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Abstract

A key challenge in MT evaluation is the in-001
herent noise and inconsistency of human rat-002
ings. Regression-based neural metrics strug-003
gle with this noise, while prompting LLMs004
shows promise at system-level evaluation but005
performs poorly at segment level. In this work,006
we propose ReMedy, a novel MT metric frame-007
work that reformulates translation evaluation as008
a reward modeling task. Instead of regressing009
on imperfect human ratings directly, ReMedy010
learns relative translation quality using pairwise011
preference data, resulting in a more reliable012
evaluation. In extensive experiments across013
WMT22-24 shared tasks (39 language pairs,014
111 MT systems), ReMedy achieves state-015
of-the-art performance at both segment- and016
system-level evaluation. Specifically, ReMedy-017
9B surpasses larger WMT winners and massive018
closed LLMs such as MetricX-13B, XCOMET-019
Ensemble, GEMBA-GPT-4, PaLM-540B, and020
finetuned PaLM2. Further analyses demon-021
strate that ReMedy delivers superior capability022
in detecting translation errors and evaluating023
low-quality translations.1024

1 Introduction025

Machine Translation (MT) evaluation is crucial for026

benchmarking progress and guiding MT develop-027

ment. While string-based metrics like BLEU (Pap-028

ineni et al., 2002; Post, 2018), METEOR (Banerjee029

and Lavie, 2005), and ChrF (Popović, 2015) have030

been widely used since 2002, they face persistent031

challenges: They poorly correlate with human judg-032

ments (Freitag et al., 2022b), struggle with reliabil-033

ity across diverse languages (Goyal et al., 2022),034

and fail to distinguish between translation systems035

of varying quality (Przybocki et al., 2009).036

Neural metrics attempt to address these short-037

comings. By leveraging pre-trained multilingual038

language models for regression tasks, they capture039

1We open source ReMedy models and all results at https:
//anonymous.4open.science/r/Remedy-4D2C

Figure 1: We report averaged accuracy over system-
and segment-level pairwise accuracy for the WMT22
MQM set. The result shows that our largest ReMedy
model achieves SOTA performance, surpassing previ-
ous WMT winners like MetricX-XXL, COMET, and
massive closed LLMs like fine-tuned PaLM2.

semantic equivalence beyond surface-level match- 040

ing and extend language coverage (Rei et al., 2020; 041

Sellam et al., 2020). More recently, prompting 042

Large Language Models (LLMs) for MT scoring 043

has also shown promise in assessing translation 044

quality across diverse contexts (Fernandes et al., 045

2023; Kocmi and Federmann, 2023). 046

However, regression-based neural metrics have 047

limitations. Human ratings are often noisy and 048

inconsistent due to low inter-annotator agree- 049

ment (Rei et al., 2021; Song et al., 2025), making 050

direct regression unreliable. As a result, these mod- 051

els tend to be less robust in real-world scenarios, 052

particularly when detecting translation error phe- 053

nomena (Amrhein et al., 2022; Moghe et al., 2025) 054

and evaluating out-of-domain, low-quality systems 055

compared to high-quality WMT submissions (Lo 056

et al., 2023; Knowles et al., 2024). 057

Recent work (Kocmi and Federmann, 2023) also 058

shows that prompting closed LLMs such as GPT-4 059
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effectively differentiates translation quality at the060

system level, achieving SOTA correlations with061

human judgments. However, they perform substan-062

tially worse at the segment level, where individual063

translations are compared. This can be improved064

by extensive fine-tuning on MT evaluation data,065

yet massive LLMs like PaLM-2 still underperform066

much smaller models like MetricX-13B (Juraska067

et al., 2024). Meanwhile, small, open LLMs con-068

tinue to lag behind these closed LLMs (Lu et al.,069

2024; Qian et al., 2024; Sindhujan et al., 2025).070

In this paper, we propose Reward Modeling for071

evaluating diverse translation quality (ReMedy),072

a novel framework for MT evaluation that trans-073

forms pairwise human preferences into a robust074

reward signal. Unlike methods that regress over075

noisy absolute ratings or rely on pairwise classifiers076

that require quadratic comparisons, ReMedy learns077

from pairwise preferences, leading to more robust078

and reliable alignment with human judgments.079

We conduct extensive experiments on the080

WMT22–24 metric shared tasks, spanning 39 lan-081

guage pairs, 111 MT systems, and about 1 mil-082

lion testing segments. Figure 1 shows that using083

the same XLM-R-large foundation, ReMedy out-084

performs the regression-based COMET-22 model085

at both segment and system levels, matching the086

performance of the COMET-22 ensemble (5 mod-087

els). Furthermore, our ReMedy-9B model sur-088

passes larger models such as GPT-4, PaLM-540B,089

fine-tuned PaLM-2, and top WMT winners like090

xCOMET (24B ensemble) and MetricX (13B).091

Analyses on the ACES (Amrhein et al., 2022;092

Moghe et al., 2025) and MSLC (Lo et al., 2023)093

challenge sets show that ReMedy is more robust in094

detecting translation errors across 146 diverse lan-095

guage pairs and evaluating low-quality translations,096

making it applicable to real-world MT deployment.097

Beyond standard evaluation tasks, we also explore098

how ReMedy can be integrated into Reinforcement099

Learning from Human Feedback (RLHF) pipelines,100

leveraging its robust preference-based framework101

to guide model updates for improved translation102

quality. Our key contributions are:103

Reward Modeling for MT Assessment. We in-104

troduce ReMedy, the first work using reward mod-105

eling for MT evaluation to achieve better alignment106

with human judgment than regression approaches.107

SOTA Performance with Fewer Parameters.108

Our ReMedy-9B model achieves state-of-the-art109

results across WMT22–24 while requiring fewer 110

parameters than the WMT winners (9B vs. 13B or 111

24B+) and massive LLMs like PaLM and GPT4. 112

Enhanced Robustness in Challenging Scenarios. 113

ReMedy demonstrates superior performance in de- 114

tecting translation error phenomena and reliably 115

evaluates systems across a wide range of qualities. 116

ReMedy in MT-RLHF. We show that replacing 117

xCOMET with ReMedy in RLHF pipelines yields 118

consistent performance gains, demonstrating its ef- 119

ficacy as a reward model for improving MT quality. 120

2 Related Work 121

Developing MT evaluation frameworks that align 122

with human preference has remained challenging. 123

String-Based Metrics. Metrics like BLEU (Pap- 124

ineni et al., 2002) and ChrF (Popović, 2015) rely on 125

surface-level matching, which is computationally 126

efficient but fails to capture semantic equivalence. 127

Learning MT Evaluation via Regression. Re- 128

cent approaches like COMET (Rei et al., 2020, 129

2022), xCOMET (Guerreiro et al., 2024), and 130

MetricX (Juraska et al., 2023, 2024) leverage pre- 131

trained multilingual models such as XLM-R (Con- 132

neau et al., 2020) and mT5 (Xue et al., 2021) to pre- 133

dict translation quality based on human-annotated 134

assessments from WMT shared tasks. Despite im- 135

provements, these methods require large model 136

sizes (>10B) or ensembles (>24B) for strong per- 137

formance (Freitag et al., 2024), often misclassify 138

low-quality translations (Lo et al., 2023), and ex- 139

hibit limited robustness against diverse error phe- 140

nomena (Amrhein et al., 2022). 141

LLM as Judge for MT Evaluation. Alterna- 142

tively, recent work has explored using LLMs as 143

direct judges for MT evaluation. Closed mod- 144

els such as GPT-4 and PaLM have competing 145

system-level performance but struggle at the seg- 146

ment level (Kocmi and Federmann, 2023), even 147

with extensive fine-tuning (Fernandes et al., 2023). 148

Meanwhile, open LLMs perform much worse than 149

closed ones (Qian et al., 2024) and present limita- 150

tions in language inconsistency (Sindhujan et al., 151

2025) and prompt design (Lu et al., 2024). 152

Pairwise Quality Assessment (QE). Early 153

works (Gamon et al., 2005; Sudoh et al., 2021) 154

explored binary classification for MT assessment. 155

More recently, MT-RANKER (Moosa et al., 2024) 156
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revisits this by directly optimizing the logistic re-157

gression objective, enhanced with synthetic data.158

However, these approaches function as classifiers159

rather than a standalone metric. As a result, they160

cannot evaluate individual translations, require161

quadratic comparisons for multiple systems, and162

operate solely as a Quality Assessment (QE) sys-163

tems without leveraging available references.164

3 ReMedy: Learning MT Metrics via165

Reward Modeling166

In this section, we introduce ReMedy, a novel MT167

metric framework that learns from human prefer-168

ences. We first formalize the MT evaluation task169

and revisit regression methods, then describe each170

component of ReMedy.171

3.1 Task Definitions172

Machine translation evaluation aims to assess the173

quality of translated text by assigning scores that174

correlate with human judgments. Formally, given175

a source sentence src, a candidate translation mt ,176

and optionally a reference translation ref ∗, an MT177

metric M produces a quality score, as formalized in178

Eq 1. Here, ref ∗ indicates that the reference is op-179

tional (i.e. reference-free when ref ∗ = ∅). Higher180

M scores indicate better translation quality.181

M(src,mt , ref ∗) → R (1)182

3.2 Regression-based Approach183

Recent neural MT metrics, such as COMET (Rei184

et al., 2020) and MetricX (Juraska et al., 2023),185

are trained to predict human quality ratings h by186

minimizing the Mean Squared Error (MSE) loss187

(Eq. 2). However, human ratings suffer from incon-188

sistencies and varying inter-annotator agreement.189

Prior work (Rei et al., 2021; Song et al., 2025)190

has shown that inter-annotator agreement on high-191

quality WMT MQM datasets yields low to mod-192

est correlation, typically ranging from 0.2 to 0.45193

Kendall-Tau correlation.194

Lmse = E(src,mt ,ref ∗,h)∈D[(M(·)− h)2] (2)195

These inconsistencies pose challenges for regres-196

sion approaches, as models struggle to learn stable197

patterns from inherently noisy data. To mitigate198

this, some MT metrics normalize human ratings us-199

ing z-score transformations (Rei et al., 2022; Guer-200

reiro et al., 2024). However, Juraska et al. (2023,201

2024) found that while z-normalization improves 202

segment-level performance, it can degrade system- 203

level performance, highlighting the trade-offs in- 204

herent in regression-based methods. These short- 205

comings motivate our preference-based approach. 206

3.3 ReMedy: Learn MT Metric with Pairwise 207

Preference 208

Recent advances in AI alignment have demon- 209

strated the effectiveness of reward modeling 210

for capturing human preferences (Christiano 211

et al., 2017) in areas such as helpfulness and 212

safety (Ouyang et al., 2022; Bai et al., 2022). In- 213

spired by these approaches, we propose ReMedy, 214

an MT evaluation framework that learns to predict 215

translation quality by modeling reward of pairwise 216

human preferences rather than absolute scores. 217

Model Architecture. ReMedy builds on a pre- 218

trained multilingual language model with the LM 219

head removed and a linear scoring head added to 220

produce a scalar quality score (reward r). For 221

encoder-only models, the [CLS] hidden state is 222

mapped to the score head. For decoder-only mod- 223

els, following Ouyang et al. (2022) and Touvron 224

et al. (2023), we use the hidden state of the final 225

token as input to the linear head. 226

Preference Learning Framework. Given a in- 227

put x = {src, ref ∗}, and two candidate transla- 228

tions y+ = mt+ and y− = mt−, where human an- 229

notators prefer mt+ over mt−, our model learns a 230

reward function rθ(x , y) that assigns higher scores 231

to preferred translations. The model is trained with 232

a pairwise ranking objective, combined with a re- 233

ward regularization term. 234

Preference Ranking Loss. The core of our 235

method is a pairwise ranking loss based on the 236

Bradley-Terry model (Bradley and Terry, 1952; 237

Ouyang et al., 2022), which maximizes the proba- 238

bility of correctly ordering two translations accord- 239

ing to human preference, as formalized in Eq. 3. 240

Lbt = − log σ
(
rθ(x, y

+)− rθ(x, y
−)−m(r)

)
(3) 241

Here, the predicted reward scores for the pre- 242

ferred and non-preferred translations are denoted as 243

rθ(x, y
+) and rθ(x, y

−), respectively. The margin 244

m(r) = h+ − h− enforces a minimum separation 245

between scores proportional to the difference in 246

human ratings, ensuring the model’s predictions 247
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align with the degree of human preference. σ is the248

sigmoid function.249

This Bradley-Terry loss models the probability250

that translation mt+ is preferred over mt− as a251

function of their reward difference, encouraging252

the model to assign higher rewards to better transla-253

tions with sufficient separation when margin m(r)254

is integrated. In our experiments, we construct pref-255

erence pairs using translations mt+ and mt− with256

their raw human ratings h+ and h−, given the same257

source and reference input.258

Reward Regularization. We found that directly259

optimizing the ranking loss for MT evaluation leads260

to reward explosion, where the model continuously261

increases scalar reward scores. This occurs because262

the ranking loss focuses on relative differences, al-263

lowing the model to grow rewards without bound.264

In addition, unlike helpfulness or safety reward265

modeling tasks (Ouyang et al., 2022), where out-266

puts often have large differences, translations typ-267

ically differ only slightly, e.g., minor errors like268

omission or punctuation, and such small variations269

can cause the model to magnify reward discrepan-270

cies uncontrollably.271

Lreg = Er[max(r − βupper, 0)
2

+max(βlower − r, 0)2]
(4)272

To stabilize training and ensure the reward func-273

tion produces well-calibrated scores within a rea-274

sonable range, we apply a reward regularization275

term (Eq 4). We set βupper = 3 and βlower = −3,276

to penalize rewards that exceed 3 or fall below −3,277

constraining outputs to an effective range that cap-278

tures approximately 90% of the sigmoid’s variation.279

In Section 5.2, we show that such regularization280

is crucial for preventing reward explosion during281

training, preventing degenerate performance where282

the model might inflate reward differences arbitrar-283

ily to satisfy the ranking objective.284

Combined Objective. Our final training objec-285

tive combines the ranking and regularization losses286

(Eq 5), where λ is a hyperparameter that controls287

the strength of regularization. We empirically set λ288

to 0.1, as higher values limit the ranking objective.289

Lfinal = Lbt + λ · Lreg (5)290

Inference and Reward Calibration. While291

ReMedy is trained with pairwise data, it can eval-292

uate individual triplets (src,mt , ref ∗) during in-293

ference to produce a scalar reward r ∈ R. This 294

avoids the quadratic comparisons of methods like 295

MT-RANKER (Moosa et al., 2024). 296

Despite regularization during training, reward 297

scores may exceed the bounds during inference in 298

practice. To normalize rewards into the [0, 1] range 299

and prevent clustering (which obscures quality dif- 300

ferences), we calibrate r using an entropy-guided 301

sigmoid function σ(r/τ) for each language pair. 302

The key idea is to find the optimal temperature τ 303

by maximizing the Shannon entropy across 20 bins, 304

encouraging an even score spread in [0, 1]. Intu- 305

itively, this prevents scores from clustering in small 306

regions, e.g., all good translations having scores 307

very close to 1.0. 308

4 Experimental Setup 309

This section outlines our benchmark choices, base- 310

lines, and implementation details. 311

4.1 Datasets and Benchmarks 312

We selected three complementary benchmarks to 313

evaluate MT quality from multiple perspectives. 314

WMT Metric Shared Tasks. We use WMT22- 315

24, standardized frameworks for comparing MT 316

metrics. Following standard practice, we train 317

on earlier data (from WMT17), validate on pre- 318

vious years, and test on the current year (See Ap- 319

pendix A.1). We use both high-quality Multidi- 320

mensional Quality Metric (MQM) data and crowd- 321

sourced ratings like Direct Assessment (DA)(Bo- 322

jar et al., 2017) and Scalar Quality Metrics 323

(SQM)(Mathur et al., 2020). 324

For evaluation, we use: WMT22 (Freitag et al., 325

2022a) (16 language pairs, 40 systems, 392,647 326

segments); WMT23 (Freitag et al., 2023) (11 lan- 327

guage pairs, 29 systems, 282,926 segments); and 328

WMT24 (Freitag et al., 2024) (MQM: 3 language 329

pairs, 32 systems, 68,502 segments; ESA: 9 lan- 330

guage pairs, 40 systems, 232,289 segments). 331

ACES. Translation Accuracy ChallengE Set 332

(ACES) (Amrhein et al., 2022; Moghe et al., 2025) 333

covers 146 language pairs with 68 translation error 334

phenomena grouped into 10 types. We use ACES 335

to analyze a wide range of translation errors, from 336

simple perturbations to complex discourse issues. 337

MSLC. The Metric Score Landscape Challenge 338

(MSLC) (Lo et al., 2023) evaluates metrics on low 339

and medium-quality translations in out-of-domain 340

contexts, using transformer MT model checkpoints 341
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from various training stages to create a quality spec-342

trum. We use MSLC to assess metrics’ ability to343

distinguish low-to-medium quality translations.344

4.2 Baselines345

We compare ReMedy with strong closed LLMs and346

open WMT metric winners, covering both open347

metrics and commercial LLM approaches.348

4.2.1 Closed Models349

GEMBA (P). A zero-shot prompting (P) ap-350

proach using GPT-4 (Achiam et al., 2023) for qual-351

ity assessment (Kocmi and Federmann, 2023).352

PaLM (P). Like GEMBA, Fernandes et al.353

(2023) prompts PaLM-540B model (Chowdhery354

et al., 2023) to generate translation quality scores.355

PaLM-2 Models. Fernandes et al. (2023) also356

fine-tuned PaLM-2 models using both Regression357

(R) and Generative Classification (GC) objectives358

with previous WMT data. They included BISON359

and UNICORN (second largest and largest in the360

PaLM-2 family, respectively) in the experoments.361

4.2.2 Open Models362

Llama2-EAPrompt (P). The Error Analysis363

Prompting (Lu et al., 2024) combines chain-of-364

thought reasoning with error analysis to score trans-365

lations, emulating human evaluation. We report366

their strongest open model based on Llama2-70B.367

MetricX (R). A series of SOTA regression-based368

metrics from Google (Juraska et al., 2023, 2024),369

fine-tuned from mT5 models with two-stage fine-370

tuning and hybrid training recipes, augmented by371

synthetic data. We compare against the strongest372

MetricX variants for each year of the WMT sets.373

COMET (R). COMET methods utilize XLM-R374

pretrained encoders to model translation quality375

via sentence embeddings from the source, trans-376

lation, and reference. For WMT22, we com-377

pare with COMET-22-DA (0.5B) and COMET-22-378

ensemble (Rei et al., 2022); for WMT23-24, we379

compare with XCOMET (Guerreiro et al., 2024)380

(ensemble with 2 × 10.7B and 1 × 3.5B models).381

4.3 Implementation and meta-Evaluation382

We train ReMedy by fine-tuning two multilingual383

pre-trained foundation models: XLM-R (Conneau384

et al., 2020) and Gemma2 (Team et al., 2024), cov-385

ering both encoder- and decoder-only types. We386

use XLM-R-Large (0.5B) and Gemma2 2B and 9B.387

We train our models using DeepSpeed (Rajbhan- 388

dari et al., 2020) in bf16 precision for 1 epoch with 389

early stopping on the validation set. We set the 390

maximum sequence length to 1024 tokens and use 391

the Adam optimizer with a learning rate of 5e-6 392

and an effective batch size of 2048. We conduct 393

experiments using 4 NVIDIA H100 GPUs, with 394

VLLM (Kwon et al., 2023) for fast inference. 395

For meta evaluation, we adopt the official WMT 396

Metric Share Task Toolkit.2 Following official se- 397

tups, we report the Pairwise Accuracy (Acc) pro- 398

posed by Kocmi et al. (2021) at system-level re- 399

sults for WMT22-23, and Soft Pairwise Accuracy 400

(SPA) (Thompson et al., 2024; Freitag et al., 2024) 401

for WMT24. For segment-level, we report pairwise 402

accuracy with tie calibration (acc∗eq ) (Deutsch et al., 403

2023) for all WMT22-24, with the Perm-Both sta- 404

tistical significance test (Deutsch et al., 2021). 405

5 Results and Analyses 406

In this section, we analyze ReMedy’s performance 407

in correlating with human judgments. Our exper- 408

iments show that ReMedy achieves SOTA results 409

across WMT22-24 while maintaining parameter ef- 410

ficiency (Sec. 5.1). Analyses on ACES and MSLC 411

confirm that ReMedy reliably captures diverse 412

translation errors and quality levels (Sec. 5.3). We 413

also show that using ReMedy in RLHF pipelines 414

leads to consistent performance gains (Sec. 5.4). 415

5.1 Correlation with Human Preference 416

We evaluate ReMedy on WMT22, WMT23, and 417

WMT24, with detailed results provided in Tables 1, 418

2, and 3 (see Appendix A.1 for additional details). 419

5.1.1 ReMedy vs. Regression. 420

Table 1 shows that when fine-tuning the same XLM- 421

R-Large (0.5B) foundation model, ReMedy outper- 422

forms the regression-based COMET-22-DA model 423

by +2.6 points in system-level Acc and +0.9 in 424

segment-level acc∗eq (verified by the Perm-Both sta- 425

tistical test). These results suggest that ReMedy 426

delivers a more robust training signal than regres- 427

sion on noisy absolute ratings. 428

5.1.2 ReMedy achieves SOTA results in 429

WMT22–24 430

WMT22: Table 1 shows that while closed LLMs 431

(e.g., PaLM-2) achieve high system-level accura- 432

cies, they often underperform open metrics at the 433

2MTME: https://github.com/google-research/
mt-metrics-eval
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Type Methods θ ref? System-Level Segment-Level acc∗
eq Avg

Acc (3 LPs) Avg En-De En-Ru Zh-En Corr

Closed
Models

GEMBA-GPT4 (P) – 3 89.8 55.6 58.2 55.0 53.4 72.7
PaLM (P) 540B 3 90.1 50.8 55.4 48.6 48.5 70.5
PaLM-2 BISON (R) – 3 88.0 57.3 61.0 51.5 59.5 72.7
PaLM-2 BISON (GC) – 3 86.1 54.8 59.2 49.3 56.0 70.5
PaLM-2 UNICORN (R) – 3 87.6 58.0 61.1 52.6 60.4 72.8
PaLM (P) 540B 7 84.3 50.3 56.1 43.1 51.8 67.3
PaLM-2 BISON (R) – 7 87.6 57.5 59.9 53.4 59.2 72.6

Open
Models

Llama2-EAPrompt (P) 70B 3 85.4 52.3 55.2 51.4 50.2 68.9
COMET-22-DA (R) 0.5B 3 82.8 54.5 58.2 49.5 55.7 68.7
COMET-22 (R) 5 x 0.5B 3 83.9 57.3 60.2 54.1 57.7 70.6
MetricX-XXL (R) 13B 3 85.0 58.8 61.1 54.6 60.6 71.9
COMETKIWI (R) 5 x 0.5B 7 78.8 55.5 58.3 51.6 56.5 67.2

Ours

ReMedyxlmr-22 0.5B 3 85.8 55.4 58.3 52.2 55.8 70.6
ReMedy2B-22 2B 3 90.5 55.9 58.0 53.0 56.6 73.2
ReMedy9B-22 9B 3 91.2 58.9 61.0 60.4 55.4 75.1
ReMedy9B-22-QE 9B 7 89.4 57.8 59.4 59.9 54.2 73.6

Table 1: Evaluation on WMT22 MQM set. Following official WMT22 settings, we report system-level Pairwise
Accuracy (Acc) and segment-level pairwise accuracy with tie calibration (acc∗eq ), using Perm-Both statistical
significance test (Deutsch et al., 2021). P denotes prompting; R and GC represent training with regression and
generative classification objectives. Bold and underline indicate the best metric and QE (no reference) models.

segment level. Notably, ReMedy-0.5B reaches434

the overall performance of PaLM 540B with only435

0.09% parameters. Compared to the strongest fine-436

tuned PaLM-2 UNICORN (R), ReMedy-2B ex-437

hibits a −2.1% drop in segment-level acc∗eq , yet it438

still presents +0.4% overall gain. Lastly, ReMedy-439

9B surpasses others across both system and seg-440

ment levels, outperforming the strongest PaLM-2441

UNICORN (R) by +2.3 averaged score.442

WMT23: As presented in Table 3, ReMedy-443

9B outperforms winner models (XCOMET and444

MetricX-23) on all MQM and DA+SQM subsets in-445

cluding segment and system levels, with an average446

improvement of +1.9% and +2.8%. Furthermore,447

ReMedy-9B achieves these gains with significantly448

fewer parameters compared to the 13B MetricX-23449

and ensemble XCOMET (totaling over 24B).450

WMT24: Table 2 shows that ReMedy-9B451

achieves the highest rank and overall accuracy,452

outperforming all other methods. Furthermore,453

ReMedy-9B-QE outperforms all metric methods,454

including reference-based and -free WMT winners.455

Reference-Free ReMedy. Although ReMedy is456

trained with references, the reference-free ReMedy-457

QE achieves SOTA performance among all QE458

models in WMT22-24 such as COMET-KIWI (Rei459

et al., 2023). Here, for the QE mode, the only460

Methods Rank Avg Sys Seg
corr SPA acc∗

eq

ReMedy9B-24 1 72.9 85.9 60.0
ReMedy9B-24-QE 2 72.1 84.9 59.3

MetricX-24-Hybrid (R) 3 72.1 85.6 58.5
XCOMET-XXL (R) 4 71.9 86.1 57.6
MetricX-24-Hybrid-QE (R) 5 71.4 84.9 58.0
GEMBA-ESA (P) 6 71.1 84.6 57.6
XCOMET-XXL-QE (R) 7 69.5 83.3 55.7

Table 2: Evaluation on WMT24 MQM set. We report
the official accuracy percentage (SPA and acc∗eq ).

difference is the reference sentence is empty, which 461

enables multiple modes for a single model. 462

5.2 Ablation Studies 463

Table 4 presents the ablation studies of ReMedy, 464

using Gemma2-2B as the foundation model. 465

Reward Explosion. We first train vanilla ReM- 466

edy, a variant optimized solely with the Bradley- 467

Terry loss, similar to most reward models (Touvron 468

et al., 2023; Ouyang et al., 2022). During training, 469

we observed that the model continuously increased 470

the final scalar reward scores regardless of the input. 471

This behavior is intuitive, as the Bradley-Terry loss 472

optimizes only the reward differences. In this setup, 473
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Method θ ref?
System-Level Acc Segment-Level acc∗

eq Avg

MQM (3LPs) SQM (8LPs) MQM (3LPs) SQM (8LPs) Corr

MetricX-23 (R) 13B 3 90.7 86.3 56.9 57.0 72.7
XCOMET-XXL (R) ensemble 3 92.8 87.0 57.7 56.8 73.6
GEMBA-GPT4 (P) - 7 94.5 89.9 55.2 38.0 69.4
MetricX-23-QE (R) 13B 7 89.0 87.0 56.1 56.7 72.2
XCOMET-QE (R) ensemble 7 91.6 87.1 55.8 55.2 72.4
COMETKIWI-XXL (R) ensemble 7 91.1 88.7 54.6 56.0 72.6

ReMedy9B-23 9B 3 94.1 91.7 58.2 57.8 75.5
ReMedy9B-23-QE 9B 7 92.0 91.7 57.0 56.8 74.4

Table 3: Evaluation on WMT23 Metric Shared task including MQM and DA+SQM (use SQM in table for simplicity)
sets. Both XCOMET-XXL and COMETKIWI-XXL are identical ensembles of 2×10.7B and 1×3.5B models.

the model learns that increasing all reward scores474

makes the sigmoid output larger, thereby reducing475

the training loss. As a result, it produces exces-476

sively high rewards (mean = 17.18, std = 5.37).477

Adding Reward Regularization (+ reg.) effec-478

tively mitigates this reward explosion issue, stabi-479

lizing the reward distribution (mean = 1.33, std480

= 0.5) and improving average accuracy on the481

WMT22 MQM set by +7.0%.482

Method
MQM-22 Reward Dist

Sys Seg Avg Mean Std

Vanilla-ReMedy-2B 79.6% 52.2% 65.9% 17.18 5.37
+ reg. 90.9% 54.9% 72.9% 1.33 0.50
+ reg. + margin 89.8% 55.2% 72.5% 1.93 0.63
+ reg. + margin + cali. 90.5% 55.9% 73.2% 0.82 0.08

Table 4: Performance and reward distribution of adding
reward regularization (reg.), margin, and reward calibra-
tion (cali.) for ReMedy-2B on WMT22 test set.

Margin and Inference Calibrations. Incorpo-483

rating the rating difference as a margin signal en-484

hances segment-level performance (+0.3 Acc) by485

informing the model about the degree of prefer-486

ence between translations. For reward calibration,487

we apply a sigmoid function with its temperature488

guided by entropy (see Section 3.3). This calibra-489

tion normalizes rewards to the [0,1] range while490

preserving meaningful distinctions between transla-491

tions of similar quality, slightly improving overall492

performance by +0.7%. Notably, ReMedy achieves493

SOTA performance without calibration, which only494

serves for normalization purposes. Note that cal-495

ibration only improves tie situations, see our de-496

tailed analyses in Appendix A.4497

Figure 2: Kernel density plots of quality scores at var-
ious model checkpoints. Percentages indicate training
progress stages, with dashed lines marking mean scores.

5.3 Analyses on Challenge sets 498

In addition to the WMT benchmarks, we analyze 499

ReMedy’s performance in detecting translation er- 500

rors and out-of-domain low-quality translations. 501

MSLC Challenge Set. On the MSLC chal- 502

lenge set, ReMedy provides reliable quality scores 503

across a wide range of translation outputs, effec- 504

tively distinguishing between low- and medium- 505

quality translations. As shown in Figure 2, un- 506

like XCOMET and MetricX, ReMedy presents 507

a clear quality boundary for the English-German 508

MT model for its different checkpoints, especially 509

for out-of-domain low and medium quality (corre- 510

sponding to 1 to 16 BLEU scores) translations. 511
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ref? Add Omi Mis-T Un-T DNT Over Under RW-K WL Punc ACES

BLEU 3 0.75 0.44 -0.23 0.36 0.60 -0.84 -0.86 -0.77 0.66 0.64 -2.8
ChrF 3 0.64 0.78 0.16 0.78 0.96 -0.70 -0.59 -0.29 0.69 0.74 3.71

MetricX-13B 3 -0.10 0.53 0.58 0.65 0.88 0.75 0.55 0.71 -0.32 0.37 13.54
COMET-22 3 0.33 0.81 0.57 0.54 0.90 0.69 0.54 0.57 -0.32 0.54 16.41
KG-BERTScore 3 0.79 0.81 0.49 -0.46 0.76 0.65 0.53 0.49 0.31 0.26 17.49
COMET-KIWI-22 7 0.36 0.83 0.63 0.23 0.78 0.74 0.57 0.58 -0.36 0.49 16.95
MT-Ranker-13B 7 0.65 0.97 0.63 0.25 0.84 0.63 0.54 0.66 -0.53 0.97 18.46

ReMedy2B-22 3 0.35 0.72 0.66 0.63 0.70 0.79 0.55 0.82 0.20 0.64 17.74
ReMedy9B-22 3 0.49 0.86 0.71 0.70 0.76 0.81 0.56 0.89 0.31 0.60 19.90
ReMedy2B-22-QE 7 0.05 0.69 0.67 0.11 0.50 0.73 0.52 0.76 -0.17 0.52 14.49
ReMedy9B-22-QE 7 0.48 0.81 0.73 0.39 0.56 0.81 0.59 0.87 0.04 0.58 18.93

Table 5: Kendalls tau-like correlation results for the ten error categories spaning 68 translation phenomena for 146
language pairs. ACES-Score represents the overall performance across all categories (see A.1.2). Addition (Add),
Omission (Omi), Mis-T (Mistranslation), Un-T (Untranslated), DNT (Do Not Translate), Over (Overtranslation),
Under (Undertranslation), RW-K (Real-World Knowledge), WL (Wrong Language), Punc (Punctuation).

ACES Challenge Set. As shown in Table 5,512

ReMedy-9B achieves new SOTA results on the513

ACES benchmark that covers 146 language pairs,514

demonstrating the highest overall correlation515

(ACES score) with human judgments in detecting516

68 diverse translation error phenomena.517

We noticed that all neural metrics perform poorly518

on the Wrong Language (WL) phenomenon. This519

is intuitive since such errors contain semantically520

equivalent but off-target (Tan and Monz, 2023)521

translations. Incorporating synthetic data holds522

promise, but we leave this to future work.523

5.4 ReMedy in RLHF Pipelines524

Lastly, we integrated ReMedy as a reward model525

in Reinforcement Learning from Human Feedback526

(RLHF) pipelines. We implement Contrastive Pref-527

erence Optimization (CPO) (Xu et al., b) based on528

the ALMA-13B (Xu et al., a) model. Following the529

original CPO setup, we keep the training data un-530

changed, then use ReMedy-9B to score References,531

GPT-4 and ALMA translations. We conduct CPO532

tuning on ALMA-13B with LoRA using the same533

hyper-parameter, then evaluate the final models534

with greedy decoding.535

To avoid metric interference (Pombal et al.,536

2025), i.e., use the same metrics for both model537

tuning and evaluation, we report results on various538

metrics including BLEU, KIWI-10B, XCOMET-539

10.9B, and ReMedy-9B. Table 6 shows that replac-540

ing the XCOMET reward model with ReMedy-9B541

yields consistent performance gains on all metric542

scores, underscoring ReMedy’s versatility and po-543

tential for downstream MT improvements.544

RM BLEU COMET22 KIWI XCOMET ReMedy

Results on WMT22 Testset (10 LPs)
XCOMET 28.6 85.6% 81.9% 90.2% 80.8%
ReMedy 29.8 85.9% 82.3% 90.3% 81.1%

Results on WMT23 Testset (6 LPs)
XCOMET 28.0 83.0% 76.9% 88.1% 80.6%
ReMedy 29.4 83.3% 77.1% 88.2% 81.1%

Table 6: Performance of using XCOMET and ReMedy-
9B as reward models for ALMA13B-CPO tuning on
WMT22 and WMT23 general MT testsets.

6 Conclusions 545

To address the challenges of noisy and inconsis- 546

tent human ratings in MT evaluation, we intro- 547

duced ReMedy, a novel framework leveraging re- 548

ward modeling, augmented by reward regulariza- 549

tion and calibration, to learn directly from pairwise 550

human preferences. Our extensive experiments on 551

WMT22–24 demonstrate that ReMedy achieves 552

state-of-the-art performance at both segment and 553

system levels. Notably, our 9B parameter ReMedy 554

model surpasses significantly larger models, in- 555

cluding GPT-4, PaLM-540B, XCOMET-Ensemble, 556

and MetricX-13B. Further analyses confirmed its 557

robustness on challenge sets designed to test er- 558

ror detection and handling of varying quality lev- 559

els. Additionally, ReMedy’s integration into RLHF 560

pipelines highlights its potential as an effective 561

reward model for improving MT systems. ReM- 562

edy shows that reward modeling with preference 563

learning offers a more robust, efficient, and human- 564

aligned approach to machine translation evaluation. 565
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Limitations566

In this paper, we do not include the utilization567

of synthetic data in MT evaluation. Previous568

studies such as MetricX (Juraska et al., 2024),569

XCOMET (Guerreiro et al., 2024) found con-570

structing synthetic data for out-of-domain and fine-571

grained translation errors can improve the overall572

performance and form more robust systems. In this573

work, we focus more on how to improve the MT574

metric system with current available open-source575

data. However, ReMedy holds great promise in576

leveraging synthetic data, since it only requires pair-577

wise preference data rather than absolute ratings578

like MetricX or XCOMET requires for regression,579

we leave this to future work.580

We noticed that for the WMT24 ESA subset,581

ReMedy-9B-24 performs slightly worse than Met-582

ricX and XCOMET (see Appendix A.3). Specif-583

ically, we found gaps mostly on English-Hindi584

and English-Icelandic pairs, where LLM-based ap-585

proaches like GEMBA-ESA also present lower586

performance. We hypothesize this could be due587

to the nature of these language pairs remaining588

low-resource for pre-trained decoder-only LLMs.589

Nonetheless, we found that ReMedy-9B-22 outper-590

forms MetricX and COMET on unseen extremely591

low-resource language pairs like English-Livonian,592

and Yakut-Russian in the WMT22 test set. We plan593

to look at the potential reasons in the future.594

Broader Impact595

We acknowledge several ethical considerations in596

MT evaluation research. To address the risk of597

mistranslation, we prioritize high-quality data from598

WMT Metric Shared tasks, though fairness chal-599

lenges persist as metrics may perform inconsis-600

tently across the linguistic spectrum, particularly601

for low-resource languages. Furthermore, MT sys-602

tems and evaluation metrics can perpetuate societal603

biases present in training data, such as human bi-604

ases.605
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Ondřej Bojar, Yvette Graham, and Amir Kamran. 2017. 631
Results of the WMT17 metrics shared task. In Pro- 632
ceedings of the Second Conference on Machine Trans- 633
lation, pages 489–513, Copenhagen, Denmark. Asso- 634
ciation for Computational Linguistics. 635

Ralph Allan Bradley and Milton E Terry. 1952. 636
Rank analysis of incomplete block designs: I. 637
the method of paired comparisons. Biometrika, 638
39(3/4):324–345. 639

Chris Callison-Burch, Cameron Fordyce, Philipp Koehn, 640
Christof Monz, and Josh Schroeder. 2008. Further 641
meta-evaluation of machine translation. In Proceed- 642
ings of the Third Workshop on Statistical Machine 643
Translation, pages 70–106, Columbus, Ohio. Associ- 644
ation for Computational Linguistics. 645

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 646
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul 647
Barham, Hyung Won Chung, Charles Sutton, Sebas- 648
tian Gehrmann, et al. 2023. Palm: Scaling language 649
modeling with pathways. Journal of Machine Learn- 650
ing Research, 24(240):1–113. 651

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar- 652
tic, Shane Legg, and Dario Amodei. 2017. Deep 653
reinforcement learning from human preferences. Ad- 654
vances in neural information processing systems, 30. 655

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, 656
Vishrav Chaudhary, Guillaume Wenzek, Francisco 657
Guzmán, Édouard Grave, Myle Ott, Luke Zettle- 658
moyer, and Veselin Stoyanov. 2020. Unsupervised 659
cross-lingual representation learning at scale. In 660
Proceedings of the 58th Annual Meeting of the 661
Association for Computational Linguistics, pages 662
8440–8451. 663

Daniel Deutsch, Rotem Dror, and Dan Roth. 2021. 664
A statistical analysis of summarization evaluation 665
metrics using resampling methods. Transactions 666
of the Association for Computational Linguistics, 667
9:1132–1146. 668

9

https://aclanthology.org/2022.wmt-1.44/
https://aclanthology.org/2022.wmt-1.44/
https://aclanthology.org/2022.wmt-1.44/
https://doi.org/10.18653/v1/W17-4755
https://aclanthology.org/W08-0309/
https://aclanthology.org/W08-0309/
https://aclanthology.org/W08-0309/


Daniel Deutsch, George Foster, and Markus Freitag.669
2023. Ties matter: Meta-evaluating modern met-670
rics with pairwise accuracy and tie calibration. In671
Proceedings of the 2023 Conference on Empirical672
Methods in Natural Language Processing, pages673
12914–12929.674

Patrick Fernandes, Daniel Deutsch, Mara Finkelstein,675
Parker Riley, André FT Martins, Graham Neubig,676
Ankush Garg, Jonathan H Clark, Markus Freitag,677
and Orhan Firat. 2023. The devil is in the errors:678
Leveraging large language models for fine-grained679
machine translation evaluation. In Proceedings of the680
Eighth Conference on Machine Translation, pages681
1066–1083.682

Markus Freitag, George Foster, David Grangier, Viresh683
Ratnakar, Qijun Tan, and Wolfgang Macherey. 2021a.684
Experts, errors, and context: A large-scale study of685
human evaluation for machine translation. Transac-686
tions of the Association for Computational Linguis-687
tics, 9:1460–1474.688

Markus Freitag, George Foster, David Grangier, Viresh689
Ratnakar, Qijun Tan, and Wolfgang Macherey. 2021b.690
Experts, errors, and context: A large-scale study of691
human evaluation for machine translation. Transac-692
tions of the Association for Computational Linguis-693
tics, 9:1460–1474.694

Markus Freitag, Nitika Mathur, Daniel Deutsch, Chi-695
Kiu Lo, Eleftherios Avramidis, Ricardo Rei, Brian696
Thompson, Frederic Blain, Tom Kocmi, Jiayi Wang,697
David Ifeoluwa Adelani, Marianna Buchicchio,698
Chrysoula Zerva, and Alon Lavie. 2024. Are LLMs699
breaking MT metrics? results of the WMT24 metrics700
shared task. In Proceedings of the Ninth Confer-701
ence on Machine Translation, pages 47–81, Miami,702
Florida, USA. Association for Computational Lin-703
guistics.704

Markus Freitag, Nitika Mathur, Chi-kiu Lo, Elefthe-705
rios Avramidis, Ricardo Rei, Brian Thompson, Tom706
Kocmi, Frederic Blain, Daniel Deutsch, Craig Stew-707
art, Chrysoula Zerva, Sheila Castilho, Alon Lavie,708
and George Foster. 2023. Results of WMT23 metrics709
shared task: Metrics might be guilty but references710
are not innocent. In Proceedings of the Eighth Con-711
ference on Machine Translation, pages 578–628, Sin-712
gapore. Association for Computational Linguistics.713

Markus Freitag, Ricardo Rei, Nitika Mathur, Chi-kiu Lo,714
Craig Stewart, Eleftherios Avramidis, Tom Kocmi,715
George Foster, Alon Lavie, and André F. T. Martins.716
2022a. Results of WMT22 metrics shared task: Stop717
using BLEU – neural metrics are better and more718
robust. In Proceedings of the Seventh Conference719
on Machine Translation (WMT), pages 46–68, Abu720
Dhabi, United Arab Emirates (Hybrid). Association721
for Computational Linguistics.722

Markus Freitag, Ricardo Rei, Nitika Mathur, Chi-kiu Lo,723
Craig Stewart, Eleftherios Avramidis, Tom Kocmi,724
George Foster, Alon Lavie, and André FT Martins.725
2022b. Results of wmt22 metrics shared task: Stop726

using bleu–neural metrics are better and more ro- 727
bust. In Proceedings of the Seventh Conference on 728
Machine Translation (WMT), pages 46–68. 729

Michael Gamon, Anthony Aue, and Martine Smets. 730
2005. Sentence-level mt evaluation without refer- 731
ence translations: Beyond language modeling. In 732
Proceedings of the 10th EAMT Conference: Practi- 733
cal applications of machine translation. 734

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng- 735
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr- 736
ishnan, MarcAurelio Ranzato, Francisco Guzmán, 737
and Angela Fan. 2022. The flores-101 evaluation 738
benchmark for low-resource and multilingual ma- 739
chine translation. Transactions of the Association for 740
Computational Linguistics, 10:522–538. 741

Nuno M Guerreiro, Ricardo Rei, Daan Van Stigt, Luísa 742
Coheur, Pierre Colombo, and André FT Martins. 743
2024. xcomet: Transparent machine translation eval- 744
uation through fine-grained error detection. Transac- 745
tions of the Association for Computational Linguis- 746
tics, 12:979–995. 747

Juraj Juraska, Daniel Deutsch, Mara Finkelstein, and 748
Markus Freitag. 2024. Metricx-24: The google sub- 749
mission to the wmt 2024 metrics shared task. In 750
Proceedings of the Ninth Conference on Machine 751
Translation, pages 492–504. 752

Juraj Juraska, Mara Finkelstein, Daniel Deutsch, Aditya 753
Siddhant, Mehdi Mirzazadeh, and Markus Freitag. 754
2023. Metricx-23: The google submission to the 755
wmt 2023 metrics shared task. In Proceedings of the 756
Eighth Conference on Machine Translation, pages 757
756–767. 758

Rebecca Knowles, Samuel Larkin, and Chi-Kiu Lo. 759
2024. Mslc24: Further challenges for metrics on 760
a wide landscape of translation quality. In Proceed- 761
ings of the Ninth Conference on Machine Translation, 762
pages 475–491. 763

Tom Kocmi and Christian Federmann. 2023. Large 764
language models are state-of-the-art evaluators of 765
translation quality. In Proceedings of the 24th Annual 766
Conference of the European Association for Machine 767
Translation, pages 193–203. 768

Tom Kocmi, Christian Federmann, Roman Grund- 769
kiewicz, Marcin Junczys-Dowmunt, Hitokazu Mat- 770
sushita, and Arul Menezes. 2021. To ship or not to 771
ship: An extensive evaluation of automatic metrics 772
for machine translation. In Proceedings of the Sixth 773
Conference on Machine Translation, pages 478–494. 774

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 775
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon- 776
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient 777
memory management for large language model serv- 778
ing with pagedattention. In Proceedings of the 29th 779
Symposium on Operating Systems Principles, pages 780
611–626. 781

10

https://doi.org/10.1162/tacl_a_00437
https://doi.org/10.1162/tacl_a_00437
https://doi.org/10.1162/tacl_a_00437
https://doi.org/10.18653/v1/2024.wmt-1.2
https://doi.org/10.18653/v1/2024.wmt-1.2
https://doi.org/10.18653/v1/2024.wmt-1.2
https://doi.org/10.18653/v1/2024.wmt-1.2
https://doi.org/10.18653/v1/2024.wmt-1.2
https://doi.org/10.18653/v1/2023.wmt-1.51
https://doi.org/10.18653/v1/2023.wmt-1.51
https://doi.org/10.18653/v1/2023.wmt-1.51
https://doi.org/10.18653/v1/2023.wmt-1.51
https://doi.org/10.18653/v1/2023.wmt-1.51
https://aclanthology.org/2022.wmt-1.2/
https://aclanthology.org/2022.wmt-1.2/
https://aclanthology.org/2022.wmt-1.2/
https://aclanthology.org/2022.wmt-1.2/
https://aclanthology.org/2022.wmt-1.2/


Chi-kiu Lo, Samuel Larkin, and Rebecca Knowles.782
2023. Metric score landscape challenge (mslc23):783
Understanding metrics performance on a wider land-784
scape of translation quality. In Proceedings of the785
Eighth Conference on Machine Translation, pages786
776–799.787

Qingyu Lu, Baopu Qiu, Liang Ding, Kanjian Zhang,788
Tom Kocmi, and Dacheng Tao. 2024. Error analysis789
prompting enables human-like translation evaluation790
in large language models. In Findings of the Associa-791
tion for Computational Linguistics ACL 2024, pages792
8801–8816.793

Nitika Mathur, Johnny Wei, Markus Freitag, Qingsong794
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A Appendix939

A.1 Data940

A.1.1 WMT Metric Shared Tasks941

WMT Metric Shared Tasks provided a standard-942

ized framework for comparing automatic MT eval-943

uation metrics using human assessments since944

2008 (Callison-Burch et al., 2008). In WMT22-24,945

various annotation methods have been employed.946

Among these, the Multidimensional Quality Metric 947

(MQM) stands out due to its reliance on profes- 948

sional translators for fine-grained error annotations, 949

making it particularly reliable for assessing high- 950

quality MT outputs (Freitag et al., 2021a). 951

In contrast, other evaluation approaches includ- 952

ing Direct Assessment (DA) (Bojar et al., 2017), 953

Scalar Quality Metrics (SQM) (Mathur et al., 954

2020), Error Span Analysis (ESA) (Freitag et al., 955

2024) are based on crowdsourced ratings, which 956

may not always capture the same level of nuance 957

and precision (Freitag et al., 2021a). 958

Human assessments in WMT22-24 include four 959

types of annotations below. MQM is considered 960

as the highest-quality assessment, which is more 961

reliable for high-quality MT predictions (Freitag 962

et al., 2021a). 963

• Multidimensional Quality Metric (MQM): 964

Professional translators provide fine-grained 965

error annotations (Freitag et al., 2021b). 966

• Direct Assessment (DA): Crowdsourced 967

holistic quality ratings on a 0–100 scale (Bojar 968

et al., 2017). 969

• Scalar Quality Metrics (SQM) (Mathur 970

et al., 2020): A simplified version of MQM 971

with fewer error categories. 972

• Error Span Analysis (ESA) (Freitag et al., 973

2024): 0–100 Ratings accompanied by error 974

span annotations. 975

Following standard practice (Guerreiro et al., 976

2024), we train on earlier data (e.g., WMT17), val- 977

idate on previous years, and test on the current 978

year (see Table 7 for details). Our evaluations 979

are conducted on official WMT22–24 datasets. 980

WMT22 (Freitag et al., 2022a): Contains MQM 981

and DA+SQM subsets with 16 language pairs, 40 982

systems, and 392,647 segments. WMT23 (Freitag 983

et al., 2023): Includes 282,926 segments over 11 984

language pairs and 29 MT systems. WMT24 (Fre- 985

itag et al., 2024): For the high-quality MQM subset, 986

there are 3 language pairs, 32 systems, and 68,502 987

segments; the ESA subset includes 232,289 seg- 988

ments covering 9 language pairs and 40 systems. 989

A.1.2 ACES Score 990

In this paper, we follow the original ACES Score 991

calculation (Amrhein et al., 2022; Moghe et al., 992

2025), which provides a comprehensive assessment 993

by combining performance on various error types 994
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Train set Val set Benchmark/Test set #Languages in Test set #Segments in Test set Subsets in Test set

WMT17-20 WMT21 WMT22 16 language pairs 392,647 segments MQM, DA
WMT17-21 WMT22 WMT23 11 language pairs 282,926 segments MQM, DA+SQM
WMT17-22 WMT23 WMT24 12 language pairs 232,289 segments MQM, ESA

Table 7: WMT22-24 Benchmark Descriptions.

with appropriate weightings. As shown in Equa-995

tion 6, the ACES Score assigns higher weights996

(5) to critical error categories such as addition,997

omission, mistranslation, overtranslation, and un-998

dertranslation, while giving lower weights to cat-999

egories like untranslated segments (1), wrong lan-1000

guage (1), and punctuation errors (0.1).1001

ACES = sum



5 ∗ τaddition
5 ∗ τomission

5 ∗ τmistranslation
1 ∗ τuntranslated
1 ∗ τdo not translate
5 ∗ τovertranslation
5 ∗ τundertranslation

1 ∗ τreal-world knowledge
1 ∗ τwrong language
0.1 ∗ τpunctuation



(6)1002

This weighting scheme reflects the relative im-1003

pact of different error types on overall translation1004

quality. For more details on the ACES challenge1005

set and the development of this scoring methodol-1006

ogy, we refer readers to Amrhein et al. (2022) and1007

Moghe et al. (2025).1008

A.2 Pairwise Data Construction for Reward1009

Modeling1010

We construct pairwise preference training and val-1011

idation data using the original raw human ratings1012

for each translation. Specifically, given the same1013

source and reference sentence pair (src, ref ), we1014

examine human ratings for different translations1015

and construct preference pairs (mt+,mt−) where1016

the human rating for hmt+ is higher than that for1017

hmt− .1018

For DA (Direct Assessment) data with a [0,100]1019

scale, we set a rating difference threshold of 251020

points, following the common understanding that1021

translations differing by less than 25 points should1022

be considered of equivalent quality.1023

For MQM (Multidimensional Quality Metrics)1024

data with a [0,25] scale, we use a much smaller1025

threshold of 0.1, as MQM annotations are more1026

fine-grained, where even small differences like 1027

punctuation errors can meaningfully impact trans- 1028

lation quality. 1029

Once we construct the pairwise preference data, 1030

we format inputs differently depending on the foun- 1031

dation model architecture (see Figure 3 for more 1032

details). 1033

Finally, we evaluate ReMedy with the offi- 1034

cial testset directly for each individual translation 1035

(src,mt , ref ∗), without doing any data preprocess- 1036

ing steps. The final meta-evaluation is done by the 1037

official MTME tool. 1038

A.3 Additional Results 1039

A.3.1 WMT22 1040

We list the full results of WMT22 in Table 8, 1041

demonstrating the performance of various metric 1042

systems on both MQM and DA subsets. Note that 1043

all closed models and Llama2-EAPrompt do not 1044

validate their results on the DA set. 1045

A.3.2 WMT24 1046

For WMT24, we present the full results for both 1047

MQM and ESA subsets in Table 9. Following 1048

the WMT24 official meta evaluation protocol (Fre- 1049

itag et al., 2024), we use the MQM subset for our 1050

primary comparisons as it provides higher-quality 1051

human annotations than the crowd-sourced ESA 1052

set. Our analysis reveals that ReMedy-9B-24 per- 1053

forms slightly worse on the ESA subset, primarily 1054

due to lower performance on English-Hindi and 1055

English-Icelandic language pairs (complete evalua- 1056

tion results available in our repository3). 1057

This underperformance likely stems from these 1058

languages being relatively low-resource in the pre- 1059

trained Gemma2 model. Interestingly, ReMedy- 1060

9B-22 still outperforms MetricX and COMET 1061

on previously unseen extremely low-resource lan- 1062

guage pairs such as English-Livonian and Yakut- 1063

Russian in the WMT22 test set. We intend to in- 1064

vestigate these performance differences in future 1065

work. 1066

3https://anonymous.4open.science/r/
Remedy-4D2C
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Type Methods θ ref? System-Level Acc Segment-Level acc∗
eq Avg Corr

MQM DA MQM DA MQM DA All

Closed
Models

GEMBA-ChatGPT (P) 175B 3 81.0% - 50.1% - 65.6% - -
GEMBA-GPT4 (P) - 3 89.8% - 55.6% - 72.7% - -
PaLM (P) 540B 3 90.1% - 50.8% - 70.5% - -
PaLM-2 BISON (R) <340B 3 88.0% - 57.3% - 72.7% - -
PaLM-2 BISON (GC) <340B 3 86.1% - 54.8% - 70.5% - -
PaLM-2 UNICORN (R) ~340B 3 87.6% - 58.0% - 72.8% - -
PaLM (P) 540B 7 84.3% - 50.3% - 67.3% - -
PaLM-2 BISON (R) - 7 87.6% - 57.5% - 72.6% - -
PaLM-2 BISON (GC) - 7 86.1% - 53.2% - 60.7% - -
PaLM-2 UNICORN (GC) - 7 86.1% - 52.9% - 69.5% - -

Open
Models

Llama2-EAPrompt (P) 70B 3 85.4% - 52.3% - 68.9% - -
COMET-22-DA (R) 0.5B 3 82.8% 86.4% 54.5% 55.4% 68.7% 70.9% 69.8%
COMET-22 (R) 5 x 0.5B 3 83.9% 85.8% 57.3% 57.2% 70.6% 71.5% 71.0%
MetricX-XXL (R) 13B 3 85.0% 86.5% 58.8% 55.6% 71.9% 71.1% 71.5%
Llama2-EAPrompt (P) 70B 7 85.8% - 52.0% - 68.9% - -
COMETKiwi (R) 5 x 0.5B 7 78.8% 85.4% 55.5% 56.5% 67.2% 71.0% 69.1%

Ours

ReMedyxlmr-22 0.5B 3 85.8% 86.6% 55.4% 55.6% 70.6% 71.1% 70.9%
ReMedy2B-22 2B 3 90.5% 86.2% 55.9% 53.9% 73.2% 70.0% 71.6%
ReMedy9B-22 9B 3 91.2% 87.7% 58.9% 56.0% 75.1% 71.9% 73.5%
ReMedy9B-22-QE 9B 7 89.4% 85.8% 57.8% 54.3% 73.6% 70.0% 71.8%

Table 8: Evaluation on WMT22 MQM (3 LPs) and DA (13 LPs) set. The system-level results are Pairwise Accuracy
proposed by Kocmi et al. (2021), and segment-level results are based on the group-by-item pairwise accuracy
with tie calibration (Deutsch et al., 2023). P denotes prompting (no tuning); R and GC represent Regression and
Generative Classification training objectives. Bold and underline indicate the best metric and QE (no reference)
models. COMET-22 and COMETKiwi are ensembled with 5x and 6x 0.5B models, respectively.

Methods θ ref? System-Level SPA Segment-Level acc∗
eq Avg Corr

MQM ESA MQM ESA MQM ESA

XCOMET (R) 24B 3 86.1% 85.4% 57.6% 56.3% 71.9% 70.9%
MetricX-24-Hybrid (R) 13B 3 85.6% 86.3% 58.5% 56.5% 72.1% 71.4%
ReMedy9B-24 (Ours) 9B 3 85.9% 84.8% 60.0% 55.2% 72.9% 70.0%

GEMBA-ESA (P) - 7 84.6% 81.5% 57.6% 42.2% 71.1% 61.8%
XCOMET-QE (R) 24B 7 83.3% 83.9% 55.7% 55.1% 69.5% 69.5%
MetricX-24-Hybrid-QE (R) 13B 7 84.9% 84.2% 58.0% 55.5% 71.4% 69.8%
ReMedy9B-24-QE (Ours) 9B 7 84.9% 83.5% 59.3% 54.2% 72.1% 68.9%

Table 9: Evaluation on WMT24 MQM (3 LPs) and ESA (9 LPs) set. Bold and underline indicate the best metric
and QE (no reference) models.

A.4 Reward Calibration Analysis1067

In this section, we demonstrate how our entropy-1068

guided temperature selection adapts to different1069

reward distributions, maximizing the information1070

content of the final calibrated scores. Note that1071

such calibration does not change the ranking of1072

evaluated translations, thus, it can only improves1073

the segment pairwise accuracy for tie situations.1074

By selecting the temperature that maximizes1075

Shannon entropy across 20 uniform bins in the1076

[0,1] interval, we ensure calibrated scores utilize1077

the full range effectively, preventing clustering and 1078

preserving meaningful distinctions between transla- 1079

tions of varying quality. Our entropy maximization 1080

can be formulated below in Eq 7: 1081

τ∗ = argmax
τ

H(Pτ ) = argmax
τ

−
20∑
i=1

pτi log p
τ
i

(7) 1082

where Pτ = {pτ1 , pτ2 , ..., pτ20} represents the dis- 1083

tribution of calibrated scores across 20 bins when 1084

using temperature τ . This approach dynamically 1085
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adapts to different reward distributions, providing1086

optimal discrimination where it matters most.1087

In our experiments, we apply the reward cal-1088

ibration for each language pair, since we found1089

different language pairs could demonstrate various1090

translation quality in general, e.g., high resource1091

language pairs like English-German generally have1092

higher translation quality than low-resource lan-1093

guage pairs.1094

A.4.1 High Temperature Case Study:1095

Right-Skewed Distributions1096

Figure 4 illustrates our entropy-guided reward cal-1097

ibration for WMT22 English-German translation1098

submissions. For high-quality MT systems, raw re-1099

wards are typically concentrated in the upper range,1100

creating a right-skewed distribution.1101

The top panel shows two sigmoid functions with1102

different temperature values: the standard sigmoid1103

with T = 1.0 (blue) and our entropy-optimized1104

sigmoid with T = 1.8 (red). The mathematical1105

formulations display how the temperature parame-1106

ter affects the steepness of the curve. The bottom1107

panel shows the histogram of raw reward values1108

from ReMedy-9B-22, where rewards are heavily1109

concentrated between 4 and 6, reflecting the high1110

quality of WMT22 English-German translation sub-1111

missions.1112

With a standard sigmoid (T = 1.0), most high1113

reward values would be mapped to scores very1114

close to 1.0, making distinguishing between good1115

and excellent translations difficult. By increasing1116

the temperature to T = 1.8, the sigmoid curve1117

is horizontally stretched, creating more separation1118

between high-quality translations in the final [0,1]1119

score range. The vertical dashed red lines illustrate1120

how specific histogram bins map to points on the1121

sigmoid curve.1122

Table 10 shows numerically how the increased1123

temperature creates meaningful separation between1124

high-quality translations. For example, raw scores1125

of 4.09 and 5.00 would receive nearly identical1126

scores (0.984 vs. 0.993) with the standard sigmoid,1127

but more distinguishable scores (0.907 vs. 0.941)1128

with our calibrated approach.1129

A.4.2 Low-Normal Temperature Case Study:1130

Rewards with Normally Distribution1131

On the other hand, Figure 5 demonstrates calibra-1132

tion for a more evenly distributed set of raw re-1133

wards (approximately normally distributed around1134

0). Such distribution appears when evaluating di-1135

Raw score (x) σ(x, T = 1.0) σ(x, T = 1.8)

-3.00000 0.04743 0.15887
2.25000 0.90465 0.77730
3.50000 0.97069 0.87484
4.09375 0.98360 0.90673
4.50000 0.98901 0.92414
4.75000 0.99142 0.93332
5.00000 0.99331 0.94146
5.15625 0.99427 0.94607
5.28125 0.99494 0.94950
5.40625 0.99553 0.95273
5.53125 0.99605 0.95576
5.62500 0.99641 0.95791
5.71875 0.99673 0.95996
5.87500 0.99720 0.96317
6.40625 0.99835 0.97232

Table 10: Sigmoid calibration values for right-skewed
reward distributions of high-quality submission systems.
The higher temperature (T = 1.8) creates larger separa-
tion between high rewards that would otherwise cluster
near 1.0 with the standard sigmoid. This enables better
discrimination between good and no-error translations.
These scores correspond to values in Figure 4.

verse MT systems with varying quality levels. Here, 1136

our entropy-guided approach selects a temperature 1137

of T = 0.7, lower than the standard T = 1.0. 1138

With T = 0.7, the sigmoid curve is more com- 1139

pressed, making it steeper around the center. This 1140

compression provides enhanced discrimination for 1141

translations in the mid-quality range, where most 1142

reward values are concentrated in this distribution. 1143

The histogram in the bottom panel confirms the 1144

balanced distribution of raw rewards, and the ver- 1145

tical dashed lines illustrate the mapping between 1146

histogram bins and sigmoid values. 1147

Table 11 demonstrates how the lower tempera- 1148

ture creates greater separation in the central region 1149

of the distribution. For instance, raw scores of -0.76 1150

and 0.52 show larger differences with T = 0.7 1151

(0.253 vs. 0.677) compared to T = 1.0 (0.319 1152

vs. 0.627), improving our ability to discriminate 1153

between average-quality translations. 1154

These case studies demonstrate how our entropy- 1155

guided temperature selection dynamically adapts 1156

to different reward distributions. This approach is 1157

proved to yield better alignment with human judg- 1158

ments (see Table 4) when evaluating diverse MT 1159

systems that may produce translations clustered in 1160

different quality ranges, ensuring optimal discrimi- 1161

nation across the entire quality spectrum. 1162
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Raw score (x) σ(x, T = 1.0) σ(x, T = 0.7)

-3.78125 0.02229 0.00449
-2.68750 0.06371 0.02106
-2.25000 0.09535 0.03863
-1.78906 0.14319 0.07204
-1.42188 0.19437 0.11596
-1.06250 0.25683 0.17978
-0.75781 0.31912 0.25302
-0.49219 0.37938 0.33112
-0.20703 0.44843 0.42659
0.14062 0.53510 0.55005
0.51953 0.62704 0.67747
0.92188 0.71542 0.78868
1.35938 0.79566 0.87457
1.87500 0.86704 0.93575
2.96875 0.95114 0.98581

Table 11: Sigmoid calibration values for evenly dis-
tributed rewards. The lower temperature (T = 0.7)
creates larger separation in the central region where
most scores are concentrated, improving discrimination
between translations of moderate quality. These scores
correspond to values in Figure 5.
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Encoder-only models. For encoder-only models, we use a simple concatenation
format:

# Preferred translation pair
chosen = [

{src_lang}: {src}, {Reference}: {ref*}, {tgt_lang}: {mt+}
]

# Non-preferred translation pair
rejected = [

{src_lang}: {src}, {Reference}: {ref*}, {tgt_lang}: {mt-}
]

Decoder-only models. For decoder-only models, we use a chat template format with
paired preferred and non-preferred examples:

# Preferred translation pair
chosen = [

{’role’: ’user’,
’content’: "Translate the following {src_lang} text into natural,

fluent {tgt_lang} sentence while preserving the original
meaning. You are also given a translation template.
{src_lang}:{src}
Template:{ref*}
{tgt_lang}:"},

{’role’: ’assistant’, ’content’: {mt+}}
]

# Non-preferred translation pair
rejected = [

{’role’: ’user’,
’content’: "Translate the following {src_lang} text into natural,

fluent {tgt_lang} sentence while preserving the original
meaning. You are also given a translation template.
{src_lang}:{src}
Template:{ref*}
{tgt_lang}:"},

{’role’: ’assistant’, ’content’: {mt-}}
]

Where {src_lang}, {tgt_lang} represent source and target language, src, ref ∗ denote
the source and reference sentences, and mt+ and mt− represent the preferred and
non-preferred translations.

Figure 3: ReMedy data format for training and inference
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Figure 4: Reward calibration with high temperature. For such distributions, raw rewards are typically concentrated
in the upper range, creating a right-skewed distribution. With a standard sigmoid (T = 1.0), most high reward
values would be mapped to scores very close to 1.0, making distinguishing between good and excellent translations
difficult. By increasing the temperature to T = 1.8, the sigmoid curve is horizontally stretched, creating more
separation between high-quality translations in the final [0,1] score range.

Figure 5: Reward calibration with low temperature. Such distribution appears when evaluating diverse MT systems
with varying quality levels. With T = 0.7, the sigmoid curve is more compressed, making it steeper around the
center. This compression provides enhanced discrimination for translations in the mid-quality range, where most
reward values are concentrated in this distribution.
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