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ABSTRACT

Model-agnostic meta-learning (MAML) has been successfully applied to few-shot
learning, but is not naturally robust to adversarial attacks. Previous methods at-
tempted to impose robustness-promoting regularization on MAML’s bi-level train-
ing procedure to achieve an adversarially robust model. They follow the typical
MAML practice where training shot number is kept the same with test shot num-
ber to guarantee an optimal novel task adaptation. However, as observed by us,
introducing robustness-promoting regularization into MAML reduces the intrinsic
dimension of features, which actually results in a mismatch between meta-training
and meta-testing in terms of affordable intrinsic dimension. Consequently, previ-
ous robust MAML methods sacrifice clean accuracy a lot. In this paper, based
on our observations, we propose a simple strategy to mitigate the intrinsic dimen-
sion mismatch resulted by robustness-promoting regularization, i.e., increasing
the number of training shots. Though simple, our method remarkably improves
the clean accuracy of MAML without much loss of robustness. Extensive exper-
iments demonstrate that our method outperforms prior arts in achieving a better
trade-off between accuracy and robustness. Besides, we observe our method is
less sensitive to the number of fine-tuning steps during meta-training, which al-
lows for a reduced number of fine-tuning steps to improve training efficiency.

1 INTRODUCTION

Few-shot learning (Finn et al., 2017; Rajasegaran et al., 2020; Li et al., 2021; Dong et al., 2022) aims
to train a model which can fast adapt to novel classes with only a few examples. Model-agnostic
meta-learning (MAML) (Finn et al., 2017) is a typical meta-learning approach to deal with few-shot
learning problems. However, the model trained through MAML is not robust to adversarial attacks.
The conventional adversarial training can facilitate MAML with adversarial robustness. However,
the limited data in the few-shot setting makes it challenging (Goldblum et al., 2020) to keep both
clean accuracy and robustness at a high level at the same time.

In recent years, a series of works (Yin et al., 2018; Goldblum et al., 2020; Wang et al., 2021) paid
attention to the robust MAML. Most of them attempted to introduce robustness-promoting regu-
larization (i.e., adversarial loss) into the typical MAML bi-level training framework. For example,
compared to MAML, AQ (Goldblum et al., 2020) replaced the clean loss on query data with the
adversarial loss to promote the robustness. ADML (Yin et al., 2018) added one more optimization
pathway, which minimizes adversarial loss at the fine-tuning stage while minimizing clean loss for
meta update. R-MAML (Wang et al., 2021) demonstrated that there is no need to add adversarial
loss on support images at the fine-tuning stage and imposed both clean loss and adversarial loss
on query data for meta update. We fairly compare the performance of those methods (see Table 1)
and find that although those methods imposed adversarial loss in different ways, their performance
(i.e., the clean accuracy and robustness) are actually comparable. Compared to plain MAML, all of
those robust MAML methods greatly sacrifice the clean accuracy to improve the robustness. Thus,
a natural question arises: what is the underlying factor that causes the severe loss of clean accuracy?

Previous robust MAML methods (Goldblum et al., 2020; Yin et al., 2018; Wang et al., 2021)
followed the typical meta-learning practice, i.e., matching the training shot number with the test
shot number (Cao et al., 2019). However, as illustrated in Table 2, we observe that introducing
robustness-promoting regularization, i.e., adversarial loss, into MAML framework reduces the in-
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Table 1: Accuracy of 5-way 1-shot models trained by MAML, ADML, AQ, R-MAML and our ITS-
MAML on miniImageNet (Vinyals et al., 2016). The Aclean and Aadv denote clean accuracy and
robust accuracy respectively. We adopt a 10-step PGD attack (Madry et al., 2017) with power ϵ = 2.
The wc and wa are the weights of clean loss and adversarial loss, respectively. The original setting
of R-MAML is approximately equivalent to wc : wa = 1 : 0.2 for higher clean accuracy. We also
report the results of R-MAML with wc :wa=1:1 for a fair comparison with other methods.

Method Aclean Aadv

MAML 45.00% 0.60%
ADML 37.77% 27.15%

AQ 34.69% 28.08%
R-MAML 41.58% 22.92%

R-MAML (wc :wa=1:1) 37.16% 27.87%

ITS-MAML (ours) 41.68% 28.12%

Table 2: Intrinsic dimension of models trained by plain MAML and robustness-regularized MAML
with different numbers of training shots. Introducing adversarial loss into MAML reduces the in-
trinsic dimension of clean samples, which may result in the decrease of clean accuracy.

Method Number of training shots

1 2 3 4 5 6 7

MAML 80 103 139 151 157 160 179
Robust MAML 22 41 59 60 71 86 89

trinsic dimension1 of features. This actually results in a mismatch between meta-training and meta-
testing in terms of affordable intrinsic dimension. Such mismatch has been demonstrated to be
harmful for the few-shot learning accuracy in conventional meta-learning framework (Cao et al.,
2019). This observation may explain why previous robust MAML methods fail to achieve a high
clean accuracy.

In this paper, we propose a simple way, i.e., increasing the number of training shots, to mitigate
the intrinsic dimension mismatch resulted by robustness-promoting regularization. Though simple,
our method improves clean accuracy of robust MAML remarkably without much loss of robustness.
Extensive experiments on miniImageNet (Vinyals et al., 2016), CIFAR-FS (Bertinetto et al., 2018),
and Omniglot (Lake et al., 2015) demonstrate that our method performs favourably against previous
robust MAML methods considering both clean accuracy and robustness. We also show that our
method can achieve a better trade-off between clean accuracy and robustness. Finally, we demon-
strate that compared to previous robust MAML methods, our method is less sensitive to the number
of fine-tuning (inner-loop) steps in meta-training, and bares almost no drop in accuracy even when
the number of fine-tuning steps is greatly reduced, thus improving training efficiency.

In a nutshell, our contributions can be summarized as follows: 1) We observe that introducing
robustness-promoting regularization into MAML framework reduces the intrinsic dimension of fea-
tures, which may result in a mismatch between meta-training and meta-testing in terms of affordable
intrinsic dimension. Such mismatch may harm the clean accuracy of a robust MAML framework.
2) Based on our observations, we propose a simple yet effective strategy, i.e., increasing the number
of training shots, to mitigate the mismatch resulted by introducing robustness-promoting regulariza-
tion. 3) Extensive experiments on three few-shot learning benchmarks, i.e., miniImageNet (Vinyals
et al., 2016), CIFAR-FS (Bertinetto et al., 2018), and Omniglot (Lake et al., 2015), demonstrate that
our method performs favourably against previous robust MAML methods considering both clean
accuracy and robustness. We demonstrate that our method can achieve a better trade-off between
clean accuracy and robustness and may improve the training efficiency by reducing the fine-tuning
steps at the meta-training stage.

1The intrinsic dimension means the number of variables needed in a minimal representation of the data.

2



Under review as a conference paper at ICLR 2023

2 RELATED WORK

Adversarial robustness. Adversarial robustness refers to the accuracy of the model on adversari-
ally perturbed samples, which are visually indistinguishable from clean samples but can drastically
change the model predictions (Ilyas et al., 2019; Xie & Yuille, 2019). Adversarial training is one
of the most effective approaches to improve the model’s adversarial robustness (Goodfellow et al.,
2014; Madry et al., 2017; Zhang et al., 2019b). For example, Goodfellow et al. (2014) proposed
for the first time to adopt single-step-based adversarial samples for adversarial training, and Madry
et al. (2017) further extended it to multi-step-based adversarial examples for better robustness. Oth-
ers propose methods for fast adversarial training to improve the training efficiency (Shafahi et al.,
2019; Zhang et al., 2019a; Wong et al., 2020). Methods have been proposed to improve the transfer-
ablity of robustness in few-shot settings (Chen et al., 2020; Chan et al., 2020; Tian et al., 2020; Rizve
et al., 2021). However, learning an adversarially robust meta-model is challenging. The improve-
ment of robustness is often accompanied by the decline of accuracy since a fundamental trade-off
between the clean and adversarial distributions exists, as is theoretically proved by (Zhang et al.,
2019b). The scarce data in few-shot settings makes it harder to learn the robust decision boundary,
resulting in even more vulnerability of the model against adversarial attacks (Xu et al., 2021).

Adversarially robust model-agnostic meta-learning. Meta-learning has demonstrated promising
performance in few-shot learning (Snell et al., 2017; Huang et al., 2018; Maicas et al., 2018; Sung
et al., 2018; Wang et al., 2020). MAML (Finn et al., 2017), as the first to propose an effective
meta-learning framework, can learn a well-initialized meta-model to quickly adapt to new few-shot
classification tasks. Though widely adopted, MAML naturally lacks adversarial robustness. A few
work studied the robustness of MAML including ADML (Yin et al., 2018), AQ (Goldblum et al.,
2020) and R-MAML (Wang et al., 2021). However, these methods do not achieve a satisfactory
trade-off between clean accuracy and adversarial robustness. For example, AQ trades off accuracy
for robustness compared with ADML, while R-MAML achieves a high clean accuracy on condition
that the robustness is greatly reduced compared with AQ (see Table 1). In addition, all these methods
greatly sacrifice clean accuracy compared with plain MAML.

In this paper, we find that the number of training shots plays an important role in learning a robust
yet accurate model. It is possible for robust MAML methods to achieve a significant clean accuracy
improvement without much loss of robustness, simply by increasing the number of training shots. As
this practice is different from that of plain MAML where the training shot number usually matches
with the test shot number for an optimal novel task adaptation ability, we provide insights into why
increasing the number of training shots works in the context of robust MAML.

3 METHODOLOGY

3.1 PRELIMINARY

MAML for few-shot learning. Few-shot learning aims to enable the model to classify data from
novel classes with only a few (e.g., 1) examples to train. Few-shot learning is typically formulated as
a N -way K-shot classification problem, where in each task, we aim to classify samples (denoted as
“query”) into N different classes, with K samples (denoted as “support”) in each class for training.
Meta-learning is the conventional way to deal with the few-shot learning problem, while model-
agnostic meta-learning (MAML) is one of the most popular and effective meta-learning methods.

Generally speaking, MAML attempts to learn a well-initialized model (i.e., a meta-model), which
can quickly adapt to new few-shot classification tasks. During meta-training, the meta-model is
fine-tuned over N classes (with each class containing K samples), and then updated by minimizing
the validation error of the fine-tuned network over unseen samples from these N classes. The inner
fine-tuning stage and the outer meta-update stage form the bi-level learning procedure of MAML.
Formally, we consider T few-shot classification tasks, each of which contains a support data set
S = {s1, s2, · · · , sK} (sj ∈ S denotes the j-th support sample) for fine-tuning, and a query data
set Q for meta-update. MAML’s bi-level optimization problem can be then described as:

minimize
θ

1

T

T∑
i=1

Lθ′
i
(Qi), subject to θ′i = argmin

θ
Lθ(Si), ∀i ∈ {1, 2, . . . , T}, (1)

where θ is the meta-model to be learned, θ′i is the fine-tuned parameters for the i-th task, Lθ(Si)
and Lθ′

i
(Qi) are the training error on the support set and the validation error on the query set,
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(a) ADML (b) AQ (c) R-MAML (d) ITS-MAML (ours)

Figure 1: Robust meta-learning frameworks of previous arts and our method. θ denotes the initial
model parameters in each episode, θ′ denotes the model parameters after fine-tuning on the support
set (inner-loop), and L is the loss of the fine-tuned model on the query set, adopted for the meta-
update of θ (outer-loop). S and Q are the support data and the query data, with the superscripts c
and a denoting clean and adversarial samples respectively. The subscripts of S, Q and θ′ denote
the index for different shots. [·, ·] denotes the data concatenation. Note that each episode consists of
several few-shot classification tasks. We omit the task index in our symbols for brevity.

respectively. Note that the fine-tuning stage (corresponding to the constraint in Eq. 1) usually calls
for M steps of gradient update:

θ
(m)
i = θ

(m−1)
i − α∇

θ
(m−1)
i

L
θ
(m−1)
i

(Si), m ∈ {1, 2, . . . ,M}, (2)

where α is the learning rate of the inner update, θ(0)i = θ and θ
(M)
i = θ′i.

Robustness-promoting MAML. Adversarial training is one of the most effective defense methods
to learn a robust model against adversarial attacks (Madry et al., 2017). Suppose D = {Dc,Da}
denotes the set of samples used for training, and the adversarial training can be represented as

minimize
θ

wc · Lθ(Dc) + wa · Gθ(Da), (3)

where θ is the parameters of robust model to be learned, Lθ(Dc) is the prediction loss (e.g., cross-
entropy loss) on clean sample set Dc, Gθ(Da) is the adversarial loss (e.g., cross entropy loss (Good-
fellow et al., 2014; Madry et al., 2017) and KL divergence (Zhang et al., 2019b)) on adversarial
sample set Da, and wc and wa are the weights of clean loss and adversarial loss respectively. Each
adversarial sample xa ∈ Da is obtained by adding perturbations to the clean sample x ∈ Dc to
maximize its classification loss:

xa = xc + argmax
∥δ∥p≤ϵ

Gθ(x
c + δ), (4)

where the p-norm of the perturbation δ is limited within the ϵ bound so that the adversarial samples
are visually indistinguishable from the clean samples.

Existing robust MAML methods applied robustness-promoting regularization to MAML’s bi-level
learning procedure. As illustrated in Fig. 1, AQ (Goldblum et al., 2020) directly replaced the loss
on clean query images of plain MAML with adversarial loss. Compared to AQ, ADML (Yin et al.,
2018) additionally added another optimization pathway, i.e., fine-tuning with the adversarial loss on
support data and evaluating the accuracy on clean query data. Further, R-MAML (Wang et al., 2021)
showed that there is no need to impose adversarial loss during the fine-tuning stage and imposed both
the cross-entropy loss on clean and adversarial query images. Although R-MAML demonstrated
superior clean accuracy compared to ADML, we find that if we treat the clean loss and adversarial
loss on query data equally, i.e., setting the learning rate of clean loss to that of adversarial loss, the
clean accuracy of R-MAML actually performs comparably to ADML (as shown in Table 1). Thus,
R-MAML actually improves clean accuracy by sacrificing robustness (i.e., increasing the learning
rate of clean loss). There still remains a question about how to improve the clean accuracy while
maintaining good robustness.

3.2 INCREASING TRAINING SHOT NUMBERS FOR ROBUST YET ACCURATE MAML

As illustrated in Table 2, we observe that introducing robustness-promoting regularization reduces
the intrinsic dimensions of features, which results in a mismatch between meta-training and meta-
testing in terms of intrinsic dimension. Such mismatch may degenerate the clean accuracy a lot (Cao
et al., 2019), which explains the huge loss of clean accuracy in previous robust MAML frameworks.
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(a) 1-shot (miniImageNet) (b) 5-shot (miniImageNet) (c) 1-shot (CIFAR-FS) (d) 5-shot (CIFAR-FS)

Figure 2: Clean accuracy and robust accuracy of models on 5-way 1-shot and 5-way 5-shot meta-
testing tasks. The experiments are conducted on miniImageNet and CIFAR-FS. The models are
trained with different numbers of training shots. The robust accuracy is computed with a 10-step
PGD attack with ϵ=2 for miniImageNet and ϵ=8 for CIFAR-FS.

Based on these observations, we propose a simple yet effective way, i.e., increasing the number of
training shots, to mitigate the mismatch resulted by adding robustness-promoting regularization, i.e.,
adversarial loss. Formally, for a N -way K-shot meta-testing task, our method can be expressed as

minimize
θ

1

T

T∑
i=1

wc ·Lθ′
i
(Qc) + wa ·Lθ′

i
(Qa), subject to θ′i = argmin

θ
Lθ(S̃c

i ), (5)

where S̃c
i = {s1, s2, · · · , sK̃} denotes the support set for the i-th task during meta-training. In

our method, the number of support images (i.e., training shot number) K̃ for each task at meta-
training stage is set to be larger than the number of support images K used in meta-testing stage.
For example, if we deal with the 5-way 1-shot setting, K̃ is set to be larger than 1. The wc and wa

are the weights of clean loss Lθ′
i
(Qc) and adversarial loss Lθ′

i
(Qa), respectively. Usually, we find

that wc = wa = 1 is sufficient to achieve a good trade-off between clean accuracy and robustness.

As illustrated in Table 2, we find as we increase the training shot number K̃, the intrinsic feature
dimension of robust MAML also increases, which effectively mitigates the intrinsic dimension mis-
match between meta-training and meta-testing. Correspondingly, as shown in Fig. 2, with increasing
the number of training shots, the clean accuracy steadily increases before reaching a bound, while
the robustness slightly decreases but still remains high. Further analysis can be found in Sec. 4.5.

4 EXPERIMENTS

4.1 SETUP

Dataset. We conduct experiments on three widely-used few-shot learning benchmarks, i.e., miniIm-
ageNet (Vinyals et al., 2016), CIFAR-FS (Bertinetto et al., 2018), and Omniglot (Lake et al., 2015).
The miniImageNet contains 100 classes with 600 samples in each class. The whole dataset is split
into 64, 16 and 20 classes for training, validation and testing respectively. We adopt the training set
for meta-training, and randomly select 2000 unseen tasks from the testing set for meta-testing. Each
image is downsized to 84 × 84 × 3 in our experiments. CIFAR-FS has the same dataset splitting
as miniImageNet, i.e., 64, 16 and 20 classes for training, validation and testing respectively, with
each class containing 600 images. We also adopt the training set for meta-training, and randomly
select 4000 unseen tasks from the testing set for meta-testing. Each image is resized to 32× 32× 3.
Omniglot includes handwritten characters from 50 different alphabets, with a total of 1028 classes
of training data and 423 classes of testing data. We randomly select 2000 unseen tasks from the
testing data for meta-testing. Each image has a size of 28× 28× 1.

Training. We verify our method based on two kinds of architectures, i.e., a four-layer convolutional
neural network as in (Wang et al., 2021) and a ResNet-12 (He et al., 2016). All the models in our
experiments are trained for 12 epochs unless specified. During meta-training, each episode consists
of 4 randomly selected tasks. For 5-way 1-shot meta-testing tasks, the number of support images
per class in each task of meta-training is 1 for previous methods, and 2 for ITS-MAML. For 5-way
5-shot meta-testing tasks, the number of support images per class in each task of meta-training is
5 for previous methods, and 6 for ITS-MAML. The number of query images per class is 15 for all
methods on miniImageNet and CIFAR-FS. On Omniglot, since each class only contains 20 samples,
the number of query images per class is thus set to 9 for 5-way 1-shot meta-testing tasks and 5 for
5-way 5-shot meta-testing tasks to avoid data repetition in a task. The learning rate is set to 0.01
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Table 3: Accuracy of meta-models trained by different methods under different types of attacks on
miniImageNet. The best results for each test case are marked in bold.

Method Model 5-way 1-shot accuracy (%) 5-way 5-shot accuracy (%)

Clean FGSM PGD CW Clean FGSM PGD CW

MAML 4-layer CNN 45.00 3.71 0.60 0.24 64.28 9.63 0.96 0.33
ADML 4-layer CNN 37.77 29.96 27.15 26.79 56.02 41.96 35.90 35.66

AQ 4-layer CNN 34.69 30.53 28.08 26.20 50.28 40.39 36.21 36.26
R-MAML 4-layer CNN 37.16 29.95 27.87 26.13 55.85 42.63 36.30 34.93

ITS-MAML (2-shot) 4-layer CNN 41.68 31.74 28.12 27.84 53.37 43.68 37.38 38.22
ITS-MAML (6-shot) 4-layer CNN 43.82 30.60 26.71 26.34 57.03 42.81 35.84 35.40

MAML ResNet-12 47.32 8.46 0.49 0.96 69.90 14.18 1.83 7.20
ADML ResNet-12 40.08 34.56 31.48 29.84 61.80 47.77 45.14 44.13

AQ ResNet-12 35.55 31.64 29.27 29.79 58.27 46.25 43.50 44.84
R-MAML ResNet-12 39.92 33.82 29.36 30.23 62.63 47.92 44.28 46.30

ITS-MAML (2-shot) ResNet-12 42.87 35.29 32.60 31.71 60.35 50.33 48.19 48.21
ITS-MAML (6-shot) ResNet-12 45.70 32.96 28.24 29.85 63.53 47.08 43.87 45.10

Table 4: Accuracy of meta-models trained by different methods under different types of attacks on
CIFAR-FS. A 4-layer CNN is adopted for all methods.

Method 5-way 1-shot accuracy (%) 5-way 5-shot accuracy (%)

Clean FGSM PGD CW Clean FGSM PGD CW

MAML 49.93 9.57 0.15 0.08 65.63 18.18 0.70 1.22
ADML 40.41 36.67 26.05 25.79 56.52 49.63 32.08 32.86

AQ 32.08 30.69 26.49 23.08 51.40 48.19 35.08 33.90
R-MAML 39.14 35.79 26.51 25.77 56.09 50.78 32.67 34.38

ITS-MAML (2-shot) 42.55 38.52 26.96 27.60 53.91 51.46 36.47 37.21
ITS-MAML (6-shot) 43.12 38.38 25.37 26.24 57.12 51.07 33.62 34.05

for fine-tuning, and 0.001 for the meta-update. Following (Wang et al., 2021), the number of fine-
tuning steps is set to 5 for meta-training, and 10 for meta-testing for all methods unless specified.
As (Wang et al., 2021) showed that adopting the FGSM attack (Goodfellow et al., 2014) instead of
the PGD attack (Madry et al., 2017) during meta-training can improve the training efficiency without
significantly affecting the model performance, we also adopt the FGSM attack (Goodfellow et al.,
2014) as the training attack. The training attack power ϵ is set to 2 for miniImageNet, and 10 for
CIFAR-FS and Omniglot. We evaluate our method under different kinds of attacks for testing. The
testing attack power is 2 for miniImageNet, 8 for CIFAR-FS and 10 for Omniglot unless specified.
For a fair comparison, we set wc : wa = 1 : 1 in Eq. 5 for all methods unless specified.

4.2 COMPARISONS WITH PREVIOUS ROBUST MAML METHODS

We evaluate the performance of our proposed method (denoted as “ITS-MAML”) under 5-way 1-
shot and 5-way 5-shot settings, and compare our method with plain MAML method and previous
typical robust MAML methods, i.e., AQ, ADML and R-MAML. We demonstrate the experimental
results on three benchmarks in Tables 3, 4 and 5, respectively. In those tables, we show the accuracy
on clean images (“Clean”) and robust accuracy under different types of attacks, i.e., FGSM (Good-
fellow et al., 2014), PGD (Madry et al., 2017), and CW (Carlini & Wagner, 2017). The accuracy
under different types of attacks reflects the model’s robustness level.

Based on the experiment results, we have three observations:

1) Compared to MAML, all the robust MAML methods (including ours) significantly improve the
model’s robustness. For example, for 4-layer CNN on 5-way 1-shot task of miniImageNet, compared
to MAML baseline, AQ, ADML, R-MAML and ITS-MAML improve the accuracy under PGD
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Table 5: Accuracy of meta-models trained by different methods under different types of attacks on
Omniglot. A 4-layer CNN is adopted for all methods.

Method 5-way 1-shot accuracy (%) 5-way 5-shot accuracy (%)

Clean FGSM PGD CW Clean FGSM PGD CW

MAML 93.02 65.20 22.72 26.64 97.78 91.75 60.25 54.39
ADML 90.58 89.84 78.27 77.19 97.46 96.53 91.06 91.50

AQ 90.09 88.72 81.69 80.92 97.02 96.44 91.25 90.11
R-MAML 89.60 87.65 77.44 77.57 97.12 96.09 90.28 89.72

ITS-MAML (2-shot) 93.56 91.43 85.45 83.68 97.02 96.80 91.87 91.46
ITS-MAML (6-shot) 94.23 86.89 79.90 77.34 98.19 96.19 90.77 88.52

attack by about 27%, 27%, 27% and 28%, respectively. These results verify introducing robustness-
promoting regularization (i.e., adversarial loss) into MAML contributes to the model’s robustness.

2) By comparing previous robust MAML methods (e.g., ADML and R-MAML), we find that gen-
erally they achieve comparable results for both clean accuracy and robustness, indicating whether
applying the adversarial loss to the fine-tuning procedure doesn’t bring a huge difference. For ex-
ample, for 4-layer CNN on 5-way 1-shot task of miniImageNet, the clean accuracy for ADML and
R-MAML is 37.77% and 37.16% respectively, while the robust accuracy is 27.15% and 27.87%
(under PGD attack). Generally, AQ performs worse than ADML and R-MAML on clean accuracy,
which indicates imposing clean loss for meta-update may be necessary for a high clean accuracy.

3) Compared to previous robust MAML methods, our increasing training shot number strategy
(“ITS-MAML”) remarkably improves the clean accuracy while maintaining good robustness (some-
times the robustness is even better than previous methods). For example, on 5-way 1-shot task on
CIFAR-FS, in terms of clean accuracy, “ITS-MAML (2-shot)” outperforms AQ and R-MAML by
more than 10% and 3%. If we increase the training shot number (i.e., from 2-shot to 6-shot), we
observe that “ITS-MAML (6-shot)” further improves the clean accuracy by around 1%. The robust
accuracy decreases slightly, but still remains at a high level, which is competitive among previous
robust MAML methods. For 5-way 5-shot task, we observe the similar trend. Thus, if we care more
about the model’s robustness, we may lower the number of training shots. However, if we want to
achieve a robust yet accurate model, increasing the training shot number is a good choice.

4.3 BETTER TRADE-OFF BETWEEN CLEAN ACCURACY AND ROBUSTNESS

R-MAML (Wang et al., 2021) demonstrated superior clean accuracy compared to AQ and ADML,
when the learning rate of clean loss is set 5 times the learning rate of adversarial loss, i.e., the ratio
wc :wa is set to 1:0.2 (see Eq. 5). We find that when this ratio is set to be consistent with ADML and
ITS-MAML, i.e., 1:1, the high clean accuracy of R-MAML no longer exists (see Table 1). It implies
that there exists a trade-off between clean accuracy and robustness with the change of this ratio. We
compare our ITS-MAML with R-MAML under different ratios of wc :wa and show corresponding
clean accuracy and robustness in Fig. 3. To demonstrate the effectiveness of increasing training shot
number, we also show the results of ITS-MAML under different training shot numbers (keeping
wc :wa=1:1) in Fig. 3. From Fig. 3 (left), we observe that the larger the ratio of wc :wa, the higher
the clean accuracy and the lower the robust accuracy of the model. Compared with R-MAML, our
ITS-MAML achieves obviously better trade-off (as shown, the curve of ITS-MAML is above that of
R-MAML). In addition, Fig. 3 (right) demonstrates that with the increase of training shot numbers,
the clean accuracy of ITS-MAML steadily increases before reaching a bound, while the robustness
remains relatively stable at a high level, which further verifies the effectiveness of our method.

4.4 MORE EFFICIENT TRAINING

The number of fine-tuning steps (i.e., M in Eq. 2) during meta-training affects the training efficiency
of the model. Larger M leads to higher computation costs and a lower training efficiency. We expect
that ITS-MAML can achieve good performance even if the number of fine-tuning steps M is reduced
during training, thus improving the training efficiency. To this end, we train ADML, AQ, R-MAML
(wc :wa = 1 : 0.2 as in (Wang et al., 2021)) and ITS-MAML models with M ranging from 1 to 5.
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Figure 3: Clean accuracy vs. robust accuracy. Left: The results are obtained by varying the value
of wc :wa from 1 : 0.1 to 1 : 5 for both R-MAML and ITS-MAML (K̃=2). Right: The results are
obtained by varying the value of wc :wa for R-MAML, and by varying the training shot number K̃
from 1 to 7 for ITS-MAML.

Figure 4: Accuracy of models trained by ADML, AQ, R-MAML (wc : wa = 1 : 0.2 as in (Wang
et al., 2021)) and ITS-MAML with different number of fine-tuning steps during meta-training. Left:
clean accuracy. Middle: Robust accuracy, which is computed with a 10-step PGD attack with ϵ = 2.
Right: Average accuracy, which denotes the average value of clean accuracy and robust accuracy.

We then evaluate the 5-way 1-shot accuracy of the models on miniImageNet. The results are shown
in Fig. 4. We observe that previous methods may suffer from an obvious performance degradation
(either clean accuracy or robustness) with reducing M . Compared to previous methods, our ITS-
MAML is less sensitive to the number of fine-tuning steps during meta-training. This allows for a
reduced number of fine-tuning steps to improve the training efficiency.

4.5 INCREASING TRAINING SHOT NUMBER BRINGS HIGHER INTRINSIC DIMENSION

As discussed, introducing adversarial loss into MAML framework reduces the intrinsic dimension
of features, resulting in a mismatch between meta-training and meta-testing in terms of affordable
intrinsic dimension. We provide more empirical evidences in Table 6. We observe that the intrinsic
dimension of clean samples increases with the increase of training shot number, either for MAML or
robust MAML (or ITS-MAML). As the mismatch of intrinsic dimension between meta-training and
meta-testing may harm the accuracy Cao et al. (2019), for 1-shot testing task, the clean accuracy of
MAML decreases as the training shot number increases (Fig. 5). Moreover, with the same number of
training shots, robust MAML always learns features of clean samples with lower intrinsic dimension,
which harms its clean accuracy. For example, for a 1-shot meta-testing task, in order to achieve a
high clean accuracy of robust MAML, the preferred intrinsic dimension of clean embeddings of
ITS-MAML should be close to that of plain MAML when the training shot number is set to 1, i.e.,
80 in the table. As the number of training shots increases in robust MAML, the intrinsic dimension
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Table 6: Intrinsic feature dimensions of models trained by plain MAML and the proposed ITS-
MAML with different numbers of training shots. The intrinsic dimension is estimated through
principal component analysis (PCA) of features trained on miniImageNet (Fan et al., 2010). In
our experiments, the intrinsic dimension is set to the number of principal components which retain
at least 90% of the variance. The “Clean”, “Adversarial” and “Noise” refer to the clean samples,
adversarial samples and the adversarial noise (added to the clean samples), respectively.

Method Number of training shots

1 2 3 4 5 6 7

MAML
Clean 80 103 139 151 157 160 179

Adversarial 78 98 138 142 144 149 175
Noise 82 106 131 96 192 156 147

ITS-MAML
Clean 22 41 59 60 71 86 89

Adversarial 23 42 61 61 72 88 92
Noise 4 7 7 8 8 9 10

of clean embeddings increases towards approaching the one of plain MAML when the training
shot number is set to 1, thus achieving a remarkable improvement of clean accuracy as in Fig. 5.

Figure 5: Clean accuracy for 1-shot test-
ing of meta-models trained by MAML
and ITS-MAML with different number
of training shots.

We also investigate how the intrinsic dimension of ad-
versarial noise changes as the training shot number in-
creases. We expect the intrinsic dimension of adversarial
noise should be as low as possible because it provides no
useful information to classify different samples. How-
ever, we observe in Table 6 that the intrinsic dimension of
noise in plain MAML is quite high (even higher than the
intrinsic dimension of clean samples). This may explain
why plain MAML exhibits quite worse robustness to ad-
versarial attacks (see Table 3). In contrast, robust MAML
has remarkably lower intrinsic dimension of adversarial
noise, which is consistent with the superior robust accu-
racy performance. Further, the intrinsic dimension of ad-
versarial samples aligns well with that of clean samples
for robust MAML. However, for plain MAML, the intrin-
sic dimension of adversarial samples is obviously lower
than that of clean samples, which indicates without ad-
versarial loss, partial key variations of features may be
destroyed by adversarial noise. Moreover, as the training
shot number increases, the intrinsic dimension of adversarial noise (see “Noise” lines in the table)
slightly increases. This may explain why the robustness slightly decreases for our ITS-MAML. We
hope this perspective may inspire future investigation on understanding adversarial robustness.

5 CONCLUSION

In this paper, we observe that introducing adversarial loss into MAML framework reduces the in-
trinsic dimension of features, which results in a mismatch between meta-training and meta-testing in
terms of affordable intrinsic dimension. Based on this observation, we propose a simple yet effective
strategy, i.e., increasing the number of training shots, to mitigate the intrinsic dimension mismatch
resulted by introducing adversarial loss. Extensive experiments on few-shot learning benchmarks
demonstrate that compared to previous robust MAML methods, our method can achieve superior
clean accuracy while maintaining high-level robustness. Further, empirical studies show that our
method may achieve a better trade-off between clean accuracy and robustness and better training
efficiency. We hope our new perspective may inspire future research in the field of robust meta-
learning.
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