Topic Analysis for Text with Side Data

Anonymous ACL submission

Abstract

Although latent factor models (e.g., matrix
factorization) perform well in predictions, they
face challenges such as cold-start, lack of trans-
parency, and suboptimal recommendations.
In this paper, we leverage text with side data
to address these issues. We propose a hybrid
generative probabilistic model that integrates
a neural network with a latent topic model
within a four-level hierarchical Bayesian
framework. Here, each document is a finite
mixture over topics, each topic is an infinite
mixture over topic probabilities, and each topic
probability is a finite mixture over side data.
The neural network produces an overview
distribution of the side data, which serves as
the LDA prior to improve topic grouping. Our
experiments on various datasets show that
the model outperforms standard LDA and
Dirichlet-multinomial regression (DMR) in
topic grouping, model perplexity, classification,
and comment generation.

1 Introduction

As vast amounts of digital text—from news
articles to blogs and web pages—are increasingly
stored, discovering their underlying topics becomes
challenging. Latent Dirichlet Allocation (LDA)
(Blei et al., 2003) has recently gained much pop-
ularity for its simplicity and its ability to project
documents into a low-dimensional semantic space.
However, modern text often comes with additional
side data such as customer ratings, labels, or loy-
alty information, which can enhance topic discov-
ery. Existing models that incorporate side data fall
into two categories: (1) downstream models, which
generate text and side data simultaneously, and (2)
upstream models, which condition text generation
on side data. Our model extends the upstream ap-
proach by using deep neural networks to capture
more complex interactions between side data and

text than models like DMR (Mimno and McCallum,
2008).

In this paper, we introduce hybrid neural net-
work LDA (nnLDA), an LDA-style topic model
that integrates a neural network with LDA. Unlike
standard LDA—which uses a fixed prior—nnLDA
generates a topic prior from side data via a neural
network, making the prior sample-specific. This
design allows the model to capture both the main
text content and additional, non-dominant patterns
from side data. The document-topic distribution
is modeled as a mixture of feature-specific distri-
butions, and the neural network parameters and
topic-word distributions are jointly optimized us-
ing a stochastic EM algorithm. In the E-step, the
optimal word and topic groups are identified, while
the M-step updates the neural network parameters
and topic-word distributions.

We not only propose a more general model,
nnL.DA, but also present a complete technical proof
confirming that nnLDA performs at least as well as
plain LDA in terms of log likelihood. Furthermore,
we provide an efficient variational EM algorithm
for nnLDA. Lastly, we demonstrate our approach
on a few real-world datasets. In summary, we make
the following contributions.

* We provide a new topic model for text datasets
with side data.

* We prove that the lower bound of log likeli-
hood of nnLLDA is greater than or equal to the
lower bound of log likelihood of LDA for any
dataset.

* We provide an efficient variational EM algo-
rithm for nnLDA.

* We present numerical results showing that
nnLDA outperforms LDA and DMR in terms
of topic grouping, model perplexity, classifi-
cation and text generation.



2 Related Work

There are a large amount of extensions of the plain
LDA model, however, a full retrospection of this
immense literature exceeds the scope of this work.
In this section, we state several kinds of variations
of LDA which are most related to our new model
and interpret the relationships among them.

LDA: Plain LDA has been widely used in text
(Blei et al., 2003; Wang et al., 2020), image (Li
and Perona, 2005), and network analysis (Airoldi
et al., 2008) for its simplicity, low-dimensional rep-
resentations, and coherent topics. However, modi-
fying LDA typically requires re-deriving inference
algorithms. To address this, Srivastava and Sut-
ton (Srivastava and Sutton, 2017) proposed Neu-
ral Variational LDA (NVLDA) using a Logistic-
Normal prior, while RollingLDA (Rieger et al.,
2021) enables incremental updates. Additionally,
Optimized LDA (OLDA) (Haritha and Shanmu-
gavadivu, 2024) applies hyperparameter tuning to
enhance topic extraction. Despite its success, LDA
relies solely on bag-of-words representations, over-
looking valuable side information. In contrast,
nnLDA leverages a neural network to integrate side
data, capturing secondary, non-dominant, and more
salient patterns that can better inform topic infer-
ence.

Downstream Topic Models: Downstream mod-
els generate text and side data jointly from latent
topics by associating each topic with distributions
over both words and side data, optimizing their
joint likelihood. Examples include Corr-LDA (Blei
and Jordan, 2003), the mixed-membership model
for authorship (Erosheva et al., 2004), Group-Topic
model (Wang et al., 2005), TOT (Wang and Mc-
Callum, 2006), MedLDA (Zhu et al., 2012), and
TUM (Jiang et al., 2013). For instance, TUM mod-
els query logs by capturing separate distributions
for query terms and URLs, making it computa-
tionally demanding due to its distinct generative
processes. Another flexible approach is supervised
LDA (sLDA) (Blei and McAuliffe, 2007) (and its
variants (Wang et al., 2009; Wang and McCallum,
2006)), which maximizes the joint likelihood of
text and side data (e.g., customer ratings) via a
GLM with a specified link and dispersion function.
However, this requirement limits SLDA to a small
set of side data vectors. In contrast, our model cir-
cumvents these limitations by adopting an entirely
different approach.

Upstream Topic Model: Downstream models

jointly generate text and side data from latent top-
ics by maximizing their joint likelihood. Exam-
ples include Corr-LDA (Blei and Jordan, 2003),
the mixed-membership model for authorship (Ero-
sheva et al., 2004), Group-Topic models (Wang
et al., 2005), TOT (Wang and McCallum, 2006),
MedLDA (Zhu et al., 2012), and TUM (Jiang et al.,
2013)—the latter separately modeling query terms
and URLSs, which increases computational cost.

In contrast, upstream models condition text gen-
eration on observed side data and maximize the
conditional likelihood. For instance, DiscLDA
(Lacoste-Julien et al., 2008), scene understanding
models (Sudderth et al., 2005), and the author-topic
model (Rosen-Zvi et al., 2004) generate words by
first selecting an author and then sampling a topic
from that author’s distribution. Although some ex-
tensions (Rosen-Zvi et al., 2004; McCallum et al.,
2007; Dietz et al., 2007) allow mixed topics per
document, they typically use only ratings or labels
and cannot handle multiple modalities simultane-
ously.

While earlier upstream methods project side data
onto the topic prior using fixed operations (e.g.,
the dot product in DMR (Mimno and McCallum,
2008) and collective supervision (Benton et al.,
2016)), nnLDA employs a neural network to learn
an adaptive mapping. By dynamically generat-
ing a sample-specific prior from diverse side data,
nnL.DA accommodates both categorical and contin-
uous modalities, thereby enhancing topic inference
and overall performance.

3 Algorithm

We first present notation and the setting. We use the
language of text collections throughout the paper,
referring to terminologies such as “words,” “doc-
uments” and “corpus” since it makes the concepts
more intuitive to understand. In general, similar to
plain LDA, nnLLDA is not restricted to text datasets,
and can also be applied on other kinds of datasets,
i.e. image datasets.

* A word, defined as an item from a vocabulary
indexed by {1,---, V'}, is applied one-hot en-
coding. More precisely, using superscripts to
denote components, the v’th word in the vo-
cabulary is represented by a V'-vector w such
that w* = 1 and w" = 0 for all u # v.

* A document is a set of N words denoted
by d = w = {wj,wsy,---,wy} if it only
contains textual data. Similarly, if a doc-



ument contains ¢ different kinds of side
data together with the aforementioned tex-
tual data, we denote it by d = (w,s) =
({wi,wa,- -, wn}, (51,82, +,8¢)) Where
s € RY.

* A corpus is a collection of M documents
denoted by D = {wy,wa,---, Wy} for
textual only documents and (D,S) =
{(w1,81), (Wa,82),- -, (War,spr)} for docu-
ments containing both side and textual data.

The main goal of nnLDA is to find a probabilis-
tic model of a corpus that, by involving high-level
summarization from side data, not only assigns
high probability to documents in this corpus but
also assigns high probability to other similar docu-
ments based on side data.

3.1 Generative Model

We propose the nnLDA model to explain the gen-
erative process of a document d with textual data
w (containing /N words) and side data (structural
data) s, the steps of which can be summarized as
follows.

Algorithm 1 Generative Process of nnLDA

Choose N ~ Poisson(§)
Choose s ~ 1M (1, 0%I)
Choose ag <+ g(7;8)
Choose 6 ~ Dir(ay)
for each of the N words w,, do
(a) Choose a topic z;,, ~ Multinomial(6)
(b) Choose a word wy, from p(wy, | zn, 5),
a multinomial probability conditioned on
the topic z,.

AN e

Notation “Poisson,” “Dir” represents the Poisson
and Dirichlet distribution, respectively. In step 3,
g refers to a parametric model to generate . In
summary, the model has two trainable parameters:
v, the parameters of g for side info s; (3, the topic-
word distribution. In the meanwhile, there are three
hyper parameters: p and o2, the mean and the
variance of the probability distribution for side data
s; and K, which does not explicitly appear in the
generative process, the number of topics.

Step 1 is independent of the remaining steps,
which determines the number of words in the doc-
ument. Then, for each document, step 2 provides
a representation of side data s by using a normal
distribution with mean  and variance 2. Then,
applying a model with input s in step 3 provides

the prior o for the Dirichlet distribution. In step
3, the model g(~; -) employed is a deep neural net-
work, and we do not specify the architecture of the
deep neural network in this study since different
kinds of side data may inquire different deep neural
networks. We leave the freedom of selecting the
architecture of the deep neural network to the user.
Next, the random parameter of a multinomial distri-
bution over topics, 0, is generated by the Dirichlet
distribution. Finally, for the n’th word in the doc-
ument, step 5(a) first selects a topic z, among the
K different topics by the multinomial distribution
with parameter ¢, and then step 5(b) generates a
word w,, based on the topic-word distribution (3
specific to topic z,. Step 5 follows standard LDA.

By incorporating a neural network g(+y; -) to gen-
erate a document-specific Dirichlet prior from side
data, nnLDA guarantees a likelihood that is at least
as high as that of standard LDA. Under the assump-
tion that g(; -) has finite sample expressivity (see
Definition 1 in Appendix A), Theorem 1 shows
that the optimized likelihood of nnLDA meets or
exceeds that of LDA. Furthermore, if the side data
positively influences the document generation pro-
cess quantified by a constant C' > 1 then the im-
provement in likelihood is bounded below by C' — 1
(Theorem 2). These results establish a strong theo-
retical foundation for the enhanced performance of
nnL.DA over traditional LDA.

3.2 Variational Inference with EM Algorithm

We train the nnLDA model using a stochastic EM
sampling scheme, in which we alternate between
sampling topic assignments from the current prior
distribution conditioned on the observed words and
side data, and optimizing the parameters given the
topic assignments.

Details are similar to those in (Blei et al., 2003).
In this section, instead of showing all the details,
we point out the differences from the derivation of
plain LDA. By applying the Jensen’s inequality and
KL divergence between the variational posterior
probability and the true posterior probability, which
is a formally stated technique in (Blei et al., 2003),
a lower bound of log likelihood reads

L(&, ¢;7,8)

=E, [logp(0 | g(7;8))] + Eq [logp(z | 0)]

+ Eq [logp(w | 2, 8)] — Eq [log q(6)] — Eq [log q(2)] W

where £, ¢ are variational parameters of ¢ and
z, respectively, and ¢(-) represents the variational
distribution. Then, the iterative algorithm is



1. (E-step) For each document, find the optimiz-
ing values of the variational parameters £ and
¢ of z and 0, respectively.

2. (M-step) Maximize the resulting lower bound
of log likelihood with respect to the model
parameters ~y and 3.

Algorithm 2 E-step of hybrid neural network LDA

1: Initialize:

911‘ — % for all 7 and n

& <+ [g(v;s)]i + % for all ¢
2: fort=0,1,2,--- do
3 forn=1,2,---,N,do
4: fori=1,2,---  K,do
5: Pt = Biw,exp(¥(E)))
6 end for
7 Normalize ¢! to sum to 1
8: end for
90 & =g(vis) + 20, ot
10: end for

The E-step is exhibited in Algorithm 2, where ¥
is the digamma function, the first derivative of the
log Gamma function. The variational parameters
are set separately for each document, similar to the
E-step in (Blei et al., 2003), but replacing the prior
a with g(y;s). We run the E-step until it converges
for each document.

The M-step is finding a maximum likelihood es-
timation with expected sufficient statistics for each
document under the approximate posterior param-
eters ¢ and ¢, which are computed in the E-step.
Likewise, since the log-likelihood objective related
to 3 does not involve g(~;s), we are allowed to di-
rectly borrow the update rule of 5 from (Blei et al.,
2003), which is

M N

Bij & D> Gimiwd,.

d=1n=1

In contrast, for the neural network parameter v,
we resort to log likelihood objective related to ~y as
follows,

Ly
M

=y <1ogr > l9(visa)] Z:logF l9(vssa)li)
d=

(oo oo 52

K
+ Z < [g v Sd ]
i=1
where M is the number of documents in the
corpus, and ¥ is the digamma function, the first

Y

derivative of the log Gamma function. Then, ap-
plying the backpropagation approach provides the
derivative and the update rule for parameter ~.

4 Experimental Study

In this section, we compare the nnLDA model
with standard LDA and the DMR model intro-
duced in (Blei et al., 2003) and (Mimno and
McCallum, 2008), respectively. We conduct ex-
periments on four different-size datasets among
which one is a synthetic dataset and the remain-
ing three are real-world datasets. For these
datasets, we study the performance of topic group-
ing, perplexity, classification and comment gen-
eration for nnLDA, plain LDA and DMR mod-
els. For each of the tasks, some datasets are not
eligible to be examined due to lack of informa-
tion. The synthetic dataset is publically avail-
able at https://github.com/biyifang/nnLDA/
blob/main/syn_file.csv while the real-world
datasets are proprietary.

4.1 Datasets and Training Details

The first dataset is a synthetic set of 2,000 samples.
Each sample contains customer feedback regard-
ing a purchase along with product characteristics.
There are two categories: product (TV or burger)
and description (price or quality). We assign a bag
of words to each product—description combination
as shown in Table 1. A category combination is
randomly selected from the four, and a comment
is generated by randomly choosing between one
and five words (averaging 2.97 words) from the
corresponding bag.

Category combination Bag of words

value, pricey, ouch, steep,
cheap, value, reason, accept,
unreason, unacceptable

nasty, fantastic, delicious, tasty,
juicy, unreason, unacceptable,
reason, accept, fresh
promotion, affordable, value,
increase, expensive, tasty,
economical, fancy, okay
fabulous, fantastic, promising,
sharp, large, clear, eco friendly,
fresh, pixilated

(burger, price)

(burger, quality)

(TV, price)

(TV, quality)

Table 1: Synthetic Dataset

The second dataset, PTS, is a real-world set of
795 samples. Each sample includes a customer’s
short feedback and rating on a purchase, along with


https://github.com/biyifang/nnLDA/blob/main/syn_file.csv
https://github.com/biyifang/nnLDA/blob/main/syn_file.csv
https://github.com/biyifang/nnLDA/blob/main/syn_file.csv

product characteristics. The side data for nnLDA
corresponds to sectors—a generalized product cat-
egory. The shortest comment contains 1 word and
the longest 49 words, with an average of 10.6 words
per comment. For example, a customer in the Baby
sector leaves a comment “Cheap& Soft” with a
rating of 3.

The third dataset WIP is a medium-size dataset
with 3,451 samples. Each sample contains a cus-
tomer’s short feedback and rating with respect to
his or her purchase along with the characteristics
of the product. The sector attribution is again side
data when training models with one feature. The
other attribution counted for models with two fea-
tures is channel. The most concrete comment in the
dataset has 138 words, while the briefest comment
has only 1 word. In the meanwhile, the average
length of the comments in the dataset is 8.9 words.

The last dataset DCL is another medium-size
dataset of 5,427 samples. Different from the PTS
and WIP datasets, each sample in DCL contains a
customer’s long feedback and rating with respect
to his or her purchase along with the characteristics
of the product. Additionally, the side data selected
for nnLDA corresponds to groups of products. The
smallest number of words for a comment in this
dataset is 1, while the largest is 988. Overall, the
average length of the comments is 61.7 words. A
short sample comment is “quick points that will be
all that matters to a buyer wanting accurate metrics
to buy by tinny sound but plenty of audio hookups.’

[l

Dataset TOpl.C Perplexity | Classification Comme-nt
grouping Generation
Synthetic Yes - No o
Dataset
PTS No Yes Yes Yes
WIP No Yes Yes Yes
DCL No Yes Yes No

Table 2: Tasks of Interest

Due to incomplete information in some datasets,
we evaluate only selected tasks for each. For the
topic grouping task, we assess nnLLDA, plain LDA,
and DMR on their ability to correctly cluster com-
ments experiments are conducted only on the syn-
thetic dataset where topic groups are well-defined.
For perplexity, we compute the logarithm of the
perplexity over all words, but do not evaluate this
on the synthetic dataset (since its true number of
topic groups is known). For classification, we use
the probability vectors produced by the topic mod-
els to predict comment ratings. Finally, for com-

ment generation, we test performance on the two
smallest real-world datasets to examine behavior
with limited samples. Table 2 summarizes the tasks
evaluated for each dataset.

For all of these datasets, we employ a two-layer
fully connected neural network as g(+y; -) in nnLDA.
Furthermore, we set the number of neurons to be
20 in the first layer, the number of neurons of the
second layer to be the number of topic groups as-
signed in the beginning and the batch size to be
64. All features of the side data are categorical
and are one-hot encoded. Additionally, all weights
in g(~;-) are initialized by Kaiming Initialization
(He et al., 2015). We apply the ADAM algorithm
with the learning rate of 0.001 and weight decay be-
ing 0.1. Meanwhile, we train all the models using
EM with exactly the same stopping criteria of stop-
ping E-step and M-step when the average change
over the whole training dataset in the expected log
likelihood becomes less than 0.01%. We vary the
number of topic groups from 4 to 30. For DMR,
we use the same values for the parameters as those
in (Mimno and McCallum, 2008). All the algo-
rithms are implemented in Python with Pytorch
and trained on a single GPU card.

4.2 Experimental Results

In this section, we present all the results based on
the tasks of interest.

Overall, nnLDA outperforms plain LDA and
DMR in all datasets in terms of topic grouping,
classification, perplexity and comment generation.
Meanwhile, based on the fact that the last two
datasets have many more words and more intrin-
sic concepts in their comments when compared to
the first three datasets, nnLDA exceeds the perfor-
mance of plain LDA and DMR dramatically when
a document contains several topics or it is more
comprehensive.

4.2.1 Topic Grouping

Table 3 shows the most frequent 5 words in each
topic group generated by plain LDA, DMR and
nnLDA when setting the number of topic groups
to be 4 in the synthetic dataset. The topic groups
generated by plain LDA and DMR are very vague
and it is very hard to distinguish which topic group
is describing what combination of product and de-
scription, while the topic groups given by nnLDA
are very distinguishable, i.e. topic group 1 is about
(burger, quality), topic group 2 is about (TV, price),
topic group 3 is about (TV, quality) and topic group



plain LDA

DMR

nnLDA

promising, rebate, sharp,

Topic group 1 | . .
pic grotp increase, outstanding

pricey, unacceptable,
juicy, pixilated

unreason, unacceptable,
juicy delicious, nasty

unreason, value, okay,

Topic group 2 steep, ecofriendly

ouch, steep, tasty,
unreason, promotion

promotion, increase, tasty,
economical, okay

reason, accept, promotion,

Topic group 3 | 4, e unacceptable

accept, fantastic, value
reason, affordable

fresh, promising, fantastic,
large, eco friendly

fresh, reason, outstanding,

Topic group 4 | riendly, fantastic

sharp, delicious,
accept, fresh, clear

reason, accept, value,
steep, cheap

Table 3: Top words of groups generated by LDA, DMR and nnLDA

4 is about (burger, price). It identifies correctly the
seed topics. Therefore, nnLDA outperforms plain
LDA in grouping.

Additionally, based on the top words of topics
generated by LDA, DMR and nnLLDA, we are able
to assign the most related category combination
to a comment with respect to a model. Since we
have the category combination of each comment,
Table 4 shows the macro-recall, macro-precision
and macro-F1 scores and micro-F1 of LDA, DMR
and nnLDA, respectively, when training on the syn-
thetic dataset, and the overall relative improvement
of nnLDA. As the table shows, nnLDA outperforms
plain LDA and DMR, which implies that nnLDA
assigns more samples correctly to the right topic
group. Therefore, in general, nnLDA improves the
recall, precision and F1 scores.

macro macro | macro | micro
precision | recall Fl1 F1

LDA 0.7238 | 0.7272 | 0.7211 | 0.7240

DMR 0.7238 | 0.7460 | 0.7313 | 0.7392

nnL.DA 0.7401 | 0.7919 | 0.7536 | 0.7905
relative improvement

from LDA 2.25% | 890% | 4.51% | 9.19%
relative improvement

from DMR 225% | 6.15% | 3.05% | 6.94%

Table 4: Precision, recall and relative im-
provement of the synthetic dataset gener-
ated by LDA, DMR and nnLDA

In conclusion, nnLDA outperforms standard
LDA and DMR in terms of the ability of topic
grouping.

4.2.2 Perplexity

Figures 1 and 2 represent the log(perplexity) of
plain LDA, DMR and nnL.DA on the PTS and WIP
datasets, respectively. Additionally, in Figure 2,
for DMR and nnLLDA, we not only conduct experi-
ments on the dataset with the single feature (sector)

as the side data, denoted as “DMR with single fea-
ture” and “nnL.DA with single feature,” but also
on the dataset with two features (sector and chan-
nel) as side data, denoted as “DMR with two fea-
tures” and “nnLDA with two features,” respectively.
The smallest log(perplexity) values generated by
plain LDA and DMR are competitive to those of
nnLDA for these two datasets. In Figure 1, the
log(perplexity) value generated by plain LDA in-
creases as the number of topic groups grows, while
the log(perplexity) values generated by DMR and
nnLDA decrease first and then increase as the num-
ber of topic groups increases on the PTS dataset.
As it is shown in Figure 2, the log(perplexity) val-
ues generated by plain LDA and DMR increase
as the number of topic groups grows on the WIP
dataset. However, the log(perplexity) values gener-
ated by nnLLDA decrease first and then increase as
the number of topic groups increases on both of the
aforementioned datasets. Moreover, we examine
DMR and nnLDA models with two features on the
WIP dataset, which take both sector and channel
attributions as side data into account, in Figure 2.
As we can observe, the minimum log(perplexity)
generated by nnLDA with two features (sector and
channel attributions) is better than that of nnLDA
with the single feature (sector attribution), although
the optimal number of topic groups occurs at a dif-
ferent point since more side data is provided. Con-
sequently, plain LDA does not learn the datasets,
and DMR is able to learn the small datasets. In
contrast, nnLDA starts learning the datasets as the
log(perplexity) value decreases in the beginning
and finds an optimal number of topic groups, then
it gets confused since the number of topic groups
are more than needed. Furthermore, nnLDA with
two features provides better log(perplexity) than
nnLDA with the single feature. Therefore, nnLDA
is more capable of understanding the datasets; both
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Fig. 1. PTS dataset

small and medium-size datasets with short com-
ments.

When handling complex datasets, nnLDA’s ad-
vantage becomes more pronounced. Figure 3
shows the log(perplexity) of plain LDA, DMR,
and nnL.DA on the DCL dataset. We observe
that log(perplexity) for plain LDA and DMR in-
creases with more topic groups, while nnLLDA’s
log(perplexity) decreases initially before rising.
nnLDA consistently yields lower log(perplexity)
values, outperforming plain LDA and DMR in
medium and large datasets with long comments
while performing comparably on smaller datasets.
However, as shown in Table 5, nnLDA requires
slightly more training time—Iless than 10% slower
than DMR—indicating a trade-off between accu-
racy and efficiency.

running time(s) | plain LDA | DMR | nnLDA
PTS 3 4 4
WIF 19 24 26
DCL 138 179 191

Table 5: Running time of different mod-
els on different datasets

In the following section, we study the classi-
fication problem of predicting the rating of each
sample. In all the cases, we use 10-fold cross val-
idation, which holds out 10% of the data for test
purposes and trains the models on the remaining
90%. We apply nnLLDA, plain LDA and DMR to
find the probability of each sample to be assigned to
each topic group and treat it as the feature matrix.
Lastly, we train a classification model (xgboost
(Chen and Guestrin, 2016)) on the feature matrix
with the rating labels as the ground truth.

4.2.3 Classification

Figures 4, 5 and 6 depict the relative F1 scores of
DMR and nnLDA with respect to plain LDA on

Fig. 2. WIP dataset

s
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Fig. 3. DCL dataset

the PTS, WIP, and DCL datasets, respectively. In
Figure 4, the most distinguishable difference of
F1 scores occurs when the number of topic groups
is 15, where nnLDA has a gap of 0.032. In the
meanwhile, DMR achieves its best performance
at the same point with a gap of 0.030. Moreover,
this chart shows that nnLDA outperforms plain
LDA and DMR no matter what the number of topic
groups is.

In Figure 5, when using the single feature (sec-
tor attribution), the biggest gaps of F1 scores hap-
pen when the number of topic groups is 15 for
DMR and 25 for nnLDA. The biggest gap between
nnLDA and plain LDA is 0.016, while the largest
gap between DMR and plain LDA is 0.003. Consid-
ering models using two features (sector and channel
attributions) as the side data, the highest relative F1
score given by nnLDA with two features is 0.022
with 15 topic groups, compared with 0.004 pro-
duced by DMR with 10 topic groups. Although
plain LDA provides a slightly higher F1 score than
nnL.DA when applying 5 topic groups, nnLDA out-
performs plain LDA and DMR significantly given
any other number of topic groups. In Figure 6,
the highest relative F1 score given by nnLLDA is
0.022 with 25 topic groups, compared with 0.003
given by DMR for 6 topic groups. Moreover, this
figure shows that nnLDA outperforms plain LDA
whatever the number of topic groups is.

Therefore, nnLDA performs better than plain
LDA and DMR when predicting the rating given
customer’s comments and product information in
all datasets.

4.2.4 Comment Generation

In this section, we compare the comments gener-
ated by nnLDA with plain LDA and DMR. We
set the number of topic groups to be 5 since all
of plain LDA, DMR and nnLDA have relatively
low perplexity scores based on Figures 1 and 2,
and comparable F1 scores based on Figures 4 and
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5 on the PTS and WIP datasets. A comment is
generated based on the topic-document probabil-
ity of the sample and the topic-word distribution.
More precisely, for DMR and LDA, the prior «
is generated based on the side data (sector) first
while « is fixed in plain LDA. Next, a comment is
created by selecting the top words which have the
highest score computed by adding the products of
the topic-document probability and topic-word for
each word. Then, we randomly pick 50 comments
that contain a certain level of information, for exam-
ple, we rule out comments like “N/A.” Meanwhile,
in order to evaluate the quality of comment genera-
tion, we employed 50 PhD students. Each one of
them assessed a pair of comments (one based on
plain LDA or DMR, and the other one based on
nnLDA) for the same side data and they provided
an assessment as to which one is better.

Number of generated comments

PTS | WIP

plain LDA < nnLDA 15 22
plain LDA > nnLDA 11 9
plain LDA ~ nnLDA 24 19
DMR < nnLDA 16 20
DMR > nnLDA 11 10
DMR ~ nnLDA 23 20

Table 6: Comparison of the generated
comments on different datasets

The upper left three values in Table 6 show the
comparison of the generated comments given by
plain LDA and nnLDA on the PTS dataset. Based
on the table, among all these 50 samples, nnLDA
generates more accurate comments in 15 samples,
while plain LDA does better in 11 samples, and
the two are tied for the remaining 24 samples. The
lower left three values in Table 6 show the com-
parison of the generated comments given by DMR
and nnL.DA on the PTS dataset. Based on the ta-
ble, among all these 50 samples, nnLDA gener-

number of topic groups

Fig. 5. WIP

~0.005
25 30 5 10 15 20 25 30
number of topic groups

Fig. 6. DCL

ates more accurate comments in 16 samples, while
DMR does better in 11 samples, and the two are
tied for the remaining 23 samples. On the PTS
dataset, nnLDA generates in 1> = 8% more
reasonable comments compared to plain LDA, and

in 165;)11 = 10% more comparing to DMR.

The right column in Tables 6 shows the compari-
son of the generated comments given by plain LDA
and nnLLDA, and DMR and nnLDA on the WIP
dataset, respectively. The observations and conclu-
sions are similar. Furthermore, the advantage in
number is more obvious on the WIP dataset, i.e. the
improvement of nnLDA compared to plain LDA

is as large as % = 26% and the improvement
from DMR to nnLDA is 2057010 = 20%. There-

fore, taking generated comments into consideration,
nnLDA generates more reasonable comments than
plain LDA and DMR for both small and medium-
sized datasets.

5 Conclusion

Our experiments confirm that integrating side data
via a neural network into the LDA framework
can significantly improve performance on mul-
tiple tasks. In particular, nnLDA consistently
achieves higher log-likelihoods, and its adaptive
prior—learned directly from side data—Ieads to
better topic grouping, lower perplexity, and en-
hanced classification and comment generation. The
theoretical guarantees (see Appendix A) further
support these empirical findings.

Future work will explore alternative neural net-
work architectures to better adapt to various types
of side data and will extend the evaluation to a
broader range of datasets. Overall, nnLDA pro-
vides a comprehensive framework for integrating
auxiliary information into topic modeling, thereby
offering significant improvements over existing ap-
proaches.



Limitations

The nnLDA assumes that side data is relevant and
beneficial for the topic modeling process. However,
in real-world applications, side data may sparse,
noisy, or not correlate with the textual content. In
such cases, the model could produce misleading
or less coherent topic structures, reducing its ef-
fectiveness. Future work could explore adaptive
models that can adjust their reliance on side data
based on its relevance.

Although nnLDA shows improvements over tra-
ditional models like LDA and DMR, it has not been
compared to more recent advances in topic model-
ing, such as transformer-based models (e.g., BERT-
LDA) or other deep generative models. These mod-
els may offer additional benefits such as better se-
mantic coherence or reduced reliance on side data,
suggesting that further benchmarks are needed.

Ethics Statement

This work was conducted using a combination of
publicly available synthetic data and proprietary
datasets that have been anonymized and aggregated
to protect individual privacy. Our research focuses
solely on improving topic modeling techniques and
does not involve any collection or analysis of per-
sonally identifiable information. All experiments
were performed in accordance with applicable ethi-
cal guidelines and institutional policies, ensuring
that no harm or bias is introduced in the processing
and analysis of data. We believe that the methodolo-
gies and findings presented in this paper adhere to
ethical research practices and contribute positively
to the development of transparent and accountable
machine learning models.
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Appendix

A. Analytical comparison of standard LDA and nnL.DA
Note that a Dirichlet random vector § = (61, 62, - - -, 0 ) has the following probability density:

r(ce)
N gl 9ok

K 1 K
Hi:l ['(evi)
where K is the number of topic groups, « is the prior of the Dirichlet distribution and # takes values in

the (K — 1)-simplex. Then, the generative process implies that the conditional distribution of the nnLDA
model of a document d = (w,s) is

p(0|a)=

)

Pi(w| 0,7, 8) = Pi(w 5,7, 8)

S Lars (Hzpzue (wn | 2, ))

n=1 zp

:/ 0| 1, 0,7) (HZ]DZH@ (wn | 2, ))

n=1 zg

which in turn yields

Pl(D‘/L,U'}/ﬂ)

—E[/ (04| p,0,7) (HZ (2ay | 0a) (wdl|2’dpﬁ)>d'9d]
vy
/ 04 | 11y 0,7) (HZHM” )ded}

where p(0g | p, 0,7) = ﬁ(@d |'s,v) =p(0q | g(v;s)) = p(ba | ag) for acorpus D.

=E

The nnLDA model represented above is a probabilistic graphical model with three levels. Parameters 1,
o, and [ are corpus-level parameters, which are assumed to be sampled once in the generative process
of a corpus. Variables «g and 6, are document-level variables, which are sampled once per document.
Finally, wg, and z4, are word-level variables, sampled once for each word in each document. In the rest
of this section, we provide an analytical comparison of standard LDA and nnLDA.

Compared to standard LDA, nnLDA employs an extra neural network g to generate document-level
variable agy. Since nnLDA is “richer” than LDA, we expect that it should produce a higher likelihood.
Without assumptions on g(+y; -) this does not hold since, for example, g(~;-) can map everything to a
constant vector different from the prior used by LDA. As a result, in order for the statement to hold
the network must be expressive. The question to consider is whether a neural network is capable of
memorizing arbitrary side data of a given size. We tackle this question by introducing the concept of finite
sample expressivity which is an extension of a similar definition in (Yun et al., 2019). Given the defini-
tion, if g(~y; -) has finite sample expressivity, nnLDA at least can find the optimal «* used in standard LDA.

Definition 1. Function g(vy;-) has finite sample expressivity if for all inputs x; € R%,1 < i < N and
forally; € [-M,+M ]dy, 1 < ¢ < N for some constant M > 0, there exists a parameter vy such that
9(7; i) = yiforevery 1 <i < N.

Based on Definition 1, Theorem 3.1 shown in (Yun et al., 2019) provides a specific set of constraints,
i.e. any 3-layer (i.e., 2-hidden-layer) ReLU FCNN with hidden layer widths d; and dy can fit any
arbitrary dataset if dido > 4Nd,, where d, and N are the dimension of the label and the number of
samples, respectively. By extending the aforementioned theorem, Proposition 3.4 and Theorem 4.1 in
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(Yun et al., 2019) argue that any FCNN given constraints on the number of neurons in each layer is able to
have finite sample expressivity. In the following, we assume that g(-y; -) has finite sample expressivity.
Therefore, given K and any o* representing the number of topic groups and optimal parameters in LDA,
since a* € [~M,+M]¥ for some constant M, there exists a y; such that, for all inputs s; and o,
g(71;8;) = a* forall 1 <i < N.

We next prove that the optimized probability of nnLLDA is at least as good as that of plain LDA. Let
a* and * be optimal solutions to P» = max, g P(D|a, ) of LDA, meanwhile, let *, c* and v* be
optimal solutions to P; = max,, ,. P1(D| i, 0,7, *) of nnLDA (see Appendix B for formal definitions).

Theorem 1. If o*, 8* are optimal solutions to LDA, then there exists optimal solutions u*, o™ and ~v* to
nnLDA such that

P(D | p",0"7",B") = P2(D | ", B7).
Proof. See Appendix B. O
While Theorem 1 asserts that when it comes to model fit nnLLDA fits the data better than LDA, it does
not provide a gap statement. If the side data provides positive influence during the learning process by a
constant C', then, due to the independence of words, topics and documents, we are able to argue that the
optimized probability is at least improved by C' — 1.

Theorem 2. For any document (w,s) € (D, S), if p(w; | o, 5*) # 0 for all i, and there exists a positive
constant C > 1 such that Hf\il p(w; | ~*, B, u*, o) > CHi]\Ll p(w; | o, B*) for every w; € w, and if
D in Py and D in P, follow the same distribution, then

P(D|p* 0" 7", B%) — Pa(D | a, B7)
Py(D | o, 5%)

>C-1.

Proof. See Appendix D for a formal proof. O

The assumption on p(w; | *, *) in Theorem 2 is reasonable since it indicates that all documents are
not randomly generated. The positive constant C' in the assumption captures the improvement given by
the side data. In other words, as long as the side data has positive impact on the text data, this assumption
holds. Next, we link the existence of C to lift from data mining. Let us define lift as

P(w)P(s)

Hd) = P(w,s)

with d = (w,s). Lift measures the dependency level of words w and side data s. If I(d) < 1 for d with N
words and P(s) > 0, we have

N N
P(s) [[ Pwn) = P(w)P(s) < P(w,s) = P(s) [ [ P(wnls),
n=1 n=1
and in turn
N N
P(wy) < H P(wys),
n=1 n=1
and

N N
Hﬁ(wn | a*uﬁ*) < Hﬁ(wn | ’}/*7/3*7M*,0'*).
n=1 n=1

This implies that there exists C' > 1. In summary, when I(d) < 1 and P(s) > 0 for each d in the corpus,
Theorem 2 holds. Lift essentially measures the dependency of w and s, which is widely used in data
mining. The condition indicates that the side data helps to link the words to the documents they are

12



more likely to be in. Informally, in the proof, due to the independence assumption of words, topics
and documents in nnLDA, the generative probability of nnLLDA for a corpus can be reformulated as a
product of p(04 | u*,0*,~v*) and conditional probability of words p(wy, | 64, 5*). Likewise, the same
property holds for plain LDA. Lastly, given a relationship between documents d = w and d = (w, s) as
an expression of the conditional probability of words, we are able to build a connection of the optimized
probabilities between nnLDA and LDA.

B. Probability Distribution of LDA

Given the generative process of LDA, which is formally presented in (Blei et al., 2003), we obtain the
marginal distribution of a document d = w with text only as

Py(w | «, ) / G‘O‘(HZP'Z’CW wn]zk,6)>d9

n=1 zg
1%

N K
= [o61a) | TL S TT@s) | as.

n=1i=1 j=1

which in turn yields

N
P(D|a,p)=E /ﬁ(ed | o) | T[] D (24, | 00)b(wa,, | 2a,, B) | 464

n= 1de

N K V ;
2| [0 o) | [T 3 T80 | dou] .

n=11i=1 j=1

where p(fa | o) = p(fq | ).

C. Proof of Theorem 1

Proof. By finite sample expressivity of g(+; -), there exists a model with parameters +; such that
g(nis) =,
which in turn yields

p(0|s,7) =00 | g(7138)) = B(0 | a¥)

Therefore,

PQ(D | a*aﬁ*) = Pl(D | Sa’Ylaﬁ*) = Pl(/‘*ao-*vlylaﬁ*)'

Since nnLLDA also optimizes over the network parameter -y, we have

Pl(D ’ /1'*70-*7’7*76*) 2 PI(D | ,U,*7O'*,")/17IB*)7

and thus,

Pi(D | p*,0%,9%, %) > P(D | ", 57).

13



D. Proof of Theorem 2
Proof. Note that

Pl(D | M*70*7’7*75*) - PQ(D | Oé*,ﬁ*)
PQ(D | a*,ﬁ*)
CE|[5(0a| 10"y (T s, Bz | B)(wa, | 2a,, 8) ) ]
B[ 5(6a| o) (T1021 3., #(za, | 0a)p(wa, | 2. 5%)) d6a]

B[S (0] @) (I05 S, P | 0P, | 20,57)
)

B[S 56| o) (TIN-1 .y, 20, | 0a)D(wa, | 20 57)

dﬁd}

dad} '

2

Since

N
p(ba | p*,0",7%) (H > b(z4, | 02)p(wy, | de,ﬁ*))
n=1 Zdy,

N

N
=p(0a | pn*, 0", %) <H p(wa, | 9d,6*)> = [[ 5w, |7 8%, 1", 0%)
n=1 n=1

and

p(ba | o) (HZP%% wandk,ﬁ))

n= 1de

N
=p(0a | @) (prd | 04, 8" ):H p(wg, | o, B7),
n=1

equation (2) could be further simplified as

Pl(D | M*,U*,’Y*,ﬂ*) - PQ(D | a*aﬁ*)
Py (D | o*, B*)

E [/ TIL: wa, |, 0%, 7, 8)d60a] = E [ [ TI, b, | *,87)64]
E [ TI, blwa, | o, 57)d6,]
E[f CTLY. wa, | a*, 5404 ~ B [J TIN., 5ua, | o, 57)d64]
E [ [ TI. f(wa, | a*, 5%)d0,]
E [/ T, (wa, |0, 87)404) —E | [ TI plwa, | o, 57)d04]

- =C-1.
B[ TI, f(wa, | o, 5%)d0d]
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