
⋆
1 ,π

⋆
2) = min

π
PΨ(π

⋆
1 ,π) ⩽ PΨ(π

⋆
1 ,Unif(S1)) =

n∑
i=1

∑
j∈S1

π⋆
1,i

|S1|
Ψij < M+ ,

which cause a contradiction.
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Case 3. If If supp(π⋆
2)∩S1 ̸= ∅ and supp(π⋆

1)∩S1 ̸= ∅, taking i⋆2 ∈ supp(π⋆
2)∩S1, we consider

the following strategy π′
1:

π′
1,i = 0 , i ∈ Sc

1

π′
1,i = π⋆

1,i , i ∈ S1\{i⋆2}
π′
1,i⋆2

= π⋆
1,i⋆2

+
∑

i∈Sc
1
π⋆
1,i , i = i⋆2

.

Then we have

PΨ(π
′
1,π

⋆
2)− PΨ(π

⋆
1 ,π

⋆
2) =

n∑
i=1

n∑
j=1

(
π′
1,i − π⋆

1,i

)
π⋆
2,jΨij

= −
∑
i∈Sc

1

n∑
j=1

π⋆
1,iπ

⋆
2,jΨij +

n∑
j=1

∑
i∈Sc

1

π⋆
1,iπ

⋆
2,jΨi⋆2j

=

n∑
j=1

π⋆
2,j

∑
i∈Sc

1

π⋆
1,i

(
Ψi⋆2j

−Ψij

) > 0 .

(F.1)

where the last inequality follows from the following two facts: for any i ∈ Sc
1,

Ψi⋆2j
−Ψij =

{
M+ −Ψij ⩾ 0 , j ∈ Sc

1

Ψi⋆2j
−M− ⩾ 0 , j ∈ S1

,

and when j = i⋆2,

π⋆
2,i⋆2

∑
i∈Sc

1

π⋆
1,i

(
Ψi⋆2i

⋆
2
−Ψii⋆2

) = π⋆
2,i⋆2

(Ψ(1/2)−M−)
∑
i∈Sc

1

π⋆
1,i > 0 .

However, (F.1) causes a contradiction to the fact that PΨ(π
′
1,π

⋆
2) ⩽ maxπ PΨ(π,π

⋆
2) =

PΨ(π
⋆
1 ,π

⋆
2).

Hence, in summary, it must hold that supp(π⋆
1) ∩ Sc

1 = ∅, i.e., supp(π⋆
1) ⊆ S1.

G PROOFS OF RESULTS IN SECTION 5

G.1 PROOF OF LEMMA 5.2

Proof of Lemma 5.2. Suppose each player has n policies and the payoff matrix is {αij}ni=1. Then,

max
π

min
π′


n∑

i=1

n∑
j=1

αijπiπ
′
j

 =max
π

min
π′


n∑

j=1

(
n∑

i=1

αijπi

)
π′
j

 = max
π

min
j

{
n∑

i=1

αijπi

}
.

Let us reformulated it into a convex optimization problem.

min
π

max
j

n∑
i=1

αijπi

subject to − πi ⩽ 0, i = 1, . . . , n
n∑

i=1

πi − 1 = 0

(P )

Let us further reformulate this problem into the epigraph form by introducing a single variable t ∈ R:
min
π,t

t

subject to
n∑

i=1

αijπi − t ⩽ 0, j = 1, . . . , n

− πi ⩽ 0, i = 1, . . . , n
n∑

i=1

πi − 1 = 0

(P ′)

By introducing the dual variables u∗ ∈ Rn, ũ∗ ∈ Rn and v∗ ∈ R, the KKT conditions is:
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• stationary condition:
n∑

j=1

αiju
∗
j − ũ∗

i = −v∗ i = 1, · · · , n

• complementary slackness:

u∗
j

(
n∑

i=1

π∗
i αij − t∗

)
= 0 j = 1, · · · , n

ũ∗
i π

∗
i = 0 i = 1, · · · , n

• primal feasibility:
n∑

i=1

π∗
i αij − t∗ ⩽ 0

π∗ ⩾ 0
n∑

i=1

π∗
i = 1

• dual feasibility:
u∗ ⩾ 0
n∑

i=1

u∗
i = 1

ũ∗ ⩾ 0

We can easily see that Slater’s condition is satisfied for this problem, so the KKT points are equivalent
to primal and dual solutions. Then taking π∗ > 0 into account, we have ũ∗

i = 0 by the second
complementary slackness condition, and the above equations can be simplified to the following
system of equations: 

u∗ ⩾ 0∑n
i=1 u

∗
i = 1∑n

i=1 π
∗
i αij − t∗ ⩽ 0 j = 1, · · · , n

u∗
j (
∑n

i=1 π
∗
i αij − t∗) = 0 j = 1, · · · , n∑n

j=1 αiju
∗
j = −v∗ i = 1, · · · , n

Moreover, notice that

0 =

n∑
j=1

u∗
j

(
n∑

i=1

π∗
i αij − t∗

)
=

n∑
i=1

π∗
i

n∑
j=1

αiju
∗
j − t∗ = −v∗ − t∗ ,

thus v∗ = −t∗. Hence, we conclude our proof.

G.2 VERIFYING EQUATION (5.2) AND EQUATION (5.3)

For (5.2), choosing t∗ = −v∗ =
∑n

i=1(π
∗
i )

2 and u∗
i = v∗i , π∗ is a Nash solution. For (5.3), choosing

t∗ = −v∗ = 0 and u∗
j =

(π∗
j )

−1∑n
j=1(π

∗
j )

−1 , π∗ is a Nash solution.

G.3 PROOF OF THEOREM 5.1

We first present a useful lemma (Lemma G.1) that further investigates the KKT conditions (Lemma
5.2) when the payoff matrix induces a unique Nash equilibrium.
Lemma G.1. If a game with the payoff matrix {αij}ni,j=1 has a unique Nash solution π∗, then for
any j ∈ [n], it must hold u∗

j > 0 in the KKT conditions, and
n∑

i=1

π∗
i αij = t∗.
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Proof of Lemma G.1. Suppose that the KKT conditions provide the unique Nash solution
(π∗,u∗, t∗). Then we define:

J0 :=
{
j ∈ [n] : u∗

j ̸= 0
}
, and J̃0 :=

{
j ∈ [n] : u∗

j = 0
}
,

with J0∪J̃0 = [n]. Since u∗ ⩾ 0 and
∑

u∗
j = 1, there exists j ∈ [n], such that u∗

j ̸= 0, i.e., J0 ̸= ∅.
Now, we aim to show J̃0 = ∅. We prove by contradiction. Suppose J̃0 ̸= ∅, taking j0 ∈ J0, we
consider two spaces

V1 :=

{
π ∈ Rn :

n∑
i=1

πi (αij − αij0) = 0, ∀j ∈ J0\{j0}

}
,

V2 := V1

⋂{
π ∈ Rn :

n∑
i=1

πi(αij − αij0) ⩽ 0, ∀j ∈ J̃0

}
.

Then we claim that π∗ ∈ V2 and dim(V2) ⩾ 2. For the first claim, by the KKT conditions in Lemma
5.2, for any j ∈ J0, we obtain

n∑
i=1

π∗
i αij = t∗ =

n∑
i=1

π∗
i αij0 ,

thus π∗ ∈ V1. Moreover, again by the KKT conditions, for any j ∈ J̃0, we have
n∑

i=1

π∗
i αij ⩽ t∗ =

n∑
i=1

π∗
i αij0 ,

which shows that π∗ ∈ V2. For the second claim, take j̃0 ∈ J̃0 and consider

V3 :=

{
π ∈ Rn :

n∑
i=1

πi (αij − αij0) = 0, ∀j ∈ [n]\{j0, j̃0}

}
,

V4 := V3

⋂{
π ∈ Rn :

n∑
i=1

πi(αij̃0
− αij0) ⩽ 0

}
.

We can easily see V4 ⊆ V2. Note that V3 can be regarded as a kernel space of a linear transfor-
mation from Rn to Rn−2. By the dimension theorem in linear algebra, we obtain dim(V3) =
n − dim(Im(A)) ⩾ n − (n − 2) = 2. For any π ∈ V3, it must hold that π ∈ V4 or −π ∈ V4, so
dim(V4) = dim(V3) ⩾ 2. Therefore, we have dim(V1) ⩾ dim(V2) ⩾ dim(V4) ⩾ 2.

Thus, we can take another π̃∗ ∈ V2 which is linear independent with π∗. Note that for any a, b ∈ R+,
aπ∗+ bπ̃∗ ∈ V2. Taking large a ∈ R+, we have aπ∗+ bπ̃∗ ∈ V2 and aπ∗+ bπ̃∗ > 0, since π∗ > 0.
Therefore, there exists a1 ∈ R+, such that π∗

2 := aπ∗+π̃∗

a1
∈ V2 that satisfies π∗

2 ̸= π∗, π∗
2 > 0, and∑

i π
∗
2,i = 1. Thus, we obtain another Nash equilibrium (π∗

2 ,u
∗, t∗), causing contradiction to the

uniqueness of Nash solution. Hence, it must hold that J̃0 = ∅.

Next we provide the proof for Theorem 5.1.

Proof of Theorem 5.1. Using Lemma G.1, uniqueness requires us to seek solutions that satisfies
n∑

i=1

π∗
i αij = t∗

for all j ∈ [n], where t∗ is a constant that may depend on π∗. Consider n ⩾ 5, for any four distinct
indices j1, j2, k1, k2, we have∑

i̸=j1,k1,k2

πif

(
πi

πj1

)
+ πk1f

(
πk1

πj1

)
+ πk2f

(
πk2

πj1

)
+ Cπj1

=
∑

i̸=j2,k1,k2

πif

(
πi

πj2

)
+ πk1

f

(
πk1

πj2

)
+ πk2

f

(
πk2

πj2

)
+ Cπj2

(G.1)
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Let us consider the infinitesimal variation πk1
→ πk1

+ δ and πk2
→ πk2

− δ, keeping others still.
We obtain that∑

i ̸=j1,k1,k2

πif

(
πi

πj1

)
+ (πk1

+ δ)f

(
πk1

+ δ

πj1

)
+ (πk2

− δ)f

(
πk2

− δ

πj1

)
+ Cπj1

=
∑

i ̸=j2,k1,k2

πif

(
πi

πj2

)
+ (πk1

+ δ)f

(
πk1 + δ

πj2

)
+ (πk2

− δ)f

(
πk2 − δ

πj2

)
+ Cπj2

(G.2)

Subtracting both sides of (G.1) from (G.2), we obtain that

(πk1 + δ)f

(
πk1

+ δ

πj1

)
+ (πk2 − δ)f

(
πk2

− δ

πj1

)
− πk1f

(
πk1

πj1

)
− πk2f

(
πk2

πj1

)
= (πk1

+ δ)f

(
πk1

+ δ

πj2

)
+ (πk2

− δ)f

(
πk2

− δ

πj2

)
− πk1

f

(
πk1

πj2

)
− πk2

f

(
πk2

πj2

)
,

(G.3)

i.e., we have

(πk1
+ δ)

(
f

(
πk1

+ δ

πj1

)
− f

(
πk1

πj1

))
+ δf

(
πk1

πj1

)
+ (πk2

− δ)

(
f

(
πk2 − δ

πj1

)
− f

(
πk2

πj1

))
− δf

(
πk2

πj1

)
= (πk1 + δ)

(
f

(
πk1

+ δ

πj2

)
− f

(
πk1

πj2

))
+ δf

(
πk1

πj2

)
+ (πk2

− δ)

(
f

(
πk2

− δ

πj2

)
− f

(
πk2

πj2

))
− δf

(
πk2

πj2

)
.

(G.4)

As f is smooth, using

lim
δ→0

f
(

x+δ
πj

)
− f

(
x
πj

)
δ

=
1

πj
f ′
(

x

πj

)
,

and taking δ → 0, we obtain the following identity from (G.4),

f

(
πk1

πj1

)
+

πk1

πj1

f ′
(
πk1

πj1

)
− f

(
πk2

πj1

)
− πk2

πj1

f ′
(
πk2

πj1

)
= f

(
πk1

πj2

)
+

πk1

πj2

f ′
(
πk1

πj2

)
− f

(
πk2

πj2

)
− πk2

πj2

f ′
(
πk2

πj2

)
.

(G.5)

Thus, we obtain that

f

(
πk1

πj1

)
+

πk1

πj1

f ′
(
πk1

πj1

)
− f

(
πk1

πj2

)
− πk1

πj2

f ′
(
πk1

πj2

)
= f

(
πk2

πj1

)
+

πk2

πj1

f ′
(
πk2

πj1

)
− f

(
πk2

πj2

)
− πk2

πj2

f ′
(
πk2

πj2

)
.

(G.6)

Since (G.6) holds for any π > 0, given any πj1 ̸= πj2 , for any x1, x2 ∈ (0, 1− πj1 − πj2), we have

f

(
x1

πj1

)
+

x1

πj1

f ′
(

x1

πj1

)
− f

(
x1

πj2

)
− x1

πj2

f ′
(

x1

πj2

)
= f

(
x2

πj1

)
+

x2

πj1

f ′
(

x2

πj1

)
− f

(
x2

πj2

)
− x2

πj2

f ′
(

x2

πj2

)
,

which induces the following for any x ∈ (0, 1− πj1 − πj2),

f

(
x

πj1

)
+

x

πj1

f ′
(

x

πj1

)
− f

(
x

πj2

)
− x

πj2

f ′
(

x

πj2

)
= C(πj1 , πj2) , (G.7)

i.e., we have

f

(
x

πj1

)
+

x

πj1

f ′
(

x

πj1

)
= C(πj1 , πj2) + f

(
x

πj2

)
+

x

πj2

f ′
(

x

πj2

)
. (G.8)
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Without any loss of generality, we assume πj1 < πj2 , then we obtain

f

(
x

πj1

)
+

x

πj1

f ′
(

x

πj1

)
= C(πj1 , πj2) + f

(
x

πj2

)
+

x

πj2

f ′
(

x

πj2

)
= 2C(πj1 , πj2) + f

(
πj1x

π2
j2

)
+

πj1x

π2
j2

f ′

(
πj1x

π2
j2

)
= · · · · · ·

= nC(πj1 , πj2) + f

(
πn−1
j1

x

πn
j2

)
+

πn−1
j1

x

πn
j2

f ′

(
πn−1
j1

x

πn
j2

)
= · · · · · · .

Taking limit, it must hold C(πj1 , πj2) = 0, i.e., we have

f

(
x

πj1

)
+

x

πj1

f ′
(

x

πj1

)
= f

(
x

πj2

)
+

x

πj2

f ′
(

x

πj2

)
. (G.9)

Since (G.9) holds for any π > 0, for any x1, x2 ∈ R+, we have

f(x1) + x1f
′(x1) = f ′(x2) + x2f

′(x2),

thus, for any x ∈ R+, we have
f (x) + xf ′ (x) = C1 . (G.10)

Solving (G.10), we obtain that

f(x) =
C2

x
+ C3 .

Then we obtain that
n∑

i=1

πiαij = Cπj +
∑
i ̸=j

πi

(
C2πj

πi
+ C3

)
= C3 + (C + (n− 1)C2 − C3)πj ,

yielding C3 = C + (n− 1)C2, and

f(x) = C + C2

(
1

x
+ n− 1

)
,

which is contradictory to our assumptions.
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