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Abstract

Interval and large invasive breast cancers, which are associated with worse prog-
nosis than other cancers, are usually detected at a late stage due to false negative
assessments of screening mammograms. The missed screening-time detection is
commonly caused by the tumor being obscured by its surrounding breast tissues, a
phenomenon called masking. To study and benchmark mammographic masking
of cancer, in this work we introduce CSAW-M, the largest public mammographic
dataset, collected from over 10,000 individuals and annotated with potential mask-
ing. In contrast to the previous approaches which measure breast image density
as a proxy, our dataset directly provides annotations of masking potential assess-
ments from five specialists. We also trained deep learning models on CSAW-M to
estimate the masking level and showed that the estimated masking is significantly
more predictive of screening participants diagnosed with interval and large invasive
cancers – without being explicitly trained for these tasks – than its breast density
counterparts.

1 Introduction

Regular mammographic screening helps detect breast cancer at an early stage, and has been demon-
strated to decrease mortality by around 30% [1]. However, 17-30% of breast cancers among screening
participants are interval cancers – cancers detected clinically after a negative screening [2]. Interval
cancers are often associated with a worse prognosis [3, 4]. So-called true interval cancers are
characterized by rapid growth after a healthy mammogram, while missed interval cancers are the
result of false-negative assessments of a mammogram, often because the lesion is obscured or masked
by breast tissue.

Masking refers to the phenomenon in which a tumor is hidden by the surrounding breast tissue,
causing the cancer to be difficult or even impossible to discern with regular mammography, as
seen in Figure 2. Masking can also result in large invasive cancers2 – a small cancer may be
difficult to discern in certain images, allowing it to grow to a more lethal size. Masking is correlated
with breast density, as it has been shown that cancer in dense breasts is more likely to be missed
during screening [5, 6, 7]. Density can be subjectively assessed by radiologists via the BI-RADS

⇤Equal contribution
2We define large invasive cancers as those confirmed to have spread and be � 2cm at time of diagnosis.
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Figure 1: Masking potential, or the possibility for cancer to be obscured in a mammogram, from
CSAW-M. From left to right, the most agreed-upon images among five expert annotators for level 1
(lowest masking potential, easist to assess) to level 8 (highest masking potential, hardest to assess).

density standard (ACR) [8, 9], or measured by automated tools such as Libra [10]. These density
measurements, however, do not perfectly correlate with masking potential. Radiologists consider the
distribution and pattern of tissue when assessing masking potential, and have called for automated
methods to assess the masking effect [11]. Until now, the question of exactly how masking potential
should be quantified remains an open one, although some subjective notion has been added to certain
categories of the most recent edition of BI-RADS density [12].

The ability to assess masking potential is crucial because it can identify screening participants most
likely to benefit from supplementary radiological methods, e.g. MRI. MRI is more sensitive than
mammography, and has been proven to reveal tumors missed in regular mammographic screens [13].
Unfortunately, MRI is too costly and cumbersome to screen the whole population. The ability to
predict high masking potential would allow clinics to identify screening participants most likely to
benefit from MRI screening. These participants could be offered additional screening, potentially
detecting more cancers as demonstrated in the DENSE trial [13]. Additionally, the ability to identify
screening participants with low-masking potential – fatty breasts where tumors are obvious – would
help hospitals more effectively allocate radiological expertise.

In this work, we introduce the CSAW-M dataset – a collection of over 10,000 mammographic images
and associated masking assessments from experts. The assessments were graded by radiologists
according to 8 levels of masking potential, as depicted in Figure 1, from easily assessed mammograms
with low-masking potential (level 1) to difficult-to-assess examples with high-masking potential (level
8). This data can be used to train models capable of predicting masking potential from mammographic
images in an ordinal classification setting.

The unique features of CSAW-M include:

1. It is the first dataset to directly address masking potential in mammography using expert
assessments.

2. Aside from the masking potential assessments from five experts, CSAW-M also includes
objective clinical endpoints, i.e. data on whether the screening participants developed
interval or large invasive cancers.

3. CSAW-M is the largest public collection of mammograms, containing digital mammograms
from over 10,000 screening participants, which can be repurposed for other tasks.

4. CSAW-M is distributed with a public test set for researchers to benchmark themselves. In
addition, we defined a private test set which will not be distributed. An evaluation service
hosted at SciLifeLab will allow researchers to submit Dockers containing their models for
evaluation on the private test set, as a control against overfitting to the public test set.

In addition to these features, we provide a detailed analysis of expert agreement w.r.t. masking
potential, and compare their performance to a baseline model we developed. We release the source
code for our annotation tool, the implementation of baseline models and metric calculations, as well
as the trained models3. Furthermore, the data contained in CSAW-M is relevant to the following
research areas:

3Code available at: https://github.com/yueliukth/CSAW-M/.
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Figure 2: (left) The CSAW family of datasets with number of screening participants indicated. (right)
From left-to-right, a mammogram of a large invasive cancer, the prior exam of the same cancer where
the tumor was likely masked, and a visualization of tumor size & frequency at detection [17]. Note
that, to maintain a pure notion of masking potential, CSAW-M images do not depict any identified
cancers.

Table 1: Public mammography datasets.

Year Origin Participants Images Image modality Masking metadata Cancer metadata

MIAS [18] 1994 UK 161 322 Film Non-ACR density Cancer center & radius
LLNL [19] 1995 USA 50 198 Film Non-ACR density & subtlety 5 Cancer ROI, pixel-level
BancoWeb [20] 2010 Brazil 320 1,473 Film Non-ACR density ROI available in a few images
INBreast [21] 2012 Portugal 115 410 Digital ACR density Cancer ROI, pixel-level
BCDR [22] 2012 Portugal 1,734 7,315 Film & Digital ACR density Cancer ROI, pixel-level
CBIS-DDSM [23] 2017 USA 1,566 3,103 Film ACR density & subtlety Cancer ROI, pixel-level
CSAW-S [24] 2020 Sweden 140 274 Digital - Cancer ROI, pixel-level
CSAW-M 2021 Sweden 10,020 10,020 Digital Explicit expert assessment Interval/large cancers, image-level

• Ordinal classification/point-wise ranking: labels in CSAW-M are ordinally related (or-
dered from 1 to 8). Few image datasets support the development and benchmarking of
ordinal classification models, which is of value to the ML community.

• Better pre-training: recent works have shown that ImageNet [14] pre-training can be
outperformed by pre-training on datasets of similar domain, which provides a better initial-
ization [15]. CSAW-M can be valuable for pre-training models for tasks in a similar domain,
e.g. cancer detection in mammograms.

• Noisy labels and annotator agreement: the masking potential labels in CSAW-M are
subjective assessments. As such, the opinions from 5 expert radiologists we collected can be
valuable for researchers investigating the effects of human noise and bias in the annotation
process (and ways to mitigate these effects or use them for modelling aleatoric uncertainty).

CSAW-M is publicly available for non-commercial use 4. It is hosted by the SciLifeLab Data Reposi-
tory, a Swedish national infrastructure for sharing life science data. A datasheet [16] summarizing
CSAW-M, along with detailed documentation, can be found in the Appendix M.

Although CSAW-M represents the largest public collection of mammographic images, a number of
other mammography datasets exist. These datasets, summarized in Table 1, vary by modality, number
of patients, demographics, and metadata provided. Most are focused on tumor detection, although
some provide density measures along with the metadata. Existing public datasets are limited by the
number of examples, the modality (scanned film is of inferior quality to digital mammograms), and
the lack of explicit masking assessments. It is important to note that, unlike other datasets, CSAW-M
does not contain images of cancers, so it is not directly useful for cancer detection.

4Dataset DOI: 10.17044/scilifelab.14687271
5Subtlety is a subjective rating of difficulty in viewing the abnormality in the image, as defined in [19, 23],

while masking potential discussed in this paper considers cancer-free mammograms.
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Table 2: Summary of the CSAW-M dataset.

# images Resolution # interval / large # composite # # masking Masking Metadata Publicly
invasive / total cancers endpoints controls annotations levels available?

Public train 9,523 632⇥512 148 / 279 / 629 347 8,894 1 / image 1-8 Density, acquisition Yes
Public test 497 632⇥512 11 / 13 / 31 19 466 5 / image 1-8 Density, acquisition Yes

Private test 475 632⇥512 81 / 111 / 272 158 203 5 / image 1-475 Density, acquisition No

2 CSAW-M dataset creation

CSAW-M consists of screening mammograms along with metadata describing expert masking poten-
tial assessments, clinical endpoints, density measures, and image acquisition parameters. CSAW-M
is part of an ecosystem of mammography datasets based on the CSAW population-based cohort [25],
depicted in Figure 2. CSAW is a collection of millions of screening mammograms of screening
participants aged 40 to 74 gathered from the three breast centers of the Stockholm region between
2008 and 2015. The CSAW case-control dataset, hereafter referred to as CSAW for brevity, is a
subset of the full CSAW cohort containing all cancers, along with a random sampling of healthy
screens from the Karolinska breast center. A portion of CSAW (2,580 screening participants) is
designated as a private held-out test set, unavailable to the public, for controlled benchmarking of
various tasks. CSAW-M is subset of CSAW, created here, to study masking. It is divided into a
training set (9,523 examples), a public test set (497 examples), and a private test set corresponding to
those in CSAW (475 examples). A summary of the dataset is provided in Table 2. CSAW-M partially
overlaps with CSAW-S, a sister dataset focused on segmentation in mammograms [24]. Below, we
describe the procedure followed to create CSAW-M depicted in Figure 3.

Image selection. Screening participants from CSAW were selected for inclusion to CSAW-M
according to a flowchart found in Appendix A. As shown in Figure 3, starting from the CSAW
population, we selected participants with mammographic screening exams from Karolinska University
Hospital acquired with Hologic devices after the data was curated. From these sets of participants,
we selected images as follows: the most recent mediolateral oblique (MLO) view of the breast
was included, since MLO offers the best visualization of the breast [26]. If a selected participant
had cancer, we selected the image of the contralateral breast (the one without cancer) to avoid
contaminating the masking potential annotation task with actual tumors. Otherwise, the image was
chosen with a random breast side. This resulted in screening participants fitting our selection criteria.
To form our private test set, we finally sampled from the participants who correspond to the private
split. From the participants belonging to the public split, we included all with cancer and sampled
from the healthy population (as described below) to form our public data.

The images selected with our selection criteria above had a strong positive skew (light blue in Figure
3 and Figure 8 of the Appendix) in terms of percent breast density computed by Libra [10]. The most
clinically interesting samples – very dense and very fatty breasts – belong to the under-represented
tails of the distribution. We under-sampled the center of the distribution while keeping all samples of
the tails, which resulted into a more uniform distribution (dark blue). Figure 3 shows an overview of
the selection procedure.

Image preprocessing. The source images of our dataset are DICOM format files which are resized
to 632⇥512 and saved with 16-bit PNG format as raw data of CSAW-M. Using the DICOM metadata,
we perform a horizontal flip to make all breasts left-posed and rescale the intensity linearly into a
proper DICOM window range. We locate the centroid of the breast and move it horizontally to the
center of the image. Zero-padding is applied on the images in order to ensure uniform size among the
images. The text in images (which includes the initials of the technician, breast laterality and view
position) is removed by extracting the contour that is the closest to the top right corner of the image.
Finally, the preprocessed images are saved as 8-bit PNGs. Further details are provided in Section B
of the Appendix.

Annotation procedure. The goal of the annotation procedure was to label each image with expert
assessments of masking potential. Masking was quantized into 8 bins, or levels, as depicted in
Figure 1, for the public training and test sets. Images in the private test set are fully sorted according
to masking. Individually sorted examples provide a more granular assessment, but at the cost of
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Figure 3: Overview of the creation of CSAW-M. From a screening population in Stockholm, partici-
pants were selected based on criteria described in Appendix A. The data was divided into public and
private sets and then sampled to obtain a more uniform distribution of breast density. The images
from the selected participants were preprocessed and annotated by experts – sorted using pairwise
comparisons into 8 bins (public) or fully sorted (private). Please refer to the text for details.

increased annotation time. We opted for fine granularity on the private test set because (1) it allows for
a more fine-grained assessment, and (2) it allowed us to identify robust initial bins6 for the 8 masking
levels in the public training/test sets. To represent the initial bins, we chose images personalized to
each radiologist, but with highest agreement among the other experts. The benefit to this approach is
that the starting point respects subjective assessments while at the same time choosing representative
examples for each masking level.

Five experts contributed annotations to CSAW-M, each a licensed radiology specialist from the
Stockholm region. Their experience in breast radiology ranged from 2 years to over 30 years. Note
that the annotation of masking potential is a novel task for the radiologists. That is, it is not performed
in their routine clinical practice, nor was it a part of their training. The training set contains one
expert annotation per image, while the public and private test sets have five per image. We provide the
individual assessments as well as a ground truth for the test set, computed as the median annotation.
The median was chosen because (1) it is robust to outliers, (2) if there is a majority vote, median
always selects it, and (3) it simplifies the process of discretizing masking levels.

The annotation procedure itself was based on a principle of pairwise comparisons. As depicted in
Figure 3, an annotation software tool presented radiologists with a pair of images, a query q and a
reference r (see Appendix C details). The radiologist was tasked with deciding which image has
the higher masking potential – or, put another way – which image is harder to be certain there is no
tumor? Based on the experts response (query q, reference r, or “no difference"), the query image
was sorted relative to the reference image. Through a series of such comparisons, similar to a binary
or ternary search, images were sorted either into 8 masking levels, or down to the individual images,
see Figure 10. We use pairwise comparisons because they are more meaningful and repeatable for
the experts than the arbitrary assignment of ordinal labels.

We chose a granularity of 8 masking levels for several reasons. Eight masking levels meant that, at
most, 3 pairwise comparisons were necessary to sort each image. This appeared to be an acceptable
compromise between granularity and annotation cost, as higher granularity appeared to limit the
tendency of the experts to agree.
Private test set. Creation of the private set started with a common seed list of 6 sorted mammograms
selected by one of the experts. Each radiologist was given this list, and expanded it to a list of 500
individually sorted images through pairwise comparisons, via a strategy described below.

Given a query image q, we try to find a suitable position to place it so that the list remains sorted.
This is accomplished by comparing q with multiple images from the list, as shown in Figure 10 of
Appendix C. To enforce consistency in the annotations, we devised a method inspired by the ternary
search algorithm. Suppose we want to insert q in the interval [l, h]. We compare q against two anchor
images a1 and a2 positioned at the p1 = (l + h) /3 and p2 = 2 · (l + h) /3. The ternary comparison
amounts to two consecutive pairwise comparisons presented to the expert, where the query image q

6We use “bin” and “level” interchangeably to denote collections of images with similar masking potential.
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is compared against each anchor, a1 and a2 consecutively. The answers determine where q is placed,
and logical checks on the answers ensure the expert answered consistently.

Ternary comparisons ensure annotator consistency, but are costly. Moreover, as the depth of the
search increases, expert self-consistency decreases. Hence, we used ternary search for the first two
steps of each sorting, after which we employed a binary search based method. In the binary search,
given the search interval [l, h], the image at position p = (l + h) /2 would be selected as the reference
image. Technical details of the ternary and binary search are provided in Appendix C.
Training and public test sets. Image-level sorting, as performed on the private test set, was too
costly to apply to the 10,020 images set aside for public training and testing. Therefore, for the
public data, experts sorted images into discrete masking levels, with 8 levels chosen for the reasons
described above. To begin we first created a personalized list of 32 images, 4 per masking level, for
each expert. To accomplish this, each expert’s sorted private list was divided into 8 equal bins. The
average rank was defined as: r̃i =

P5
j=1 r

j
i /5 where r

j
i denotes the rank assigned by radiologist

j for image i . Similarly, the rank delta of an image i w.r.t. different annotators was defined as:
�
j
i = |r̃i � r

j
i |. Each expert received as a seed for annotating the public data, 32 images – the top 4 of

their own personally sorted images per bin, with lowest �ji (the most agreed-on images).

As before, our goal was to sort the images. But this time, the search interval was over masking levels
instead of fully sorted images. Given a query image q and 8 masking levels, the initial search interval
would be [1-8]. For each step in the search, we first selected a reference bin in the middle of the search
interval, from which we took a random reference image. The query image was then assessed against
the reference image using a pairwise comparison. Since we defined an even number of masking
levels, a situation can occur where the middle of a binary search interval would lie between two bins.
Rounding would result in some bins being selected more often than others. To prevent that, we make
sure that bins have an equal chance of being selected. For example, the initial search interval is [1-8],
so we start by randomly selecting bin 4 or 5 as the reference bin. Following that, whenever the middle
of the binary search falls between two bins, we round it down if it is above 4 and round it up if it is
below 5. This simple modification allows for symmetrical moving out from the middle and allows
bins at different steps of the binary search to have an equal chance of being shown as reference. See
Appendix E for the masking level distributions of each expert resulting from the annotation process.
Summary of the CSAW-M dataset. CSAW-M public data consists of 10,020 mammography
images at 632⇥512 resolution in 8-bit PNG format, and associated metadata as described in Table 2.
The metadata includes the masking potential labels collected through the annotation process (including
the computed ground truth); clinical endpoints i.e. cancer attributes including cancer, interval and
large invasive; image acquisition attributes including laterality, intensity window center
and width; and density attributes including percent density, and dense area. The annotations
were equally distributed among the annotators, with approximately 2,500 assigned to each. A few
images included in the annotation process are not included in the final dataset for various reasons,
e.g. missing/declined annotations or problems with the image. In general, the experts were able to
agree as to the masking potential of mammography images, although some tended to agree more
closely than others, as indicated in Figure 5. See the discussion in Section 4.

3 Experiments

We conducted experiments using simple models to (1) empirically analyze CSAW-M, and (2) serve
as baselines for future work. We evaluated performance of these models for prediction of masking
potential, as well as for the indirect clinical tasks of correlating masking potential estimates with the
two clinical endpoints of interval cancers and large invasive cancers.
Baseline models. We trained two baseline models to predict masking potential from mammography
images. Both use ResNet-34 [27] as the backbone.

• ResNet34 one-hot – This model uses a standard approach for categorical classification,
where each class is treated independently. Masking levels are predicted independently using
standard softmax and cross-entropy loss to predict one-hot encodings.

• ResNet34 multi-hot – This model accounts for the ordinal relation between masking levels
using multi-hot encodings [28]. Training a model with multi-hot encoding could be seen
as multi-label classification, where the task of classifying an item into K ordinal classes is
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Figure 4: Agreement and disagreement amongst experts and models. Eight mammograms are shown,
along with labels as follows: GT / experts 1-5 / one-hot / multi-hot.

equivalent to solving K � 1 independent binary classifications, each class being a superset
of the previous. For an ordinal classification problem with K classes, the multi-hot encoding
for datapoint xi with ordinal label li 2 {1, ...,K} is defined as {y1i , y2i , ..., y

K�1
i } where

for each k 2 {1, ...,K � 1}, yki = {li > k} where {.} denotes the indicator function.

For both models, we used a batch size of 64 and trained on 632⇥512 images using the Adam
optimizer [29]. Both are initialized with ImageNet-pretrained weights [14]. We used a learning rate
of 1e�6 and applied random horizontal and vertical flipping, random rotation of 10 degrees, and
small random brightness and contrast jittering as data augmentation. We used 5-fold cross-validation
to determine the stopping iteration, which we used in the final training run using all the training data.

Task 1: Ordinal classification of masking potential. The principal task of CSAW-M is to model
the median expert opinion of masking potential level in the range [1-8]. Recall that the expert labels in
CSAW-M are ordinally related, implying that a prediction confusing level 1 with level 8 is worse than
one confusing level 1 with 2. We consider two metrics widely used to evaluate ordinal classification,
(1) average mean absolute error (AMAE) which measures the average distance of predicted classes
w.r.t. the true classes and is robust to class imbalance [30], and (2) Kendall’s ⌧b [31] which measures
the correlation of two rankings based on the number of concordant and discordant pairs. Kendall’s ⌧b
ranges from -1 (perfect inverse correlation) to 1 (perfect correlation), and 0 indicates no correlation.

The metrics described above consider performance over all masking levels. In addition, we consider
model performance at identifying low- and high-masking mammograms. From a clinical perspective,
these levels are most interesting because they represent cases the experts are most and least confident
about. Participants with high-masking images can be e.g. offered additional screening. We consider
the two lowest masking levels (1 and 2) together as low-masking levels, and the two highest ones (7
and 8) as high-masking levels. This choice was based on feedback from the experts. To assess how
the models perform at identifying images in these tail masking levels, we use F1-score – a common
metric to assess the performance in information retrieval.

Task 2: Identification of interval and large invasive cancers. A secondary task of high clinical
relevance is to measure the correlation between predicted masking estimates and certain cancers. In
particular, we consider how masking potential can predict interval cancers and large invasive cancers
without being explicitly trained for these tasks. We measure performance using area under the ROC
curve (AUC) for individual cancer types and for the composite endpoint (CEP) containing both types.
We also calculate the odds ratio (OR), a measurement often used in clinical studies. The odds ratio is
simply the ratio of the odds of an event occurring in one group to the odds of it occurring in another
group. To compute it, model predictions are divided into groups gi. Here, groups correspond to
quartiles of the model predictions, so i 2 {1, 2, 3, 4}. For screening participants in group gi, the odds
of having interval cancer is computed as Oi = ICi/

˜ICi, where ICi is the number of participants
from gi with interval cancer, and ˜ICi is the number without. The odds ratio is then computed relative
to a reference group, in this case the reference is the first quartile g1, as ORi = Oi/O1. Note that
OR1 = 1 for all models. If a masking estimate is a good predictor of interval cancer it will show
strong odds ratios in the top quartiles and exhibit monotonically increasing odds ratios.

We compare our baseline models with dense area and percent density computed using Libra [10]. This
was done because density is known to be correlated with the clinical endpoints. For a fair comparison,
it was necessary to convert the discrete masking predictions from our models to continuous values.
We compute a continuous score as the weighted average of probabilities that an input belongs to each
masking level. Refer to Appendix D for details.
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Table 3: Comparison of expert and model performance on ordinal classification of masking potential
for the public test set. Mean and standard deviation of 5 runs are reported for the models.

Kendall’s ⌧b " AMAE # F1 on level 1-2 " F1 on level 7-8 "

Experts

Expert 1 0.7232 0.6762 0.7940 0.6154
Expert 2 0.7279 0.7167 0.7465 0.6316
Expert 3 0.5450 1.0037 0.7363 0.5200
Expert 4 0.5554 1.0390 0.5430 0.6242
Expert 5 0.6342 1.0321 0.6885 0.5225

Models One-hot 0.7126 ± 0.0083 0.8108 ± 0.0145 0.7855 ± 0.0136 0.5950 ± 0.0243
Multi-hot 0.7625 ± 0.0030 0.7086 ± 0.0142 0.8064 ± 0.0188 0.5571 ± 0.0320

(a) Kendall’s ⌧b (higher is better) (b) AMAE (lower is better)

Figure 5: Expert and model agreement on public test set. We perform five runs on our one-hot and
multi-hot models and report the mean. See Appendix F for results on the private test set.

4 Results and discussion
Expert agreement. We begin by considering the question how well do the experts agree w.r.t. mask-
ing potential? This is an important question to consider, as the main task is to emulate the median
expert assessment. Table 3 shows experts have an AMAE ranging from 0.68 to 1.04. This suggests
that, on average, individual experts are almost ±1 masking levels distant from the ground truth –
a reasonable level of agreement. A more nuanced picture of expert agreement is given in Figure
5. Here, agreement between each expert, as well as the ground truth, is measured by Kendall’s ⌧b.
As a rule-of-thumb Kendall’s ⌧b � 0.3 indicates a strong association 7. According to this rule, all
experts have a strong association, although we can see that experts 1, 2, and 5 exhibit substantially
higher agreement than experts 3 and 4. Interestingly, the experts who tended to agree more were also
less experienced. Turning to the F1-scores in Table 3, it is clear that experts are in better agreement
for low-masking cases than for high-masking cases. This suggests that high-masking potential is a
generally less agreeable property than low-masking potential. Our findings on the public test set are
mirrored in the private test set, provided in Appendix F. Examples of mammograms where experts
agree and disagree are provided in Figure 4.

Task 1: Ordinal classification of masking potential. Results for ResNet34 one-hot and ResNet34
multi-hot (5 runs each) are provided along with the expert agreement in Table 3 and Figure 5. We can
see that the model designed for ordinal classification, ResNet34 multi-hot, outperforms the standard
one-hot model according to most metrics: Kendall’s ⌧b, AMAE, and low-masking F1. The two metrics
most sensitive to ordinal relations (Kendall’s ⌧b and AMAE) show a large gap between the two models,
suggesting multi-hot encoding is more effective in solving our ordinal classification problem. The
only metric where the one-hot model dominates is the high-masking F1-score, although both seem to
struggle (as do the experts). This comes as something of a disappointment, as high-masking patients
are the most interesting from a clinical perspective. On the other hand, both models performed
excellently at identifying low-masking mammograms, and outperformed all the experts.

The models seem to be more correlated with Experts 1, 2, and 5, who agreed with each other more
often (and the ground truth). Interestingly, our models were more correlated with each individual
radiologist than any of their colleagues were (see the two rightmost columns in Figure 5). Please
note that the cross-tabulation in Figure 5b is asymmetric because the number of mammograms

7We refer the reader here for an interpretation of Kendall’s ⌧b.
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Table 4: AUC on downstream clinical tasks public and private test sets combined.

AUC
Interval cancer Large invasive cancer CEP

Percent density 0.5947 0.5254 0.5678
Dense area 0.5901 0.5505 0.5839

One-hot 0.6321 ± 0.0031 0.5801 ± 0.0013 0.6100 ±0.0013
Multi-hot 0.6331 ± 0.0031 0.5802 ± 0.0019 0.6117 ± 0.0028

(a) Odds ratio (interval cancer) (b) Odds ratio (CEP)
Figure 6: Odds ratio on clinical endpoints with public and private test sets combined.

placed into each masking level is different for each radiologist – i.e. the AMAE between two experts
changes depending on which one is considered as the reference. In Figure 4, we provide several
examples where the networks both agree and disagree with the experts. Figure 4(g) is an interesting
case because the density is fairly low but experts rate it as high masking potential. Our models
under-estimate the masking, suggesting they rely too heavily on general density cues.

Task 2: Identification of interval and large invasive cancers. We set out to investigate if esti-
mates of masking potential are predictive of (1) interval cancer, (2) large invasive cancer, and (3)
the composite endpoint (CEP), i.e. interval or large invasive cancer. There is reason to believe a
correlation exists, because interval cancers or cancers that appear to grow fast can result from a
misdiagnosed mammogram, which is more likely if masking potential is high. Due to the low number
of cancers randomly sampled into the public test set, this part of the analysis is performed on the
combined public and private test sets for increased statistical power. In Table 4 we compare our
models against percent density and dense area at identifying these outcomes, as measured by AUC.
Both models are stronger indicators than the density measures by a large margin, with ResNet34
multi-hot slightly outperforming ResNet34 one-hot. All methods perform stronger at predicting
interval cancer than large invasive, which makes sense because the relation to masking is more likely
to be causal – e.g. a missed diagnosis caused by masking.

In Figure 6 we plot the odds ratio for successive quartiles of the predictions from various models.
Recall that good clinical predictors should exhibit monotonically increasing odds ratios, with strong
odds ratios in the highest quartiles. If masking is related to interval cancer, then a high-masking
prediction should have much higher odds to identify a cancer than a low-masking prediction. We can
see that this is the case for both ResNet34 models, with odds of finding a interval cancer 3.2 times
higher in the top quartile than the first. In contrast, the density measures yield lower odds ratios and
fail the monotonicity test, indicating they do a poor job of sorting cancer risk. The odds ratios for
large invasive cancers, given in the Appendix G, are less promising. This trend is also evident in the
AUC results from Table 4, suggesting that identifying screening participants confirmed with large
invasive cancer is more challenging than interval cancer. The composite endpoint, which combines
both cancers, reflects this in the AUC and odds ratios.

5 Conclusions
There is a strong clinical interest in predicting interval and large invasive cancers, as they indicate
a failure of the screening infrastructure and may lead to poor prognoses. We have shown that deep
learning models trained on CSAW-M can identify these cancers significantly better than density
measures. This suggests that the expert masking potential information provided by CSAW-M has
high clinical value, aside from its value as an ordinal classification benchmark and the other merits
listed in the introduction. Our baseline models succeeded at modeling masking potential, agreeing
with the ground truth better than any individual expert. However, agreement among experts and our
models was much better for low-masking than for high-masking. We note that our baselines are very
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simple models that were not explicitly trained to learn the clinical outcomes. As such, there is much
potential for improvement.
Limitations and broader impact. CSAW-M is primarily intended for the development of auto-
mated systems to estimate masking of mammograms. Such a system can be used in the screening
process to pre-emptively detect interval and large invasive cancers, as we are attempting to show
in an ongoing clinical trial, ScreenTrust MRI8. Furthermore, since CSAW-M is the largest public
mammography dataset, it can enable more fruitful research and development for different applications
that involve automatic analysis of mammograms, for instance, through unsupervised learning. Such
automated systems can help with the world-wide shortage of specialists. On the other hand, a general
concern when releasing a human cohort dataset is malicious use of the released data to re-identify the
individuals. Therefore, we have taken measures to mitigate this issue: (1) we removed all individual
identifiers from the data, (2) we down-sampled the mammograms, (3) we removed all unnecessary
acquisition attributes –DICOM headers–, (4) we simplified the continuous tumor size attribute to
a binary outcome, and (5) we anticipated a gated release mechanism to approve users based on
their information and project goals before granting access to the data. It should be noted, however,
that while these efforts make re-identification extremely unlikely, it does not provide a theoretical
guarantee. We acknowledge several limitations and biases present in CSAW-M. For example, there
are no visible tumors in CSAW-M by design. This limits its usefulness for tumor detection. Also, the
training set is limited to a single annotation per image, as a compromise between annotation cost
and number of examples. This affects the training data more than the test data, as the ground truth is
the median of 5 expert opinions. Biases are introduced from a number of sources, e.g. the training
and background of the experts. We should also be aware of biases inherent in the collection process,
as it was collected from a certain population, period, and region, using certain imaging equipment
(e.g. we selected more screening participants with cancers than are present in the general population).
To alleviate this, the known specifics of the population and our selection pipeline are thoroughly
described in the paper. Nevertheless, clinical studies are crucially required before deploying models
in any clinical processes.
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