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Abstract
The amount of compute used in training state-of-
the-art models is exponentially increasing (dou-
bling every 10 months between 2015 and 2022),
resulting in a large carbon footprint. Federated
Learning (FL) can also be resource-intensive and
have a significant carbon footprint, particularly
when deployed at scale. Unlike centralized AI that
can reliably tap into renewables at strategically
placed data centers, cross-device FL may lever-
age as many as hundreds of millions of globally
distributed end-user devices with diverse energy
sources. Green AI is a novel and important re-
search area where carbon footprint is regarded as
an evaluation criterion for AI, alongside accuracy,
convergence speed, and other metrics.

In this paper, we propose the concept of Green
FL, which involves optimizing FL parameters and
making design choices to minimize carbon emis-
sions consistent with competitive performance
and training time. First, we adopt a data-driven
approach to quantify the carbon emissions of
FL by directly measuring real-world at-scale FL
tasks running on millions of phones. Second,
we present challenges, guidelines, and lessons
learned from studying the trade-off between en-
ergy efficiency, performance, and time-to-train in
a production FL system.

1. Introduction
Federated learning (FL) is a distributed learning paradigm
where a large number of client devices, such as smartphones,
collectively train a machine learning model using data lo-
cated on client devices. User data remains on client de-
vices, and only updates to the model are aggregated within
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a centralized model at the server. FL has emerged as a
practical privacy-enhancing technology for on-device learn-
ing (Kairouz et al., 2021). Many real-world models have
been trained using FL, including language models for pre-
dictive keyboards on Google Pixel, Apple’s iOS, and Meta’s
Quest (Yang et al., 2018; Apple, 2019; Paulik et al., 2021;
ocu), Siri personalization (Hao, 2019), advertising, messag-
ing, and search on LinkedIn (Wang et al., 2023).

While FL — when coupled with technologies such as secure
aggregation and differential privacy (Kairouz et al., 2021;
Bonawitz et al., 2016; Nguyen et al., 2022; McMahan et al.,
2018) — can be a practical solution to enhance user privacy,
the training process in FL can result in non-negligible car-
bon emissions. A recent study has shown that training a
model with FL can produce as much as 80 kilograms of car-
bon dioxide equivalent (CO2e), exceeding that of training
a higher capacity model, a large transformer, in the central-
ized training setting using AI accelerators (Wu et al., 2022).
The relative inefficiency is attributable to several factors,
including the overhead of training using a large collection
of highly heterogeneous client hardware, additional cost for
communication, and often slower convergence.

Federated Learning’s global carbon footprint is expected to
increase as the industry increasingly adopts FL and more
machine learning tasks shift away from the centralized set-
ting. This is especially concerning since renewable sources
of electricity may not be available in all locations, making
Green FL a challenging goal to achieve (Wu et al., 2022;
Qiu et al., 2021). Taking advantage of opportunities for
efficiency optimization in FL is of paramount importance to
make on-device learning greener.

Recently, there has been growing interest in quantifying and
reducing the carbon emissions of machine learning (ML)
training and inference in the datacenter setting (Dodge et al.,
2022; Strubell et al., 2020; Patterson et al., 2022; Lacoste
et al., 2019; Naidu et al., 2021). However, the carbon foot-
print of Federated Learning (FL) and the factors that con-
tribute to carbon efficiency in FL have yet to be thoroughly
explored. Prior works have offer preliminary findings, ei-
ther quantified the carbon effects of FL only in a simulation
setting or with several simplifying assumptions (Qiu et al.,
2021; Wu et al., 2022), offering only a partial picture. These
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Figure 1. Carbon emissions of (synchronous) FL: the more rounds
is required to reach a target accuracy and the higher the number of
users active in training (i.e., concurrency), the higher is the carbon
emissions. Each point represents a training run with a different
hyper-parameter (grouped by concurrency with marker colors and
symbols). The graph shows the carbon emissions and the rounds
to reach a target accuracy for a language modeling FL task.

works focused on measurements and opportunity sizing, and
restrained from exploring dimensions of the design space
toward realizing Green FL.

This paper presents a holistic carbon footprint analysis of a
real-world FL task running on PAPAYA (Huba et al., 2022), a
production FL system that operates on hundreds of millions
of clients. This is the first study that provides a comprehen-
sive view of Green FL by characterizing the emission profile
of all major components involved, including the emissions
from clients, the server, and the communication channels
in between. To this end, we instrument and profile all ma-
jor components of the FL system. (see contributions in
Appendix A).

An important finding of our analysis is that the carbon
footprint of an FL task is highly correlated (among all
parameters and artifacts) with the product of its running
time and the number of users active in training (i.e., con-
currency). We discuss this in more detail in Section 3. We
also provide an in-depth analysis of the multi-criterion opti-
mization between carbon emissions, time to convergence,
and training error.

Figure 1 presents results of measuring a production FL task
for a range of hyperparameters. We can see that the number
of rounds and concurrency are both positively correlated
with the carbon footprint, and keeping one of these param-
eters constant, the relationship is nearly linear (see, for
instance, the line corresponding to concurrency set to 200).
These points become more evident throughout the paper.
Other findings are the following:

• Compute on client devices, and the communication be-
tween the clients and the server are responsible for the

majority of FL’s overall carbon emissions (97%). The
carbon footprint attributable to the server-side compu-
tation is small (∼1–2%), while client computation is
almost half of the contribution (∼46–50%). Upload
and download networking costs are approximately 27–
29% and 22–24%, respectively.

• Asynchronous FL (FedBuff (Nguyen et al., 2022)) is
faster than synchronous FL (FedAvg) as it advances
the model more frequently in the face of stragglers, but
it comes at the cost of higher carbon emissions.

• Different training configurations that achieve similar
model accuracy can have substantially different carbon
impact, by up to 200×, demonstrating the importance
of hyper-parameter optimization.

• To minimize the carbon footprint of FL, reduce training
time, and achieve a high model quality, FL developers
must focus on lowering the training time, e.g., through
the right choice of the optimizer, learning rates, and
batch sizes, while keeping the concurrency small.

• Carbon footprint of a single language modeling FL task
running for a few days at scale is of the order of 5–20
kg CO2e, similar to that of producing 1 kilogram of
chicken (Ritchie, 2020). In practice, we expect model
exploration, hyperparameter tuning, and incremental
re-training to increase this multiple-fold (in the order
of several tons of CO2e).

2. Measurement Methodology
The FL platform, the FL task, and the experiment parameters
are discussed in Appendix C. This section describes the
measurement methodology we used to obtain our production
FL stack’s energy and carbon emissions.

The FL software stack has a client runtime that executes
on end-user devices for FL training tasks. To enable accu-
rate measurement of compute time, upload, and download
duration, we implemented a logger that records the vitals
of the FL session, including the country from which the
device is connected for the FL training, the model of the
device, model download time, model upload time, and total
duration of a single FL session. We use this information for
power measurements of the devices.

The logger records events happening on the production FL
client runtime. The logger is based on a generic logging
system used widely in our production client runtimes and
has minimal resource footprint. The generic logging sys-
tem guarantees that the events are defined, created, and
processed consistently across all the apps and services. The
logger runs in parallel with an FL session. The downstream
of the logger is a server-side database to store the logs sent
from the client runtime logger.
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Device training requirements. It is a common practice
in cross-device FL that training only takes place when the
device is idle, charging, connected to an unmetered network
(typically, Wi-Fi) (Kairouz et al., 2021; Yang et al., 2018;
Huba et al., 2022).

Accounting for geography. Since the device is in the
charging mode for FL, considering the source of energy for
charging results in a more accurate carbon footprint estimate.
To this end, we also consider the country where an end user
connects from when the device is charging, since different
countries have different carbon intensities. Carbon intensity
reflects the amount of CO2 emitted per unit of energy. We
obtained country-level carbon intensities using the most
recent reported year, e.g., 2020 or 2021, by Our World in
Data (Ritchie et al., 2020).

Optimization with regards to geography or heterogene-
ity. One direction for reducing carbon impact of FL is to
optimize carbon and performance with regards to the hetero-
geneity of clients (e.g., run more on clients with better power
profile), or optimizing with respect to the carbon intensity
of their location (e.g., run more on clients whose location
has greener power source). These optimization strategies,
although promising, may introduce bias and amplify unfair-
ness due to the fact that clients with good energy profiles
or with greener energy sources are underrepresented in the
Global South. We encourage the community to study this
direction further.

Power profile of phones. We acknowledge that power
estimation of phones has been notoriously difficult (Oliner
et al., 2013; Couto et al., 2015). Several methods exist to
get the compute and communication power of end-user de-
vices. One may try to approximate the power consumption
of phones based on modeling different components, e.g.,
Wi-Fi units and TCP/IP layers (Xiao et al., 2013), although
these models may not be accurate. Another approach is
to estimate the power drainage by looking at the phone’s
battery level over time. This method is a coarse-grained
and noisy proxy to power consumption, as the battery life
also depends on factors such as the age of the battery and
ambient temperature. Moreover, the battery drain may differ
for the same app usage across devices. Recent studies use
collaborative methods for more accurate power measure-
ments (Almeida et al., 2021; Bustamante & Livshits, 2022).
In this study, the main challenge for power estimation is the
diversity of devices (see below). To address this challenge,
we use Android phone’s power profile. The power profile
is an XML file (typically named power_profile.xml)
that Android device manufacturers must provide to spec-
ify parameters of different electronic components and the
approximate battery drainage caused by these components
over time (and, a). This is the method we adopt as it pro-

vides accurate data for phone power consumption based on
manufacturer information.

Diversity of Android devices. There are more than tens of
thousands of distinct Android device models (also observed
in (Wu et al., 2019; Wang et al., 2023)), and obtaining the
power estimates for every device model that participated in
our experiments would not be feasible. We instead focus
on a subset of representative mobile phones—210 most
commonly seen Android phones in the language modeling
FL task in production. These devices represent more than
20% of the total devices participating in the FL task in
production. The power estimates for different components
of these phones are measured by their manufacturers and
are available from several sources (gh-, a;b;c;d).

We extract from power_profile.xml the power con-
sumption of the CPU and Wi-Fi components. In PAPAYA
FL training of a language model is done on device CPU at
present. (GPU support by PyTorch Mobile is largely limited
to inference.) The listing below illustrates a snippet of a
power profile.xml for Google Pixel 7.

<?xml version="1.0" encoding="utf-8"?>
<device name="Android">

... [text] ...
<item name="screen.on">98</item>
<item name="screen.full">470</item>
<item name="modem.controller.sleep">2.5</item>
<item name="modem.controller.idle">4.5</item>
<item name="modem.controller.rx">169</item>
... [more text] ...

</device>

We impute values for phones with missing
power_profile.xml files using corresponding
numbers from devices with the same SoC or similar phones
with comparable characteristics.

More details about the measurement methodology, in par-
ticular how we obtain the Wi-Fi and CPU power from
the power_profile.xml file, server resource measure-
ments, and networking infrastructure resource measure-
ments are discussed in Appendix D.

3. Carbon Emissions of FL
In this section, we present the results of our study and mea-
surements. We use CO2-equivalents (CO2e), a standardized
measure to express the global-warming potential of vari-
ous greenhouse gases as a single metric. Carbon dioxide
(CO2) is not the sole greenhouse gas contributing to climate
change. There exist other gases that also have a significant
impact on the environment, and the aggregate effect of all
these gases is quantified as CO2e: the number of metric tons
of CO2 emissions with the same global warming potential
as one metric ton of another greenhouse gas.
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Table 1

Client Compute Server Compute Upload Download

AsyncFL 0.3006314 0.0082517 0.1428272 0.108794

SyncFL 0.0812745 0.0025506 0.0476135 0.0418323
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Figure 2. Carbon emissions of SyncFL and AsyncFL to reach a
target perplexity. The text above the bars shows the time and
rounds it takes to reach the target perplexity.

3.1. Estimating Carbon Emissions of Industry-scale FL

We quantified the carbon emissions of our synchronous and
asynchronous FL system through hundreds of experiments,
each with a different set of hyperparameters.

First, we illustrate the total carbon impact of synchronous
and asynchronous FL. Figure 2 shows the carbon emissions
of synchronous and asynchronous FL training in our produc-
tion stack to reach a target perplexity of 175. We have tuned
both methods by finding the choice of hyper-parameters that
led to the lowest time to target perplexity, as also used in
Huba et al. (Huba et al., 2022). In this setup, concurrency
and aggregation goal are both set to 1,000.

We can see that synchronous FL has a smaller carbon foot-
print compared to asynchronous FL. This is in contrast to the
faster convergence of asynchronous FL (2.4 hours), which
involves more model updates at the server (100). Asyn-
chronous FL converges faster to the target perplexity due
to its fast model updates. Due to its frequent iterations,
asynchronous FL involves more clients. This result shows
a fundamental trade-off between synchronous and asyn-
chronous FL: if tuned well, asynchronous FL is faster
than synchronous FL as it advances the model more fre-
quently in the presence of stragglers, but it comes at the
cost of higher carbon emissions.

We can also see that the majority of the carbon footprint is
contributed by the client compute — consistent with FL’s
pushing the AI processing to the edge of the network. The
server compute is a small fraction of the carbon emissions as
shown in Figure 2 and other experiments. We observe that
client compute and the communication between the clients
and the server are responsible for the greatest share of FL’s
overall carbon emissions (97%). The carbon footprint from
the server-side computation is small (∼1–2%), while client
computation contributes to almost half of the overall carbon
footprint (∼46–50%). Upload and download networking
costs are approximately 27–29% and 22–24%, respectively.

Table 1

Client Compute Server Compute Upload Download

AsyncFL 0.4649441 0.013363 0.2403226 0.1890566

SyncFL 0.0892041 0.0027841 0.0525136 0.0446256

AsyncFL 1.1558239 0.0347909 0.6287581 0.5440007

SyncFL 0.2232044 0.006715 0.1187573 0.107448
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Figure 3. Carbon emissions of SyncFL and AsyncFL after a fixed
training time. The text above the bars shows the perplexity of the
model at the specified time (lower is better).

Figure 3 illustrates the carbon emissions of synchronous and
asynchronous FL training in our production stack after a
fixed time – after 4 and 10 hours. In this experiment, instead
of fixing the target perplexity and evaluating on training
time, we fix the training time and measure the carbon emis-
sions and the achieved perplexity (lower is better). The test
perplexity is computed using data from 20 held-out clients,
to have quick evaluation. Each device has enough examples
to have several hundreds of samples for evaluation. Be-
cause test perplexity with so few clients is noisy and can
vary significantly from round to round, we smooth the test
perplexity using an exponentially-weighted moving average
with parameter α = 0.3 and declare that the test perplexity
target has been reached when the smoothed test perplex-
ity achieves the target. Asynchronous FL can advance the
model faster and reach a lower perplexity at the cost of more
carbon footprint. After 10 hours, synchronous FL is able
to catch up to asynchronous FL with a similar perplexity
of 120. The same contribution ratio among client compute,
server compute, upload and download networking costs can
be seen here too.

In the rest of the experiments, we fix the target perplexity
while evaluating carbon emissions and training time.

3.2. Some Parameters Matter More

In our study on hyperparameters in FL tasks, we observed
that some parameter choices have a greater impact on car-
bon footprint than others. Specifically, the parameter of
concurrency plays a significant role. The relationship be-
tween concurrency and carbon emissions in synchronous
FL is depicted in Figure 4, where we observe that as con-
currency increases, so does the carbon footprint. Higher
concurrency leads to more devices training simultaneously,
resulting in increased resource utilization and only partially
offset with potentially faster convergence. We note that the
time to reach a target accuracy decreases only up to con-
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Table 1

Concurrency Client Compute Server Compute Upload Download

50 0.011799 0.000415 0.007513 0.008009

100 0.022022 0.000652 0.010833 0.010400

200 0.015755 0.000497 0.009454 0.007891

300 0.042568 0.001353 0.024112 0.023665

800 0.055558 0.002001 0.042957 0.035411

1000 0.081274 0.002551 0.047613 0.041832

1300 0.143102 0.004142 0.070423 0.063725

1500 0.141950 0.004657 0.098224 0.071627
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Figure 4. Higher concurrency leads to more carbon emissions. The
numbers above bars are the time (in hours) it takes to reach the
target accuracy.

currency of 800, illustrating diminishing returns in training
speed. Diminishing returns in training speed as a function of
increasing the number of clients training in parallel is analo-
gous to a similar phenomenon in large-batch training (Huba
et al., 2022; Bonawitz et al., 2019; Charles et al., 2021).

Among the parameters and artifacts of FL system design, we
found that concurrency and time to reach a target accuracy,
which translates to the number of rounds for synchronous
FL and wall-clock time for asynchronous FL, have the most
significant impact on carbon emissions. Conversely, other
parameters such as learning rates, batch sizes, aggregation
goals, and local epochs impact the convergence of the FL
model towards the target accuracy, which in turn influences
the time required to complete the training process. While
these parameters do not directly affect carbon emissions,
they do indirectly influence the overall training speed. There-
fore, it is recommended that these parameters be included
in the “time” and “performance” aspects of the multidimen-
sional design in Green FL. On the other hand, concurrency
impacts both time and carbon emissions directly and should
be given greater consideration in FL system design for re-
ducing carbon emissions.

Consistent with prior research (Huba et al., 2022; Bonawitz
et al., 2019), the present study indicates that larger values
for local epoch do not yield improvements in training effi-
ciency, particularly within the context of non-IID at-scale
FL systems characterized by heterogeneous data and sys-
tems. On the contrary, larger local epoch values result in
a marked increase in carbon emissions, largely attributable
to the corresponding rise in client compute. Therefore, we
recommend using smaller values for the local epoch, specif-
ically in the 1 to 3 range.

In Appendix F we propose a model that FL practitioners
can effectively use to forecast the carbon emissions of their
system before initiating the training process.

4. Conclusions and Future Work
In this paper, we demonstrate how different FL parameters
and design choices can impact the carbon footprint of a
production FL system. Our empirical approach quantifies
carbon emissions by directly profiling a real-world at-scale
FL task. These measurements inform our guidelines and
lessons learned on the trade-off between carbon emissions,
target accuracy, and time to train in a production FL system.

We acknowledge that this study, like any, has some limi-
tations. Recall that we used the power profiles of the 210
most commonly seen device models to obtain estimates of
upload, download, and compute power for typical devices.
We noted that these 210 devices represent 20% of the to-
tal devices participating. The carbon emissions values we
report based on these values are estimates. Although it is
possible that the absolute carbon emissions would change
if power profiles for additional devices were available, we
believe that the same trends and overall conclusions hold.

As future research directions, we suggest investigating how
compression and quantization techniques could apply to
Green FL, potentially reducing the carbon footprint of the
communication stack (at the expense of increasing client-
side computations). Moreover, accounting for GPU or NPU
resources is an interesting point when considering other FL
tasks (e.g., computer vision) at scale. Alternative FL archi-
tectures, such as secure aggregation via cryptographic com-
putations, federated ensemble learning, or federated split
learning, present intriguing challenges as well. Moreover,
unbiased optimization strategies with regards to geography
and heterogeneity, while preserving fairness (as discussed in
Section 2) can be explored. Additionally, we encourage the
research community to consider the impacts of differential
privacy on the landscape of Green FL. Differential privacy
would introduce privacy as an additional criterion, alongside
accuracy, carbon, and time. Finally, we urge FL practition-
ers to consider the carbon footprint of their systems in their
decision-making process.
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A. Contributions
We believe that distilling the complicated design space of the Green FL into several intuitive rules of thumb constitutes a
valuable contribution. The rules and findings, even though may appear straight-forward in retrospect, are actionable and
validated on a production platform. To the best of our knowledge, this is the first study to measure carbon emissions at
scale for an industrial FL system across a range of hyperparameters. Before this study, there had been only intuitions and
hypotheses. Our findings can help identify challenges and encourage further research towards the development of more
sustainable and environmentally friendly FL systems. Our main contributions can be summarized as follows:

• We present a comprehensive evaluation of the carbon emission of a full production FL system stack by presenting
the emission profile of all major components involved, including the emissions from clients, the server, and the
communication channels in between. No prior work has done a carbon measurement study on a real-world FL
production system at scale.

• Our empirical observations lead us to propose a set of key findings for Green FL, which identify the levers that have
the most significant influence on the carbon footprint of FL.

• We propose a model that predicts the carbon footprint of an FL task prior to actual deployment.

• We show that using our recipe for Green FL, we can reduce the carbon footprint of FL training pipelines by as much as
200× while achieving similar model quality performance.

Disclaimer: This study presents an estimation of carbon emissions based on other assumptions; measuring the actual
energy and carbon emissions is indeed harder. Moreover, we only consider a production language modeling FL task. Given
the state of FL deployment, we foresee language models to be responsible for a disproportionately large share of the total
carbon footprint. While we believe the overall trend of the results should hold for other modalities or models, small variation
in the findings and results may be expected.

B. Why Green Federated Learning?
Climate change is a pressing global issue believed to be caused by human activities such as burning fossil fuels, deforestation,
and agriculture, which all emit greenhouse gasses (e.g., CO2 and methane). Climate change has significant impacts on
human communities, as well as on ecosystems and biodiversity. Mitigating harmful emissions is essential in addressing
climate change (un; IPCC, 2021).

Green AI is the use of AI techniques and technologies in a way to reduce their environmental impact and promote
sustainability in AI (Schwartz et al., 2020; Rolnick et al., 2022). Some examples are developing more energy-efficient
algorithms and hardware, and reducing the carbon footprint of data centers. With the rapid growth of AI (e.g., the amount
of compute for training state-of-the-art models doubled every 10 months between 2015 and 2022 (Sevilla et al., 2022)),
it is imperative to understand the environmental implications, challenges, and opportunities of AI. By making AI more
sustainable, we can reduce its environmental impact while also reaping the benefits that AI has to offer.

A related line of work addresses communication efficiency or model compression for FL (Konečný et al., 2016; Vogels
et al., 2019; Jiang et al., 2019; Rothchild et al., 2020). Historically, the primary objectives of these techniques have been
cost reduction and not carbon emission savings per se – closely related but different. Quantifying and reducing the carbon
emissions of FL is our primary objective.

Although one might argue that renewable energy can power centralized AI systems (Google; met, b; Amazon), providing
FL with renewable energy is inherently more challenging, as end-user devices are tied to their local energy mixes whose
carbon footprint must be taken into account. In this paper we set out to study the problem of Green FL, present challenges,
guidelines, and the lessons learned from realizing the trade-off between energy efficiency, performance, and time to train in
a production FL system.

9



Green Federated Learning

Figure 5. Overall architecture of our production FL stack, based on PAPAYA (Huba et al., 2022).

C. Industry-Scale Federated Learning
C.1. Federated Learning Platform

Our company’s production FL stack is built based on PAPAYA (Huba et al., 2022), a recently proposed system for running
federated learning and analytics tasks across millions of user devices. PAPAYA comprises two major subsystems: a server
application that runs on a data center server and a client application that runs on end-user devices. In this study, we set out to
measure the energy consumption and carbon footprint of both client-side and server-side resources used during training of a
model in the federated learning system PAPAYA.

The overall architecture of PAPAYA is presented in Figure 5. The PAPAYA server has three main components: Coordinator,
Selector, and Aggregator. There is one Coordinator, and the number of Selectors and Aggregators scales elastically based on
the workload demand. The Coordinator assigns FL tasks to Aggregators based on load and assigns clients to tasks based on
demand. Selectors report available clients and route clients to their assigned aggregator. Aggregators execute the client
protocol, aggregate updates, and optimize the FL model. Regarding energy and carbon footprint, Aggregators and Selectors
are responsible for the majority of processing and heavy lifting. The Coordinator is responsible for assigning FL tasks to
Aggregators and clients to FL tasks, and centralized coordination.

Concurrency vs. aggregation goal. A device must meet a defined set of criteria to participate in FL training. Eligible
devices report their availability to the Coordinator, which subsequently selects a subset of available devices for training.
Concurrency is the maximum number of clients that can train simultaneously. The aggregation goal denotes the minimum
number of client responses that must be received at the server before it updates the model.

In this study, for synchronous FL, the baseline implementation is FedAvg, whereas for asynchronous FL, it is FedBuff
(Nguyen et al., 2022). In either settings, Adam is used as the server optimizer. In asynchronous FL, based on the FedBuff
protocol, a new device is immediately selected for training as soon as the server receives a client response. Therefore, the
number of devices training at any given time essentially equals to the concurrency. Once the aggregation goal is met, the
server model is updated, and clients selected thereafter receive the updated model. However, clients chosen earlier may still
be training using the previous version of the server model, leading to a phenomenon called staleness (Nguyen et al., 2022).
A timeout is imposed (4 minutes) to limit the client training time and removing stragglers (Huba et al., 2022).

In contrast, synchronous FL (McMahan et al., 2018) proceeds in discrete rounds. At the beginning of a round, the server
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distributes the same model to a number of devices equal to the concurrency. At the end of the round, the server updates its
model if it has received updates from at least as many users as the aggregation goal; it is worth noting that users may drop
out during the round due to various reasons (such as the device no longer being idle or connected to Wi-Fi). In synchronous
FL, the concurrency is also referred to as users per round, and it is usually greater than the aggregation goal (a process
called “over-selection”) to account for the possibility of devices dropping out mid-round (Bonawitz et al., 2019).

C.2. Large-scale FL Task: Language Modeling

In all experiments for this study, we train a character-aware language model for a next word prediction task, similar to Kim
et al. (Kim et al., 2016). This model computes the probability of a sequence of words S = w1, . . . , wT autoregressively as:

p(S) =

T∏
i=1

p(wi|w<i).

More specifically, we use a character-level CNN with multiple filters, followed by a pooling layer that computes the final
word embeddings. These are then encoded using a standard LSTM-based neural network that captures the sequential
information in the input sequence. Finally, we use an MLP decoder followed by a softmax layer that converts the
word-level outputs into final word-level probabilities over a fixed vocabulary. Using the notation where

• i denotes the length of the sequence seen so far,

• xi,1, xi,2, . . . , xi,Li
are the characters of the i-th word in the input sequence,

• Li is the length of the i-th word,

• ei is the embedding for the i-th word,

• hi is the hidden state,

• ci is the state of the LSTM for the i-th word,

• W is the weight matrix,

• p(wi+1|w≤i) is the probability of the next word in the sequence computed using the MLP decoder and softmax layer,

then the model can be expressed as follows:

ei = CNN(xi,1, xi,2, . . . , xi,Li)

ci, hi = LSTM(hi−1, ci−1, ei)

p(wi+1|w≤i) = Softmax(WThi)

Perplexity(w0, w1, . . . , wi) =

i−1∏
j=0

p(wj+1|w≤j)

−1/i

.

Perplexity measures the degree of uncertainty of a language model when it generates a new token averaged over sequence
lengths. (Tokens are the basic units of text and can be characters, words, subwords, or other segments of text) Formally,
perplexity is defined as the normalized inverse probability of sequences.

Number of devices. The total pool of clients that can potentially participate in FL training can reach tens of millions. In
each round, some devices (e.g., 1000) are selected to participate in the training (i.e., the concurrency parameter). One FL
experiment can have hundreds or thousands of rounds, hence involving hundred thousands or millions of unique clients in a
language modeling FL task running for a few days.

Instead of using the users’ data for mobile keyboard predictions, which could raise privacy concerns, we use publicly
available, representative data downloaded to the user devices before training. We used pushift.io’s Reddit FL benchmark
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Table 1. Hyperparameters and their values explored in the experiments. Aggregation goal is expressed here as a percentage of concurrency.
Hyperparameter Values

server learning rate 0.0001, 0.001, 0.005, 0.01, 0.1, 1
client learning rate 0.0001, 0.001, 0.01, 0.1, 0.5, 1
local epoch 1, 3, 5, 10, 15, 20
batch size 8, 16, 32
Adam β1 0.1, 0.5, 0.7, 0.9
Adam β2 0.9, 0.99, 0.999
concurrency 50, 100, 200, 300, 800, 1000, 1300, 1500
aggregation goal 8%, 10%, 25%, 50%, 65%, 77%, 80%, 85%, 100%

dataset (Caldas et al., 2018) in all experiments1. This dataset is publicly available, previously collected, and currently hosted
by pushift.io, consisting of user comments on reddit.com. Thus this dataset has a natural non-IID partitioning and
is representative of a real-world data distribution for mobile keyboard predictions. It also exhibits the archetypal power-law
phenomenon of the number of comments per user. The dataset comprises millions of users, with an average of 34 samples
per user. Each device participating in the FL is randomly assigned an anonymized user id from the pushift.io’s Reddit
dataset to use as their training data.

Stopping Criteria. We run an FL experiment until either the language model reaches a target perplexity on a hold-out test
set, or a maximum time limit of 2 days is reached. We set the target perplexity to be 175 or lower for our tasks and stop the
task when the perplexity is at or lower than the target for five consecutive rounds.

Due to the large number of experiments in this study, we set the target perplexity higher and the time limit shorter than those
of the typical production models. The carbon emissions of the at-scale production models of the same task are expected to
be roughly 10× higher than the numbers reported in this study.

C.3. Experiment Parameters

We explored different settings of hyperparameters, separately optimizing for model performance, time to reach target
accuracy, and carbon emission. We discuss these choices next.

For the optimizer running on the clients, we use SGD with no momentum. Alternatives (e.g., Adam) require additional
on-device memory for the optimizer state (i.e., momentum buffers). Another important consideration is that in scenarios
where clients possess limited data (which is often the case), they may not execute sufficient local steps to leverage the
benefits of the momentum buffers. In such cases, the momentum-based optimization techniques may not be as effective.

For the server optimizer, we wanted to be as general as possible, and we chose Adam for the server updates (Reddi et al.,
2021). Adam is more general than SGD or SGD with Momentum, and the parameters of Adam can be chosen to essentially
replicate the performance of SGD or SGD with Momentum (Choi et al., 2019). On the server side in FL, we do not see any
evidence that using a more compute-intensive optimizer has any significant impact on carbon emissions, although it should
help the other dimensions — reduce time to reach a target accuracy and improve overall accuracy. Our setup, the server
updating the global model using the Adam optimizer and the clients using SGD, is called FedAdam (Reddi et al., 2021).

We carefully evaluated hyperparameters for all applicable settings. We experimented with synchronous FL and asynchronous
FL. For synchronous FL, the baseline implementation is FedAvg, whereas for asynchronous FL, it is FedBuff (Nguyen et al.,
2022). However, since we use Adam as the server optimizer, both synchronous and asynchronous FL get the benefits of
adaptive optimizers and perform better than their baselines. The hyperparameters are listed in Table 1.

D. Measurement Methodology: More details
This section describes more details on the measurement methodology we used to obtain our production FL stack’s energy
and carbon emissions.

1Meta was not involved in the collection of data from Reddit.
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Figure 6. A snapshot of the 8 cores of the phone when running an FL task. Cores of the big cluster (CPUs 4 through 7) are running the FL
task and are at the maximum frequency of 2.8GHz.

D.1. End-user Device Resource Measurements

Wi-Fi Power. From the power_profile.xml file, we use the fields wifi.active, wifi.controller.rx,
wifi.controller.tx, and wifi.controller.voltage to determine the communication power of the Wi-Fi, as
these fields report the current and voltage when transmitting or receiving data (and, b). The receiving power of an end-user
phone would be

Puser rx = (Iwa + Iwrx)× Vw ,

where Iwa, Iwrx, Vw denote wifi.active, wifi.controller.rx, wifi.controller.voltage, respectively.
The transmission power is computed similarly with wifi.controller.tx as Puser tx = (Iwa + Iwtx)× Vw.

CPU Power. For estimating the CPU power of phones, we need to know the compute resource pattern of the language
modeling task on the phones. We did a field study on a few phones running the FL language modeling task for this. We used
the Perfetto tool for profiling and analyzing the resource usage trace and confirmed that the FL task runs when the device is
idle, and it runs on the “big” cluster of the CPU. The following is a representative example. Google Pixel 3 based on the
Qualcomm SDM845 Snapdragon 845 SoC has two CPU clusters: a “small” cluster with four 1.8 GHz Kryo 385 cores for
efficiency and a “big” cluster with four 2.8 GHz Kryo 385 cores for performance. Figure 6 shows a snapshot of the 8 cores
of the phone when running an FL task. Cores of the big cluster (cores 4 through 7) are running the FL task and are at the
maximum frequency of 2.8GHz. Figure 7 confirms that when the phone is idle, the big cluster is idle and running at a lower
frequency of 0.8GHz.

The power_profile.xml file has currents for all CPU clusters running at different frequencies. We find
the total current by adding these values (concretely, cpu.cluster_power.cluster, cpu.active, and
cpu.core_power.cluster) corresponding to the highest frequency belonging to the “big” cluster. Hence for FL
training on the device, the current for CPU is the addition of the values in these 3 fields. We use Watt’s law to convert current
to power and assume that the phones operate at 3.8V (Network, 2015).

By multiplying the power and the FL session duration obtained from the logger – namely upload time, download time, and
processing time – we can get the energy consumption for an FL session on a phone. We additionally confirm that the values
resulting from this methodology are consistent with those reported in previous studies (Wu et al., 2022; Halpern et al., 2016;
Kim & Wu, 2020). Our methodology also accounts for the clients that drop out or time out during training, as their session
information is reported in the logger.
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Figure 7. A snapshot of the 8 cores of the phone when it is idle. The cores of the big cluster are idle.

D.2. Server Resource Measurements

We measure the carbon footprint of the server as follows. There are three main server components in the PAPAYA stack:
Aggregator, Coordinator, and Selector. The most power-intensive computations happen in the Aggregator and Selector,
while the Coordinator is responsible for matching FL tasks to clients and Aggregators and orchestration. To ensure accurate
measurements of power consumption, we monitored the physical servers that run the FL task (Aggregator and Selector). We
describe our methodology for measuring the carbon footprint of an individual task on these servers.

Aggregator. To accurately estimate the carbon footprint of a single task on the physical servers, we measure the CPU
utilization of the Aggregator during the execution of the language modeling FL task. We use the CPU utilization as a proxy
for the power consumption specifically attributable to the FL task being executed on the server.

We consider the periods where the Aggregator runs only the language modeling FL task. First, we identify the Aggregator
that runs a particular FL task. Next, we select a “stable” period when there is no failure, and the Aggregator is relatively
underloaded. It is important to consider this period since the Coordinator reassigns FL tasks when it detects failed or
overloaded Aggregators (Huba et al., 2022), hence tracking an FL task would not be feasible. We observe that utilization
of the Aggregator for the language modeling FL task is less than 1%, which also includes background processes. To get
a conservative upper bound, we assume that server utilization is 1% for the FL task. (Looking ahead, small errors in the
estimate of the server utilization have a negligible impact on the results due to the small footprint of the server compute.)

Knowing the hardware specification of the physical servers running Aggregator, at 1% utilization, we measured Aggregator’s
power consumption for running the language modeling FL task at 45W. We multiply this number by the Power Usage
Effectiveness (PUE) of our datacenters, 1.09, which accounts for the additional energy required to support the datacenter
infrastructure (mainly cooling) (met, b).

Load balancing and other techniques of PAPAYA may impact where the Aggregator and Selector run. However, for this
study, we assume they run uniformly across different datacenters. We use the weighted average carbon intensity model to
account for the carbon intensity of different Meta datacenters that reside in different locations and regions (met, a). We
obtain the weighted average of the carbon intensities of the countries where Meta datacenters are located, and the weight is
the number of datacenters in that country.

Selector. Since most of the processing happens in the Aggregator, the Aggregator’s carbon footprint dominates that of the
Selector. We conservatively assume the same carbon footprint value for the Selector as for the Aggregator.
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D.3. Networking Infrastructure Resource Measurements

For the networking and infrastructure resources, we adopt the standard methodology that considers all hardware assets on
the path between the end-user and the FL server, namely, access, metro, edge, and core networks (Vishwanath et al., 2015;
Baliga et al., 2011; Jalali et al., 2014; Wu et al., 2022). The access network is the first network user connects to, and it
typically includes ADSL Ethernet, Wi-Fi access point, or 3G/4G/5G access point. The metro and edge network aggregate
traffic from several users’ access points, regulate access and usage, and represent the gateway to the global Internet, which
consists of an edge Ethernet switch, broadband network gateways (BNGs), and edge routers (Vishwanath et al., 2015). The
core network, consisting of core routers, is the backbone of the Internet, connecting the metro and edge network to the
datacenter. Schematically for cross-device FL we can have: client → Wi-Fi access point → edge Ethernet switch → BNG
→ edge routers → core routers → edge routers → data center Ethernet switch → data center.

In this setting, power consumption of the networking infrastructure connecting the end-user to the FL server in the datacenter
can be obtained using the energy-per-bit model, as (Jalali et al., 2014; Vishwanath et al., 2015):

Pnetwork = (Ea + Eas + Ebng + neEe + ncEc + Eds)×B,

where B is the bandwidth usage of the FL session, ne is the number of edge routers, nc is the number of core routers,
and Ea, Eas, Ebng, Ee, Ec, Eds denote the energy per bit of the Wi-Fi access point, the edge Ethernet switch, the BNG, an
edge router, a core router, and data center Ethernet switch respectively (Vishwanath et al., 2015). We adopt constants from
Vishwanath et al. (Vishwanath et al., 2015). The bandwidth usage of the session, B, can be calculated using the model size
divided by the upload or the download time.

E. Related Work
To the best of our knowledge, our work is the first to conduct a large-scale carbon emission characterization of an industry-
scale FL stack and different hyperparameters. We explore ways FL can be made more energy-efficient (“greener”) through
the right selection of FL parameters and design choices.

There has been growing interest in quantifying and reducing the carbon emission of machine learning (ML) training and
inference in the datacenter (Dodge et al., 2022; Strubell et al., 2020; Patterson et al., 2022; Anderson et al., 2022; Naidu
et al., 2021). Nevertheless, the carbon footprint of FL has not yet been explored well. Prior works only quantify the carbon
effect of FL in a simulation setting under several simplifying assumptions (Qiu et al., 2021). Other studies explore different
ways for minimizing the energy footprint of client devices in Federated Learning (Kim & Wu, 2021; Abdelmoniem et al.,
2023; Kim & Wu, 2022), though not at large-scale scenarios like this study. Another work did a preliminary study of carbon
emissions of FL (Wu et al., 2022); however, the authors also did not do their carbon emissions as comprehensively as our
study does, as we log the FL session information and use the actual power measurements of the devices.

We take a data-driven approach to quantify carbon emissions of FL by directly measuring a real-world FL task at scale
running on millions of user devices. We present challenges, guidelines, and lessons learned from studying the trade-off
between energy efficiency, performance, and time to train in a production FL system.

Other related work could be the works on compression and quantization (Rothchild et al., 2020; Vogels et al., 2019).
Compressing the communications between the server and the clients could further reduce the carbon emissions of the FL
training pipeline while presumably maintaining high model utility. For instance, we observed that the carbon emissions of
communication in some settings could contribute to up to 60% of the total emissions. Hence, reducing them by, say, a factor
4 with int8 (Prasad et al., 2022) would reduce the total emissions by a factor of 1/(.4 + 0.6/4) = 1.82.

F. Predicting Carbon Emissions of FL
We put forth a model of the relationship between time-to-convergence, model performance, and carbon emissions. By
leveraging our model, FL practitioners can effectively forecast the carbon emissions of their system before initiating the
training process.

We observed that concurrency is the most significant determinant of FL’s carbon emissions. It has the largest effect on the
resources, since concurrency most directly corresponds to the resource utilization of clients. While higher concurrency
accelerates model convergence, it results in significantly higher carbon emissions. For instance, increasing concurrency by
10× increases the resource usage by 10× while only reducing the convergence time by 1.5× or 2×. Therefore, the overall
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Figure 8. Carbon emission of synchronous FL is linearly correlated with the product of rounds it takes to reach a target accuracy and
concurrency.
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Figure 9. Carbon emission of asynchronous FL is linearly correlated with the product of the time it takes to reach a target accuracy and
concurrency.

benefits of higher concurrency, considering resource consumption, do not scale linearly — increasing concurrency has
diminishing returns considering convergence, model performance, and carbon emissions. Higher concurrency reduces
training duration, but increases resource usage even more.

To understand the relationship, we assume that the carbon emissions have a linear relationship with the product of concurrency
and the number of rounds (or duration) it takes to reach a target accuracy. We validate our hypothesis in Figures 8 and 9.

Figure 8 shows the relationship between the product of rounds and concurrency and the carbon emissions for download,
upload, and client compute in synchronous FL (carbon emissions of server compute is negligible). Different points on these
scatter plots represent different training runs of the language modeling FL task. We use linear regression to find the fitting
line that shows the aforementioned relationship. Figure 8 also shows the R2 values of the models, which is a goodness-of-fit
measure for the linear regression models. We can see high R2 values for the linear regression models, confirming the
product of rounds and concurrency is a good proxy to predict the carbon footprint of synchronous FL.

Figure 9 shows a similar linear regression model for asynchronous FL. Since there is no concept of rounds in asynchronous
FL, we treat duration (hours to reach a target accuracy) as an explanatory variable for the carbon footprint of asynchronous
FL. We also see high goodness of fit (R2 values) for these models. Hence, the product of duration and concurrency is a
good proxy to predict carbon footprint of asynchronous FL.

In Figure 10, we present an overview of the design space for Green Federated Learning (FL) and highlight the trade-off
between time, performance, and carbon emissions in asynchronous FL (the design space for synchronous FL was previously
illustrated in Figure 1). The scatter plot depicts various training runs of the FL task conducted through asynchronous FL,
with different marker colors and symbols representing distinct concurrency values. Each point represents an experiment
with a different hyper-parameter; we group the points by concurrency. We observe that the points corresponding to the same
concurrency follow a linear trajectory, where higher concurrency leads to a steeper slope, implying a faster rate of CO2e
accumulation. The cumulative carbon footprint of the task is a function of both its running time and the rate of carbon
emission increase. Our analysis identifies concurrency and time to convergence as the two critical parameters for carbon
emissions. While the former is under the direct control of the FL engineer, the latter is more indirect and reliant on the
appropriate selection of hyperparameters. In particular, the high concurrency regime (which may be desirable, for instance,
for its more robust privacy guarantees) puts a higher premium on hyperparameter tuning as longer training time translates
into a larger carbon footprint.
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Figure 10. Carbon emissions of asynchronous FL increase linearly with the product of the time it takes to reach a target accuracy and
concurrency. Each point represents a training run with a different hyper-parameter (grouped by concurrency with marker colors and
symbols), its carbon emissions (Y axis, in kg CO2e) and the time it takes to reach a target accuracy (X axis, in hours). The more time is
required to reach a target accuracy and the higher the concurrency, the higher is the carbon emission.
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