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This letter develops a novel fixed-time stable neurodynamic flow
(FTSNF) implemented in a dynamical system for solving the nonconvex,
nonsmooth model L1−β2, β ∈ [0, 1] to recover a sparse signal. FTSNF is
composed of many neuron-like elements running in parallel. It is very
efficient and has provable fixed-time convergence. First, a closed-form
solution of the proximal operator to model L1−β2, β ∈ [0, 1] is presented
based on the classic soft thresholding of the L1-norm. Next, the proposed
FTSNF is proven to have a fixed-time convergence property without ad-
ditional assumptions on the convexity and strong monotonicity of the ob-
jective functions. In addition, we show that FTSNF can be transformed
into other proximal neurodynamic flows that have exponential and finite-
time convergence properties. The simulation results of sparse signal re-
covery verify the effectiveness and superiority of the proposed FTSNF.

1 Introduction

Thanks to the pioneering work of Candès, Romberg, and Tao (2006), com-
pressed sensing (CS) has emerged as a promising method for restoring the
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1728 Y. Zhao, X. Liao, and X. He

usefulness of sparse signals with respect to a given sensing matrix and ob-
served signal. Given this, three important typical problems must be ad-
dressed. The first is how to build a sparse signal recovery model so that
its optimal solution is close to the sparsest signal, such as minimization
models with the L1-norm, L0-norm, Lp-norm, and L1−2 hybrid norm. The
second is to study different types of optimization methods that are capable
of recovering sparse signals (called sparse signal recovery or sparse sig-
nal reconstruction). The third is to construct sensing matrices to analyze
the sparse recovery models and test the performance characteristics of cor-
related sparse optimization methods. It is worth noting that sparse signal
recovery plays an important role in CS. Moreover, it is the bridge that estab-
lishes the connection between the first and the third problems in CS. This
motivates us to focus the research in this letter on sparse signal recovery.

Sparse signal recovery, as a fundamental theory of CS, has been inten-
sively investigated in recent years as it requires a remarkably lower sam-
pling than that of Nyquist. It has been widely applied in image processing
(Bach, Mairal, Ponce, & Sapiro, 2010), data analysis (Huang & Aviyente,
2006), pattern recognition (Wright, Ma, Mairal, Sapiro, Huang, & Yan, 2010),
medical imaging processing (Chen et al., 2014), and smart grids (Li, Yu, Yu,
Chen, & Wang, 2016). The purpose of sparse signal recovery is to find a
parsimonious feature of the signal by making use of a few elements of an
overcomplete dictionary,

b = Ax + e,

where b ∈ Rn is the observed value corrupted by noise e ∈ Rn, x ∈ Rn is a
sparse signal with s-sparsity, and A ∈ Rm×n(m � n) is the measurement ma-
trix (i.e., dictionary). This is generally ill posed and difficult to restore x from
the compressed measurement b due to m � n. Candès (2008) has shown
that x can be faithfully recovered with the upper bound of error, which is
determined by the noise intensities, provided that the measurement matrix
A fulfills some stable embedding conditions.

The problem of sparse signal recovery can be cast as

min
x∈Rn

λ‖x‖0 + 1
2
‖Ax − b‖2

2,

where ‖ · ‖0 is L0-norm, which indicates the number of nonzero elements
in the vector x. λ > 0 is a trade-off parameter. Unfortunately, it is NP-hard
to obtain the global optimal solution of the L0-norm minimization prob-
lem. According to the restricted isometry property (RIP) condition, one can
equivalently adopt the L1-norm for replacement L0-norm with a high proba-
bility of evaluating the expected sparse signal x by addressing the following
L1-norm minimization problem,

min
x∈Rn

λ‖x‖1 + 1
2
‖Ax − b‖2

2, (1.1)
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Fixed-Time Neurodynamic Flow to Sparse Recovery 1729

where ‖x‖1 = ∑n
i=1 |xi|. The L1-norm minimization problem 1 is easier to

handle as it is convex. Problem 1 is therefore widely used in sparse sig-
nal recovery such as blind source separation (Li, Cichocki, & Amari, 2006),
variable selection (Fan & Li, 2001), and face recognition (Wagner et al.,
2011). Some numerical iterative algorithms are available for solving the
L1-norm minimization problem, for example, basis pursuit (BP) (Candès
et al., 2006) and the augmented Lagrangian method (Afonso, Bioucas-Dias,
& Figueiredo, 2010; Tomioka & Sugiyama, 2009).

Recently, there has been an increasing number of applications for non-
convex measurements as alternatives to the convex L1-norm. In particular,
the application of the nonconvex Lp, p ∈ (0, 1)-norm (quasi-norm) in Char-
trand (2007) and Zuo, Meng, Zhang, Feng, and Zhang (2013) can be seen as
a continuation strategy for approximating the L0-norm in terms of p → 0.
To address the p-norm minimization problem, optimization strategies in-
cluding iterative reweighting approaches (Lai, Xu, & Yin, 2013) and half-
thresholding algorithms (Xu, Chang, Xu, & Zhang, 2012; Wu, Sun, & Li,
2016) have been studied. Other nonconvex variants of the L1-norm have
been investigated, such as transforming the L1-norm (Zhang & Xin, 2018)
and capping the L1-norm (Lou, Yin, & Xin, 2016). Recently, hybrid norm
models such as the difference of L1-norm and L2-norm (L1−2) (Yin, Lou, He,
& Xin, 2015; Lou & Yan, 2018), the difference of L1-norm and Lp-norm (L1−p)
(Wang & Zhang, 2017), and the difference of Lp-norm and Lq-norm (Lp−q)
(Zhao, He, Huang, & Huang, 2018) have been studied for recovering sparse
signals.

Neurodynamic approaches have received increasing attention because
they can efficiently solve optimization problems by hardware analog
circuits in parallel. Liu and Wang (2008) designed a one-layer recurrent
neural network to address linear programming based on a discontinuous
activation function. Later, Liu, Cao, and Chen (2010) proposed a novel
neural network approach to deal with linear programming with a finite-
time stability. Liu, Zeng, and Wang (2017) investigated the multistability of
delayed recurrent neural networks with the Mexican hat activation func-
tion. Garg and Panagou (2021) proposed several fixed-time stable gradient
flows. In addition, some distributed neurodynamic flows with fixed-time
or predefined-time convergence rates for distributed optimization and
resource allocation were studied in Li, Yu, Zhou, and Ren (2017), Lin,
Wang, Li, and Yu (2020), and Garg and Baranwal (2020). Rozell, Johnson,
Baraniuk, and Olshausen (2008) first proposed a continuous-time local
competitive algorithm (LCA) approach for sparse coding based on thresh-
olding functions. Balavoine, Rozell, and Romberg (2013) proved that the
local competitive algorithm (LCA) has an exponential convergence rate.
Li, Wang, and Kwong (2020) investigated a discrete-time neurodynamic
approach to deal with a nonnegative matrix factorization problem with
sparsity constraints. Liu and Wang (2016) and Xu, Liu, and Huang (2019)
proposed several continuous/discrete-time projection neural networks for
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1730 Y. Zhao, X. Liao, and X. He

the L1-norm minimization problem on the strength of projection opera-
tors. Feng, Leung, Constantinides, and Zeng (2017) adopted a modified
Lagrangian neural network based on a locally competitive algorithm
(BP-LPNN) to solve problem 1 to obtain sparse signals with and without
noise measurement. By smoothing approximation techniques, Bian and
Chen (2012) developed a smoothing projection neural network, and Zhao,
Liao, He, Tang, and Deng (2021) proposed a smoothing inertial neurody-
namic approach by introducing an inertial term to address the nonconvex
Lp-norm minimization problem. To tackle the nonconvex hybrid norm
models, Zhu, Wang, He, and Zhao (2018) investigated an inertial neural
network based on projection operators (IPNN) for solving the L1−2 hy-
brid norm minimization problem. Wang and Zhang (2017) investigated
a smoothing projection neural network (SPNN) to address a generalized
L1−p, (2 > p > 1) optimization problem to recover sparse signals. Later,
Zhao et al. (2018) studied a more generalized hybrid norm model, the Lp−q

hybrid norm model, for recovering sparse signals accurately with noise-
free measurements. However, the neurodynamic flows already noted are
still unclear with regard to convergence rates (Zhao, He, Huang, & Huang,
2018; Liu & Wang, 2016) or only exponential convergence rates (Balavoine
et al., 2013). This cannot ensure the convergence of sparse recovery when
the signal changes very quickly or the speed of the signal recovery response
is urgently needed. Two dynamical systems with finite-time and fixed-time
convergence were proposed to solve the L1-norm minimization problem
with noise measurement in Yu, Zheng, and Barbot (2017) and Ren et al.
(2019). Two neurodynamic flows for solving the L1-norm minimization
problem to achieve a sparse signal with finite-time and fixed-time conver-
gence rates under noise-free measurement were proposed by He and his
collaborators (Wen, Wang, & He, 2020; He, Wen, & Huang, 2021). Garg
and Baranwal (2020) proposed a continuous-time accelerated algorithm
(CAPPA) based on the proximal operator of the L1-norm and sliding mode
technique. CAPPA got a fixed-time convergence rate to seek a sparse signal
by minimizing the L1-norm with noise measurement.

Hybrid norm models are a type of sparse recovery model that have at
least two kinds of norms. Research on such models and their related meth-
ods is becoming increasingly important in computer science, among which
the unconstrained L1−2 model is the most popular. Recently, the L1−2 sparse
model has been applied to signal processing and compressed sensing, has
derived meaningful and favorable results (Yin, Lou, He, & Xin, 2015; Lou &
Yan, 2018), and has even outperformed the L1- and Lp-norms in promoting
sparsity under some conditions. Numerical experiments demonstrated that
the L1−2 model is a valuable sparse recovery model to a certain extent. To
the best of our knowledge, only three studies—by Zhu et al. (2018), Wang
and Zhang (2017), and Zhao et al. (2018)—have been provided, applying
neurodynamic flows to solve related problems. However, they only gave
the convergence analysis of their neurodynamic flows and did not involve
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Fixed-Time Neurodynamic Flow to Sparse Recovery 1731

their convergence rates. Whether faster neurodynamic flows exist with a
fixed-time convergence rate to solve the L1−β2, β ∈ (0, 1] problem motivates
us to investigate this problem.

Based on the above discussion, we propose a novel neurodynamic flow
approach with a fixed-time convergence rate for solving the nonconvex
L1−β2, β ∈ (0, 1] and convex L1−β2, β = 0 problems with noise measurement:

min
x∈Rn

λ (‖x‖1 − β‖x‖2) + 1
2
‖Ax − b‖2

2, β ∈ [0, 1] . (1.2)

Note that problem (1.2) is nonconvex when β ∈ (0, 1] and reduces to the
classical Lasso problem if β = 0. Thus, the model with L1−β2 is a generaliza-
tion model of Lasso and L1−2.

The main contributions of this letter are as follows:

• A novel fixed-time stable neurodynamic flow (FTSNF) is proposed to
solve the nonconvex L1−β2 (convex L1−β2, β = 0) minimization prob-
lem to recover sparse signals. To the best of our knowledge, this is
the first attempt to design a neurodynamic flow to address this prob-
lem with a fixed-time convergence rate. Compared with the existing
neurodynamic flows for the convex L1-minimization problem with
finite/fixed-time convergence rates (Yu et al., 2017; Ren et al., 2019;
Wen, Wang, & He, 2020; Garg & Baranwal, 2020), our proposed FT-
SNF not only tackles the nonconvex equation 1.2 with β ∈ (0, 1], but
also solves convex L1-minimization problems as a by-product. In ad-
dition, when β = 0, FTSNF reduces to the classical CAPPA (Garg &
Baranwal, 2020).

• Since L1−β2, β ∈ (0, 1] is nonconvex, the techniques in Yu et al. (2017),
Ren et al. (2019), Wen et al. (2020), and Garg and Baranwal (2020)
cannot be used directly for analyzing FTSNF. Thus, for analyzing our
proposed FTSNF, we offer a new proof method that depends on the
Lipschitz condition in theorems 1 and 2. This is different from Yu et al.
(2017), Ren et al. (2019), Wen et al. (2020), and Garg and Baranwal
(2020).

• A closed-form solution of the proximal operator to the Lτλ(1−β2) hy-
brid norm, τ, λ > 0, β ∈ [0, 1], is presented based on the classical soft
thresholding of the L1-norm. This is much more intuitive and concise
than the proximal operator given in Lou and Yan (2018) and Liu and
Pong (2017).

• By setting different parameters, the exponential, finite-time, and
fixed-time convergence rates of FTSNF can also be achieved. This
means that the proposed FTSNF has strong generalization ability.

The letter is arranged as follows. Definitions and lemmas are reviewed
in section 2. In section 3, a closed-form solution of the proximal operator
to L1−β2, β ∈ [0, 1] is given. The new fixed-time stable neurodynamic flow
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1732 Y. Zhao, X. Liao, and X. He

(FTSNF) is built, and its fixed-time convergence property is discussed. In
section 4, some corollaries of the proposed FTSNF are provided. Several
simulations on sparse signal recovery are displayed in section 5. Conclu-
sions are presented in section 6.

Notations: Let xTy = ∑n
i=1 xiyi. ‖x‖2 = (∑n

i=1 x2
i

) 1
2 denotes the Euclidean

norm. I is an identity matrix. 0 = (0, . . . , 0)T ∈ Rn, 1 = (1, . . . , 1)T ∈ Rn.
diag {x} represents the diagonal matrix constructed by the vector x. For
x ∈ R, sign (x) is the signum function.

2 System Stability

Define a dynamic system as follows:

ϑ̇ (t) = f (ϑ (t)) , (2.1)

where ϑ (t) ∈ Rn is the system variable. Let ϑ∗ be an equilibrium point of
system 2.1, that is, it satisfies f (ϑ∗) = 0.

System 2.1 has various convergence concepts—for example, Lyapunov
stable around ϑ∗; globally asymptotically stable around ϑ∗; globally expo-
nentially stable around ϑ∗; globally finite-time stable around ϑ∗; and glob-
ally fixed-time stable around ϑ∗, which are presented in the appendix.

Lemma 1 (Polyakov, 2012). Let V (x) : Rn → R be a positive-definite, contin-
uously differentiable function for system 2.1 that satisfies V̇ (x) � −a1V (x)α1 −
a2V (x)α2 , where a1, a2, α1, and α2 are positive real numbers. For the different pa-
rameters of a1, a2, α1, and α1, V (x) has the following finite time and fixed time
convergence rate:

1. Time budget of finite-time convergence. If a1 > 0, a2 = 0, 1 > α1 > 0, then

system 2.1 has a finite-time convergence property with a Tmax � V (t0 )(1−α1 )

a1(1−α1 ) ,
which depends on the initial state x(t0).

2. Time budget of fixed-time convergence. If a1, a2 > 0, 1 > α1 > 0, α2 > 1,
system 2.1 achieves a fixed-time convergence with a Tmax � 1

a1(1−α1 ) +
1

a2(α2−1) , which is irrelevant to the initial state x(t0).

Lemma 2 (Garg, Baranwal, Gupta, Vasudevan, & Panagou, 2019). For

any c ∈ (0, 1), we have
( 1−c

1+c

)1−a
> c, a ∈ (1 − μ(c), 1) ∪ (1,+∞) with μ(c) =

log(c)
log( 1−c

1+c ) .

Definition 1 (RIP) (Candès, 2008). The matrix satisfies the order-s-RIP condi-
tion if for any s-sparse vector x ∈ Rn and ηs ∈ (0, 1), one has

(1 − ηs) ‖x‖2
2 � ‖Ax‖2

2 � (1 + ηs) ‖x‖2
2.
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Fixed-Time Neurodynamic Flow to Sparse Recovery 1733

Lemma 3. Let g (x) be 1
2 ‖Ax − b‖2

2. With the help of 2s-RIP condition (η2s >

0), ∇g (x) = AT (Ax − b) satisfies the following Lipschitz continuity and strong-
monotonicity:

1. The gradient ∇g has Lipschitz continuous of s-sparse vectors, given by

‖∇g (x1) − ∇g (x2) ‖2 � (1 + η2s)‖x1 − x2‖2. (2.2)

2. The ∇g satisfies the strong-monotonicity, that is, it follows that

(x1 − x2)T (∇g (x1) − ∇g (x2)) � (1 − η2s)‖x1 − x2‖2
2, (2.3)

where x1 and x2 ∈ Rn.

3 Neurodynamic Flows

We propose an FTSNF based on the proximal operator of model L1−β2, β ∈
[0, 1] to solve problem 2 to recover a sparse signal. Before giving the FTSNF,
the necessary proximal operator of model L1−β2 needs to be given as follows:

Lemma 4. The closed-form solution of the proximal operator to model L1−β2 with
τ > 0, λ > 0, β ∈ [0, 1] is

Proxτλ(‖·‖1−β‖·‖2 ) (y) = argmin
x∈Rn

τλ (‖x‖1 − β‖x‖2) + 1
2
‖x − y‖2

2,

=
⎧⎨
⎩

sign (y) ∗ max
{|y| − τλ, 0

}
, if β = 0,

sign (y) ∗ max
{|y| − τλ, 0

} + τλβsign(y)∗max{|y|−τλ,0}
‖sign(y)∗max{|y|−τλ,0}‖2

, if β ∈ (0, 1] ,
(3.1)

where ∗ indicates the componentwise multiplication and sign (yi) = 1, if yi >

0; sign (yi) = −1, if yi < 0; sign (yi) = 0, if yi = 0, i = 1, . . . , n.

Proof. The proof approach is inspired by the work in Qin and Lou (2019).
Based on the KKT conditions, the optimal conditions of optimization prob-
lem min

x
τλ (‖x‖1 − β‖x‖2) + 1

2‖x − y‖2
2 with x 
= 0 satisfy

sign (xi)
(

τλ − τλβ
|xi|
‖x‖2

)
+ xi = yi, i = 1, . . . , n, (3.2)

with sign (xi) = 1, if xi > 0; sign (xi) = −1, if xi < 0; and sign (xi) = yi

λτ
∈

[−1, 1] , if xi = 0.
We will prove that equation 3.1 holds in the following two cases:
Case 1: β = 0. Since xi = sign (xi) |xi|, the optimal conditions, equation

3.2, become

sign (xi) (τλ + |xi|) − yi = 0, i = 1, . . . , n.
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1734 Y. Zhao, X. Liao, and X. He

I: |xi| > 0 and τ , λ > 0 imply sign (xi) = sign (yi) and τλ + |xi| = |yi|.
1: |yi| > τλ, one has |xi| = |yi| − τλ which means xi = sign (xi) (|yi|

− τλ) = sign (yi) (|yi| − τλ).
2: |yi| � τλ does not exist.

II: |xi| = 0, the optimal conditions, equation 3.2, reduce to sign (0) τλ =
yi, that is, sign (0) = yi

τλ
. Since |yi| = sign (yi) yi, one has |yi| =

τλ sign (0) ∗ sign
(
τλ sign (0)

)
.

1: Since τ, λ > 0, then sign (0) and sign
(
sign (0) τλ

)
have the same

positive and negative signs. Note that −1 � sign (0) � 1, −1 �
sign

(
sign (0) τλ

)
� 1, and we further obtain |yi| � τλ.

2: |yi| > τλ does not exist.

To sum up and provide a unified form, we have

xi =
{

sign (yi) (|yi| − τλ) , if |yi| − τλ > 0

0, if |yi| − τλ � 0

= sign (yi) max
{|yi| − τλ, 0

}
, i = 1, . . . , n.

⇒ x = sign (y) ∗ max
{|y| − τλ, 0

}
. (3.3)

Thus, the classical soft-thresholding operator of the L1-norm can be
achieved in equation 3.3 as τ = 1.

Next, we construct the closed-form solution of the proximal operator for
model L1−β2 with τ > 0, λ > 0, β ∈ (0, 1] based on the proximal operator of
the L1-norm.

Case 2: β ∈ (0, 1]. Equation 3.3 with xi = sign (xi) |xi|, i = 1, . . . , n and x 
=
0 reduces to

sign (xi)
(

τλ − τλβ
|xi|
‖x‖2

+ |xi|
)

= yi, i = 1, . . . , n. (3.4)

I: Let |xi| > 0. Combining this with β ∈ (0, 1], we have τλ − τλβ
|xi|
‖x‖2

+
|xi| � 0 and sign (xi) = sign (yi) from equation 3.4. Furthermore, we
have τλ − τλβ

|xi|
‖x‖2

+ |xi| = |yi|. According to section I in case 1, if we
choose a function xi = � (zi) that can transform τλ − τλβ

|xi|
‖x‖2

+ |xi| =
|yi| into

τλ + |zi| = |yi| (3.5)

(i.e., letting zi = sign (yi) max
{|yi| − τλ, 0

}
, i = 1, . . . , n), then we es-

tablish the relationship between the proximal operator of the L1−β2

hybrid norm with τ > 0, λ > 0, β ∈ (0, 1] and the proximal operator
of the L1-norm.
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Fixed-Time Neurodynamic Flow to Sparse Recovery 1735

Note that τλ − τλβ
|zi|
‖z‖2

+ |zi|
(

1 + λβ

‖z‖2

)
= τλ + |zi| = |yi|; then we

can choose xi = � (zi) if it satisfies the following conditions:

(1): sign (xi) = sign (zi) , (2): |zi|
(
1 + λβ

‖z‖2

)
=|xi| , (3):

|zi|
‖z‖2

= |xi|
‖x‖2

.

Let xi = � (zi) = zi + τλβzi
‖z‖2

, |zi| > 0, i = 1, . . . , n. Obviously, sign (zi)
= sign (xi) and |xi| = |zi| + τλβ|zi|

‖z‖2
, i = 1, . . . , n, that is, conditions 1

and 2 hold.
Note that ‖x‖2 =

(
1 + τλβ

‖z‖2

)√∑n
i=1 |zi|2 = ‖z‖2 + τλβ. Then, |xi|

divided by ‖x‖2 yields

|xi|
‖x‖2

=
|zi|

(
1 + τλβ

‖z‖2

)
‖z‖2 + τλβ

= |zi|
‖z‖2

, i = 1, . . . , n,

which implies that condition 3 hold.
Combining sign (zi) = sign (xi) = sign (yi) with τλ − τλβ

|xi|
‖x‖2

+
|xi| = τλ − τλβ

|zi|
‖z‖2

+ |zi|
(

1 + τλβ

‖z‖2

)
= τλ + |zi| = |bi|, i = 1, . . . , n,

the optimal condition 3.4 can be obtained as follows:

Proxτλ(‖·‖1−β‖·‖2 ) (y) = x = z + τλβz
‖z‖2

= sign (y) ∗ (∣∣y∣∣ −τλ
) + τλβsign (y) ∗ (∣∣y∣∣ −τλ

)∥∥sign (y) ∗ (∣∣y∣∣ −τλ
)∥∥

2

, |yi| > τλ, i = 1, . . . , n.

II: Let |xi| = 0. The optimal condition 3.4 becomes τλsign (0) = yi, i =
1, . . . , n, which are similar to section II in case 1. It implies that xi = 0
if |yi| � τλ with any i = 1, . . . , n.
In conclusion, in a unified form, we deduce that

Proxτλ(‖·‖1−β‖·‖2 ) (y) = x = z + τλβz
‖z‖2

= sign (y) ∗ max
{|y|−τλ, 0

} + τλβ sign (y) ∗ max
{|y|−τλ, 0

}
‖sign (y) ∗ max

{|y|−τλ, 0
} ‖2

. (3.6)

Therefore, from cases 1 and 2, the proof is completed. �
Remark 1. Note that in the proof process, if zi = 0, yi 
= 0, λτsign (zi) =
yi implies that λτsign (0) = yi

λτ

= 0 ∈ [−1, 1] if yi 
= 0. However, in the

practical calculation process, the ingenious unified form sign (yi) max{|yi|
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1736 Y. Zhao, X. Liao, and X. He

− τλ, 0}, i = 1, . . . , n makes sign (0) = 0 since it occurs only in the follow-
ing cases: max

{|yi| − τλ, 0
} = 0 if |yi| − τλ � 0:

1. 0 < yi < τλ, zi = max
{|yi| − τλ, 0

} = 0.
2. −τλ < yi < 0, zi = − max

{|yi| − τλ, 0
} = 0.

3. yi = 0, zi = sign (0) max
{|yi| − τλ, 0

} = 0.

Note that sign (0) = yi

λτ
= 0 since yi = 0 in case 3. This explains why in

the practical calculation process, we can choose the signum function as
sign (yi) = 1, if yi > 0; sign (yi) = −1, if yi < 0; sign (yi) = 0, if yi = 0.

Thus, in lemma 4, the signum function is defined as sign (vi) = 1 if vi >

0; sign (vi) = −1, if vi < 0; and sign (vi) = yi

λτ
, if vi = 0 where the vi can take

xi, zi, and yi.
The sign (yi) = 1 if yi > 0; sign (yi) = −1 if yi < 0; and sign (yi) =

0, if yi = 0 are special cases only when vi = yi. Since the proximal opera-
tor used in designing the neurodynamic flows or algorithms contains only
sign (yi), it can be defined as sign (0) = 0.

The proposed fixed-time stable neurodynamic flow (FTSNF) is

⎧⎨
⎩

ẋ = −α
x−h(x)

‖x−h(x)‖1−a
2

− γ
x−h(x)

‖x−h(x)‖1−b
2

, if x ∈ Rn \ FP (x̄) ,

x = x̄, otherwise,
(3.7)

where h (x) = Proxτλ(‖·‖1−β‖·‖2 )
(
x − τAT (Ax − b)

)
, FP (x̄) = {

x̄ ∈ Rn|x̄ =
h (x̄)

}
, τ, λ > 0, α, γ > 0, a ∈ (0, 1), b > 1, λ > 0 and β ∈ [0, 1].

Note that the optimal condition of equation 1.2 becomes

0 ∈ ∂τλ‖x∗‖1 − λτβ
x∗

‖x∗‖2
+ τAT (Ax∗ − b)

= AT (Ax∗ − b) − x∗ + diag
{
sign (x∗

1 ) , . . . , sign (x∗
n)

}
×

(
λτ1 − diag

{
λτβx∗

1

‖x∗‖2
+ |x∗

1|, . . . ,
λτβx∗

n

‖x∗‖2
+ |x∗

n|
})

⇒ x∗ − τAT (Ax∗ − b) ∈ diag
{
sign (x∗

1 ) , . . . , sign (x∗
n)

}
×

(
λτ1 − diag

{
λτβx∗

1

‖x∗‖2
+ |x∗

1|, . . . ,
λτβx∗

n

‖x∗‖2
+ |x∗

n|
})

.

Note that Proxτλ(‖·‖1−β‖·‖2 ) = (I + ∂τλ (‖·‖1 − β ‖·‖2))−1 in equation 3.1. Thus,
we obtain x∗ = Proxτλ(‖·‖1−β‖·‖2 )

(
x∗ − τAT (Ax∗ − b)

)
, that is, the KKT point

of problem 2 is the same as the fixed point of h (x) (i.e., h(x) = x) and an
equilibrium point of FTSNF, equation 3.7.
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Fixed-Time Neurodynamic Flow to Sparse Recovery 1737

Theorem 1. Under the assumptions that λ∈
(
0,

1−η2s
βl‖·‖2

)
and τ ∈

(
0,

2(1−η2s−λβl‖·‖2)
(1+η2s )2

)
,

x∗ is an equilibrium point (i.e., it satisfies the above KKT condition) of problem 2.
Then we obtain

‖h (x) − x∗‖2 � c‖x − x∗‖2, (3.8)

with c ∈ (0, 1).

Proof. Let g (x) = 1
2 ‖Ax − b‖2

2, f (x) = λ(‖x‖1 − β ‖x‖2), h (x) = proxτ f (x −
τ∇g (x)), and let y ∈ Rn. Suppose that pθ = θy + (1 − θ ) h (x), and set θ ∈
(0, 1); then one has

τ f (h (x))

� τ f (pθ ) + 1
2
‖x − τ∇g (x) − pθ‖2

2 − 1
2
‖x − τ∇g (x) − h (x) ‖2

2

= τλ
(∥∥θy + (1 − θ ) h (x)

∥∥
1 − β

∥∥θy + (1 − θ ) h (x)
∥∥

2

)
+ 1

2

∥∥x − τ∇g (x) − h (x) + θh (x) − θy
∥∥2

2 − 1
2

∥∥x − τ∇g (x) − h (x)
∥∥2

2

� θλτ‖y‖1 + (1 − θ ) λτ‖h (x) ‖1 + θ2

2
‖y − h (x) ‖2

2

− θ (y − h (x))T (x − τ∇g (x) − h (x)) − λβθτ‖y‖2

− λβ (1 − θ ) τ‖h (x) ‖2 + τλθβ (1 − θ ) l‖·‖2

2
‖h (x) − y‖2

2

= τθ f (y) + τ (1 − θ ) f (h (x)) − θ (y − h (x))T (x − τ∇g (x) − h (x))

+ τλθβ (1 − θ ) l‖·‖2

2
‖h (x) − y‖2 + θ2

2
‖y − h (x) ‖2

2

⇒ τ f (h (x)) � τ f (y) − (y − h (x))T (x − τ∇g (x) − h (x))

+ λτβl‖·‖2 (1 − θ ) + θ

2
‖h (x) − y‖2

2, (3.9)

where the first inequality holds from the property of the proximal operator
to model L1−β2, β ∈ [0, 1] and the second inequality holds from the convex-
ity inequality of function ‖ · ‖1:

τλθ
∥∥θy + (1 − θ ) h (x)

∥∥
1 � θλτ

∥∥y
∥∥

1 + (1 − θ ) λτ
∥∥h (x)

∥∥
1 ,

and the Lipschitz property of 1
2 ‖·‖2

2:

1
2

∥∥x − τ∇g (x) − h (x) + θh (x) − θy
∥∥2

2 − 1
2

∥∥x − τ∇g (x) − h (x)
∥∥2

2
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1738 Y. Zhao, X. Liao, and X. He

� θ (x − τ∇g (x) − h (x))T (h (x) − y) + 1
2

∥∥θh (x) − θy
∥∥2

2

= −θ (x − τ∇g (x) − h (x))T (y − h (x)) + θ2

2

∥∥h (x) − y
∥∥2

2 ,

and the concavity of −‖ · ‖2 with a Lipschitz constant l‖·‖2 of its gradient:

−λτβ
∥∥θy + (1 − θ ) h (x)

∥∥
2

� −λτβ
∥∥y

∥∥
2 − λτβ (1 − θ )

∥∥h (x)
∥∥

2 + τλθβ (1 − θ ) L‖·‖2

2

∥∥h (x) − y
∥∥2

.

Letting θ → 0, equation 3.9 becomes

(y − h (x))T (h (x) − (x − τ∇g (x)))

+ τλβl‖·‖2

2
‖h (x) − y‖2

2 � τ ( f (h (x)) − f (y)) . (3.10)

In particular, let y = x∗; then equation 3.10 becomes

(x∗ − h (x))T (h (x) − x) + τλβl‖·‖2

2
‖h (x) − x∗‖2

2

� τ ( f (h (x)) − f (x∗)) − τ∇g (x)T (x∗ − h (x)) . (3.11)

Furthermore, using the Lipschitz property of − ·
‖·‖2

and convexity of
‖ · ‖1, we have

τ ( f (h (x)) − f (x∗)) � τ∂ f (x∗)T (h (x) − x∗) − τλβl‖·‖2

2
‖x∗ − h (x) ‖2

2. (3.12)

In addition, the optimal point x∗ satisfies the following variational
inequality:

λ (h (x) − x∗)T (∂ f (x∗) + ∇g (x∗)) � 0,∀h (x) ∈ Rn. (3.13)

Combining equations 3.12 and 3.13, equation 3.11 becomes

(h (x) − x)T (x∗ − h (x)) � τ (∇g (x) − ∇g (x∗))T (h (x) − x∗)

− τλβl‖·‖2‖x∗ − h (x) ‖2
2. (3.14)

Rearrange equation 3.14 as follows:

(x − h (x))T (x∗ − h (x))

� λτβlL‖·‖2‖x∗ − h (x) ‖2
2 + τ (∇g (x∗) − ∇g (x))T (h (x) − x∗)
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Fixed-Time Neurodynamic Flow to Sparse Recovery 1739

= λτβl‖·‖2‖x∗ − h (x) ‖2
2 + τ (∇g (x∗) − ∇g (h (x)))T (h (x) − x∗)

+ τ (∇g (h (x)) − ∇g (x))T (h (x) − x∗)

� −τ (1 − η2s) ‖h (x) − x∗‖2
2 + τ 2 (1 + η2s)2

2
‖h (x) − x∗‖2

2

+ 1
2
‖h (x) − x‖2

2 + λτβl‖·‖2‖x∗ − h (x) ‖2
2, (3.15)

where the last inequality holds from the following conditions:

(i) τ (∇g (x∗) − ∇g (h (x)))T (h (x) − x∗) � −τ (1 − η2s) ‖h (x) − x∗‖2
2,

(ii) τ (∇g (h (x)) − ∇g (x))T (h (x) − x∗) � τ 2 (1 + η2s)2

2
‖h (x) − x∗‖2

+ 1
2
‖h (x) − x‖2

2.

Furthermore, note that

(x − h (x))T (x∗ − h (x))

= 1
2
‖x − h (x) ‖2

2 + 1
2
‖x∗ − h (x) ‖2

2 − 1
2
‖x∗ − x‖2

2. (3.16)

From both equations 3.15 and 3.16, it yields

‖x − h (x) ‖2
2 + ‖x∗ − h (x) ‖2

2 − ‖x∗ − x‖2
2

� −2τ (1 − η2s) ‖h (x) − x∗‖2
2 + τ 2 (1 + η2s)2 ‖h (x) − x∗‖2

2

+ ‖h (x) − x‖2
2 + 2τλβl‖·‖2‖x∗ − h (x) ‖2

2

⇒
(

1 + 2τ (1 − η2s) − τ 2 (1 + η2s)2 − 2τλβl‖·‖2

)
‖x∗ − h (x) ‖2

2 � ‖x∗ − x‖2
2,

(3.17)
which implies that

‖x∗ − h (x) ‖2
2 � C‖x∗ − x‖2

2, (3.18)

with C = 1
1+2τ (1−η2s )−τ 2(1+η2s )2−2τλβl‖·‖2

. Note that C ∈ (0, 1) if τ ∈(
0,

2(1−η2s−λβl‖·‖2 )
(1+η2s )2

)
, λ ∈

(
0,

1−η2s
βl‖·‖2

)
. Thus, inequality 3.18 further implies

that

‖x∗ − h (x) ‖2 � c‖x∗ − x‖2, (3.19)

with c = √
C ∈ (0, 1). �
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1740 Y. Zhao, X. Liao, and X. He

The following theorem illustrates that the proposed FTSNF, equation 3.7,
has a fixed-time convergence rate:

Theorem 2. If τ ∈
(

0,
2(1−η2s−λβl‖·‖2 )

(1+η2s )2

)
, λ ∈

(
0,

1−η2s
βl‖·‖2

)
and x∗ is a KKT point of

problem 2, then there exists a constant μ > 0 and a ∈ (1 − μ, 1) ∪ (1,+∞) and
b > 1, such that the proposed FTSNF, equation 3.7, is globally convergent in fixed
time, that is, for any initial values, there exists a time budget

Tmax = 1

2
1+a

2 α

(1−c)1−a

(( 1−c

1+c

)1−a − c

) ( 1−a
2

)
+ 1

2
1+b

2

(
γ

(1−c)1−b

(( 1−c

1+c

)1−b − c

)) ( b−1
2

) ,

such that{ 1
2‖x(t) − x∗‖2

2 � 0, t � Tmax,

1
2‖x(t) − x∗‖2

2 = 0, t > Tmax.
(3.20)

Proof. Consider a candidate Lyapunov function as follows:

V (x) = 1
2
‖x − x∗‖2

2. (3.21)

x∗ is an optimal point that satisfies the KKT condition of problem 2. V (x) is
positive definite and radially unbounded. Then the derivative of V (x) along
with the trajectory of equation 3.7 from initial point x (t0) \ {x∗} is computed
as

V̇ (x) = (x − x∗)T ẋ

= (x − x∗)T

(
−α

x − h (x)
‖x − h (x) ‖1−a

2

− γ
x − h (x)

‖x − h (x) ‖1−b
2

)

� −α
‖x − x∗‖2

2

‖x − h (x) ‖1−a
2

− γ
‖x − x∗‖2

2

‖x − h (x) ‖1−b
2

+ α
‖x∗ − h (x) ‖2‖x − x∗‖2

‖x − h (x) ‖1−a
2

− γ
‖x∗ − h (x) ‖2‖x − x∗‖2

‖x − h (x) ‖1−b
2

, (3.22)

where the inequality is established by the Cauchy-Schwarz inequality. From

theorem 1 and τ ∈
(

0,
2(1−η2s−λβl‖·‖2 )

(1+η2s )2

)
, λ ∈

(
0,

1−η2s
βl‖·‖2

)
, we have

‖x − h (x) ‖2 � (1 + c) ‖x − x∗‖2,

‖x − h (x) ‖2 � (1 − c) ‖x − x∗‖2. (3.23)
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Fixed-Time Neurodynamic Flow to Sparse Recovery 1741

With the help of inequalities in equation 3.23, we deduce that

V̇ (x) � −α
‖x − x∗‖2

2

(1 + c)1−a ‖x − x∗‖1−a
2

− γ
‖x − x∗‖2

2

(1 + c)1−a ‖x − x∗‖1−b
2

+ α
c‖x − x∗‖2

2

(1 − c)1−a ‖x − x∗‖1−a
2

− γ
‖x − x∗‖2

2

(1 + c)1−b ‖x − x∗‖1−b
2

= −u (a) ‖x − x∗‖1+a
2 − v (b) ‖x − x∗‖1+b

2 , (3.24)

with u (a) = α

(1−c)1−a

(( 1−c

1+c

)1−a − c

)
and v (b) = γ

(1−c)1−b

(( 1−c

1+c

)1−b − c

)
. There-

fore, equation 3.24 can be rewritten as

V̇ (x) � −
(

2
1+a

2 u (a)V (x)
1+a

2 + 2
1+b

2 v (b)V (x)
1+b

2

)
. (3.25)

From lemma 3 (i.e., ∃ μ (c) = log(c)
log( 1−c

1+c ) > 0), u (a) > 0 when a ∈ (1 − μ, 1) ∪
(1,+∞) and v (b) > 0. In addition, we obtain 1+a

2 ∈ (0.5, 1) and 1+b
2 > 1. Ac-

cording to the time budget of fixed-time convergence in number 2 in the list
in lemma 1, the upper bound of the time budget Tmax can be evaluated as

Tmax = 1

2
1+a

2 α

(1−c)1−a

(( 1−c

1+c

)1−a − c

) ( 1−a
2

)
+ 1

2
1+b

2

(
γ

(1−c)1−b

(( 1−c

1+c

)1−b − c

)) ( b−1
2

) . (3.26)

�
Remark 2. Compared with the L1 model (i.e., L1−β2, β = 0 in this letter), the
L1−β2, β ∈ (0, 1] model has the following properties:

1. The model L1−β2, β ∈ (0, 1] is nonconvex, nonsmooth and Lipschitz.
2. The optimization problem for L1−β2, β ∈ (0, 1] is also called the

difference-of-convex optimization problem.

Compared with the L1 model (L1−β2, β = 0) and for solving problem
L1−β2, β ∈ (0, 1] there exist four difficulties:

1. The model L1−β2, β ∈ (0, 1] is nonconvex, and a novel method needs
to be proposed for obtaining the closed-form solution of the proxi-
mal operator to the L1−β2, β ∈ (0, 1] hybrid norm, since the approach
to derive the closed-form solution of the proximal operator of the
convex function L1 model is not applicable.

2. Designing neurodynamic flow with fixed-time convergence is more
difficult. Note that theorem 1 is an essential result for deriving the
fixed-time convergence of the FTSNF. This is totally different from
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1742 Y. Zhao, X. Liao, and X. He

Garg and Baranwal (2020) and Garg et al. (2019). We obtain the time
budget of fixed-time convergence 3.10 based on equation 3.9 only
with Lipschitz and concave function properties of −‖x‖2. This is use-
ful in deriving the convergence property of the FTSNF for nonconvex
L1−β2. However, it cannot be achieved from the research in Garg and
Baranwal (2020) and Garg et al. (2019) because their results require
that the function be convex.

3. Moreover, in Garg and Baranwal (2020) and Garg et al. (2019), the
mixed variational inequalities (MVI) for convex functions are used.
However, it is not suitable for our work, so we use the more general-
ized variational inequality, equation 3.13 to replace it;

4. When β = 0, the proposed FTSNF reduces to CAPPA in Garg and
Baranwal (2020), that is, CAPPA is just one of the most particular
(convex) cases of FTSNF.

4 Some Corollaries of FTSNF

Corollary 1. Note that when β = 0, optimization problem 2 is transformed into
the classical Lasso problem in Yu et al. (2017), Ren et al. (2019), Wen et al. (2020),
and Garg and Baranwal (2020) (it is a convex optimization problem). Then the
proposed FTSNF reduces to CAPPA (Garg & Baranwal, 2020) as follows:

{
ẋ = −α

x−h(x)
‖x−h(x)‖1−a

2
− γ

x−h(x)
‖x−h(x)‖1−b

2
, if x ∈ Rn \ FP (x̄) ,

x = x̄, otherwise,
(4.1)

with FP (x̄) = {
x̄ ∈ Rn|x̄ = h (x̄)

}
, h (x) = proxτλ(‖·‖1 )

(
x − τAT (Ax − b)

)
.

Corollary 2. The proposed FTSNF, equation 3.7, has the following exponential
convergence and finite time convergence rates when specific parameters are chosen
as follows:

1. Exponential convergence: Let a = 1, b = 1, α, γ > 0. FTSNF equation
3.7, reduces to

ẋ = − (α + γ ) (x − h (x)) , (4.2)

with an exponential convergence rate (EPNF in this letter), that is, ‖x (t) −
x∗‖2

2 � exp (−2 (γ + α) (1 − c)) ‖x (t0) − x∗‖2
2.

2. Finite-time convergence: Set a ∈ (1 − μ, 1) ∪ (1,+∞), α > 0 and γ =
0. Then, FTSNF, equation 3.7, becomes

⎧⎨
⎩

ẋ = −α
x−h(x)

‖x−h(x)‖1−a
2

, if x ∈ Rn \ FP (x̄) ,

x = x̄, otherwise.
(4.3)
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Fixed-Time Neurodynamic Flow to Sparse Recovery 1743

The neurodynamic flow, equation 4.3, globally converges to a KKT point of
problem 2 in finite time (we name it FPNF).

Proof. 1 According to equation 3.24, we have

V̇ (x) � − (γ + α) (1 − c) ‖x (t) − x∗‖2
2 = −2 (γ + α) (1 − c)V (x) ,

which implies that ‖x (t) − x∗‖2
2 � 2 exp (−2 (γ + α) (1 − c)) ‖x (t0) − x∗‖2

2.
2 Based on equations 3.24 and 3.25 and lemma 3, we obtain that

V̇ (x) � − (2)
1+a

2 u (a)V
1+a

2 (x) , (4.4)

with u (a) = α

(1−c)1−a

(( 1−c

1+c

)1−a − c

)
.

From the Lipschitz continuity in point 1 in the numbered list in lemma
3, equation 4.4 achieves finite-time convergence with a time budget

Tmax = ‖x (t0) − x∗‖1−a
2

1

(2)
1+a

2 α

(1−c)1−a

(( 1−c

1+c

)1−a − c

) ( 1−a
2

) . (4.5)

Note that the time budget in equation 4.5 of FPNF, equation 4.3, depends
on the initial value x(t0), while the time budget in equation 3.26 of FTSNF
equation 3.7 is independent of the initial value x(t0). �

5 Numerical Simulations

In this section, we present several experiments for recovering sparse signals
to illustrate the effectiveness of the FTSNF, equation 3.7, and its variants
(CAPPA, equation 4.1; EPNF, equation 4.2; and FPNF, equation 4.3). Their
pseudocodes are given in algorithm 1.

5.1 Experiment 1. In this experiment, both orthonormal gaussian ran-
dom matrix A and oversampled DCT matrix are used as the sensing matrix
with m = 40, n = 128, where the oversampled DCT matrix is given by

A = [A1, . . . , An] ∈ Rm×n,

where Aj = 1√
n cos

(
2πω j

ϒ

)
, j = 1, . . . , n, ω ∈ Rm is a random vector, and

ϒ the parameter is used to determine the matrix coherence. In addition,
sparsity s = 10 is randomly determined, and the measurement y ∈ Rm is
collected by b = Ax + e, where e is gaussian noise with standard deriva-
tion σ = 0.01. Moreover, the thresholds are λ = σ

√
2 log (n), β = 0.5 and

τ = 0.02. We use ODE45 solver for simulation and generate necessary
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1744 Y. Zhao, X. Liao, and X. He

information through Matlab in the following way with orthonormal gaus-
sian random matrix A.

First, the global stability performance of FTSNF, equation 3.7, for recov-
ering a sparse signal is illustrated in Figure 1 (left) with various parameters
of a, b under an orthonormal gaussian random matrix. Then we observe
that FTSNF has a faster convergence rate when the parameters a and b are
smaller (i.e., a lower fixed-time upper bound), which is displayed in Figure
1 (right). From Figure 2, we can see that the signals recovered by FTSNF
(equation 3.7) with a = 0.4, b = 1.4; a = 0.6, b = 1.6, and a = 0.8, b = 1.8 are
very close to the original sparse signal. Later, we compare the proposed
FTSNF (equation 3.7) with fixed-time convergence, EPNF (equation 4.2)
with exponential convergence and FPNF (equation 4.3) with finite-time con-
vergence under oversampled DCT matrix A. From Figure 3 (left), we can see
that FTSNF (equation 3.7) has a faster convergence rate than FPNF (equa-
tion 4.3) and EPNF (equation 4.2).
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Fixed-Time Neurodynamic Flow to Sparse Recovery 1745

Figure 1: Gaussian random matrix: (Left) Transient behaviors of x by FTSNF
3.7. (Right) Log

(‖x − xs‖2
2

)
.

Figure 2: Gaussian random matrix: Recovered sparse signal by FTSNF (equa-
tion 3.7). (a) a = 0.4, b = 1.4. (b) a = 0.6, b = 1.6. (c) a = 0.8, b = 1.8.
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1746 Y. Zhao, X. Liao, and X. He

Figure 3: Oversampled DCT matrix, ϒ = 3. (Left) Log
(‖x − xs‖2

2

)
. (Right) Re-

covered signals x of FTSNF (equation 3.7), EPNF (equation 4.2), and FPNF
(equation 4.3) with the same parameters.

Figure 4: (Left) Log
(‖x − xs‖2

2

)
. (Right) Recovered signals x.

Moreover, FPNF (equation 4.3) has a faster convergence rate than EPNF
(equation 4.2). The recovered signals x by using FTSNF (equation 3.7), EPNF
(equation 4.2), and FPNF (equation 4.3) with the same parameters are dis-
played in Figure 4 (right). Figure 4 (right) shows that recovered signals by
using FTSNF (equation 3.7) and FPNF (equation 4.3) are very close to the
original sparse signal. However, the recovered signal of EPNF (equation
4.2) has a large discrepancy with the original signal because of its relatively
slow convergence rate, resulting in the desired results not being reached in
the same amount of time.

5.2 Experiment 2. In this experiment, we compare the proposed FTSNF
(equation 3.7) with IPNN (Zhu et al., 2018), SIPNN (Zhao et al., 2018) and

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/34/8/1727/2034959/neco_a_01508.pdf by H
O

N
G

 KO
N

G
 PO

LYTEC
H

N
IC

 U
N

IVER
SITY user on 13 August 2024



Fixed-Time Neurodynamic Flow to Sparse Recovery 1747

SPNN (Wang & Zhang, 2017) by solving the model with L1−2 and with noise
measurement to recover the sparse signal with an orthonormal gaussian
random matrix A128×256 and sparsity s = 20. Figure 4 shows the conver-
gence rate and the recovered sparse signal. It can be seen from Figure 4 (left)
that FTSNF (equation 3.7) has a faster convergence rate than the other ap-
proaches. In addition, SIPNN (Zhao et al., 2018) outperforms SPNN (Wang
& Zhang, 2017) since an inertial term is added in SIPNN. Figure 4 (right)
shows that FTSNF (equation 1.2), IPNN (Zhu et al., 2018), SIPNN (Zhao
et al., 2018), and SPNN (Wang & Zhang, 2017) can effectively recover the
sparse signal by solving the L1−2 hybrid norm minimization problem with
noise measurement.

In addition, the proposed FTSNF (equation 3.7) with a = 0.5, b = 1.5, and
a = 0.3, b = 1.3 in equation 4.3 are compared with PNNSR (Liu & Wang,
2016), PNNSR-finT (Wen et al., 2020), BP-LPNN (Feng et al., 2017), LCA
(Balavoine et al., 2013), LCA-finT (Yu et al., 2017), LCA-fixT (Ren et al.,
2019), and CAPPA (Garg & Baranwal, 2020) by solving the L1-norm mini-
mization problem (i.e., L1−β2, β = 0) with noise measurement (the standard
derivation σ = 0.02), where m = 128, n = 256, and s = 20, to illustrate the
effectiveness and superiority of FTSNF (equation 3.7). It can be seen from
Figure 8 that the FTSNF (equation 3.7) with a = 0.3, b = 1.3 has the fastest
convergence rate, and it also has the same convergence rate as CAPPA(Garg
& Baranwal, 2020) when the same parameters a = 0.5, b = 1.5 are selected.
This matches the conclusion of corollary 1. The PNNSR-finT (Wen et al.,
2020), LCA-finT (Yu et al., 2017), and LCA-fixT (Ren et al., 2019) have faster
convergence rates than their original neurodynamic flows PNNSR (Liu &
Wang, 2016) and LCA (Balavoine et al., 2013) (neither of them introduces
acceleration techniques). Figures 5 to 7 show the recovered sparse signal x
by the neurodynamic flows already noted. Their recovered sparse signals
are very close to the original sparse signal.

5.3 Experiment 3. Image reconstruction is widely used in engineer-
ing and scientific fields. In this example, we evaluate the proposed FTSNF
(equation 3.7) by recovering a 256 × 256 “X-ray” image, as shown in Figure
9a. We use a discrete wavelet transform to obtain the sparse representa-
tion of the image and orthonormal gaussian random matrix in equation
5.1 as the sensing measurement A, and the measurement number m =
150 (i.e., A ∈ R150×256). Consider a gaussian white noise condition with

noise level SNR = 10 dB (i.e., SNR = 20 log10

(
‖Ax̂−E{Ax̂}‖2

‖e‖2

)
, where x̂ de-

notes the original signal). The recovery performance is assessed by the peak
signal-to-noise ratio (PSNR), which is PSNR = 10 log10

2552

MSE with MSE =
1

n×n

∑
i, j (x̂ (i, j) − x (i, j))2, where x̂ (i, j) and x (i, j) are the pixels of the orig-

inal image and the restored image, respectively. Figure 9 presents the recov-
ery performance of the compared algorithms. It can be seen that FTSNF
(equation 3.7) achieves the best performance. FTSNF (equation 3.7) and
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1748 Y. Zhao, X. Liao, and X. He

Figure 5: Recovered sparse signal. (a) PNNSR (Liu & Wang, 2016). (b) PNNSR-
finT (Wen et al., 2020). (c) BP-LPNN (Feng et al., 2017).

L1−2FBS (Lou & Yan, 2018) are better than OMP (Balavoine et al., 2013),
Lasso–ADMM (Boyd, Parikh, Chu, Peleato, & Eckstein, 2011), and CAPPA
(Garg & Baranwal, 2020). This is because the results of FTSNF (equation
3.7) and L1−2FBS are obtained by solving the L1−2 hybrid norm, while the
results of OMP, Lasso–ADMM and CAPPA are achieved by solving the
L1-norm model. In addition, it can be seen that CAPPA performs better
than OMP and Lasso–ADMM. The experimental result in Figure 9 fur-
ther demonstrates the effectiveness and superiority of the proposed FTSNF
(equation 3.7).

6 Conclusion

This letter proposed a fixed-time stable neurodynamic flow (FTSNF) to
deal with nonconvex L1−β2, β ∈ (0, 1] hybrid norm and convex L1−β2, β =
0-norm minimization problems to capture sparse signals under RIP and
noise measurement. First, a closed-form solution of the proximal oper-
ator to Lτλ(1−β2), τ, λ > 0, β ∈ [0, 1] was presented. Then we theoretically

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/34/8/1727/2034959/neco_a_01508.pdf by H
O

N
G

 KO
N

G
 PO

LYTEC
H

N
IC

 U
N

IVER
SITY user on 13 August 2024



Fixed-Time Neurodynamic Flow to Sparse Recovery 1749

Figure 6: Recovered sparse signal. (a) LCA (Balavoine et al., 2013). (b) LCA-finT
(Yu et al., 2017). (c) LCA-fixT (Ren et al., 2019).

proved that the fixed-time convergence property of the FTSNF converges
to a KKT point of the nonconvex L1−β2 hybrid norm minimization prob-
lem (the uniquely optimal solution for the L1-norm minimization problem
is β = 0) without a convex hypothesis. We determined an upper bound
of the time budget of the FTSNF. In addition, the FTSNF can be trans-
formed into CAPPA when β = 0, EPNF with exponential convergence
when a = 1, b = 1, α, γ > 0, and FPNF with finite-time convergence when
a ∈ (1 − μ, 1) ∪ (1,+∞), α > 0, and γ = 0. Finally, the feasibility and supe-
riority of the proposed FTSNF were demonstrated by sparse signal recovery
tests. It is well known that L1−β2, β ∈ (0, 1] is nonconvex and nonsmooth but
Lipschitz. However, many sparse signal recovery models are nonsmooth,
nonconvex, and even non-Lipschitz in practice, such as the Lp-norm, L1−p

hybrid norm, and Lp−q hybrid norm. At present, the fast neurodynamic
flows for solving these cases have not been extensively studied because
they are more difficult due to their non-Lipschitz nature. Hence, designing
neurodynamic flows with fixed-time convergence is the focus of our future
research.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/34/8/1727/2034959/neco_a_01508.pdf by H
O

N
G

 KO
N

G
 PO

LYTEC
H

N
IC

 U
N

IVER
SITY user on 13 August 2024



1750 Y. Zhao, X. Liao, and X. He

Figure 7: Recovered sparse signal. (a) CAPPA (Garg & Baranwal, 2020).
(b) FTSNF (equation 3.7) a = 0.5, b = 1.5. (c) FTSNF (equation 3.7) a = 0.3,

b = 1.3.

Figure 8: log
(‖x − xs‖2

2

)
.
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Fixed-Time Neurodynamic Flow to Sparse Recovery 1751

Figure 9: Image reconstruction. (a) Original image. (b) OPM (Balavoine et al.,
2013), PSNR = 30.3304 dB. (c) Lasso–ADMM (Boyd, Parikh, Chu, Peleato,
& Eckstein, 2011), PSNR = 30.5334 dB. (d) CAPPA (Garg & Baranwal, 2020)
(i.e., FTSNF with β = 0), PSNR = 30.805 dB. (e) FTSNF(equation 3.7) PSNR =
32.3940 dB. (f) L1−2FBS (Lou & Yan, 2018), PSNR = 31.888 dB.

Appendix

Definition 2. System 3 has various stability concepts, as follows:

(i) Lyapunov stable around ϑ∗. For any ε > 0, there exists a ρ (ε) > 0 such
that ‖ϑ (t) − ϑ∗‖2 < ε when ‖ϑ (t0) − ϑ∗‖2 < ρ (ε), for all t > 0. Then
system is said to be Lyapunov stable around ϑ∗.

(ii) Globally asymptotically stable around ϑ∗. If there exists ρ (ε) > 0 and
‖ϑ (t0) − ϑ∗‖2 < ρ (ε) exist such that lim

t→+∞
‖ϑ (t) − ϑ∗‖2 = 0, then sys-

tem 3 is called globally asymptotically stable around ϑ∗.
(iii) Globally exponentially stable around ϑ∗. If system 3 is globally asymp-

totically stable and satisfies ‖ϑ (t) − ϑ∗‖2 � a exp (−bt) ‖ϑ (t0) − ϑ∗‖2

for all t > 0, where a, b > 0, then we call system 3 globally exponentially
stable around ϑ∗.

(iv) Globally finite-time stable around ϑ∗. If system 3 is globally stable,
then there is a time budget Tmax (x(t0)) < +∞ of initial state x0 such that
‖ϑ (t) − ϑ∗‖2 = 0, t > Tmax (x(t0)). Then system 3 is known as globally
finite-time stable around ϑ∗.
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1752 Y. Zhao, X. Liao, and X. He

(v) Globally fixed-time stable around ϑ∗. If system 3 is globally stable, then
there exists a time budget Tmax < +∞ that is irrelevant to the initial state
x(t0) such that ‖ϑ (t) − ϑ∗‖2 = 0, t > Tmax. Then system 3 is known as
globally fixed-time stable around ϑ∗.
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