
BALANCING PIPELINE PARALLELISM WITH VOCABULARY PARALLELISM

Man Tsung Yeung † 1 2 Penghui Qi 1 2 Min Lin 1 Xinyi Wan 1

ABSTRACT
Pipeline parallelism is widely used to scale the training of transformer-based large language models, various
works have been done to improve its throughput and memory footprint. In this paper, we address a frequently
overlooked issue: the vocabulary layers can cause imbalanced computation and memory usage across pipeline
stages, worsening pipeline bubbles and the memory bottleneck. To tackle this, we partition the vocabulary layers
evenly across pipeline devices and group the computation into pipeline passes. To reduce the activation memory
overhead, we propose several algorithms to reduce communication barriers within vocabulary layers. Additionally,
we utilize a generalizable method to integrate Vocabulary Parallelism with existing pipeline schedules. By
combining these techniques, our methods effectively balance the computation and parameter memory, with
only a small constant activation memory overhead. Notably, when combined with activation memory-balanced
schedules like V-Half, our approach achieves perfect balance in both memory and computation. Extensive
evaluations demonstrate that our method achieves computation and memory balance regardless of the vocabulary
size, resulting in a 5% to 51% improvement in throughput compared to naı̈ve approaches, meanwhile significantly
reducing peak memory usage especially for large vocabulary scenarios. Our implementation is open-sourced at
https://github.com/sail-sg/VocabularyParallelism.

1 INTRODUCTION

As the scale of transformer models (Vaswani et al., 2017;
Brown et al., 2020) continues to grow, model parallelism
has garnered significant attention within the deep learning
community. Several model parallel techniques have been
proposed to address the challenges associated with train-
ing large models, including Zero Redundancy Optimizer
(ZeRO) (Rajbhandari et al., 2020; Zhao et al., 2023), Ten-
sor Parallelism (TP) (Shoeybi et al., 2019), and Pipeline
Parallelism (PP) (Huang et al., 2019; Harlap et al., 2018;
Narayanan et al., 2021; Qi et al., 2023; 2024). Each of
these methods has its own advantages and limitations. For
instance, ZeRO is effective in reducing memory by elimi-
nating redundant parameter storage, but suffers from high
communication overhead when gathering partitioned pa-
rameters and gradients for scenarios with limited network
bandwidth or requiring frequent parameter updates. TP can
efficiently handle large model parameters by splitting them
across devices, but often faces low arithmetic intensity and
requires significant inter-device communication. Among
these techniques, PP shows distinct advantages due to its
low communication cost and high arithmetic intensity, mak-

† Work was done during an internship at Sea AI Lab. 1Sea AI
Lab 2National University of Singapore. Correspondence to: Xinyi
Wan <wanxy@sea.com>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2024. Copyright 2024 by the author(s).

ing it particularly attractive for training large-scale models.
However, PP faces two significant challenges: pipeline bub-
bles and high memory consumption. Pipeline bubbles occur
when there are idle periods in the pipeline stages, lead-
ing to suboptimal utilization of computational resources.
Various strategies have been proposed to mitigate pipeline
bubbles, such as token-level PP (Li et al., 2021) and in-
terleaved 1F1B (Narayanan et al., 2021). An exceptional
advancement is zero-bubble pipeline parallelism (Qi et al.,
2023; 2024), which achieves almost zero bubble in many
scenarios through splitting backward pass into activation
gradient computation and weight gradient computation. In
most PP schedules, the activations of several microbatches
are stored to reduce pipeline bubbles, making memory a
critical bottleneck to scale large models. Previous work has
explored activation recomputation (Chen et al., 2016; Kor-
thikanti et al., 2023), memory transferring (Kim et al., 2023)
and memory-efficient V-Shape scheduling (Qi et al., 2024)
to mitigate this issue. Despite various effort, the memory
bottleneck still poses the largest limitation for PP.

In this paper, we focus on an imbalance issue in PP caused
by vocabulary-related layers, which is often overlooked in
practice but can significantly degrade the performance in
both throughput and memory. Typically, transformer layers
are uniformly distributed across pipeline stages, while the
first stage contains an additional input layer and the last
stage contains an additional output layer. Such imbalanced
setup greatly hurts the performance in both computation

https://github.com/sail-sg/VocabularyParallelism

Balancing Pipeline Parallelism with Vocabulary Parallelism

Device 1

Device 2

Device 3

Device 4
Time

Forward Backward Vocabulary Layer

1 5 5 2 2 6 6 3 3 7 7 4 4

2 5 3 6 4 7

2 4 3 5 4 6

3 3 3 4 4 4 5 5 5 6

→

Figure 1. Repeating pattern in an imbalanced pipeline. Bubbles
are incurred due to an extra output layer in the last pipeline stage.

and memory. Firstly, pipeline bubbles are introduced in
other pipeline stages due to their less workload, as shown
in Figure 1. Additionally, the additional input layer in the
first stage exacerbates the memory bottleneck for most PP
schedules like 1F1B (Harlap et al., 2018). Finally, as the vo-
cabulary size grows larger (Tao et al., 2024), this imbalance
becomes more pronounced, as shown in Figure 2. For in-
stance, in the case of Gemma2 9B with a vocabulary size of
256k (Team et al., 2024), both the computation and parame-
ter memory of the output layer are approximately 5 times
those of the transformer layers, highlighting the severity of
the issue.

To address this imbalance issue, we propose a novel Vo-
cabulary Parallelism approach to balance the computation
and memory in PP. By partitioning the vocabulary layers
across all pipeline devices, we introduce several methods to
group the computation and communication barriers together
with a generalizable scheduling approach in PP, with only
a small constant memory overhead. Extensive experiments
demonstrate our approach significantly outperforms naı̈ve
layer redistribution and other existing methods, resulting in
up to 51% improvement in throughput.

32k 64k 128k 256k
0
1
2
3
4
5
6
7

Vocabulary Size

#
Tr

an
sf

or
m

er
La

ye
rs

Compute Requirements

Input Layer Output Layer

32k 64k 128k 256k
0
1
2
3
4
5
6
7

Vocabulary Size

Memory Requirements

Figure 2. Ratio of compute and memory of vocabulary layers com-
pared to transformer layers in Gemma2-9B.

2 RELATED WORK

Balancing Activation Memory A line of research ad-
dresses another aspect of imbalance in PP, the activation
memory with the 1F1B schedule. For instance, BPipe (Kim
et al., 2023) transfers activations between devices, trading
communication for reduced peak memory. Another ap-

0 3 6 9 12 15
0

2

4

6

8

Pipeline Device

C
om

pu
te

T
im

e
(s

)

Without Layer Redistribution

0 3 6 9 12 15
0

2

4

6

8

Pipeline Device

With Layer Redistribution

Transformer Layer Vocabulary Layer

0 3 6 9 12 15
0

5

10

15

20

25

30

Pipeline Device

M
em

or
y

(G
B

)

Without Layer Redistribution

0 3 6 9 12 15
0

5

10

15

20

25

30

Pipeline Device

With Layer Redistribution

Parameter (Transformer) Parameter (Vocabulary) Activation

Figure 3. Transformer Layer Redistribution for a 7B GPT-like
model with vocabulary size 128k. In this case, each stage has
2 transformer layers, while output layer is equivalent to 2.4x of
transformer layer on compute and 2.6x on parameter memory.

proach uses V-Shape scheduling to create a pipeline sched-
ule with balanced and efficient memory usage. These meth-
ods are orthogonal to our work, and combining them can
achieve fully balanced pipeline parallelism in both compu-
tation and memory (activations and parameters).

Balancing Vocabulary Layers Some existing training
systems try to mitigate the imbalance caused by vocabu-
lary layers by redistributing transformer layers across dif-
ferent stages. DeepSpeed (Smith et al., 2022) uses a greedy
method to automatically re-balance the workload between
stages at the layer level. Similar strategies are employed
in the training of Skywork-MoE (Wei et al., 2024). How-
ever, simply redistributing transformer layers faces several
disadvantages. Firstly, even after redistribution, compute
imbalance can still persist since only a subset of pipeline
stages receive additional layers. An example is shown in
Figure 3. This is particularly evident when the number
of layers on each stage is small. Secondly, different layer
types have varying compute-to-memory ratios, meaning
that the re-balancing can only be based on either compute
or memory but not both. In practice, the re-balancing is
typically performed based on compute, leaving the memory
imbalance still significant, particularly for input vocabulary
layers that require minimal compute but substantial memory.
Lastly, the effectiveness and planning of redistribution heav-
ily depend on both the model settings and pipeline parallel
settings. This makes it less flexible and challenging to adopt
in various scenarios.

Balancing Pipeline Parallelism with Vocabulary Parallelism

It’s also worth noting that some models pretrained from
scratch like Llama 3 (Dubey et al., 2024) reduce one trans-
former layer each from the first and the last stages, respec-
tively. This method requires changes to architecture of
models, which is out of the scope of this paper. Also, it has
limitations if the training starts from a checkpoint where the
number of transformer layers of model is fixed.

Another method to mitigate the imbalance problem in
pipeline parallelism (PP) is the interlaced pipeline, reported
by the automatic parallelism framework nnScaler (Lin et al.,
2024). This approach distributes the input and output vocab-
ulary layers across different pipeline devices using a tensor
parallel (TP) style (Narayanan et al., 2021). By alternating
between TP for vocabulary layers and PP for transformer
layers, it aims to balance compute and memory overhead.
However, TP requires frequent synchronization between
devices, leading to two major drawbacks. First, the peak
activation memory for 1F1B increases to 1.5 times of its
original value (see Appendix B.1), which may make the
critical memory bottleneck even worse. Second, the syn-
chronized all-reduce during the output vocabulary layer
introduces additional pipeline bubbles for each microbatch.
Our ablation study in Appendix B.2 shows these all-reduce
along slows down the end to end training by approximately
11% on 32 GPUs. These significant overheads in both acti-
vation memory and pipeline bubbles render the interlaced
pipeline impractical in real-world scenarios.

3 VOCABULARY PARALLELISM IN
PIPELINE PARALLELISM

To completely address the imbalance issue in PP, we pro-
pose Vocabulary Parallelism under the following design
principles:

• We partition the vocabulary layers across the vocabu-
lary dimension, and distribute it evenly to all pipeline
devices.

• To be native to pipeline parallelism, the computation
of vocabulary layers should be represented as passes
similar to forward/backward passes of transformer lay-
ers.

• Integrating vocabulary passes into pipeline schedules
should not drastically affect the memory and efficiency
of the original pipeline schedule.

Intuitively, after partitioning the vocabulary layers to all
pipeline devices, computations on each device can be sched-
uled independently by inserting them cleverly into the ex-
isting pipeline passes, as long as the dependencies are still
satisfied. However, it is worth noting that partitioning the
softmax computation creates several all-reduce operations.

MatMul ×WT

[bs, h]

X

AllReduce Max

[bs, V/p]

Subtract

[bs]

[bs, V/p]

Exp

[bs, V/p]

AllReduce Sum

Divide

[bs]

softmax(Y)

[bs, V/p]

Forward Phase

Subtract

[bs, V/p] [bs, V/p]

softmax(Y) G

MatMul
×W

[bs, V/p]

Transpose

[bs, V/p]

MatMul
×X

[V/p, bs]

[V/p, h]

Reduce Sum

[bs, h]

Backward Phase

∇X

∇W

F1

F2

B

Figure 4. Computation graph of the output layer after partitioning
across the vocabulary dimension. There are three all-reduce /
reduce communications across all devices.

These communication barriers create cross-device depen-
dencies.

Driven by this intuition, in Section 4, we discuss how to
partition the computation in vocabulary layers to multiple
devices and group them into pipeline passes. We observe
that the communication barriers (e.g. the all-reduces in
softmax) within the vocabulary layers increases the activa-
tion memory consumption of the pipeline schedule. As an
improvement, we propose two novel algorithms to reduce
the number of communication barriers, which reduces the
activation memory overhead to minimum.

In Section 5, we discuss how to integrate these vocabu-
lary passes into existing pipeline schedules. Inspired by
the framework presented in Qi et al. (2024), we insert the
vocabulary passes into the building blocks of existing sched-
ules and simply repeat building blocks to construct pipeline
schedules. This relieves us from the hassle of deciding the
ordering of vocabulary passes of every microbatch and is
naturally generalizable to other schedules.

4 VOCABULARY PASSES CONSTRUCTION

In this section, we introduce how to split the vocabulary
layers into several computation passes after partitioning

Balancing Pipeline Parallelism with Vocabulary Parallelism

them across all pipeline devices, and how to optimize the
number of communication barriers.

4.1 A Naı̈ve Approach

In the input layer, each device can perform forward and
backward computations independently. We provide details
on the input layer in Appendix C, and focus on the output
layer for the remainder of this paper.

Figure 4 shows the computation graph of the output layer
after partitioning the layer across p devices. We denote the
microbatch size as b, sequence length as s, hidden dimension
as h and vocabulary size as V .

The partitioned output layer can be grouped into three com-
putation passes F1, F2 and B, separated by three all-reduce
/ reduce communications involving the maximum of logits,
the sum of logits and the input gradients respectively. We
can overlap these all-reduce communications with trans-
former layer computation by placing them in a separate
stream, as shown in Figure 5.

Stream 1

Stream 2 Bcast

F1

AR

F2

AR

B

R

X
∇X

Figure 5. Overlapping all-reduce communication with transformer
layer computation.

Figure 6 shows the computation and communication de-
pendencies for a single microbatch. Notably, each of these
all-reduce communications will introduce a communication
barrier across all pipeline devices, which complicates the
pipeline scheduling. As shown later in Section 5.2, the num-
ber of communication barriers also increases the activation
memory consumption of the pipeline schedule. Therefore,
we aim to reduce the number of communication barriers by
reordering the operations in the output layer.

Device 1 ₁ ₂

Device 2 ₁ ₂

Device 3 ₁ ₂

Device 4 ₁ ₂
Time

B
roadcast

A
llR

educe

A
llR

educe

R
educe

F F B

F F B

F F B

F F B

→

Figure 6. Scheduling dependencies in the naı̈ve output layer imple-
mentation.

4.2 Definitions

We detail the computation in the output layer. Given the
output of the last transformer layer X and the embedding
weights W , we first compute Y :

Y = XWT (1)

Then, the (safe) softmax of each sequence is computed as
follows:

softmax(Yij) =
eYij−mi

sumi
(2)

where mi = maxk Yik is the maximum of the logits and
sumi =

∑
k e

Yik−mi is the sum of logit exponents.

Assuming the cross entropy loss is used, in the backward
phase, we have

∇X = (softmax(Y)−G)W (3)

∇W = (softmax(Y)−G)
T
X (4)

where G is the ground truth matrix with Gigi = 1 and
Gij = 0 otherwise, where gi is label for token i.

4.3 Forward Phase Optimization

Inspired by online softmax (Milakov & Gimelshein, 2018;
Dao et al., 2022), we observe that the all-reduce commu-
nication for mi and sumi can be done after computing the
softmax. Instead of using the global maximum and sum,
each device instead computes softmax′(Yi) using the local
maximum and sum from its vocabulary partition. We then
have

softmax(Yij) = softmax′(Yij)×
sum′

i × em
′
i−mi

sumi
(5)

where m′
i and sum′

i are the locally computed maximum and
sum, respectively.

Using equation 5, we have Algorithm 1 that reduces the 3
communication barriers to 2, which are denoted as C1 and
C2 respectively.

Algorithm 1 Output layer with 2 communication barriers

function forward and backward(W)
X ← Receive Broadcast ◁ C0�

�

	

Y ← XWT

m′
i ← max

V/p
k=1 Yik

sum′
i ←

∑V/p
k=1 e

Yik−m′
i

softmax′(Yij)←
eYij−m′

i

sum′
i

◁ S

�
�

�
�

mi ← AllReduce m′
i

sum′
i ← sum′

i × em
′
i−mi

sumi ← AllReduce sum′
i

◁ C1�

�

	
softmax(Yi)← softmax′(Yi)×

sum′
i

sumi
∇X ′ ← (softmax(Y)−G)W
∇W ← (softmax(Y)−G)TX

◁ T

∇X ← Reduce∇X ′ ◁ C2

end function

Balancing Pipeline Parallelism with Vocabulary Parallelism

The elementwise operations in C1 only involves tensors of
size [bs] as opposed to size [bs, V/p], which greatly reduces
the computation pressure when overlapped with transformer
layer computation.

4.4 Backward Phase Optimization

We also observe that all three all-reduce / reduce communi-
cations can be done after computing the matrix multiplica-
tions for the input gradients. Note that

∇X = softmax′(Y)W × sum′
i × em

′
i−mi

sumi
−GW (6)

We can compute softmax′(Y)W and GW beforehand, and
all-reduce ∇X after we obtain mi and sumi. Since the
matrix multiplications in equation 6 are already computed,
computing∇X within the communication barrier only in-
volves lightweight operations.

This allows us to complete both phases in the output layer
with only a single communication barrier C1, as shown in
Algorithm 2.

Algorithm 2 Output layer with 1 communication barrier

function forward and backward(W)
X ← Receive Broadcast ◁ C0�

�

�

�

Y ← XWT

m′
i ← max

V/p
k=1 Yik

sum′
i ←

∑V/p
k=1 e

Yik−m′
i

softmax′(Yij)←
eYij−m′

i

sum′
i

A← softmax′(Y)W
B ← GW

◁ S

�

�

	
mi ← AllReduce m′

i

sum′
i ← sum′

i × em
′
i−mi

sumi ← AllReduce sum′
i

∇X ← Reduce A× sum′
i

sumi
−B

◁ C1

�
�

�
�

softmax(Y)← softmax′(Y)× sum′
i

sumi

∇W ← (softmax(Y)−G)TX
◁ T

end function

Note that the weight gradient step T can be arbitrarily de-
layed since no other operations depend on it, similar to the
idea in zero-bubble strategy (Qi et al., 2023).

We compare the two algorithms with the naı̈ve implemen-
tation in Figure 7. By placing the operations in the com-
munication barrier in a separate stream, they will be able
to overlap with transformer layer computation. Compared
to Algorithm 1, Algorithm 2 introduces a bit more compu-
tation overhead (shown in Section 6.5). However, it is still

Stream 1

Stream 2 Bcast

F1

AR

F2

AR

B

R

X
∇X

↓
Stream 1

Stream 2 C0

S

C1

T

C2

X
∇X

↓
Stream 1

Stream 2 C0

S

C1

T

X
∇X

Figure 7. Computation order in the output layer for a single micro-
batch, corresponding to the naı̈ve implementation, Algorithm 1
and Algorithm 2 respectively.

beneficial to reduce the number of communication barri-
ers. As shown in section 5.2, a reduction in the number of
communication barriers will help to save activation memory.

5 PIPELINE SCHEDULING

In this section, we show a systematic method about how
to make minimal changes to typical pipeline schedules to
include the output layer passes. We apply our method on two
different schedules, 1F1B (Harlap et al., 2018) and V-Half
(Qi et al., 2024). Despite its popularity, an inherent problem
of the 1F1B schedule is an imbalanced activation memory
across pipeline devices. In contrast, V-Half balances out the
activation memory by a V-Shape device placement, reducing
the activation memory requirement to half of that of 1F1B.
By integrating Vocabulary Parallelism into V-Half, we aim
to achieve a completely memory-balanced pipeline.

5.1 Scheduling Dependencies

In Algorithms 1 and 2, we perform output layer computation
with 2 and 1 communication barriers, respectively. For each
microbatch, we have to integrate the output layer passes, S
and T , into the pipeline schedules. The pipeline schedule
has to adhere to the following constraints:

• All S passes must be scheduled after the forward pass
of the last transformer layer completes.

• All T passes must be scheduled after all S passes com-
plete.

• For Algorithm 1 only, the backward pass of the last
transformer layer must be scheduled after all T passes
complete. In contrast, the T passes can be arbitrarily
delayed in Algorithm 2.

For example, Figure 8 shows the scheduling dependencies
for a single microbatch in Algorithms 1 and 2 respectively.

Balancing Pipeline Parallelism with Vocabulary Parallelism

Device 1

Device 2

Device 3

Device 4
Time

B
roadcast

C
₁

C
₂

S T

F S T

F S T B

F S T B

→

Device 1

Device 2

Device 3

Device 4
Time

B
roadcast

C
₁

S T B

F S T B

F S T B

F S B T

→

Figure 8. Scheduling Dependencies in Algorithms 1 and 2.

5.2 Methodology

To elegantly integrate these S and T passes into typical
pipeline schedules while adhering to the constraints, we
follow Qi et al.’s framework (2024) to construct pipeline
schedules. In this framework, each pipeline schedule can
be structured by its building block, which is defined by the
scheduling pattern of each microbatch. By uniformly repeat-
ing a building block, we can construct a pipeline schedule,
with peak activation memory calculated by dividing its lifes-
pan by its interval. The lifespan is the time between a
forward and its corresponding backward, while the interval
is the workload of a single microbatch on each device, as
illustrated in Figure 9. This approach greatly simplifies de-
pendency management for each microbatch and facilitates
memory consumption analysis.

Considering the building block of the schedule, by inserting
2 or 1 intervals (for Algorithms 1 and 2 respectively) be-
tween the forward and backward pass of the last transformer
layer, we can create space to schedule the output layer com-
putation. Within the repeating interval in the building block,
we can schedule output layer passes (S and T) arbitrarily in
each pipeline device. We show an example based on 1F1B
in Figure 9, where a one-forward-one-backward-one-output
pattern is strictly followed. The final 1F1B schedules are
presented in Figure 10, which is produced by uniformly
repeating the building blocks. Additionally, the building
block for V-Half can be found in Appendix D.

For the peak activation memory, as we insert at most 2
intervals to the lifespan, the peak activation memory only in-
creases by at most 2 microbatches, which is a small constant
overhead. This is a remarkable improvement compared to
synchronous pipeline schedules, which multiplies the ac-
tivation memory requirement by 1.5 (see Appendix B.1).
Furthermore, the memory savings from balancing the vo-
cabulary parameters outweighs the increase in activation
memory.

Notably, as shown in Figure 9, the activation memory in-
creased in terms of microbatches is equivalent to the number

Lifespan

F S T B

F S T B

F S T B

F S T B

Interval 1 Interval 2

Lifespan

F S T B

F S T B

F S T B

F S B T

Interval 1

Figure 9. Modified building blocks for the 1F1B schedule corre-
sponding to Algorithm 1 and Algorithm 2. The output layer passes
are inserted.

of communication barriers, which motivates our optimiza-
tion of communication barriers in Section 4.

6 EXPERIMENTS

We construct our experiments to verify: a) Our schedules
with Vocabulary Parallelism can bring acceleration; b) Our
methods can achieve a balanced memory usage when com-
bined with memory-balanced schedules like V-Half (Qi
et al., 2024); c) The partitioning of vocabulary layers has a
reasonable scaling factor compared to linear scaling.

6.1 Implementation

We implement the pipeline scheduler and the partitioned
vocabulary layers based on the open-source Megatron-LM
project (Narayanan et al., 2021).

Scheduling under the assumption that backward takes twice
time as forward might introduce unnecessary bubbles, espe-
cially when these values differ significantly. As a result, we
profile the run time of the passes and schedule the S and T
passes accordingly1.

We handle the communication groups in separate streams,
allowing the communication barrier to overlap with the
transformer layer passes. We map the CUDA streams to
separate GPU work queues to achieve this overlapping2.

1The profiling verifies whether the backward pass runs ap-
proximately twice the time as the forward pass (unrelated to the
vocabulary layer), in order to insert the vocabulary passes appro-
priately. The pipeline schedule generated will remain unchanged
unless this ratio deviates by a certain threshold. In practice, we find
that the difference is negligible in most transformer networks, and
these differences would not change the pipeline schedule. Hence,
this profiling could be viewed as optional.

2See https://docs.nvidia.com/deploy/mps/index.html#cuda-
device-max-connections.

https://docs.nvidia.com/deploy/mps/index.html#cuda-device-max-connections
https://docs.nvidia.com/deploy/mps/index.html#cuda-device-max-connections

Balancing Pipeline Parallelism with Vocabulary Parallelism

Device 1

Device 2

Device 3

Device 4
Time

1 2 1 3 2 4 3 5 4 1 6 5 1 2 6 2 3 3 4 7 1 4 5 8 7 2 5 6 1 8 3 6 7 2 4 7 8 3 5 8 4 6 5 7 6 8 7 8

1 2 3 1 4 2 5 3 1 6 4 1 2 5 2 3 1 3 4 7 6 2 4 5 8 7 3 5 6 1 8 4 6 7 2 5 7 8 3 6 8 4 7 5 8 6 7 8

1 2 3 4 1 5 2 1 6 3 1 2 4 2 3 1 3 4 7 5 2 4 5 8 6 3 5 6 1 7 4 6 7 2 8 5 7 8 3 6 8 4 7 5 8 6 7 8

1 2 3 4 5 1 1 6 2 1 2 3 1 2 3 4 2 3 4 7 5 3 4 5 8 6 4 5 6 1 7 5 6 7 2 8 6 7 8 3 7 8 4 8 5 6 7 8

→

Device 1

Device 2

Device 3

Device 4
Time

Forward Backward Input Layer Output Layer

1 2 1 3 2 4 3 5 4 1 5 1 2 2 3 6 1 3 4 7 6 2 4 5 8 1 7 3 5 6 2 8 4 6 7 3 5 7 8 4 6 8 5 7 6 8 7 8

1 2 3 1 4 2 5 3 1 4 1 2 1 2 3 6 5 2 3 4 7 6 3 4 5 8 1 7 4 5 6 2 8 5 6 7 3 6 7 8 4 7 8 5 8 6 7 8

1 2 3 4 1 5 2 1 3 1 2 1 2 3 6 4 2 3 4 7 5 3 4 5 8 1 6 4 5 6 2 7 5 6 7 3 8 6 7 8 4 7 8 5 8 6 7 8

1 2 3 4 5 1 1 2 1 1 2 3 2 2 3 6 4 3 3 4 7 5 4 4 5 8 1 6 5 5 6 2 7 6 6 7 3 8 7 7 8 4 8 8 5 6 7 8

→

Figure 10. Full 1F1B schedules with Vocabulary Parallelism, corresponding to (a) Algorithm 1 and (b) Algorithm 2 respectively. Algorithm
1 requires activation memory for p+ 2 microbatches while Algorithm 2 only requires p+ 1, where p is the number of devices.

However, this would affect communication-computation
overlap performance of tensor parallelism (Narayanan et al.,
2021) as it relies on single work queues. To mitigate this
problem, we set all model parallel communication groups to
use high-priority streams. Additionally, both AllReduce and
Reduce mentioned on Algorithm 1 and 2 are implemented
as NCCL (NVIDIA) AllReduce to avoid imbalanced com-
munication volume across devices.

We also pad the vocabulary size to be a multiple of 2p to
improve memory alignment in the vocabulary layers, where
p is the number of devices. In particular, we observe an
approximate 8% increase in performance if our method is
applied to 24 devices with padded size 256032 (a multiple
of 48), compared to the original value 256008.

Note that our method makes tying input and output em-
bedding weights easier as the input and output embedding
weights now have the same device placement and can use the
shared weight tensor. This saves GPU memory and avoids
the additional all-reduce to synchronize gradients. However,
in all our experiments, we adapted the more difficult setting,
untying the input and output embedding weights, since it is
adapted by some open source models like Llama 3 (Dubey
et al., 2024).

6.2 Setup

We compare the following methods implemented on the
1F1B schedule (Harlap et al., 2018).

• Baseline: The naı̈ve implementation in Megatron-
LM. It distributes the transformer layers equally to
all pipeline stages, while assigning the input and out-
put layers to the first and last pipeline devices. This
leads to highly imbalanced compute and memory.

• Redis: Redistributes the transformer layers across
pipeline stages to balance out the computation as much
as possible. We follow the derivation by Narayanan
et al. (2021) to estimate the number of floating point

Table 1. Settings used in experiments on 1F1B schedule.

PIPELINES (GPUS) 8 16 32

MODEL SIZE ≈ 4B ≈ 10B ≈ 21B
LAYERS 32 48 64
ATTENTION HEADS 24 32 40
HIDDEN SIZE 3072 4096 5120
SEQUENCE LENGTH 2048 / 4096
MICROBATCH SIZE 1
NUMBER OF MICROBATCHES 128
VOCABULARY SIZE 32K / 64K / 128K / 256K

operations in each pipeline stage, and minimize the
length of the longest stage.

• Vocab-1: Implements Vocabulary Parallelism with only
forward phase optimization, as described in Algorithm
1.

• Vocab-2: On top of Vocab-1, applies backward phase
optimization, as described in Algorithm 2.

• Interlaced: Our implementation of the fully syn-
chronous interlaced pipeline proposed by Lin et al.
(2024).

We experiment the implementations by pretraining GPT-like
models of varying model and vocabulary sizes with up to 32
NVIDIA A100 SXM 80G GPUs distributed across 4 nodes,
interconnected by a RoCE RDMA network. The running
time of each iteration is recorded after several warm-up
iterations. We compare the 5 methods under each fixed
setting of model and vocabulary size, shown in Table 1.

Our experiments use pure pipeline parallelism to verify
that our method improves pipeline parallelism as expected.
Given that our method is orthogonal to tensor and data paral-
lelism, the conclusions can be generalized to the production
environment where pipeline parallelism is used together
with tensor and data parallelism.

Balancing Pipeline Parallelism with Vocabulary Parallelism

32k 64k 128k 256k

30

40

50

Vocabulary Size

M
FU

(%
)

8GPUs, Sequence Length 2048

32k 64k 128k 256k

30

40

50

Vocabulary Size

8GPUs, Sequence Length 4096

32k 64k 128k 256k

30

40

50

Vocabulary Size

M
FU

(%
)

16GPUs, Sequence Length 2048

32k 64k 128k 256k

30

40

50

Vocabulary Size

16GPUs, Sequence Length 4096

32k 64k 128k 256k
20

30

40

50

Vocabulary Size

M
FU

(%
)

32GPUs, Sequence Length 2048

Baseline Redis Vocab-1 Vocab-2 Interlaced

32k 64k 128k 256k
20

30

40

50

Vocabulary Size

32GPUs, Sequence Length 4096

Figure 11. Throughput of different methods on 1F1B. Interlaced
OOMs when training with 32 GPUs and sequence length 4096.

6.3 Comparison of Methods

We present comparisons of the throughput measured in
FLOPs utilization (MFU) and peak memory in Figures 11
and 12, respectively. As shown in the figures, the layer re-
distribution approach suffers from a significant performance
degradation of 8% to 33% for large vocabulary sizes, since
the output layer alone already has a higher computation
cost than that in the other pipeline devices. Its performance
is also highly dependent on the model configuration, or
more specifically, the ratio of compute between the vocab-
ulary layer and transformer layers. For example, there is
a 9.7% drop in MFU when increasing the vocabulary size
from 64k to 128k for the 10B model with sequence length
2048, but that is not observed with sequence length 4096.
In contrast, the Vocab and Interlaced approaches have a con-
sistent MFU when scaling up the vocabulary sizes. Vocabu-
lary Parallelism outperforms the interlaced pipeline under
a multi-node setup, due to its overlapped communication.
For the 21B model, Vocabulary Parallelism outperforms the
interlaced pipeline by 6.7% to 8.2% in MFU.

For peak memory usage, the naı̈ve implementation and layer
redistribution approaches have an imbalanced parameter
memory, leading to high peak memory for large vocabulary
sizes. Although the Vocabulary Parallelism methods require
extra activation memory, it is effectively negligible when we

32k 64k 128k 256k
10

20

30

Vocabulary Size

Pe
ak

M
em

or
y

(G
B

)

8GPUs, Sequence Length 2048

32k 64k 128k 256k
10

20

30

Vocabulary Size

8GPUs, Sequence Length 4096

32k 64k 128k 256k
20

30

40

50

60

Vocabulary Size

Pe
ak

M
em

or
y

(G
B

)

16GPUs, Sequence Length 2048

32k 64k 128k 256k
20

30

40

50

60

Vocabulary Size

16GPUs, Sequence Length 4096

32k 64k 128k 256k
30

40

50

60

70

80

Vocabulary Size

Pe
ak

M
em

or
y

(G
B

)

32GPUs, Sequence Length 2048

Baseline Redis Vocab-1 Vocab-2 Interlaced

32k 64k 128k 256k
30

40

50

60

70

80

Vocabulary Size

32GPUs, Sequence Length 4096

Figure 12. Peak memory of different methods on 1F1B

scale up the pipeline parallel size. However, the interlaced
pipeline requires 1.5 times activation memory compared to
1F1B. This resulted in out-of-memory when training the
21B model with sequence length 4096.

6.4 Memory-Balanced Schedule

We show that our method can achieve a balanced memory
usage by applying Vocab-1 on the V-Half schedule (Qi et al.,
2024), a memory-balanced schedule. The implementation
is based on the open-sourced V-Half implementation by
Qi et al. (2024). To support division into virtual pipeline
chunks, we adopt different configurations in the experi-
ments, as shown in Table 2.

Table 2. Settings used in experiments on V-Half schedule.

PIPELINES (GPUS) 16 24 32

MODEL SIZE ≈ 7B ≈ 16B ≈ 30B
LAYERS 32 48 64
ATTENTION HEADS 32 40 48
HIDDEN SIZE 4096 5120 6144
SEQUENCE LENGTH 2048 / 4096
MICROBATCH SIZE 1
NUMBER OF MICROBATCHES 128
VOCABULARY SIZE 32K / 64K / 128K / 256K

Balancing Pipeline Parallelism with Vocabulary Parallelism

32k 64k 128k 256k

20

30

40

50

60

Vocabulary Size

M
FU

(%
)

16GPUs, Sequence Length 2048

32k 64k 128k 256k

20

30

40

50

60

Vocabulary Size

16GPUs, Sequence Length 4096

32k 64k 128k 256k

20

30

40

50

60

Vocabulary Size

M
FU

(%
)

24GPUs, Sequence Length 2048

32k 64k 128k 256k

20

30

40

50

60

Vocabulary Size

24GPUs, Sequence Length 4096

32k 64k 128k 256k

20

30

40

50

60

Vocabulary Size

M
FU

(%
)

32GPUs, Sequence Length 2048

Baseline Vocab-1

32k 64k 128k 256k

20

30

40

50

60

Vocabulary Size

32GPUs, Sequence Length 4096

Figure 13. Throughput of different methods on V-Half. Baseline
OOMs when training with 32 GPUs and vocabulary size 256k.

We compare the naı̈ve V-Half schedule implementation and
that incorporated with Vocab-1. The throughput and peak
memory for each pipeline device are shown in Figures 13
and 14 respectively. The naı̈ve implementation resulted in
out-of-memory in cases with 32 GPUs and a 256k vocabu-
lary size.

Similar to the previous experiments, the baseline suffers
from a huge performance drop when we increase the vocab-
ulary size, while Vocab-1 maintains a steady MFU, consis-
tently outperforming the baseline by 7.2% to 143%. Besides,
the baseline has a significant memory imbalance across
pipeline devices with up to 45GB difference, while Vocab-1
achieves a balanced memory usage across pipeline devices.
Although the first pipeline device still holds slightly more
parameters due to positional and token type embedding, the
extra memory required is a small constant. In our experi-
ments, this is less than 2.5GB.

6.5 Scaling Analysis of Vocabulary Layers

We analyze the scalability of vocabulary layers in our Vo-
cabulary Parallelism implementation. Using a vocabulary
size of 256k, we measure the average throughput of all S
and T passes across all devices in our implementation. We
compare this with the ideal scenario where the vocabulary
layers linearly scale (i.e. p times of the original throughput

32k 64k 128k 256k
0

10

20

30

40

50

60

Vocabulary Size

Pe
ak

M
em

or
y

(G
B

)

16GPUs, Sequence Length 2048

32k 64k 128k 256k
0

10

20

30

40

50

60

Vocabulary Size

16GPUs, Sequence Length 4096

32k 64k 128k 256k
10
20
30
40
50
60
70
80

Vocabulary Size

Pe
ak

M
em

or
y

(G
B

)

24GPUs, Sequence Length 2048

32k 64k 128k 256k
10
20
30
40
50
60
70
80

Vocabulary Size

24GPUs, Sequence Length 4096

32k 64k 128k 256k
20

30

40

50

60

70

80

Vocabulary Size
Pe

ak
M

em
or

y
(G

B
)

32GPUs, Sequence Length 2048

Baseline Vocab-1

32k 64k 128k 256k
20

30

40

50

60

70

80

Vocabulary Size

32GPUs, Sequence Length 4096

Figure 14. Peak memory of different methods on V-Half. The
shaded area denotes the range of maximum allocated memory for
all devices.

when distributed to p devices).

The output layers for Vocab-1 and Vocab-2 are considered
separately. The time used for the communications is not
included since it overlaps with other computation. The
results are shown in Table 3.

Table 3. The scaling factor of vocabulary layer computation rela-
tive to linear scaling on sequence lengths 2048 and 4096.

SEQ LAYER 8GPU 16GPU 32GPU

2048
OUTPUT-VOCAB-1 91.29% 84.22% 80.59%
OUTPUT-VOCAB-2 86.72% 79.84% 75.93%

INPUT 39.99% 28.85% 15.18%

4096
OUTPUT-VOCAB-1 93.21% 88.02% 85.24%
OUTPUT-VOCAB-2 88.36% 83.42% 79.66%

INPUT 27.69% 15.52% 8.35%

Parallelizing the vocabulary layers comes with some com-
putation overhead, which can be attributed to two causes.
Firstly, partitioning the vocabulary layers will reduce the
model FLOPs utilization (MFU) of GPU kernels as the op-
erations are smaller and hence less parallelized. Secondly,
this brings extra computation, especially for the input layer
where all devices have to construct the output tensor, whose

Balancing Pipeline Parallelism with Vocabulary Parallelism

size is independent of the size of the vocabulary partition.
However, it’s worth noting that both input and output still
only take a small portion of the computation of the entire
model after being partitioned.

7 CONCLUSION AND FUTURE WORK

In this work, we identified the problem that when training
LLMs with pipeline parallelism, vocabulary layers causes
non-negligible imbalance for both compute and memory.
Existing methods either fails to achieve a balance or in-
troduce significant performance overhead to the original
pipeline schedule. To address this issue, we proposed Vo-
cabulary Parallelism, a method that partitions vocabulary
layers evenly to pipeline devices and integrates them into
existing pipeline schedules. Our method achieves compute
and memory balance for the vocabulary layers. As a re-
sult, experiments shows that it improves the throughput by
up to 51% while also reduces peak memory consumption
compared to existing methods.

Although our implementation of the vocabulary layers are
pure python-based, we find that similar optimizations to
Algorithm 2 opens an opportunity of fusing the forward
and backward pass in CUDA kernels to avoid writes/reads
of the softmax results, which can be huge in long-context
large-vocabulary settings, to main memory, similar to the
rationale of FlashAttention (Dao et al., 2022). Also, while
our work focuses on the imbalanced vocabulary layers for
pure text-based LLMs, we believe the embedding layers for
multimodal LLMs suffer from the same problem and can be
further explored.

REFERENCES

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Harlap, A., Narayanan, D., Phanishayee, A., Seshadri, V.,
Devanur, N., Ganger, G., and Gibbons, P. Pipedream:
Fast and efficient pipeline parallel dnn training. arXiv
preprint arXiv:1806.03377, 2018.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32, 2019.

Kim, T., Kim, H., Yu, G.-I., and Chun, B.-G. Bpipe:
Memory-balanced pipeline parallelism for training large
language models. In International Conference on Ma-
chine Learning, pp. 16639–16653. PMLR, 2023.

Korthikanti, V. A., Casper, J., Lym, S., McAfee, L., Ander-
sch, M., Shoeybi, M., and Catanzaro, B. Reducing activa-
tion recomputation in large transformer models. Proceed-
ings of Machine Learning and Systems, 5, 2023.

Li, Z., Zhuang, S., Guo, S., Zhuo, D., Zhang, H., Song, D.,
and Stoica, I. Terapipe: Token-level pipeline parallelism
for training large-scale language models. In Interna-
tional Conference on Machine Learning, pp. 6543–6552.
PMLR, 2021.

Lin, Z., Miao, Y., Zhang, Q., Yang, F., Zhu, Y., Li, C.,
Maleki, S., Cao, X., Shang, N., Yang, Y., Xu, W., Yang,
M., Zhang, L., and Zhou, L. nnScaler: Constraint-Guided
parallelization plan generation for deep learning training.
In 18th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 24), pp. 347–363, Santa
Clara, CA, July 2024. USENIX Association. ISBN 978-
1-939133-40-3.

Balancing Pipeline Parallelism with Vocabulary Parallelism

Milakov, M. and Gimelshein, N. Online normalizer cal-
culation for softmax. arXiv preprint arXiv:1805.02867,
2018.

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Pat-
wary, M., Korthikanti, V., Vainbrand, D., Kashinkunti, P.,
Bernauer, J., Catanzaro, B., Phanishayee, A., and Zaharia,
M. Efficient large-scale language model training on gpu
clusters using megatron-lm. In Proceedings of the Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 1–15, 2021.

NVIDIA. GitHub - NVIDIA/nccl: Optimized prim-
itives for collective multi-GPU communication —
github.com. https://github.com/NVIDIA/
nccl. [Accessed 31-10-2024].

Qi, P., Wan, X., Huang, G., and Lin, M. Zero bubble pipeline
parallelism. arXiv preprint arXiv:2401.10241, 2023.

Qi, P., Wan, X., Amar, N., and Lin, M. Pipeline par-
allelism with controllable memory. arXiv preprint
arXiv:2405.15362, 2024.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
Memory optimizations toward training trillion parameter
models. In SC20: International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
pp. 1–16. IEEE, 2020.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

Smith, S., Patwary, M., Norick, B., LeGresley, P., Rajbhan-
dari, S., Casper, J., Liu, Z., Prabhumoye, S., Zerveas, G.,
Korthikanti, V., et al. Using deepspeed and megatron to
train megatron-turing nlg 530b, a large-scale generative
language model. arXiv preprint arXiv:2201.11990, 2022.

Tao, C., Liu, Q., Dou, L., Muennighoff, N., Wan, Z., Luo,
P., Lin, M., and Wong, N. Scaling laws with vocabulary:
Larger models deserve larger vocabularies. arXiv preprint
arXiv:2407.13623, 2024.

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin,
C., Bhupatiraju, S., Hussenot, L., Mesnard, T., Shahri-
ari, B., Ramé, A., et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint
arXiv:2408.00118, 2024.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wei, T., Zhu, B., Zhao, L., Cheng, C., Li, B., Lü, W., Cheng,
P., Zhang, J., Zhang, X., Zeng, L., et al. Skywork-moe: A
deep dive into training techniques for mixture-of-experts
language models. arXiv preprint arXiv:2406.06563,
2024.

Zhao, Y., Gu, A., Varma, R., Luo, L., Huang, C.-C., Xu, M.,
Wright, L., Shojanazeri, H., Ott, M., Shleifer, S., et al.
Pytorch fsdp: experiences on scaling fully sharded data
parallel. arXiv preprint arXiv:2304.11277, 2023.

https://github.com/NVIDIA/nccl
https://github.com/NVIDIA/nccl

