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Abstract

Neural networks tend to overfit the training distribution and perform poorly on out-of-
distribution data. A conceptually simple solution lies in adversarial training, which intro-
duces worst-case perturbations into the training data and thus improves model generalization
to some extent. However, it is only one ingredient towards generally more robust models and
requires knowledge about the potential attacks or inference time data corruptions during
model training. This paper focuses on the native robustness of models that can learn robust
behavior directly from conventional training data without out-of-distribution examples. To
this end, we investigate the frequencies present in learned convolution filters. Clean-trained
models often prioritize high-frequency information, whereas adversarial training enforces
models to shift the focus to low-frequency details during training. By mimicking this be-
havior through frequency regularization in learned convolution weights, we achieve improved
native robustness to adversarial attacks, common corruptions, and other out-of-distribution
tests. Additionally, this method leads to more favorable shifts in decision-making towards
low-frequency information, such as shapes, which inherently aligns more closely with human
vision.

1 Introduction

Modern convolutional neural networks (CNNs) (He et al., 2016; Liu et al., 2022; Tan & Le, 2019) show
a steady increase in performance in terms of test accuracy on a wide range of learning tasks. Yet, most
models su�er from a low generalization ability, even when faced with small domain shifts. To improve the
low generalization ability, previous work focused on aspects such as aliasing in the downsampling operation
(Grabinski et al., 2022b;a), the padding operations (Gavrikov & Keuper, 2023), the training schedule (Lopes
et al., 2019; Saikia et al., 2021), or analyzing the image feature spectrum (Geirhos et al., 2019; Wang et al.,
2020). In addition, introducing perturbed images into the training data, known as adversarial training (AT)
(Madry et al., 2018), can alleviate low generalization to some extent. However, AT is not the cure-all to
improve network robustness. Tramèr & Boneh (2019); Rice et al. (2020); Yu et al. (2022) show that AT
tends to overfit on training attacks. Intuitively, the adversarial attack used during training becomes an in-
domain sample of the model, while its robustness to new out-of-domain samples (e.g. a di�erent adversarial
attack) is hard to anticipate. Saikia et al. (2021) show that AT can even increase the mean corruption error
on ImageNet-C (Hendrycks & Dietterich, 2019). Therefore, we argue that AT can only be one ingredient
towards building more robust models, while the main focus should rather be to encourage a behavior that we
call native robustness. We expect from natively robust models that they can learn robust behavior directly
from the conventional training data. Thereby, robust behavior includes, on the one hand, a certain degree
of adversarial robustness without being confronted with adversarial attacks during training, i.e. the model
should not easily be fooled using attacks with very small perturbation budgets. Similarly, they should be
robust against other perturbations such as common corruptions (Hendrycks & Dietterich, 2019) as long as
corruption severities are low. On the other hand, robust behavior implies a better alignment with human
perception, i.e. models should decide for a specific class more by the shape of an object than by its texture
(Geirhos et al., 2019). Note that the expected degree of specific robustness can not be compared to the
one obtained by techniques that specifically optimize for them, such as adversarial training. For instance,
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Figure 1: Our proposed regularization decreases the reliance on high-frequency information of a ResNet-20
trained on CIFAR-10 (b-d) as visible in mean DCT-II coe�cients magnitudes (= frequency distribution;
computation shown in (a)).

adversarial samples remain out-of-domain samples for such natively robust models. Yet, additionally training
these natively robust models with AT should be complementary and have a further beneficial e�ect.

In this paper, we propose a new perspective on improving native robustness by investigating the frequencies
in the learned network filters directly.

Specifically, we propose to project CNN convolution filter weights into the frequency domain by applying a
discrete cosine transformation (DCT-II). Although the resulting formulation is in principle equivalent to the
commonly adopted CNN formulation, it provides direct access to the learned filter frequencies. Thereby, we
aim to investigate the following research questions: (i) Which filter frequencies are predominantly learned
in the layers of CNNs? (ii) Can we regularize the frequencies during the training process such as to increase
the native robustness of the learned model?

We investigate these questions in the context of image classification - yet our approach bears the potential
to be expanded to other tasks such as object detection and segmentation. First, we analyze the learned
filter frequencies of modern CNNs and observe that they tend to have a low-frequency bias in deep layers,
while filters of earlier layers of the network are either uniformly distributed in frequency space or even biased
towards higher frequencies. In the latter cases, the convolution thus relies on high-frequency information.
Contrary, adversarial training appears to shift the focus to low filter frequencies in early layers. To leverage
this behavior, we introduce a regularization scheme, which increases the bias to low-frequencies in these early
layers (see Fig. 1 for a visualization). We evaluate the proposed spectral decomposition and regularization on
di�erent CNNs under distribution shifts in test data. Results on CIFAR-10, CIFAR-100 (Krizhevsky, 2009),
SVHN (Netzer et al., 2011), MNIST (LeCun et al., 2010), Tiny-ImageNet (Le & Yang, 2015) and ImageNet
(Deng et al., 2009) show increased native robustness1. In summary, we make the following contributions:

• We observe that adversarial training results in a shift towards a low-frequency bias in the filter
weights of early layers that is learned in the early phases of training (Sec. 3).

• Based on this observation, we propose a high-frequency penalization term in the weight space of
convolution layers (Sec. 4) to mitigate the reliance on high-frequency information.

• Networks trained with this regularization become gradually, yet consistently, more robust against
a wide array of out-of-distribution generalization tasks without reliance on AT or additional data -
i.e. networks increase their native robustness (Sec. 5). Additional AT is complementary and further
improves the measurable adversarial robustness to a variety of attacks.

1We will provide the code upon acceptance.
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2 Related work

Robustness. While modern neural networks yield accuracies close to or even beyond human performance,
they seem to struggle with generalization to out-of-distribution data. In the context of adversarial attacks,
it has been shown that minor, for the human eye barely perceivable perturbations can cause models to make
wrong predictions with high confidence. Formally, let f be a model parameterized by ◊, x an input sample
with the corresponding class label y, and L the loss function. Then adversarial attacks will attempt to
maximize the loss L by finding an additive perturbation to an input sample xÕ. To constrain their intensity,
perturbations are sought in an B‘(x) ball centered at x with a radius of ‘.

max
xÕœB‘(x)

L (f (xÕ; ◊) , y) ,

B‘(x) = {xÕ : Îx ≠ xÕÎp Æ ‘}.
(1)

with Î · Îp depicting the Lp-norm. The most successful adversarial attacks are white-box attacks, where
the attacker has full access to the attacked model. Often, these methods rely on gradient information,
such as projected gradient descent (PGD) (Kurakin et al., 2017) where the attacker follows the gradient
that maximizes the loss and then projects the perturbations back to B‘(x). Since PGD is computationally
expensive, a faster, yet less successful attack that approximates the perturbations by the gradient sign and
only performs one step has been proposed: fast gradient sign method (FGSM) (Goodfellow et al., 2015).

Regarding defenses in general, the most successful approach to tackle out-of-distribution shifts is adversarial
training (Madry et al., 2018) where worst-case perturbations are reintroduced to the training data. Often,
these methods are accompanied by additional external data (Carmon et al., 2022). Evaluating the defenses
on a single attack can be misleading, due to the possibility of attack overfitting (Rice et al., 2020). Towards
more reliable benchmarks, AutoAttack (AA) (Croce & Hein, 2020a) proposes an ensemble of various white-
and black-box attacks such as APGD (Croce & Hein, 2020a), FAB (Croce & Hein, 2020b), and Square (An-
driushchenko et al., 2020) and establishes the public RobustBench leaderboard. Benchmarks are constrained
to p = 2, ‘ = 0.5 on CIFAR-10, p = Œ, ‘ = 8/255 on CIFAR-10/100, and p = Œ, ‘ = 4/255 on ImageNet,
respectively. However, these large thresholds are disputed as they generate easily detectable perturbations
(Lorenz et al., 2022).

Unfortunately, the possibility of adversarial attacks is only a symptom of larger generalization issues. For
example, neural networks fail to generalize under various corruptions such as weather conditions, changes in
lighting, noise, and blurring (Dodge & Karam, 2017; Hendrycks & Dietterich, 2019). For fast and comparable
benchmarks, common corruption datasets CIFAR-10-C, CIFAR-100-C, and ImageNet-C have been proposed
(Hendrycks & Dietterich, 2019), which include 15 (+4 extra) types of corruptions at increasing severity level
(from 1 to 5).

Additionally, Geirhos et al. (2019) observed that CNNs are biased towards detecting textures of an image
instead of the shape (cue-conflict), which is in contrast to human vision behavior that focuses on shape
information, i.e. shape bias. In order to overcome this texture bias, they introduced Stylized-ImageNet as
new training data with the goal to increase the shape bias of CNNs. For fast evaluation of out-of-distribution
(OOD) generalization Geirhos et al. (2021) proposed a benchmark including 17 OOD datasets, from which
12 contain image perturbations and the other 5 are single manipulations of ImageNet (Deng et al., 2009):
cue-conflicted texture vs. shape data, sketches (Wang et al., 2019), stylized images, edges, and silhouettes.
They evaluated and compared more than 50 di�erent networks to human performance in order to narrow
down the gap between human and machine vision.

Frequencies and robustness. Recent work demonstrated the importance of learned frequencies for net-
work robustness. Wang et al. (2020) demonstrated that CNNs initially rely on low-frequency information
for prediction, but shift towards high-frequency information as training progresses. On the other hand, AT
models predominantly classify based on low-frequency information. As texture information typically resides
in higher frequency bands, this is a suitable explanation for the observations by Geirhos et al. (2019). As
such, there is also a correlation between AT and a reduced texture bias (Geirhos et al., 2021; Gavrikov
et al., 2023). Duan et al. (2021) exploit these findings by proposing an adversarial attack that drops DCT
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coe�cients corresponding to high frequencies from inputs to fool neural networks. Yet despite the common
assumption, adversarial attacks are not always targeting high-frequencies and the behavior depends on the
dataset (Maiya et al., 2021; Abello et al., 2021; Bernhard et al., 2021; Ortiz-Jiménez et al., 2020).

Multiple works explore the desensitization of neural networks to HF from various angles in order to avoid AT:
Lopes et al. (2019) randomly add noise to image patches, Saikia et al. (2021) regularize the feature maps
produced by convolution layers in a dedicated two-stream architecture, and Grabinski et al. (2022a) link
robustness to aliasing and introduce a downsampling approach within the frequency domain that removes
high-frequency information due to aliasing. In this paper, we follow this line of work and propose an HF-
regularization directly in convolution filters to improve OOD generalization.

Basis decomposition. The decomposition of convolution filters is typically studied in the context of
compression, see Yaroslavsky (2014) for an overview. The majority of decomposition approaches convert
the convolution layer weights to the frequency domain e.g. by utilizing the DCT-II-basis (Chen, 2004; Chen
et al., 2016; Lo & Hang, 2019; Cheinski & Wawrzynski, 2020; Chen et al., 2022; Ulicny et al., 2022) with
the goal to prune and compress the number of frequency components. But works also exist that transform
the input images directly for better performance and generalization (Xu et al., 2020; Hossain et al., 2019).
In detail, the discrete cosine transform (DCT) (Ahmed et al., 1974) maps an input signal into a frequency
domain represented by cosine basis functions. In particular, the common DCT-II variant is used in JPEG
compression, where it successfully compresses natural images (Wallace, 1992). These works mainly explore
the fact, that data of multiple domains is not uniformly distributed in the frequency domain and is typically
biased towards low frequencies (Singh & Theunissen, 2004; Ruderman, 1994). Gavrikov & Keuper (2022a;b)
showed that the basis of convolution filter kernels obtained via SVD is often highly similar and independent
of the architecture, learned task, or dataset. Additionally, the obtained bases have a striking similarity to
the DCT-II basis.

Our realization of the DCT-II basis is similar to Ulicny et al. (2022) and other previous work, however,
instead of compression, we explore an orthogonal direction and study the role of individual frequencies in
training and apply regularization in the frequency space to improve generalization. DCT merely serves as a
tool in our study.

3 Frequency analysis

In this initial analysis, we transform learned convolution filters to the frequency domain. We implement this
by changing the basis of convolution weights to DCT-II, revealing the coe�cients and therefore frequency
information. Formally we define this as follows. Let V denote the k ◊ k-DCT-II basis. Then every basis
vector Vi,j with horizontal frequency j and vertical frequency i is defined as:

Vi,j,m,n = cos
5

fii

k

3
m + 1

2

46
cos

5
fij

k

3
n + 1

2

46
. (2)

Every basis vector is additionally normalized to its L1 length: Vi,j = Vi,j/ÎVi,jÎ1. Exemplary, we show the
DCT-II basis vectors for di�erent kernel sizes k in Fig. 2. In principle, DCT-II could be replaced by any
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Figure 2: The full DCT-II basis for di�erent resolutions.
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0 max
Layers

(a) E�cientNet-B0

(b) ConvNeXt-Tiny

Figure 3: Frequency distribution of each layer for trained (a) E�cientNet-B0 (containing 3 ◊ 3 and 5 ◊ 5
kernels) and (b) ConvNeXt-Tiny (containing 2 ◊ 2 [downsampling layers], 5 ◊ 5 [stem] and 7 ◊ 7 kernels).

other frequency base such as a discrete Fourier or sine transform. Following the basis change, we visualize
the average magnitude of coe�cients in every convolution layer by heat maps (as shown in Fig. 1). Having
the frequency information at hand, we can directly analyze its distribution in common CNNs.

3.1 Analyzing learned convolution weights

We start by analyzing two modern networks trained on ImageNet without any robustness optimization tech-
niques: E�cientNet-B0 (Tan & Le, 2019) and ConvNeXt-Tiny (Liu et al., 2022) (Fig. 3). Our visualizations
show that these CNNs do not always learn a uniform frequency spectrum utilization throughout the net-
work. Earlier layers show a more uniform distribution of magnitude or are biased towards higher frequencies.
However, deeper convolution layers instead reveal a salient bias towards low frequencies. Some layers even
appear to discard a majority of high-frequency information.

In addition, we are interested how adversarial training a�ects the frequency utilization in convolution filters.
As shown from various angles (Wang et al., 2020; Geirhos et al., 2019; Saikia et al., 2021) robust models shift
their bias to low-frequencies, as this reduces the possibility of overfitting on high-frequencies and therefore
provides better generalization abilities. Thus, we expect that these results transfer to the frequency utilization
in weight space to some extent. Indeed, Wang et al. (2020) stated that the very first convolution layer of
AT CNNs learns smoother filters which equals to filters that are less reliant on high-frequency information
than the equivalents in normally trained models. However, their frequency analysis was limited to the first
initial layer, while we aim to provide a holistic analysis over the entire network. This is also backed by
our previous observations showing that frequency utilization varies by depth. Further, their results do not
appear to be representative of modern models that are trained under LŒ-norm. Such models predominantly
learn thresholding filters (Madry et al., 2018) independent of architecture and dataset (Gavrikov & Keuper,
2022b) that do not resemble “common” first layers as shown by Yosinski et al. (2014). As such, they are
hardly smooth.

Exemplarily, we proceed by comparing an adversarially trained E�cientNet-B0 with its regularly-trained
counterpart (more comparisons are included in the appendix). We observe that adversarial training leads
to a characteristically di�erent distribution of learned frequencies during training (Fig. 4). Especially in the
first layers, the network learns predominantly from low frequencies, which enables the network to preserve
the global image content, rather than overfitting on high-frequency details such as texture. Interestingly, the
adversarially-trained model learns this behavior in the early training stages, and faster than under normal
training conditions (Rahaman et al., 2019). Deeper layers on the other hand show no salient di�erences.

Based on these findings, we propose a transformation approach of convolution weights into the frequency
domain to interact with frequency information. Secondly, based on the latter finding we propose a high-
frequency regularization, to further enforce the low-frequency bias in the first network layers and thus increase
the native robustness.
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0 max
Training Training

(a) Regular training. (b) Adversarial training.

Figure 4: Evolution of the frequency distributions in the first three convolution layers of an E�cientNet-B0
in comparison between (a) regular and (b) adversarial training with CIFAR-10. Evolution plots for all layers
and for other architectures can be found in the appendix.

4 Modifications to the convolution layers

Let us first formalize the computation flow in a conventional 2D convolution layer fconv2d(x; W), fconv2d
transforming an input signal x with din input-channels into a signal with dout output-channels using a
convolution kernel with a size of k0 ◊ k1. Further, let W œ Rdout◊din◊k0◊k1 denote the learned weights (i.e.
the set of all kernels Wi,j in the respective layer, without bias). Without loss of generality, we assume
k0 = k1 = k in this paper. The output of fconv2d(x; W) is then defined as:

ys =
dinÿ

d=1

Ws,d ú xd, for s œ {1, . . . , dout}. (3)

In the following, we propose a simple representation in the frequency space by replacing the convolution
weight W with a combination of learned coe�cients on the DCT-II basis. In this work, we limit ourselves to
kernels with k Ø 3. We realize this by two common implementations seen in related literature (e.g. Ulicny
et al. (2022)). Schematic visualizations of both approaches can be found in the appendix.

Weight decomposition (WD). Our first approach decomposes the weight in a convolution layer into
learnable coe�cients C œ Rdout◊din◊k◊k and the basis V defined in Eq. 2:

W = C · V. (4)

Then, the convolution can be rewritten as:

ys =
ÿ

d

(Cs,d · V) ú xd =
ÿ

d,m,n

(Cs,d,m,n · Vm,n) ú xd. (5)

This increases the parameters to be kept in memory by a factor of 2 and adds one additional tensor multi-
plication per layer. However, these additional parameters are constant and do not need to be learned.

Signal decomposition (SD). Alternatively, our second approach does not replace the convolution weight
W directly but performs a depthwise convolution of all combinations of inputs and the fixed basis vectors
which is then aggregated by a learnable pointwise (1 ◊ 1) convolution.

ys =
ÿ

d,m,n

Cs,d,m,n · (Vm,n ú xd). (6)

This increases the parameter number by a factor of dink2 to be kept in memory. Again, the number of
learnable parameters is not increased. Also, note that the associativity property of convolution reveals the
equivalence of both formulations in the forward pass:

ys =
ÿ

d,m,n

Cs,d,m,n · (Vm,n ú xd) =
ÿ

d,m,n

(Cs,d,m,n · Vm,n) ú xd. (7)
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Figure 5: Regularization area of the coe�cients
in an individual filter kernel. Colors match Eq. 8.

R(C) = ÎC:,:,Âk/2Ê:,Âk/2Ê:Î2¸ ˚˙ ˝
·k2 +

fldi� · max(ÎC:,:,:2,:2Î2 ≠
˙ ˝¸ ˚
ÎC:,:,0,0Î2¸ ˚˙ ˝

, 0).
(8)

However, due to di�erent learning dynamics, the modifications may converge to di�erent solutions. In both
approaches, the initial coe�cient weights are sampled from a uniform distribution with an adjusted scale as
per He et al. (2015). For the weight decomposition approach, we use dink2 as fan information. The basis
vectors are initialized as defined in Sec. 3 without any further adjustments.

4.1 Frequency coe�cient regularization

As we have seen in Sec. 3.1 neural networks are biased towards low-frequency information, while early layers
also introduce more magnitude on high frequencies. However, adversarial training increases the low-frequency
bias already in the early training stages resulting in an overall low-frequency dominance after convergence in
the first layers. To make use of this finding and increase the robustness of CNNs directly without adversarial
training, we propose to regularize the DCT-II coe�cients and explore the frequency shift and performance.

The proposed regularization (Eq. 8 and Fig. 5) regularizes the highest frequencies and additionally forces
the first coe�cient to have a higher magnitude than the subsequent frequency. The occurrence of the latter
constraint is determined by the binary hyperparameter fldi� , with fldi� = 1 throughout the paper, if not
stated otherwise. The multiplicative term k

2
increases penalization of higher frequencies. Let coefs(◊, h)

denote a function that returns the set of convolution coe�cient weights of the learnable parameters ◊ in the
first 1/h section of the network depth. In order to enforce the dominance of low frequencies in early layers,
we set h = 3 as our default value. We train the network with the following modifications to the objective:

min
◊

L (f (x; ◊) , y) + ⁄
ÿ

Cœcoefs(◊,h)

R(C). (9)

Where x, y ≥ D denotes the training dataset and L is the original objective. An exemplary visualization of
the learned coe�cients under regularization is given in Fig. 1 for h œ {1, 3}.

5 Experiments

In the following, we compare di�erent architectures, with regular convolutions, and both decomposition
variants (WD/SD) at varying frequency regularization (+ Reg.) (Eq. 8). For each combination, we report
results on clean accuracy, as well as robustness to various aspects.

Models and datasets. We evaluate low-resolution datasets such as CIFAR-10/100 (Krizhevsky, 2009),
MNIST (LeCun et al., 2010), SVHN (Netzer et al., 2011), and Tiny-ImageNet (Le & Yang, 2015) on ResNet-
20 (as introduced for CIFAR in He et al. (2016)), ResNet-9 - a regular and larger ResNet with optimization
for CIFAR and a reduced number of layers (see appendix for further details), and an E�cientNet-B0 (Tan
& Le, 2019) where we remove striding from the stem convolution. For ImageNet (Deng et al., 2009), we
evaluate E�cientNet-B0 (Tan & Le, 2019) and ConvNeXt-Tiny (Liu et al., 2022). We test h œ {1, 3} and
⁄ œ {0.01, 0.05, 0.1} and report results for the best performance over the mean of 5 runs except for ImageNet
(1 run). Details regarding the training can be found in the appendix.
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Table 1: Performance evaluation of various networks (ResNet-20/9 and E�cientNet-B0) on multiple
datasets (CIFAR-10/100, SVHN, TinyImageNet, MNIST) before and after our applied regularization. We
report clean accuracy on the respective test sets as well as adversarial robustness against FGSM, PGD-40,
and AutoAttack for LŒ, ‘ = 1/255 (‘ = 16/255 for MNIST). We report averages over 5 runs.

Variant Clean (ø) Adversarial Acc. (ø)
Val Acc. FGSM PGD-40 AA

C
I
F

A
R

-
1

0

R
es

N
et

-2
0 CNN 91.29 50.49 30.92 10.78

WD 91.04 48.40 30.37 10.72
SD 91.36 50.83 32.98 11.97
WD + Reg. 89.86 50.85 41.81 26.79
SD + Reg. 90.54 53.12 44.42 29.14

R
es

N
et

-9

CNN 94.29 59.58 53.04 37.49
WD 93.73 55.51 49.84 35.23
SD 93.97 55.73 50.29 36.0
WD + Reg. 93.18 59.25 56.08 43.62
SD + Reg. 93.09 59.87 56.89 44.80

E�
.N

et
-B

0 CNN 90.38 53.55 54.05 45.51
WD 90.51 49.87 49.97 40.76
SD 90.44 51.04 51.77 43.39
WD + Reg. 88.97 57.91 59.60 53.30
SD + Reg. 89.18 57.83 59.68 53.50

Variant Clean (ø) Adversarial Acc. (ø)
Val Acc. FGSM PGD-40 AA

C
I
F

A
R

-
1

0
0

R
es

N
et

-2
0 CNN 60.41 14.36 5.45 1.17

WD 58.90 12.84 4.68 1.01
SD 60.34 13.87 5.18 1.13
WD + Reg. 56.65 16.85 12.73 5.59

SD + Reg. 58.19 17.20 12.24 5.11

S
V

H
N

R
es

N
et

-2
0 CNN 96.31 83.84 79.94 69.81

WD 96.35 83.52 80.01 71.25
SD 96.34 84.07 80.64 71.74
WD + Reg. 96.28 84.11 81.21 73.27

SD + Reg. 96.34 84.17 81.23 73.03

T
in

y
I
m

N
e
t

R
es

N
et

-9

CNN 53.20 17.79 16.76 9.57
WD 52.08 17.11 16.19 9.40
SD 52.12 16.85 15.88 9.15
WD + Reg. 51.25 18.10 17.34 10.23
SD + Reg. 51.22 18.26 17.40 10.39

M
N

I
S

T

R
es

N
et

-2
0 CNN 99.68 89.74 45.37 8.92

WD 99.69 90.45 47.06 10.22
SD 99.65 91.23 54.08 16.80
WD + Reg. 99.69 90.70 55.84 25.92

SD + Reg. 99.69 88.98 50.02 21.71

Table 2: Comparison against other robustness techniques (Grabinski et al., 2022a; Lopes et al., 2019)
of ResNet-20, ResNet-9, and E�cientNet-B0 on CIFAR-10. We report the mean clean validation accuracy
and robust accuracy against adversarial attacks: FGSM, PGD-40, and AutoAttack for LŒ, ‘ = 1/255, and
the mean corruption accuracy on CIFAR-10-C. We report averages over 5 runs.

Variant Clean (ø) Adversarial Acc. (ø) CC (ø)

Val Acc. FGSM PGD-40 AA Acc.

R
e
s
N

e
t
-
2

0

CNN 91.29 50.49 30.92 10.78 67.96

FLC (Grabinski et al., 2022a) 91.52 52.49 30.25 8.48 68.75

PaGA (Lopes et al., 2019) 91.29 50.36 31.50 11.38 67.73

WD 91.04 48.40 30.37 10.72 66.92

SD 91.36 50.83 32.98 11.97 67.48

WD + Reg. 89.86 50.85 41.81 26.79 74.04

SD + Reg. 90.54 53.12 44.42 29.14 74.14

R
e
s
N

e
t
-
9

CNN 94.29 59.58 53.04 37.49 73.38

FLC (Grabinski et al., 2022a) 94.24 59.64 53.47 38.65 73.81

PaGA (Lopes et al., 2019) 94.33 59.12 52.62 37.50 73.72

WD 93.73 55.51 49.84 35.23 72.87

SD 93.97 55.73 50.29 36.00 73.48

WD + Reg. 93.18 59.25 56.08 43.62 76.41

SD + Reg. 93.09 59.87 56.89 44.80 77.72

E
�

.N
e
t
-
B

0

CNN 90.38 53.55 54.05 45.51 68.09

FLC (Grabinski et al., 2022a) 89.68 51.92 53.09 45.37 69.72

PaGA (Lopes et al., 2019) 90.72 54.18 54.97 46.64 69.31

WD 90.51 49.87 49.97 40.76 67.10

SD 90.44 51.04 51.77 43.39 66.65

WD + Reg. 88.97 57.91 59.60 53.30 72.14

SD + Reg. 89.18 57.83 59.68 53.50 71.87

Note that we have selected models with di�erent kernel sizes - e.g. after the stem, ResNets use k = 3,
E�cientNets-B0 mix k = 3 and k = 5, and ConvNeXts k = 7 (and k = 2 downsampling layers). The
variance in kernel size allows us to demonstrate the transferability of our proposed regularization beyond
the common k = 3 kernels.
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Table 3: A benchmark of a ResNet-20 (CIFAR-10) with various convolution implementations evaluated on
a NVIDIA A100 GPU.

Variant Total Params (¿) Learnable Params (¿) Throughput (img/sec) (ø)

CNN 272k 272k 71.3k

WD (+ Reg.) 274k 272k 70.2k

SD (+ Reg.) 323k 272k 23.6k

Robustness evaluation. To understand the e�ect on robustness and generalization of our proposed de-
composition and regularization approaches, we run the standard AutoAttack test suite (AA) (Croce & Hein,
2020a) and additional FGSM-, and PGD-attacks at ‘ = 1/255 (‘ = 16/255 for MNIST) under the LŒ-norm.
We use Foolbox (Rauber et al., 2017) to run both FGSM and PGD at the default setting (e.g. 40 steps
for PGD). We do not include AA results for ImageNet, as these models barely withstand any attacks and
measure robust accuracies of 0% even at this small ‘ without adversarial training. Further, we evaluate the
robustness of common corruptions of CIFAR-10 and ImageNet models on the respective corrupted datasets
(Hendrycks & Dietterich, 2019). In addition, we are interested in the behavior of the methods towards
texture bias (Geirhos et al., 2019) and OOD generalization tests (Geirhos et al., 2021). Hence, we evaluate
our ImageNet (Deng et al., 2009) models on 5 of these OOD datasets: texture-shape cue-conflict, ImageNet-
Sketch, Stylized-ImageNet, and edge-/silhouette-transformations of ImageNet using the implementation of
Geirhos et al. (2021).

5.1 Low-resolution datasets

CIFAR-10. As to be expected, switching from regular to either decomposition variant has an insignificant
impact on the clean accuracy and a small e�ect on robust accuracy (at all adversarial attacks) (Tab. 1).
However, applying the regularization clearly improves robustness towards all attacks, while slightly decreasing
clean accuracy. We can also observe that SD slightly outperforms WD on almost all tested architectures.
Hence, it may be tempting to only proceed with SD. However, the additionally created channels account for
more parameters, a large memory overhead, and slower inference and training performance. E.g. on ResNet-
20 we see a 3x slower forward pass and 18% more total parameters, while WD has a minimal overhead, both,
in parameters and throughput (Tab. 3).
Regarding robustness, we see the largest gains on models that initially performed worst (+18.36% on ResNet-
20 on CIFAR-10). Out of all our tested models, E�cientNet-B0 is the most robust, both, before and after
regularization. Noticeably, even the worst hyperparameter combination for ResNet-20 (WD, ⁄ = 0.01, h =
1, fldi� = 0) still achieves a 14.22% higher AA accuracy than the baseline. A complete overview of tested
hyperparameters is in the appendix.

Common corruptions of CIFAR-10. For common corruptions (CC) (the last column in Tab. 2 corre-
sponds to the CIFAR-10 results in Tab. 1), we analyze the mean accuracy over all corruptions and severities,
as well as individual results for corruptions at the highest severity level. A complete overview is given in
the appendix. Similar to the results on adversarial robustness we observe that on average both regularized
variants outperform the baseline. Additionally, regularized models become significantly more robust against
corruptions having predominantly high frequency (HF) perturbations (see Yin et al. (2019) for spectrums)
such as pixelate and defocus/glass/gaussian blur. Perhaps less surprisingly, regularized models become less
sensitive to increased JPEG compression, as it relies on (quantized) DCT-II coe�cients. For corruptions
with larger variance in the frequency spectrum, regularized performance remains largely unchanged. We
see a slight degradation of performance in low frequency (LF) corruptions such as brightness, saturation,
contrast, and impulse noise. However, the accuracy drop is relatively low considering the evaluation at the
highest severity level.

Other datasets. Although several works reported a shift in the frequency band of adversarial attacks
depending on the dataset (Maiya et al., 2021; Abello et al., 2021; Bernhard et al., 2021; Ortiz-Jiménez et al.,
2020), we consequently see an improvement due to our HF regularization on multiple datasets (Tab. 1).
Arguably, we see smaller improvements for SVHN/Tiny-ImageNet - which are also the datasets that show
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Figure 6: Frequency heat maps of feature maps: Regularized layers (top row) of a ResNet-20 show a shift
towards LF after regularization, compared to non-regularized layers in rows two and three.

Table 4: Results on ImageNet for E�cientNet-B0 and ConvNeXt-Tiny on clean training data, FGSM,
PGD-40 (LŒ, ‘ = 1/255), ImageNet-C and out-of-distribution generalization test. All regularization hyper-
parameters are ⁄ = 0.05 and h = 3.

Model Variant Clean Test Acc. (ø) Adversarial Attacks Corruption Cue-Conflict Sketch (ø) Stylized (ø) Edge (ø) Silhouette (ø)
Acc. (ø) Error (¿) (ø)

Top 1 Top 5 FGSM PGD-40 ImageNet-C Top 1 Top 5 Top 1 Top 5 Top 1 Top 1

E�cientNet-B0 CNN 75.44 92.86 16.89 2.32 54.54 23.52 65.25 84.62 52.25 79.00 35.00 51.25
WD 75.80 92.94 14.86 2.03 53.99 22.58 66.12 86.25 48.25 78.88 40.62 55.00
SD 75.62 92.82 15.05 1.41 52.85 23.67 66.38 84.50 52.50 78.50 34.38 58.13
WD + Reg. 75.44 92.15 18.45 4.43 52.03 29.38 66.38 86.88 47.62 79.75 36.25 58.13
SD + Reg. 74.42 92.19 18.70 5.33 51.12 25.78 64.75 87.88 49.12 77.12 32.50 58.75

ConvNeXt-Tiny CNN 81.32 95.53 35.53 3.93 41.92 24.84 71.50 88.00 56.00 78.38 48.12 62.50
WD 81.11 95.55 35.30 2.97 42.98 25.31 73.12 89.62 52.00 77.62 47.50 58.75
WD + Reg. 79.25 94.38 35.69 4.22 44.31 32.27 73.75 88.12 58.00 82.38 38.75 65.62

more LF perturbations than HF. Contrary to our CIFAR-10 results, WD outperforms SD on all datasets
except SVHN.

Spectrum of feature maps. Further, we aim to understand the implications of the regularization on
the computed feature maps. Exemplarily, we compare an SD + Reg. ResNet-20 against a CNN baseline
and analyze the magnitude shift in the DCT-II coe�cients of the feature maps (Fig. 6) of a clean validation
batch. Our regularization causes a clear shift towards lower frequencies in regularized layers. Interestingly,
in the stem layer, we also see large shifts from entirely vertical or horizontal frequencies to more balanced
ones. Contrary, non-regularized (deeper) layers appear to slightly shift towards higher frequencies.

Comparison to other methods. We compare our method to FrequencyLowCut Pooling (FLC) (Grabinski
et al., 2022a) and Patch Gaussian Augmentation (PaGA) (Lopes et al., 2019) (Tab. 2) as these methods also
aim at HF-regularization. Regarding AA and CC performance, we observe that our method consistently
outperforms both other approaches in standalone comparisons with small degradation of clean validation
accuracy. Additionally, imposing our regularization on top of other methods improves the robustness of these
significantly. Interestingly, we often get the highest levels of robustness in combination with another method,
proving that our regularization can be complementary to other robustness techniques. For a comparison to
Wang et al. (2020), please refer to the appendix, where we show favorable behavior of our approach.

5.2 ImageNet

Next, we aim to explore how our regularization performs on the common ImageNet dataset (Deng et al.,
2009). In particular, more OOD tests exist for this dataset which allows us to study aspects outside adver-
sarial robustness, and robustness against common corruptions. Similar to our results on other datasets, we
see an improvement in adversarial robustness at slight (1-2%) degradation of clean performance (Tab. 4).
While we see an improvement in CC performance on E�cientNet, we see an equal decrease for ConvNeXt.
This may be due to the larger kernels (7 ◊ 7) that ConvNeXt utilizes and may, thus, require other hyper-
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Table 5: FGSM-Adversarial Training on CIFAR-10 with LŒ, ‘ = 8/255. We report the mean over
5 runs for the FGSM train and validation accuracy of the epoch of the best PGD-40 validation accuracy
as well as the AutoAttack accuracy. We also report the corresponding mean accuracy on CIFAR-10-C and
report the di�erence to the clean-trained evaluations.

Variant Clean FGSM (ø) Adversarial Acc. (ø) Corruption Acc.

Val. Acc. (ø) Train Acc. PGD-40 AA Mean (ø) � (AT-Normal) (ø)

ResNet-20 CNN 73.73 50.39 46.14 36.09 66.99 -0.97

WD + Reg. 71.69 48.46 45.38 35.64 65.48 -8.56

SD + Reg. 73.01 49.93 46.34 36.47 66.73 -7.41

ResNet-9 CNN 81.70 60.27 52.77 0.00 74.06 0.68

WD + Reg. 81.56 61.66 51.52 39.97 74.47 -1.94

SD + Reg. 82.56 63.39 51.80 40.14 75.40 -2.32

E�cientNet-B0 CNN 63.00 42.34 42.49 34.04 57.35 -10.74

WD + Reg. 68.50 45.87 45.13 36.56 62.66 -9.48

SD + Reg. 68.89 46.76 45.57 36.76 63.07 -8.8

Table 6: PGD-Adversarial Training on ImageNet of ResNet-50 with LŒ, ‘ = 4/255. We report the
train and validation accuracy under PGD attacks, validation accuracy under AutoAttack, corruption error,
and cue-conflict. Results are from one run.

Variant Clean PGD (ø) Adversarial Acc. (ø) Corruption Cue-Conflict (ø)

Val Acc. (ø) Train Acc. PGD AA Error (¿)

CNN 56.85 33.88 36.04 22.33 78.65 38.83

WD 55.82 33.91 35.06 22.06 78.90 38.83

WD + Reg. 58.09 36.00 37.09 24.32 78.36 39.38

parameters. Importantly we see a significant improvement of the cue-conflict in both cases - which is also
reflected in the increased accuracy of silhouette (LF) and the decrease in performance of edge (HF). This
indicates that our regularization favorably shifts models toward shape bias (Geirhos et al., 2019).

5.3 Integration into adversarial training and impact on robust overfitting

So far, we investigated the e�ect of our proposed HF regularization on native robustness. For completeness,
we aim to explore the role of our regularization in AT. We train our models against FGSM-adversaries on
CIFAR-10 (LŒ, ‘ = 8/255) (Tab. 5). To mitigate robust overfitting, we use early stopping based on PGD-40
test performance. We observe, that our regularization has a beneficial e�ect on the out-of-domain attacks
(i.e. AA) and all runs show an increased performance after regularization. We furthermore observe that
our regularization appears to mitigate robust overfitting of training attacks (similarly to Grabinski et al.
(2022a)) on ResNet-9: without regularization the AT-trained CNN achieves high FGSM train accuracy and
high PGD-40 validation accuracy but fails to generalize to other attacks (AA) and stagnates at 0%. With
regularization, all runs show comparable or even better accuracy than the best non-regularized models.
However, similarly to the observations by Saikia et al. (2021), we generally see a significant decrease in CC
accuracy due to AT. Again, this demonstrates that AT is not the cure-all to improve network robustness
and there is a need for other approaches such as our proposed frequency regularization.

Additionally, we extend our experiments to AT on ImageNet (Tab. 6). Here we switch to single-step PGD
training with the common ‘ = 4/255 and train the ResNet-50 architecture. Again we report PGD, AA, and
CC performance but this time also the cue-conflict score. Our regularized WD architecture outperforms the
baseline in all metrics: adversarial robustness, corruption error, and cue-conflict. This demonstrates that our
method is able to mitigate some of the overfitting aspects of adversarial training and leads to an improved
OOD generalization performance. We do not report the (regularized) SD performance due to the lack of
tuned hyperparameters but expect similar gains when tuned properly.
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6 Conclusion

We have shown a first step towards improving the native robustness of CNNs to multiple distribution
shifts such as adversarial attacks, corruptions, and shape-biased datasets, as well as the benefit of our
regularization for adversarial training. In particular, our regularization decreases the sensibility to high-
frequency perturbations. Albeit our results do not approach SOTA levels, we emphasize that we improve
robustness on a wide range of tests, whereas SOTA methods like AT often overfit to one specific type of
robustness, such as adversarial attacks, and often even impair performance on other tests compared to normal
baselines. Additionally, our method does not rely on OOD examples but intrinsically strengthens the model.
Our approach has shown to generalize to di�erent networks with various kernel sizes, that were trained on
di�erent datasets, and di�erent measures of robustness. We have also shown that our method can be used in
combination with other approaches such as PaGA (Lopes et al., 2019), FLC (Grabinski et al., 2022a), and
even AT (Madry et al., 2018) to further improve robust performance. In combination with AT, our approach
shows promise to mitigate robust overfitting (Rice et al., 2020).

Limitations. We observed that on some architectures switching to WD/SD introduces a significant drop in
accuracy (prior to regularization). Although the forward pass of both methods is mathematically equivalent
to baselines, the backward pass is not. E.g. weight updates on linear combinations of decomposed convolution
filters and feature maps are in di�erent backward pass stages and under di�erent quantization conditions due
to limited bit precision. While we observe that our regularization generally improves a multitude of robustness
aspects, the regularized counterparts may underperform CNN baselines due to the initial impairment due to
the architecture change. We aim to explore more root causes and alternatives in future work.

References
Antonio A. Abello, Roberto Hirata, and Zhangyang Wang. Dissecting the high-frequency bias in convolu-

tional neural networks. In IEEE Conference on Computer Vision and Pattern Recognition Workshops,
CVPR Workshops 2021, virtual, June 19-25, 2021, pp. 863–871. Computer Vision Foundation / IEEE,
2021.

N. Ahmed, T. Natarajan, and K.R. Rao. Discrete cosine transform. IEEE Transactions on Computers, C-23
(1):90–93, 1974.

Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square attack: A
query-e�cient black-box adversarial attack via random search. In Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm (eds.), Computer Vision – ECCV 2020. Springer International Publishing,
2020.

Rémi Bernhard, Pierre-Alain Moëllic, Martial Mermillod, Yannick Bourrier, Romain Cohendet, Miguel Soli-
nas, and Marina Reyboz. Impact of spatial frequency based constraints on adversarial robustness. In
International Joint Conference on Neural Networks, IJCNN 2021, Shenzhen, China, July 18-22, 2021.
IEEE, 2021.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, Percy Liang, and John C. Duchi. Unlabeled data
improves adversarial robustness, 2022.

Karol Cheinski and Pawel Wawrzynski. Dct-conv: Coding filters in convolutional networks with discrete
cosine transform. In 2020 International Joint Conference on Neural Networks, IJCNN 2020, Glasgow,
United Kingdom, July 19-24, 2020, 2020.

Wai Chen. The Electrical Engineering Handbook. Academic Press, October 2004. ISBN 978-0-08047748-0.

Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin Chen. Compressing convo-
lutional neural networks in the frequency domain. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pp.
1475–1484. ACM, 2016.

12



Under review as submission to TMLR

Yaosen Chen, Renshuang Zhou, Bing Guo, Yan Shen, Wei Wang, Xuming Wen, and Xinhua Suo. Discrete
cosine transform for filter pruning. Applied Intelligence, 2022.

Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. In International conference on machine learning, pp. 2206–2216. PMLR, 2020a.

Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast adaptive boundary
attack, 2020b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255,
2009. doi: 10.1109/CVPR.2009.5206848.

Samuel F. Dodge and Lina J. Karam. A study and comparison of human and deep learning recognition
performance under visual distortions. CoRR, abs/1705.02498, 2017. URL http://arxiv.org/abs/1705.
02498.

Ranjie Duan, Yuefeng Chen, Dantong Niu, Yun Yang, A. K. Qin, and Yuan He. Advdrop: Adversarial
attack to dnns by dropping information. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 7506–7515, October 2021.

Paul Gavrikov and Janis Keuper. Cnn filter db: An empirical investigation of trained convolutional filters.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2022a.

Paul Gavrikov and Janis Keuper. Adversarial robustness through the lens of convolutional filters. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
June 2022b.

Paul Gavrikov and Janis Keuper. On the interplay of convolutional padding and adversarial robustness,
2023.

Paul Gavrikov, Janis Keuper, and Margret Keuper. An extended study of human-like behavior under adver-
sarial training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, pp. 2360–2367, June 2023.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and Wieland
Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and
robustness. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019, 2019.

Robert Geirhos, Kantharaju Narayanappa, Benjamin Mitzkus, Tizian Thieringer, Matthias Bethge, Felix A.
Wichmann, and Wieland Brendel. Partial success in closing the gap between human and machine vision.
In Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, 2021.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
In Yoshua Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6572.

Julia Grabinski, Ste�en Jung, Janis Keuper, and Margret Keuper. Frequencylowcut pooling - plug and play
against catastrophic overfitting. In Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv,
Israel, October 23-27, 2022, Proceedings, Part XIV, pp. 36–57. Springer, 2022a.

Julia Grabinski, Janis Keuper, and Margret Keuper. Aliasing and adversarial robust generalization of cnns.
Machine Learning, 2022b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. CoRR, abs/1502.01852, 2015.

13

http://arxiv.org/abs/1705.02498
http://arxiv.org/abs/1705.02498
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572


Under review as submission to TMLR

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. Proceedings of the International Conference on Learning Representations, 2019.

Md Tahmid Hossain, Shyh Wei Teng, Dengsheng Zhang, Suryani Lim, and Guojun Lu. Distortion robust
image classification using deep convolutional neural network with discrete cosine transform. In 2019 IEEE
International Conference on Image Processing, ICIP 2019, Taipei, Taiwan, September 22-25, 2019, pp.
659–663. IEEE, 2019.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale, 2017.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A
convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022.

Shao-Yuan Lo and Hsueh-Ming Hang. Exploring semantic segmentation on the DCT representation. In
MMAsia ’19: ACM Multimedia Asia, Beijing, China, December 16-18, 2019, pp. 59:1–59:6. ACM, 2019.

Raphael Gontijo Lopes, Dong Yin, Ben Poole, Justin Gilmer, and Ekin D. Cubuk. Improving robustness
without sacrificing accuracy with patch gaussian augmentation. CoRR, abs/1906.02611, 2019.

Peter Lorenz, Dominik Strassel, Margret Keuper, and Janis Keuper. Is robustbench/autoattack a suitable
benchmark for adversarial robustness? In The AAAI-22 Workshop on Adversarial Machine Learning and
Beyond, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. In International Conference on Learning Representations,
2018.

Shishira R. Maiya, Max Ehrlich, Vatsal Agarwal, Ser-Nam Lim, Tom Goldstein, and Abhinav Shrivastava.
A frequency perspective of adversarial robustness. CoRR, abs/2111.00861, 2021. URL https://arxiv.
org/abs/2111.00861.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Ng. Reading digits in
natural images with unsupervised feature learning. NIPS, 01 2011.

Guillermo Ortiz-Jiménez, Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Hold me
tight! influence of discriminative features on deep network boundaries. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio,
and Aaron Courville. On the spectral bias of neural networks. In Proceedings of the 36th International
Conference on Machine Learning, 2019.

Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A python toolbox to benchmark the robust-
ness of machine learning models. In Reliable Machine Learning in the Wild Workshop, 34th International
Conference on Machine Learning, 2017. URL http://arxiv.org/abs/1707.04131.

14

https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2111.00861
https://arxiv.org/abs/2111.00861
http://arxiv.org/abs/1707.04131


Under review as submission to TMLR

Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In Hal Daumé
III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp. 8093–8104. PMLR, 13–18 Jul 2020.

Daniel L. Ruderman. The statistics of natural images. Network: Computation In Neural Systems, 5:517–548,
1994.

Tonmoy Saikia, Cordelia Schmid, and Thomas Brox. Improving robustness against common corruptions
with frequency biased models. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV
2021, Montreal, QC, Canada, October 10-17, 2021, pp. 10191–10200. IEEE, 2021.

Nandini C. Singh and Frédéric Theunissen. Modulation spectra of natural sounds and ethological theories
of auditory processing. The Journal of the Acoustical Society of America, 114:3394–411, 01 2004. doi:
10.1121/1.1624067.

Mingxing Tan and Quoc V. Le. E�cientnet: Rethinking model scaling for convolutional neural networks.
2019. doi: 10.48550/ARXIV.1905.11946. URL https://arxiv.org/abs/1905.11946.

Florian Tramèr and Dan Boneh. Adversarial Training and Robustness for Multiple Perturbations. Curran
Associates Inc., Red Hook, NY, USA, 2019.

Matej Ulicny, Vladimir A. Krylov, and Rozenn Dahyot. Harmonic convolutional networks based on discrete
cosine transform. Pattern Recognition, 129:108707, 2022. ISSN 0031-3203.

G.K. Wallace. The jpeg still picture compression standard. IEEE Transactions on Consumer Electronics,
38(1):xviii–xxxiv, 1992.

Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations by
penalizing local predictive power. In Advances in Neural Information Processing Systems, pp. 10506–10518,
2019.

Haohan Wang, Xindi Wu, Zeyi Huang, and Eric P. Xing. High-frequency component helps explain the
generalization of convolutional neural networks. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. Computer Vision Foundation /
IEEE, 2020.

Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training. In
International Conference on Learning Representations, 2020.

Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren. Learning in the frequency
domain. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020,
Seattle, WA, USA, June 13-19, 2020, pp. 1737–1746. Computer Vision Foundation / IEEE, 2020.

Leonid Yaroslavsky. Fast transforms in image processing: Compression, restoration, and resampling. Ad-
vances in Electrical Engineering, 2014:1–23, 07 2014. doi: 10.1155/2014/276241.

Dong Yin, Raphael Gontijo Lopes, Jonathon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. A fourier
perspective on model robustness in computer vision. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pp. 13255–13265, 2019.

Jason Yosinski, Je� Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural
networks? volume 4, 2014.

Chaojian Yu, Bo Han, Li Shen, Jun Yu, Chen Gong, Mingming Gong, and Tongliang Liu. Understanding
robust overfitting of adversarial training and beyond. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 25595–25610. PMLR,
17–23 Jul 2022.

15

https://arxiv.org/abs/1905.11946

	Introduction
	Related work
	Frequency analysis
	Analyzing learned convolution weights

	Modifications to the convolution layers
	Frequency coefficient regularization

	Experiments
	Low-resolution datasets
	ImageNet
	Integration into adversarial training and impact on robust overfitting

	Conclusion
	Training details
	Low resolution: CIFAR-10/100, MNIST, SVHN, Tiny-Imagenet
	ImageNet.

	CIFAR10-C details
	ResNet-9 architecture
	Decompositions
	Hyperparameter exploration
	Adversarial Training on ImageNet
	Extended Ablation: Other regularization approaches
	Comparison-State-of-the-Art including Wang et al. 
	Perturbations in the frequency domain
	Details on shape bias
	Evolution Plots
	Tables from Main Paper with Standard Deviation

