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ABSTRACT

While physics-informed neural networks have achieved remarkable progress in
modeling dynamical systems governed by partial differential equations (PDEs),
their ability to generalize across different scenarios remains restricted. To address
this limitation, we present PIDO, a novel physics-informed neural PDE solver that
demonstrates robust generalization across various aspects of PDE configurations,
including initial conditions, PDE coefficients, and training time horizons. PIDO
leverages the shared intrinsic structure inherent to dynamical systems with varying
properties by projecting the PDE solutions into a latent space via auto-decoding
and subsequently learning the dynamics of these latent embeddings conditioned on
the PDE coefficients. However, the inherent optimization challenges associated
with physics-informed loss present substantial obstacles to integrating such latent
dynamics models. To tackle this issue, we adopt a novel perspective by diagnosing
these challenges within the latent space. This approach enables us to enhance both
temporal extrapolation ability and training stability of PIDO via simple yet effective
regularization techniques, ultimately leading to superior generalization performance
compared to its data-driven counterpart. The effectiveness of PIDO is validated
on diverse benchmarks, including 1D combined equations and 2D Navier-Stokes
equations. Moreover, we investigate the transferability of its learned representations
to downstream tasks like long-term integration and inverse problems.

1 INTRODUCTION

Partial differential equations (PDEs) constitute the cornerstone of comprehending complex sys-
tems and forecasting their behavior. Recent years have witnessed a surge in the effectiveness of
deep learning methods for solving PDEs (Yu et al., 2018; Kovachki et al., 2021; Brandstetter et al.,
2021). Among these, Physics-Informed Neural Networks (PINNs) have emerged as a burgeoning
paradigm (Raissi et al., 2019). PINNs leverage Implicit Neural Representations (INRs) to parameter-
ize PDE solutions, enabling them to effectively bridge data with mathematical models and tackle
high-dimensional problems. This unique characteristic has led to their widespread adoption in
a variety of applications , including computational fluid dynamics (Raissi et al., 2020), photonic
structures design (Ma et al., 2021) and material science simulations (Zhang et al., 2022).

A key advantage of PINNs lies in their ability to be trained by enforcing PDE-based constraints even
in the absence of exact solutions. This flexibility proves valuable in real-world settings where perfect
data might not be available. However, this very benefit comes at a cost. Each instance of PINNs
is trained tailored to a specific configuration of initial and boundary conditions, PDE coefficients,
geometries, and forcing terms. Modifying any of these elements necessitates retraining, resulting in
significant computational inefficiency. In addressing this obstacle, Neural Operators (NOs) have been
proposed as a promising solution (Li et al., 2020b; Lu et al., 2021a). NOs aim to tackle the so-called
parametric PDEs by learning to map variable condition entities to corresponding PDE solutions.

Despite their success, several limitations hinder the generalization ability of NOs. First, some NO
architectures restrict the choice of grids. This limitation leads to challenges when encountering input
(Lu et al., 2021a; Wang et al., 2021b) or output (Li et al., 2020b) grids that differ from those used in
training. Secondly, for time-dependent PDEs, NOs are typically trained to provide predictions within
a fixed time horizon, limiting their applicability in scenarios requiring broader temporal coverage.
Finally, while NOs may generalize well to specific types of variable conditions, their ability to handle

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝒄𝟎:𝑵𝒄𝟎:𝑵$𝒄𝟎 𝒄𝟎𝒕𝟎:𝑵

DEC ENC DEC DEC DECDYN

𝜶$

repeat

(a) Spatial-temporal INR (b) Neural Operator (c) PIDO (ours)

𝒙

𝒕𝟎:𝑵

𝒙 𝒙

𝜶
unroll

Extra 
horizon

A
ut

o-
de

co
di

ng

×× ×

Figure 1: Physics-informed neural PDE solvers. Colorful squares denote spatial/temporal coordinates
and embeddings of PDE solutions at different times, while curves represent continuous trajectories of
embeddings unrolled by the dynamics model, with colors indicating different values. The symbol ”×”
denotes Cartesian product. PIDO handles multiple types of conditions, including initial conditions,
coefficients α and training time horizons, by learning evolution of embeddings conditioned on α.

concurrent variations in multiple types of conditions has not been thoroughly validated. This is
particularly concerning in domains like coefficient-aware dynamics modeling, where models must
simultaneously adapt to varying initial conditions and PDE coefficients (Brandstetter et al., 2021).

This paper tackles the limited generalization ability in physics-informed neural PDE solvers. To
this end, we introduce the Physics-Informed Dynamics representatiOn learner (PIDO), a versatile
framework capable of generalizing across different types of variables in PDE configurations, including
initial conditions, PDE coefficients and training time horizons. The key to PIDO’s success lies in
its two core components as shown in Figure 1. First, the grid-independent spatial representation
learner exploits the intrinsic structure shared between dynamical systems governed by different
PDE coefficients. This is achieved by learning a mapping between the solution space and a low-
dimensional latent space via auto-decoding (Park et al., 2019). This latent space captures the essential
representations of the solutions, enabling generalization to unseen initial conditions. Inspired by
Explicit Dynamics Modeling (EDM) (Yin et al., 2022; Wan et al., 2022), the temporal dynamics
model then learns the coefficient-aware evolution of latent embeddings using Neural ODEs (Chen
et al., 2018), which are known for their exceptional ability to extrapolate beyond the training horizon.

While previous EDM methods are typically trained in a data-driven manner, their performance relies
heavily on dataset size. In contrast, we focus on a physics-informed setting, where PIDO is optimized
to satisfy governing PDEs without relying on real data. However, the physics-informed loss is known
to face optimization challenges (Krishnapriyan et al., 2021; Wang et al., 2021a), leading to two key
issues in its integration with EDM: instability during training and degradation in time extrapolation.
To address these challenges, we adopt a novel perspective by diagnosing and tackling them within the
latent space. By projecting high-dimensional data into low-dimensional representations, we identify
two problematic latent behaviors: overly complex dynamics and latent embedding drift. Based on
these insights, we propose two regularization techniques-Latent Dynamics Smoothing and Latent
Dynamics Alignment-to improve training stability and extrapolation ability, respectively. Overall,
these strategies enhance PIDO’s generalization ability compared to its data-driven counterparts. Our
contributions can be summarized as follows:

• We propose a novel physics-informed learning framework that achieves robust generalization
across diverse variables in PDE configurations.

• We diagnose the learning difficulties of physics-informed dynamics models within the latent
space and address them using latent dynamics smoothing and latent dynamics alignment,
resulting in improved generalization performance compared to the data-driven counterpart.

• We demonstrate the effectiveness of PIDO on extensive benchmarks including 1D combined
equation and 2D Navier-Stokes equations, and explore the transferability of PIDO’s learned
representations to downstream tasks including long-term integration and inverse problems.

2 RELATED WORK

Spatial-temporal Implicit Neural Representations are powerful paradigm to model continuous
signals in 3D shape representation learning and PDEs solving (Sitzmann et al., 2020; Fathony et al.,
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Table 1: Comparisons of Physics-informed Neural PDE Solvers.

Method Generalize to unseen Generalize to unseen Time extrapolation Data-free Flexibility on
initial conditions PDE coefficients grid choice

PINN (Raissi et al., 2019) ✗ ✗ ✗ ✓ ✓
PI-DeepONet (Wang et al., 2021b) ✓ ✓ ✗ ✓ ✗
MAD (Huang et al., 2022) ✓ ✓ ✗ ✓ ✓
PINODE (Sholokhov et al., 2023) ✓ ✗ ✓ ✗ ✗
DINO (YIN ET AL., 2022) ✓ ✗ ✓ ✗ ✓
PIDO (Ours) ✓ ✓ ✓ ✓ ✓

2020). They train a neural network to map spatial-temporal coordinates to PDE solutions as

G : (t,x)→ u(t,x), (1)

enabling the model to query any point without being constrained by the resolution of a fixed grid.
Taking advantage of this differentiable parameterization, physics-informed neural networks (PINNs)
embed PDEs as soft constraints to guide the learning process (Yu et al., 2018; Raissi et al., 2019).
This framework is appealing in many realistic situations as it can be trained in the absence of exact
PDE solutions. However, it is well known that the PDE-based constraints suffer from ill-conditioned
training dynamics (Wang et al., 2021a). Many recent works have devoted efforts to alleviate the
optimization difficulty and to improve training efficiency with loss weight balancing (Wang et al.,
2022b;a; Yao et al., 2023), curriculum learning (Krishnapriyan et al., 2021) and dimension decompo-
sition (Cho et al., 2023). Another limitation of PINNs lies in its generalization ability, as the model
can be only applied to a predefined set of PDE coefficients and initial/boundary conditions.

Neural Operators attempt to learn a mapping between two infinite-dimensional function space as

G : (A× R)→ U , (a, t)→ G(a, t) = u(t). (2)

In the context of parametric PDEs, a ∈ A is a function characterizing initial conditions or PDE
coefficients and u ∈ U denotes the corresponding solution. As per the inherent design, NOs are
grid-independent (Li et al., 2020a;b; Lu et al., 2021a). However, many NOs do not have full flexibility
on the spatial discretization. For example, DeepONets (Lu et al., 2021a) use an INR to represent
the continuous solution, but reply on a fixed discretization of the input function a. Additionally,
they require a large number of parameter-solution pairs to learn the solution operator. To address the
need of solution data, PI-DeepONet (Wang et al., 2021b) proposes to incorporate neural operators
with physics-informed training. It can be seen as an extension to PINNs by conditioning the output
linearly on the embeddings of input parameters encoded by a branch network. However, this linear
aggregation strategy limits its capability in handling complex problems (Lanthaler et al., 2022). As
an alternative approach, Meta-Auto-Decoder (MAD) learns an embedding for each input parameter
via auto-decoding (Huang et al., 2022). Another line of work (Li et al., 2021) approximates the
PDE-based loss with finite difference method based on the outputs of NOs, which is prone to the
discretization error. Finally, a key limitation of NOs for time-dependent PDEs is their inherent design
for prediction within a specific horizon, [0, Ttr], which restricts generalization beyond the time Ttr.

Explicit Dynamics Modeling learns the derivative of solutions with respective to time instead of
directly fitting solution values at different time steps as spatial-temporal INRs and NOs do. The
solution at a given time can be obtained with numerical integration, which can be formalized as

G : u→ ∂u
∂t , u(t) = u(0) +

∫ t

τ=0
G(u(τ))dτ. (3)

One kind of EDM is autoregressive models (Greenfeld et al., 2019; Brandstetter et al., 2021). They
learn to predict the solution at t+ δt based on the current solution at t with G : u(t)→ u(t+ δt),
which equals to approximating the time derivative with finite differenceu(t+δt)−u(t)

δt . Another kind
of EDM learns the time derivative with Neural ODEs (Chen et al., 2018). Neural ODEs can be
queried at any time step and have been widely applied in continuous-time modeling (Quaglino et al.,
2019; Ayed et al., 2019). EDM has shown superior extrapolation ability beyond training time interval
compared with INRs and NOs in solving initial value problems (Yin et al., 2022; Wan et al., 2022;
Serrano et al., 2023). In spite of its efficacy, EDM has two main limitations. First, most EDM
methods are agnostic to the underlying PDEs, restricting them to modeling a single type of dynamics.
Second, the training of EDM can be data-intensive, especially when modeling multiple dynamics. In
this case, the required dataset size grows exponentially with the number of PDE coefficients.
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Our proposed method builds upon EDM and addresses these challenges by incorporating physics-
informed training. This approach leverages the strengths of both methods (cf. Table 1). Furthermore,
we show that the latent space introduced by EDM offers a novel perspective for diagnosing learning
difficulties in physics-informed loss. While prior work has explored combining physics-informed
training with EDM, these efforts have limitations. PINODE (Sholokhov et al., 2023), for example,
utilizes an auto-encoder structure confined to a fixed grid. Additionally, its physics-informed training
requires the input data to be sampled from a pre-defined analytical distribution that is similar to the
true PDE solutions distribution (see Appendix B for details). This requirement is often impractical in
real-world scenarios. In contrast, our method does not require any prior assumptions about the data
distribution. Another work (Wen et al., 2023) cannot be trained solely with the physics-informed loss.

3 METHOD

n this section, we first outline the problem setting in Section 3.1, followed by the architectural design
of PIDO in Section 3.2. Next, we introduce the physics-informed training adapted for EDM in
Section 3.3 and analyze the related learning challenges within the latent space in Section 3.4.

3.1 PROBLEM SETUP

We focus on the time-dependent parametric PDEs which can be formulated as

∂u(t,x)

∂t
+ Lα(u(t,x)) = 0, (t,x) ∈ [0, T ]× Ω,

B(u(t,x)) = 0, (t,x) ∈ [0, T ]× ∂Ω,

u(t = 0,x) = ϕ(x), x ∈ Ω,

(4)

where Lα is the differential operator parameterized by coefficients α and u : [0, T ]× Ω→ Rn is
the solution. Let ut ≜ u(t) denotes the state of interest at each time step t. Our goal is to solve the
parametric PDEs by learning the map G∗ : (t,ϕ,α)→ ut from parameters to solutions. The model
is trained on a set of parameters {(ϕi,αi)} sampled from distribution Φ. At test time, we evaluate the
model on unseen initial conditions and coefficients sampled from the same distribution. In addition,
we assess the model’s temporal extrapolation capability. To achieve this, the training horizon is
confined to the interval [0, Ttr], where Ttr < T , and the corresponding test horizon, denoted as
[0, Tts], spans the entire time interval with Tts = T .

3.2 MODEL ARCHITECTURE

The proposed PIDO tackles the dynamics modeling task defined in Equation (4) by approximating
the solution map G∗ : (t,ϕ,α)→ ut with

ũt(x) = D
(
ct,x

)
, where ct = E(ϕ) +

∫ t

τ=0
F(cτ ,α)dτ. (5)

PIDO achieves this with two key components as shown in Figure 1. First, the spatial representation
learner establishes a mapping between the data space and a low-dimensional representation space.
It consists of an encoder E , which transforms initial conditions ϕ into the latent space via auto-
decoding (Park et al., 2019), and a decoder D, which represents continuous solutions given a latent
embedding ct at time step t. Second, the temporal dynamics model F learns the coefficients-aware
evolution of latent embeddings starting from the initial embedding E(ϕ).

Spatial representation learner aims to capture the essential representations of PDE solutions
in a low-dimensional latent space. It achieves this by learning a decoder D which can accurately
reconstruct solution trajectories u from low-dimensional embeddings c. We parameterize the decoder
D with an INR, which approximates the solution u conditioned on both spatial coordinates and
embeddings, resulting in ũ(x) = D(c,x). Benefiting from this parameterization, PIDO achieves
grid-independence (see Section 2) and can readily compute the spatial derivatives of ũ through
Automatic differentiation (AD) (Baydin et al., 2018), which are crucial for physics-informed training.

Given a learned decoder D, the encoder E is defined via auto-decoding. Specifically, the encoder E
identifies the corresponding embedding c of spatial observation u (or initial condition ϕ) through an
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optimization process. This process minimizes the reconstruction error between u and ũ = D(c) by
updating a learnable c. In essence, the auto-decoding seeks the optimal embedding c∗ that captures
the essential information within u necessary for the decoder to accurately reproduce the original
observation. Mathematically, this encoder E can be formulated as

c∗ = E(u),where c∗ = argmin
c

Ex∈Ω∥u(x)−D(c,x)∥2. (6)

Here the expectation (denoted by E) is taken over spatial coordinates x sampled the domain Ω. In
practice, this optimization process can be efficiently achieved by updating the latent embedding c
(typically initialized with zeros in our experiments) with a few steps of gradient descent.

Our method distinguishes itself from prior works (Wang et al., 2021b; Huang et al., 2022) by learning
the latent space of entire trajectories, not just initial conditions. This enables us to thoroughly capture
the intrinsic structure of solution space, leading to enhanced generalization across initial conditions.

Temporal dynamics model leverages a Neural ODE to learn the evolution of latent embeddings as
∂ct

∂t = F(ct,α), c0 = E(ϕ), (7)

whereF is a neural network that predicts the time derivative of c. The initial embedding c0 is obtained
by encoding the initial condition ϕ through E . This continuous formulation of latent dynamics allows
our model to compute the embeddings at arbitrary time steps through numerical integration and to
extrapolate beyond the training horizons. Our approach departs from previous works (Yin et al., 2022;
Wan et al., 2022) by conditioning the prediction of F on α. This empowers the model to effectively
capture the rich variety of dynamics governed by different PDE coefficients.

3.3 MODEL TRAINING

Most existing EDM methods are predominantly data-driven, relying on extensive datasets of precise
solutions for training. However, in many applications, generating sufficient data through repeated
simulations or experiments is prohibitively expensive. This problem becomes especially acute in
systems with multiple parameters, as the amount of data required scales exponentially with the
number of parameters. Such constraints motivate the exploration of physics-informed training, which
directly incorporates physical laws into the training process, bypassing the need for large datasets.

Physics-informed loss for EDM. Given a pair of sampled parameters {(ϕi,αi)}, we first obtain
the initial embedding ci0 = E(ϕi) with auto-decoding as defined in Equation (6). We then optimize
D to reduce the reconstruction error of initial conditions in the auto-decoding process through

lIC(θD,ϕi) ≜ Ex∈Ω∥ϕi(x)−D(ci0,x)∥22, where ci0 = argmin
c

Ex∈Ω∥ϕi(x)−D(c,x)∥2. (8)

While the above loss function involves a nested minimization problem, we employ an efficient
approximation in practice. Instead of solving for the optimal embedding ci0 exactly, we update the
embedding from its previous value using a single gradient descent. This simplifies Equation (8) as:

lIC(θD, ci0,ϕ
i) ≜ Ex∈Ω∥ϕi(x)−D(ci0)(x)∥22, (9)

Then, we leverage the dynamics model F to unroll the trajectories from initial embedding ci0. This
provide us with the embedding cit at a sampled time step t ∈ [0, Ttr] and its corresponding prediction
ui
t(x) = D(cit,x). Since the exact solution is unavailable, we optimize the PDE residuals instead:

∂ui
t(x)
∂t + Lαi

(ui
t(x)) =

∂ui
t(x)

∂ci
t

∂ci
t(x)
∂t + Lαi

(ui
t(x)) =

∂ui
t(x)

∂ci
t
F(ct,αi) + Lαi

(ui
t(x)). (10)

Here, the time derivative of cit(x) is approximated by F (with parameters θF ) conditioned on PDE
coefficients αi. Note that cit is not a trainable embedding. Instead, it’s obtained through integration
from ci0 as in Equation (5). Taking altogether, we derive the PDE residual loss as

lPDE(θF ,θD, ci0,α
i) ≜ Ex∈Ω,t∈[0,Ttr]∥

∂ui
t(x)

∂ci
t
F(ct,αi) + Lαi

(ui
t(x))∥22. (11)

As we parameterize the decoder D with an INR, the term ∂ui
t(x)/∂c

i
t and spatial derivatives of

ui
t(x) involved in Lαi

(ui
t(x)) can be calculated with AD.
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(b) w/ Latent Dynamics Smoothing 

Figure 2: Training instability arises from overly complex dynamics. We randomly sample 3 dimen-
sions from the 128-dim embeddings. We mark training steps in green and test steps in red.

Similarly, we enforce the boundary conditions with the following loss

lBC(θF ,θD, ci0) ≜ Ex∈Ω,t∈[0,Ttr]∥B(u
i
t(x))∥22. (12)

Finally, the overall physics-informed objective function can be formalized as

lPI(θF ,θD, c0) ≜ E(ϕi,αi)∼Φ[lIC(θD, ci0,ϕ
i) + lBC(θF ,θD, ci0) + lPDE(θF ,θD, ci0,α

i)]. (13)

3.4 DIAGNOSING PHYSICS-INFORMED OPTIMIZATION IN THE LATENT SPACE

While physics-informed training eliminates the need for exact PDE solutions, it suffers from optimiza-
tion difficulties (Krishnapriyan et al., 2021; Wang et al., 2021a), presenting two key challenges in
integration with EDM: instability during training and degradation in time extrapolation. Nevertheless,
the latent space introduced by EDM offers a novel perspective for diagnosing and addressing these
issues. By capturing essential information in low-dimensional representations, it facilitates a more
straightforward analysis. Notably, this framework allows us to identify latent behaviors responsible
for each challenge and mitigate them using simple but effective regularization in latent space.

3.4.1 STABILIZING THE TRAINING PROCESS THROUGH LATENT DYNAMICS SMOOTHING

In contrast to data-driven methods, physics-informed loss imposes stricter constraints on the time step
size to ensure stable training. If the time step is too large, training often collapses into trivial solutions
as shown in Figure 2(a), where the loss is minimized on training steps but remains high on unseen
time points close to the initial conditions. Consequently, despite small training losses, the predictions
deviate from the ground truth because information fails to propagate from the initial conditions to
subsequent steps (Wang et al., 2022a). To resolve this, a smaller time step size is often required,
which, in turn, significantly increase computational costs and exacerbate the training difficulty.

As an alternative, we explore this issue within the latent space. Our findings, as illustrated in Fig-
ure 2(a), reveal that the model tends to learn excessively fluctuating latent dynamics from all possible
dynamics that minimize training loss. This leads to a complex loss distribution along the time axis,
which exhibits poor generalization to unseen points. As a result, the step size constraint becomes
even stricter for our method compared to other physics-informed approaches. We attribute this to
the increased flexibility introduced by the latent dynamics model, which is trained without direct
supervision in latent space. While data-driven EDM methods utilize a similar framework, they do
not encounter this issue, as they leverage embeddings from pretrained encoder-decoder networks as
ground truth for training the dynamics model (Yin et al., 2022). In contrast, our method provides the
dynamics model with only indirect supervision through the PDE loss in data space.

To alleviate this issue, we introduce the Latent Dynamics Smoothing regularization, which guides
the model to favor simpler dynamics. Inspired by Finlay et al. (2020), this regularization mitigates
rapid local changing in the predicted trajectories by constraining the time derivative of dynamics
model, given by ∂F(ct,α)

∂t = ∇F(ct,α) · ∂ct

∂t = ∇F(ct,α) · F(ct,α), where ∇F(ct,α) is the

6
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(a) Error over time (b) Dynamics in dim 0 (d) Dynamics in dim 2(c) Dynamics in dim 1

Figure 3: Time extrapolation degradation arises from latent embedding drift. We take the CE3 setting
as an example. The black dash line separates training and testing horizon. For visualization, we
randomly sample 3 dimensions from the 64-dim embeddings.

Jacobian matrix of F with respective to ct. Specifically, we apply the latent dynamics smoothing
regularization RS(θF ) to the training time points, where

RS(θF ) = ∥F(ct,α)∥22 + ∥∇F(ct,α)∥2F = ∥F(ct,α)∥22 + Eϵ∼N (0,1)∥ϵT∇F(ct,α)ϵ∥22. (14)

As demonstrated in Figure 2(b), this regularization effectively prevents overly complex dynamics,
resulting in a smoother temporal loss distribution without necessitating a reduction in time step size.

3.4.2 IMPROVING TIME EXTRAPOLATION VIA LATENT DYNAMICS ALIGNMENT

The next challenge we investigate is the degradation of the model’s time extrapolation ability
when trained with physics-informed loss compared to data-driven approaches (Figure 3(a)). By
analyzing the evolution of latent embeddings over extended time horizons, we trace this issue to
the phenomenon of latent embedding drift, where the embeddings progressively move outside their
typical range as time advances, as depicted in Figure 3. This drift becomes particularly problematic
when extrapolating beyond the training horizon, causing the embeddings to deviate from the training
distribution, ultimately leading to poor performance at later time steps.

DEC

Auto-decodingPrediction

𝑹𝑺𝑹𝑨

Figure 4: Regularization. Blue
curve: dynamics learned with
PDE loss; Orange curve: dynam-
ics obtained by auto-decoding the
predicted solutions.

We attribute the latent embedding drift to the inconsistency be-
tween the supervision signals of the initial embeddings c0 and
the later ones ct. To be specific, the initial embeddings are
guided by both the exact initial conditions and the PDE loss,
whereas the later embeddings rely solely on the PDE loss for
supervision. To bridge this gap, we propose to utilize predicted
solutions ũt = D(ct) as pseudo labels in the absence of exact
PDE solutions. While these pseudo labels do not provide addi-
tional information in the data space, the embeddings obtained
through encoding them, defined as c̃t = E(ũt) = E(D(ct)),
does not exhibit the drift problem as shown in Figure 3. Thus
they can serve as effective anchors to regularize ct (Figure 4).
Note that although c̃t and ct represent the same states ũt, they
might not be identical because the neural network is not inher-
ently an one-to-one mapping. The differences arise from their
respective training processes. Specifically, ct is unrolled from c0
to satisfy the PDE loss, potentially leading to a distribution shift
from that of c0. In contrast, c̃t are obtained via auto-decoding
from the data space (similar to c0), resulting in a distribution
closer to the initial embeddings. Therefore, we can mitigate the
drift problem by aligning latent embeddings ct with anchor em-
beddings c̃t via the Latent Dynamics Alignment regularization
RA(θF ) = ∥ct − c̃t∥2. Note that this alignment is achieved with minimal impact on the predicted
solution, as both embeddings correspond to the same output.

4 EXPERIMENTS

We begin by introducing the benchmarks in Section 4.1. Section 4.2 presents the main results of our
study. Finally, Section 4.3 explores the transferability of the pre-trained PIDO to downstream tasks.
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Table 2: Results on the test set of 1D and 2D benchmarks. We report the L2 relative error (%) over
the training horizon (IN-T) and the subsequent duration (OUT-T). The best results are bold-faced.

CE1 CE2 CE3 NS1 NS2

MODEL IN-T OUT-T IN-T OUT-T IN-T OUT-T IN-T OUT-T IN-T OUT-T

PI-DEEPONET 4.18 8.61 17.17 36.16 7.57 15.74 23.57 36.10 29.86 47.10
PINODE 10.44 24.75 11.03 28.69 18.21 39.41 16.44 53.52 17.56 46.67
MAD 3.98 9.32 12.00 27.97 6.78 17.10 14.85 30.50 16.95 33.49
PIDO 1.48 2.24 3.02 7.15 3.19 8.08 2.35 5.43 4.59 10.02
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Figure 5: NS2 test performance vs. Reynolds numbers.

4.1 BENCHMARKS

1D combined equations. We consider the family of PDEs:

∂u

∂t
+ 2u

∂u

∂x
− α0

∂2u

∂x2
+ α1

∂3u

∂x3
= 0, u(t = 0, x) = ϕ(x), (15)

where x ∈ [0, Lx] and t ∈ [0, T ]. This equation encompasses several fundamental physical phenom-
ena, namely nonlinear advection, viscosity, and dispersion. It is a combination of Burgers’ equation
(when α1 = 0) and Korteweg–De Vries (KdV) equation (when α0 = 0). We aim to predict u(t, x)
given varying ϕ(x) and α = (α0, α1). We consider three scenarios: • CE1 for Burgers’ equation
with α = (0.1, 0); • CE2 for KdV equation with α = (0, 0.05); and • CE3 for combined equation
with α ∈ {(α0, α1)|0 < α0 ≤ 0.4, 0 < α1 ≤ 0.65}. More details can be found in Appendix C.1.

2D Navier-Stokes equations. We consider the 2D Navier-Stokes equations, which describe the
dynamics of a viscous and incompressible fluid. The equations are given by

∂w

∂t
+ u · ∇w − 1

α
∆w − f = 0,

w = ∇× u, ∇ · u = 0, w(t = 0,x) = ϕ(x),
(16)

where x ∈ [0, 1]2, w is vorticity, u is the velocity field and f is the forcing function. We consider the
long temporal transient flow with the forcing term f(x) = 0.1(sin(2π(x1+x2))+cos(2π(x1+x2)))
following previous works (Li et al., 2020b; Yin et al., 2022). The Reynolds number, denoted as α,
serves as an indicator of the fluid viscosity. The modeling of fluid dynamics becomes increasingly
challenging with higher Reynolds numbers, since the flow patterns transition to complex and chaotic
regimes. We investigate the prediction of vorticity dynamics under varying initial conditions ϕ and
Reynolds numbers α with two scenarios: • NS1 focuses on a fixed α = 1000, while • NS2 considers
varying Reynolds numbers with α ∈ [700, 1400]. See Appendix C.1 for more details.

Tasks and metrics. For each problem, we create training and test sets by randomly sampling Ntr

and Nts parameter-solution pairs {(ϕi,αi,ui)}, respectively. The exact solution ui is only used for
evaluation. For each prediction ûi, we assess the L2 relative error, expressed as ∥ûi − ui∥2/∥ui∥2,
over the full time interval [0, T ], subdivided into the training horizon [0, Ttr) (denoted as In-t) and
the subsequent duration [Ttr, T ] (denoted as Out-t).

4.2 MAIN RESULTS

We compare PIDO with PI-DeepONet (Wang et al., 2021b), PINODE (Sholokhov et al., 2023) and
MAD (Huang et al., 2022) on the benchmarks detailed in Section 4.1 (see implementation details
in Appendix C.2 and computational efficiency in Appendix C.3). For PINODE, which requires input
data sampled from the exact solution distribution (unavailable here), we use the distribution of initial
conditions as a substitute because these are the only data accessible (see Appendix B for details).
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Performance of all methods on the test set is reported in Table 2. Additional results (training set
performance, sample efficiency analysis and visualizations) are available in Appendix A.

Generalizing across initial conditions. Focusing on scenarios with fixed coefficients, our method
achieves the lowest error in test set In-t. Specifically, it surpasses the second best method by significant
margins: 63% for CE1, 72% for CE2 and 84% for NS1. These results highlight PIDO’s effectiveness
in handling diverse initial conditions within these benchmarks. Notably, the efficacy of PIDO in
modeling complex dynamical systems becomes more pronounced when applied to 2D problems.

Generalizing across PDE coefficients. We evaluate the models’ ability to handle unseen PDE
coefficients in scenarios like CE3 and NS2. For PI-DeepONet and PINODE, we provide coefficients
α as additional inputs alongside the initial conditions. This allows them to make predictions
conditioned on both factors. In this setting, our PIDO demonstrates remarkable robustness to changes
in PDE coefficients. Figure 5 presents the relative error for various test Reynolds numbers in NS2
scenario. We observe that as the Reynolds numbers increase, PIDO consistently maintains a low
solution error. See Appendix A.2 for PIDO’s extrapolation ability beyond the training distribution.

Generalizing beyond training horizon. To assess the models’ capability to predict past the training
horizon, we adopt the auto-regressive evaluation strategy from Wang & Perdikaris (2023) for PI-
DeepONet and MAD. This approach iteratively extends forecasts by using the final state predicted in
the training interval as the initial condition for the next one. Across all scenarios, PIDO demonstrates
clear superiority over the baseline methods on Out-t. While PINODE utilizes a Neural ODE capable
of integrating beyond the training horizon, its performance suffers in practice. We hypothesize this
limitation stems from its input data distribution failing to capture the true distribution of the solutions.

Table 3: Comparison with DINO trained with dif-
ferent sub-sampling ratios of training set. L2 rela-
tive error in NS1 is reported (%).

TRAIN TEST

MODEL DATASET IN-T OUT-T IN-T OUT-T

PIDO - 1.81 4.10 2.35 5.43
DINO 100% 1.42 3.32 4.26 5.73

DINO 50% 1.14 4.90 5.25 8.76
DINO 25% 0.82 7.52 7.37 13.58
DINO 12.5% 0.47 13.59 15.12 31.74

Comparison with the data-driven approach.
We compare PIDO with the data-driven counter-
part, DINO (Yin et al., 2022), in Table 3. De-
spite achieving a slightly higher training error
than DINO trained with the full dataset, PIDO
outperforms it on the test set, demonstrating a
superior ability to adapt to unseen initial con-
ditions. We attribute this improvement to the
incorporating with physics-informed training,
which ensures our model produces physically
plausible predictions and reduces overfitting to
noise and anomalies in the data. Furthermore,
DINO’s performance significantly degrades with
smaller training sets, emphasizing the limitations of data-driven approaches in achieving robust gen-
eralization with limited data. See Appendix A.3 for Comparisons with more data-driven baselines.

Table 4: Ablations on regularization methods. We
report L2 relative error (%) within i-th time inter-
val [(i− 1)∆T , i∆T ), where i ∈ {1, 2, 3, 4} and
∆T = Ttr. The default setting marked in gray .

RA RS 1ST∆T 2ND∆T 3RD∆T 4TH∆T

✓ ✓ 4.59 10.02 14.90 19.57
✗ ✓ 4.76 11.00 17.02 24.53
✗ ✗ 17.90 33.83 43.98 51.87

Ablations on regularization methods. We
provide ablation studies to verify the effective-
ness of two regularization methods. We present
the results in the test set of NS2 scenario with in-
ference extended to four times the training inter-
val. As depicted in Table 4, we can find that the
unregularized physics-informed training fails to
deliver accurate prediction, underscoring the in-
dispensability of all regularization methods for
achieving optimal performance. Removing the
alignment regularization RA leads to a significant drop in performance on long-range prediction,
demonstrating its crucial contribution to the model’s temporal extrapolation ability. Notably, without
smoothing regularization RS , the model struggles to converge to an acceptable level of performance,
highlighting the necessity of learning simple latent dynamics for stable and effective training.

4.3 DOWNSTREAM TASKS

Having established PIDO’s robustness to unseen initial conditions and PDE coefficients, we now
explore its representation transferability to downstream tasks. Ideally, transferable representations

9
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Table 5: Downstream tasks on NS equations. For long-term integration, we report the accumulated
L2 relative error (%) in [0, i∆T ), where i ∈ {1, 4, 7, 10} and ∆T = Ttr. For inverse problem, we
report the L2 relative error (%) of the predicted PDE coefficients under different snapshots N. We
compare different training settings of PIDO, including training from scratch (FS), finetuning the
dynamics model of pretrained PIDO (FT-DYN) and finetuning its all components (FT-ALL).

(a) Long-term integration
PI-DEEPONET PIDO

FS FT FS FT-DYN FT-ALL

1∆T 8.85 5.95 1.01 1.52 0.53
4∆T 57.85 20.31 13.50 5.15 2.38
7∆T 64.14 26.11 29.11 7.71 3.99

10∆T 68.45 24.68 36.53 8.33 5.75

(b) Inverse problem
PINN PIDO

FS FS FT-DYN FT-ALL

N=10 2.69 1.34 0.17 0.07
N=5 3.38 2.22 0.31 0.21
N=3 8.99 9.54 2.44 1.80
N=2 15.47 14.39 3.63 2.92

should simplify learning for subsequent problems. Here, we investigate how a PIDO pre-trained on
the NS2 scenario performs on downstream tasks like long-term integration and inverse problems.

Long-term Integration. Training a physics-informed neural PDE solver for long temporal horizons
presents a significant challenge. We adopt the training setting outlined in Wang & Perdikaris (2023),
which reformulates the long-term integration problem as a series of initial value problems solved
within a shorter horizon (Ttr). Data snapshots are uniformly sampled across the entire test horizon
(Tts) to serve as training initial conditions. The model, trained on the shorter interval Ttr, can
iteratively predict future states by using previous prediction at the end of Ttr as new initial condition,
extending its effective horizon without direct long-term training. While this approach can be sensitive
to the number of training initial conditions, PIDO’s pre-training knowledge mitigate this limitation.

We consider a challenging setting where the test horizon Tts is ten times longer than the training
horizon Ttr. We set Ttr to 5s. The data is generated with a Reynolds number α = 950, which
is unseen by PIDO during the pre-training stage. Ten data snapshots are uniformly sampled from
the test horizon as training initial conditions. We compare PIDO against PI-DeepONet. When
inference, PIDO can directly predict the entire horizon, while PI-DeepONet relies on the iterative
scheme. As shown in Table 5a, both PI-DeepONet and PIDO struggle to achieve satisfactory long-
term performances when trained from scratch. In contrast, the pre-trained PIDO exhibits significant
improvement (77% error reduction) through fine-tuning the dynamics model. This showcases its
effectiveness in enhancing long-term predictions with insufficient data. Furthermore, fine-tuning all
components of the pre-trained PIDO can lead to further performance gains.

Inverse Problem. PINNs have demonstrated efficacy in solving inverse problems (Raissi et al.,
2019; 2020), aiming to recover the PDE coefficients α from a limited set of observations (Pakravan
et al., 2021; Zhao et al., 2022; Nair et al., 2023). We then showcase the effectiveness of PIDO’s
pretrained knowledge in this context by comparing it against PINN. We follow Raissi et al. (2019) to
treat coefficients α as learnable parameters and optimize them with a neural network to simultaneously
fit the observed data and satisfy the PDE constraints. We focus on a case with Reynolds number
α = 950 and a training horizon of Ttr = 10s. Training data consists of N solution snapshots
uniformly sampled across the entire horizon. For each snapshot, 5% of spatial locations are randomly
selected as observed data points. Table 5b shows that PIDO consistently outperforms its from-scratch
counterpart when only finetuning the dynamics model. Notably, even with only two snapshots, the
pretrained PIDO achieves accurate predictions. This remarkable performance highlights the capability
of PIDO’s transferable representations in alleviating the data scarcity burden in inverse problems.

5 CONCLUSION

In this paper, we propose PIDO, a novel physics-informed neural PDE solver demonstrating ex-
ceptional generalization across diverse PDE configurations. PIDO effectively leverages the shared
structure of dynamical systems by projecting solutions into a latent space and learning their dynamics
conditioned on PDE coefficients. To tackle the challenges of physics-informed dynamics modeling,
we adopt an innovative perspective by diagnosing and mitigating them in latent space, resulting in
a significant improvement in the model’s temporal extrapolation and training stability. Extensive
experiments on 1D and 2D benchmarks demonstrate PIDO’s generalization ability to initial conditions,
PDE coefficients and training time horizons, along with transferability to downstream tasks.
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REPRODUCIBILITY STATEMENT

In Section 4.1, we detail the dataset generation process used for our benchmarks. The experimental
configurations are described in Appendix C. Pseudo-code outlining the training and testing procedures
can be found in Algorithm 1 and Algorithm 2, respectively. Additionally, our implementation code is
provided in the supplementary materials.
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A ADDITIONAL RESULTS

A.1 FULL RESULTS ON 1D AND 2D BENCHMARKS

We present performance of all methods on the training and test sets in Table 6.

Table 6: Full results on 1D and 2D benchmarks. We report the L2 relative error (%) over the training
horizon (IN-T) and the subsequent duration (OUT-T). The best results are bold-faced.

CE1 CE2 CE3 NS1 NS2

MODEL IN-T OUT-T IN-T OUT-T IN-T OUT-T IN-T OUT-T IN-T OUT-T

Training set

PI-DEEPONET 4.08 8.26 16.87 36.63 7.20 15.54 20.41 34.98 25.43 45.26
PINODE 9.41 22.14 9.66 26.10 17.47 37.37 14.50 49.73 15.10 45.83
MAD 2.19 4.87 7.77 21.66 3.94 9.43 12.93 28.67 14.92 30.83
PIDO 1.38 1.99 2.33 5.08 3.12 5.40 1.81 4.10 3.20 7.04

Test set

PI-DEEPONET 4.18 8.61 17.17 36.16 7.57 15.74 23.57 36.10 29.86 47.10
PINODE 10.44 24.75 11.03 28.69 18.21 39.41 16.44 53.52 17.56 46.67
MAD 3.98 9.32 12.00 27.97 6.78 17.10 14.85 30.50 16.95 33.49
PIDO 1.48 2.24 3.02 7.15 3.19 8.08 2.35 5.43 4.59 10.02

A.2 EXTRAPOLATION OUTSIDE THE TRAINING DISTRIBUTION OF PDE COEFFICIENTS.

We examine the extrapolation capability of PIDO beyond the training distribution of Reynolds
numbers in the NS2 setting. We focused on higher Reynolds numbers as they represent more complex
fluid dynamics. Our comparisons with MAD, the best-performing baseline, are detailed in Table 7.

Table 7: Extrapolation outside the training distribution of Reynolds number in NS2 setting. We report
the L2 relative error (%) over the training horizon (IN-T) and the subsequent duration (OUT-T).

MODEL α = 550 α = 650 α = 1450 α = 1550 α = 1650 α = 1750 α = 1850

In-t

MAD 1.83 4.54 24.98 25.81 27.57 28.90 29.91
PIDO 1.08 0.68 10.77 12.17 13.89 15.04 16.51

Out-t

MAD 3.71 10.59 46.63 49.50 53.37 55.56 56.72
PIDO 3.38 2.11 22.32 25.90 30.29 32.90 36.60

A.3 COMPARISONS WITH DATA-DRIVEN BASELINES

In addition to DINO, we compare our method with other data-driven approaches, including FNO (Li
et al., 2020b) and DeepONet (Lu et al., 2021a), in Table 8. Our results show that PIDO consistently
outperforms both FNO and DeepONet in the In-t and Out-t settings.

We also compare our method with PINO (Li et al., 2021), which approximates the PDE-based loss
using the finite difference method, making it sensitive to the time step size. To ensure training stability,
we adopt a time step size of 0.2 seconds for PINO, which is five times smaller than that used for
PIDO. Our results indicate that PIDo demonstrates competitive performance with PINO in the In-t
prediction but outperforms it in the Out-t scenario.

A.4 ABLATION ON INR ARCHITECTURES

We investigate the impact of different choices for the INR architectures within PI-DeepONet, MAD,
and our proposed method in Table 9. The results demonstrate that employing FourierNets consistently
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Table 8: Comparison with data-driven methods. L2 relative error in NS1 is reported (%).

TRAIN TEST

MODEL DATASET IN-T OUT-T IN-T OUT-T

PINO - 3.88 10.11 3.89 10.16
PIDO - 1.81 4.10 2.35 5.43

DEEPONET 100% 7.15 12.23 10.28 13.55
FNO 100% 2.83 8.74 2.86 8.83
DINO 100% 1.42 3.32 4.26 5.73

improves the performance of all three methods on both In-t and Out-t metrics compared to using
MLPs with tanh or sin activation functions. Furthermore, our method achieves superior performance
over both PI-DeepONet and MAD in all evaluated INR settings.

Table 9: Ablation on INR architectures. We report the L2 relative error (%) over the training horizon
(IN-T) and the subsequent duration (OUT-T) in CE1 scenarios. The best results are bold-faced.

INR PI-DEEPONET MAD PIDO

IN-T OUT-T IN-T OUT-T IN-T OUT-T

MLP (tanh) 15.25 27.72 4.24 17.06 2.66 6.40
MLP (sin) 17.75 26.67 4.14 15.98 2.33 5.59
FOURIERNET 4.18 8.61 3.98 9.32 1.48 2.24

A.5 SAMPLE EFFICIENCY

We conduct a comparative analysis of PIDO against baseline models across varying numbers of
training pairs. Specifically, we focus on the CE3 scenario and sample subsets of training pairs with
different ratios, denoted as s ∈ {12.5%, 25%, 50%, 100%}, where s = 100% corresponds to the
complete training set. We report results in the test set In-t in Figure 6. Our observations indicate
that PIDO consistently achieves optimal performance across all sample ratios and exhibits reduced
sensitivity to the reduction of training pairs in comparison to PI-DeepONet. Notably, PIDO, even
when utilizing only 12.5% of training pairs, achieves comparable performance with the other two
baselines employing 100% of the training pairs.

12.5% 25% 50% 75% 100%
Sampling ratios

4

6

8

10

12

14

Er
ro

r (
%

)

1/8 samples

PI-DeepONet
MAD
Ours

Figure 6: CE3 test In-t performance vs. numbers of training pairs.

A.6 1D COMBINED EQUATIONS

We provide in Figure 7 visualizations of PIDO in CE3 test set.

A.7 2D NAVIER-STOKES EQUATIONS

We provide in Figure 8 visualizations of PIDO in NS2 test set.
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Exact solution

PIDO

𝒂 𝜶𝟎 = 𝟎. 𝟏, 𝜶𝟏 = 𝟎. 𝟐𝟓 (b) 𝜶𝟎 = 𝟎. 𝟏, 𝜶𝟏 = 𝟎. 𝟔𝟓 (c) 𝜶𝟎 = 𝟎. 𝟐, 𝜶𝟏 = 𝟎. 𝟒𝟓

Figure 7: Prediction of PIDO on 1D combined equations with different α.

Ground Truth

PIDO

PI-DeepONet

MAD

(a) Reynolds number 950

(b) Reynolds number 1350

Ground Truth

PIDO

PI-DeepONet

MAD

Figure 8: Prediction of PIDO on 2D NS equations with different Reynolds number. The last 5 frames
are beyond the training horizon.

A.8 LONG-TERM INTEGRATION

We provide in Figure 9 visualizations of PIDO (FS) and PIDO (FT) in the long-term integration task.
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Ground truth

PIDO (FS)

PIDO (FT)

Figure 9: Long-term integration starting from t=0s to t=45s at a step of 5s.

B AUTO-DECODER VERSUS AUTO-ENCODER FOR PHYSICS-INFORMED EDM

Since physics-informed training strategies for auto-encoders differ significantly from those used
for auto-decoders (our method), this section discusses these key differences and details the specific
training settings employed in auto-encoder methods.

Previous work PINODE (Sholokhov et al., 2023) utilizes an auto-encoder framework for physics-
informed training. Unlike our auto-decoder, which takes spatial coordinates x and embeddings c as
input data and output predictions of states u, PINODE’s encoder E operates in the opposite direction.
It takes u as input and output c = E(u). This allows PINODE to calculate the derivative of c w.r.t u
using Auto-Differentiation (AD). Consequently, PINODE can derive the temporal derivative of its
embedding c, assuming the input data u follows the PDE ∂u

∂t = L(u):
∂c

∂t
=

∂c

∂u
· ∂u
∂t

=
∂c

∂u
· (−L(u)). (17)

This derivative then serves as labels to train the dynamics model F by the following loss:

lPDE(θE , θF ) = ∥
∂c

∂t
−F(c)∥22 = ∥ ∂c

∂u
· (−L(u))−F(c)∥22, (18)

where θE and θF denote parameters of E and F , respectively.

However, this approach has three limitations. First, PINODE’s encoder and decoder adheres to a
fixed grid for both input data and output predictions, limiting its flexibility. Second, PINODE relies
on an analytical representation of the input data u to compute its spatial derivatives involved in L(u)
in Equation (18). This is achieved by pre-defining an analytical distribution from which the input
data is sampled. Finally, PINODE assumes the input data distribution accurately reflects the true
PDE solutions. However, finding such a representative distribution in real-world scenarios can be
challenging.

Deviations from this assumption can significantly degrade PINODE’s performance. Our experiments
(Table 10) demonstrate this sensitivity. In these experiments, we sample PINODE’s input data
from exact PDE solutions (ideal scenario) or the distribution of initial conditions (the only data we
can access in the data-constrained scenario). The results show that PINODE’s time extrapolation
performance suffers significantly when the input data deviates from the true distribution of PDE
solutions. Additionally, increasing the number of initial conditions offered little improvement, further
highlighting PINODE’s dependence on a suitable input data distribution. Given the data-constrained
setting of our experiments in Section 4, we employ the distribution of initial conditions as input data
for PINODE to ensure a fair comparison with other methods.

In contrast, PIDO adopts the auto-decoder framework, which is grid-independent and enables the
calculation of spatial derivatives of predicted solutions through AD. Moreover, the training of PIDO
does not require any prior knowledge about data distribution, making it more robust for real-world
scenarios.

C EXPERIMENTS SETUPS

C.1 TRAINING DETAILS

1D combined equations. For this problem, we consider the periodic boundary condition and
construct training and test sets with initial conditions sampling from the super-position of sinusoidal
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Table 10: The performance of PINODE with different input data. NIC denotes the number of initial
conditions. We report the L2 relative error (%) on the CE3 scenario.

METHOD INPUT DATA IN-T OUT-T

PINODE EXACT SOLUTIONS 5.77 11.02

PINODE INITIAL CONDITIONS (NIC=3584) 18.21 39.41
PINODE INITIAL CONDITIONS (NIC=7168) 18.25 41.26
PINODE INITIAL CONDITIONS (NIC=14336) 17.74 39.19
PIDO INITIAL CONDITIONS (NIC=3584) 3.19 8.08

waves given by
∑N

i=1 Aisin(
2πki

Lx
x + bi), where {Ai}, {bi} and {ki} denote random amplitudes,

phases and integer wave numbers. We set Lx = 16, Ttr = 0.96s and T = 1.92s. We employ a
uniform spatial discretization of 400 cells encompassing the interval [0, 16). The temporal domain is
discretized into 60 time steps using a uniform spacing over the interval [0, 1.92]. During training,
we sample collocation points from this grid for physics-informed training. Each model is trained for
3000 epochs with a batch size of 128 and a learning rate of 1e-3. For PIDO, the weights of alignment
and smoothing regularization are set to 1 and 0.01, respectively. We consider three scenarios for this
equation:

• CE1 for Burgers’ equation with α = (0.1, 0), generating initial conditions with Ai ∈
[−0.5, 0.5], ki ∈ {1, 2}, bi ∈ [0, 2π] and N=2; We generate 3584 trajectories for training
and 512 trajectories for testing.

• CE2 for KdV equation with α = (0, 0.05), generating initial conditions with Ai ∈
[−0.5, 0.5], ki ∈ {1, 2}, bi ∈ [0, 2π] and N=2; We generate 3584 trajectories for train-
ing and 512 trajectories for testing.

• CE3 for combined equation with α ∈ {(α0, α1)|0 < α0 ≤ 0.4, 0 < α1 ≤ 0.65}. Specifi-
cally, we use the training set αtr ∈ {0.1, 0.2, 0.3, 0.4} × {0.05, 0.25, 0.45, 0.65} and the
test set αts ∈ {0.15, 0.25, 0.35} × {0.15, 0.35, 0.55}. We generate initial conditions with
Ai ∈ [0, 1], ki ∈ {1, 2}, bi ∈ [0, 2π] and N=2; We generate 224 trajectories for each config-
uration of training coefficients (3584 in total) and 32 trajectories for each configuration of
testing coefficients (288 in total).

2D Navier-Stokes equation. For this problem, trajectories are simulated under periodic boundary
conditions, employing initial conditions described in Li et al. (2020b). We set Ttr = 5s and T = 10s.
We employ a uniform spatial discretization of 64*64 cells encompassing the interval [0, 1)2. We
consider a temporal domain of [0, 10] and use a time step size of 0.5 seconds for PI-DeepONet and
MAD to ensure training stability. For PIDO, we use a time step size of 1 second, benefiting from
the latent dynamics smoothing. We sample collocation points from this grid for physics-informed
training. For PIDO, the weights of alignment and smoothing regularization are set to 1 and 0.01,
respectively. We consider two scenarios:

• NS1 for fixed Reynolds number α = 1000. We generate 1024 trajectories for training and
128 trajectories for testing. Each model is trained for 3000 epochs with a batch size of 16
and a learning rate of 2e-3. For the dynamics model of PIDO, the learning rate is set to 2e-4.

• NS2 for diverse Reynolds numbers. We utilizes a training set encompassing α values sam-
pled from {700, 800, 900, 1000, 1100, 1200, 1300, 1400} and a testing set incorporating
Reynolds numbers from {750, 850, 950, 1050, 1150, 1250, 1350}. We generate 256 trajec-
tories for each configuration of training coefficients and 32 trajectories for each configuration
of testing coefficients. Each model is trained for 6000 epochs with a batch size of 64 and a
learning rate of 1e-3. For the dynamics model of PIDO, the learning rate is set to 1e-4.

C.2 IMPLEMENTATIONS

PIDO. The decoder is a FourierNet (Fathony et al., 2020) with 3 hidden layers and a width of 64.
We opted to employ FourierNet due to its demonstrated superior performance in tasks similar to ours.
To maintain a fair and controlled comparison with baseline methods, we utilize the same network
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Table 11: The computational time and memory usage of each method.

METHOD TIME PER EPOCH (SECOND) MEMORY PER SAMPLE (MB)

PI-DEEPONET 27 533
MAD 29 569
PIDO 35 582

architecture across all approaches in this work. An FourierNet with k hidden layers is defined via the
following recursion

z(1) = sin(ω(1)x+ ϕ(1)), z(i+1) = (W (i)z(i) + b(i)) ◦ sin(ω(i+1)x+ ϕ(i+1)), i = 1, 2, ..., k,

zout = W (k+1)z(k+1) + b(k+1),

where x is the input coordinates, ◦ is the elemental multiplication and {W (i), b(i), ω(i), ϕ(i)} denote
the trainable parameters. To incorporate embedding c into a FourierNet, we modulate both the
amplitudes and phases of the sinusoidal waves generated by the hidden layers:

z(i+1) = (W (i)z(i) + b(i) +W
(i)
A c) ◦ sin(ω(i+1)x+ ϕ(i+1) +W

(i)
P c)), i = 1, 2, ..., k.

The dynamics model is a 4-layer MLP with a width of 512. The activation function of dynamics
model is Swish. We use the RK4 integrator via TorchDiffEq (Chen, 2018) for the training of dynamics
model. We set the code size to 64 for 1D combined equations and to 128 for 2D NS equations.

PI-DeepONet. The trunk net is a FourierNet with 3 hidden layers and a width of 64. The branch
net is a 4-layer SIREN (Sitzmann et al., 2020) with a width of 512.

PINODE. Both the encoder and decoder are SIRENs with 3 hidden layers and a width of 64.
The encoder takes the discrete initial conditions as input, which are vectors of 400 elements for 1D
problems and 4096 elements (64*64) for 2D problems, and generates the latent embedding. The
decoder operates in the opposite direction. The dynamics model and latent code configurations are
identical to those employed in our PIDO method.

MAD. The decoder is a FourierNet with 3 hidden layers and a width of 64. We set the embedding
size to 64 for 1D combined equations and to 128 for 2D NS equations. When inference on new
initial conditions or PDE coefficients, we only finetune the learnable embeddings while freeze the
parameters of decoder.

C.3 COMPUTATIONAL EFFICIENCY

We used 4 NVIDIA RTX3090 GPUs for all experiments. We compare the computational time and
memory usage of PIDO and the baselines in the CE1 setting in Table 11. While PIDO incurs slightly
higher memory and computation demands due to its autoregressive Neural ODE architecture, this
trade-off is demonstrably worthwhile. The resulting performance boost is significant, and overall
resource requirements remain relatively low.

D LIMITATIONS AND FUTURE WORK

In this work, we mainly focus on the coefficient-aware dynamics modeling, concerning the general-
ization w.r.t initial conditions, PDE coefficients and time horizons. However, we acknowledge two
key limitations that motivate future research directions: First, while we employ periodic boundary
conditions in all our experiments, a crucial future direction is to extend the generalization study to
handle diverse boundary conditions and geometries. A promising approach might involve utilizing
multiple decoders, each tailored to specific boundary conditions. Second, the smoothing regulariza-
tion used for stability training can potentially penalize high-frequency physics information, which
is crucial for accurate modeling. Currently, we achieve a trade-off between stability and accuracy
with a suitable regularization weight. It is a promising avenue to investigate alternative regularization
techniques that improve stability without compromising the capture of high-frequency details.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 1 Training Procedure

Input: Decoder parameters θD, NODE parameters θF , initial conditions and PDE coefficients
(ϕi,αi), initial embeddings (ci0), latent embeddings for consistency regularization ({c̄it}Nt=1)
Initialize: set embeddings to zero ci0 ← 0,∀i and c̄it ← 0,∀(i, t)
Hyper-parameters: learning rates for latent embeddings λc, Decoder λD and NODE λF ;
repeat

Sample one pair of (ϕi,αi, ci0, {c̄it}Nt=1);
{cit}Nt=1 ← F(ci0,αi|θF ); // unroll the trajectory
{ui

t}Nt=0 ← D({cit}Nt=0|θD); // obtain predicted solutions
{ūi

t}Nt=1 ← D({c̄it}Nt=1|θD); // prepare for the auto-decoding of predicted solutions
/∗ update initial embeddings ∗/
ci0 ← ci0 − λc∇ci

0
lIC(ϕi,u

i
0);

/∗ update network parameters with physics-informed loss and regularization ∗/
θD ← θD − λD∇θD

(lIC(ϕi,u
i
0) + lBC({ui

t}Nt=0) + lPDE({ui
t}Nt=0));

θF ← θF −λF∇θF (lIC(ϕi,u
i
0)+ lBC({ui

t}Nt=0)+ lPDE({ui
t}Nt=0)+RC({cit}Nt=1, {c̄it}Nt=1)+

RS({cit}Nt=1));
/∗ update latent embeddings for consistency regularization ∗/
lc̄t ← Ex∈Ω∥ūi

t(x)− ui
t(x)∥22,∀t;

c̄it ← c̄it − λc∇c̄i
t
lc̄t ,∀t ; // auto-decode the predicted solutions

until convergence

Algorithm 2 Testing Procedure

Input: Decoder θD, NODE θF , initial conditions and PDE coefficients (ϕ,α), initial embeddings
(c0)
Initialize: set embeddings to zero c0 ← 0
Hyper-parameters: learning rates for latent embeddings λc, optimization step for auto-decoding
S;
for s = 1 to S do
u0 ← D(c0|θD);
lc0 ← Ex∈Ω∥ϕ(x)− u0(x)∥22;
c0 ← c0 − λc∇c0

lc0 ; // auto-decode
end for
{ct}Nt=1 ← F(c0,α|θF ); // unroll the trajectory
{ut}Nt=0 ← D({ct}Nt=0|θD); // obtain predicted solutions

E BROADER IMPACTS

This work may inherit both the positive and negative impacts associated with deep learning-based
PDE solvers. On the positive side, our work has the potential to significantly reduce the time and
resources required for simulations and modeling in fields such as aerodynamics, material science,
and fluid dynamics, thereby accelerating innovation cycles. Conversely, on the negative side, our
work may inherit biases from the training configuration, which could lead to difficulties in applying
the model to real-world problems with different underlying conditions.

F LICENSES OF ASSETS

DeepXDE library (Lu et al., 2021c) is under the LGPL-2.1 License (Lu et al., 2021b). Fouri-
erNet (Fathony et al., 2020) is open-sourced under the AGPL-3.0 license (Fathony et al., 2021).
Torchdiffeq is under the MIT license (Chen, 2018).
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