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ABSTRACT

As a promising memory-efficient technique, zeroth-order (ZO) optimization enables
large language models (LLMs) to bypass the costly process of backpropagation
during fine-tuning by estimating gradients through function evaluations. However,
to minimize approximate variance in high-dimensional parameter spaces, existing
ZO methods focus on exploring the estimate of gradients within random subspaces,
neglecting the benefits of searching for more accurate subspaces of LLMs on
gradient estimates. Due to inaccurate gradient estimates obtained from random
spaces, fine-tuning performance is inevitably degraded, thus compromising the
performance of downstream tasks. To address the limitation of existing ZO meth-
ods, this paper proposes a novel ZO subspace fine-tuning method named SVD-0.
Based on singular value decomposition (SVD), SVD-0 can effectively obtain more
accurate subspace projection matrices, which can be used to improve the accuracy
of gradient estimates. Experimental results on various language modeling tasks
show that SVD-0 achieves better fine-tuning performance than SOTA ZO methods.

1 INTRODUCTION

Due to the powerful capabilities of language understanding and reasoning, large language models
(LLMs) have demonstrated significant performance on a wide range of tasks, such as mathematical
reasoning (Guo et al., 2025), creative writing (Shanahan & Clarke, 2023). Currently, fine-tuning (FT)
the pre-trained foundation model to adapt to downstream tasks has become the mainstream paradigm
for AI application development. However, due to the extremely large number of model parameters,
traditional first-order (FO) optimization-based fine-tuning methods face a serious challenge of
excessive memory consumption. Typically, since the backpropagation process in FO requires storing
activations and optimizer states, the memory requirements of FT are significantly larger than those of
reasoning, which severely limits the development of LLM-based applications.

To achieve memory-efficient FT, existing methods can be classified into two categories, i.e., parameter-
efficient fine-tuning (PEFT) methods (Liu et al., 2022; Han et al., 2024) and zeroth-order (ZO)
optimization methods (Malladi et al., 2023). PEFT methods attempt to reduce the number of trainable
parameters to alleviate memory requirements. However, since PEFT methods are still based on FO
optimization, they require a significant amount of memory to store intermediate training results, which
severely limits the choice of trainable parameters. ZO optimization methods (Malladi et al., 2023)
emerge as a promising alternative by estimating gradients through forward-pass perturbations, thereby
eliminating the memory overhead associated with backpropagation. However, conventional ZO
methods face a critical challenge: the high variance of gradient approximations in billion-parameter
spaces severely degrades optimization efficiency and model performance.

Recent advances in ZO optimization for LLMs, such as SubZero (Yu et al., 2024) and LOZO (Chen
et al., 2025), attempt to mitigate this issue by constraining perturbations to random low-dimensional
subspaces. These methods are based on the finding that gradient matrices become low-rank during
LLM training and fine-tuning (Zhao et al., 2024a). While these subspace methods reduce approxima-
tion variance, they fundamentally rely on arbitrary projection matrices that fail to match the low-rank
structure implied by the gradient. This limitation stems from a fundamental disconnect - the subspace
construction process ignores critical gradient information that could guide more effective parameter
updates. Therefore, how to determine the optimal low-dimensional subspaces without relying on
first-order optimizers poses a fundamental challenge.
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The similarity between the gradient estimated by ZO optimizers and the true gradient has been
experimentally demonstrated in (Malladi et al., 2023). We find it feasible to derive the low-rank
structure of the true gradient from the estimated gradient. In light of this idea, we conducted a
preliminary study (see details in Section 3). The experimental results indicate a significant similarity
between the estimated and true gradients, as demonstrated by the resemblance of their singular value
vectors. Consequently, we conclude that applying singular value decomposition (SVD) to the gradient
estimated by the ZO optimizer allows us to obtain a low-rank structure that closely resembles the
low-rank structure of the true gradient.

Motivated by the above findings, we propose SVD-0, a novel gradient-guided subspace optimization
framework that combines zeroth-order efficiency with principled subspace discovery. Our key
insight is that, while exact first-order gradients remain inaccessible due to memory constraints, ZO
gradient estimates contain sufficient directional information to reconstruct high-fidelity subspaces.
Specifically, SVD-0 periodically performs singular value decomposition (SVD) on ZO gradient
estimates to derive layer-wise projection matrices that capture dominant optimization directions. By
preserving the intrinsic structure of the subspace, our method effectively enhances the performance
of subspace-based ZO methods. The contributions of this work are summarized as follows:

• We propose a novel method for exploring more accurate subspace projection matrices and
conducting layer-wise perturbations on low-rank matrices. With periodic updates of the
projection matrices, our method continuously captures the subspaces of the parameters.

• We develop a novel gradient-guided ZO method to approximate these two projection matri-
ces, ensuring low memory usage throughout the entire fine-tuning process, to overcome the
paradox that obtaining subspace projection matrices requires FO gradients.

• We conduct comprehensive experiments on various model scales and language modeling
tasks. The corresponding results demonstrate the superiority of our method over various ZO
optimization methods specifically designed for LLM fine-tuning.

2 RELATED WORK

Memory-efficient fine-tuning for LLMs. Recent work has concentrated on exploring memory-
efficient fine-tuning methods to enable LLM fine-tuning on memory-intensive hardware. A critical
line of research centers on Parameter-Efficient Fine-Tuning (PEFT) methods (Liu et al., 2022; Han
et al., 2024) by freezing the backbone of LLMs while only tuning a small group of parameters.
For instance, LoRA (Hu et al., 2022) only updates parameters based on low-rank structures while
being competitive with full-parameter fine-tuning. LISA (Pan et al., 2024) distinguishes trainable
layers based on their contribution to task-specific performance and freezes other layers to reduce
the memory footprint. Further, parameter quantization (Lin et al., 2024; Frantar et al., 2022) has
played a pivotal role in enhancing memory efficiency. By discretizing model parameters (e.g., from
32-bit to 8-bit or lower precision), quantization methods such as QLoRA (Dettmers et al., 2023)
and LLM.int8() (Dettmers et al., 2022) reduce storage requirements without significant degradation
in task performance. Complementary to PEFT and the quantization method, subspace projection
techniques have emerged as a powerful strategy to reduce the dimensionality of the optimization
space. Galora (Zhao et al., 2024a) and FLORA (Hao et al., 2024) both leverage the low-rank property
of gradients to constrain updates on a compact subspace of the full parameter space (Huang et al.,
2025). By discovering the projection matrices of low-rank subspaces, the memory costs for storing
gradients and optimizer states (e.g., the first and second order states in Adam optimizer (Kingma &
Ba, 2014)) are greatly reduced.

Zero-order optimization. ZO approaches enable backpropagation-free optimization by approximat-
ing exact gradients through finite differences. This flexibility has driven interest in ZO for solving a
range of machine learning problems, including on-chip learning, black-box adversarial strategies,
and memory-efficient LLMs fine-tuning (Malladi et al., 2023; Zhang et al., 2024). Despite these
strengths, the practical application of ZO is primarily limited to smaller-scale tasks and models. A
critical limitation stems from the high error in its gradient approximations (Park et al., 2025), which
becomes more pronounced as problems grow larger and more complex, making scaling particularly
challenging. To address this issue, approaches such as MeZO-SVRG (Gautam et al., 2024) and
DiZO (Tan et al., 2025) utilize variance-reduction methodologies (Ma & Huang, 2025) to mitigate
gradient divergence. Furthermore, methods including SparseMezo (Liu et al., 2024), TeZO (Sun et al.,
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2025), and AdaZeta (Yang et al., 2024) have been proposed to diminish approximation errors by
reducing dependence on the parameter dimension through parameter sparsification and tensorization.
Subspace methods (Nozawa et al., 2025), including SubZero (Yu et al., 2024) and LOZO (Chen et al.,
2025), are explored to leverage low-rank structures for decreasing the error. Although they effectively
alleviate the variance of gradient approximation, the randomly generated projection matrices cannot
precisely reflect the transformation between the subspace and the full space, leading to degradation in
model performance.

3 PRESTUDY

In exploring the alignment between estimated ZO and true FO gradients in the parameter spaces of
large language models, we perform a targeted analysis using the OPT-1.3B model (Zhang et al., 2022)
on the RTE task (Dagan et al., 2005; Bar Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009). For every 50 training steps, we determine the exact FO gradients through backpropagation
with a batch size of 16 and ZO gradient estimates via MeZO’s simultaneous perturbation method
(Malladi et al., 2023). Subsequently, we apply singular value decomposition (SVD) to both gradient
matrices. We then assess the cosine similarity between the singular value vectors.
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Figure 1: Cosine similarities between
estimated ZO gradients and true gradi-
ents for “Origin” and “After SVD”.

Figure 3 illustrates that the singular vectors demonstrate
high cosine similarity. This finding indicates that the ZO
gradients maintain critical optimization directions and ex-
hibit a similar low-rank structure. This supports our main
hypothesis that ZO gradient estimates contain sufficient
spectral information to reconstruct low-rank subspaces
guided by FO methods. The preserved accuracy in direc-
tional estimates suggests that by limiting ZO perturbations
to the primary gradient subspaces, we can reduce approx-
imation variance while still achieving effective updates.
These concepts form the foundation of our SVD-0 opti-
mization framework, which systematically leverages the
inherent structure in ZO gradient estimates to achieve FO-guided efficiency without the computational
overhead associated with backpropagation. Additional experiments can be found in Appendix B.

4 METHODOLOGY
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Figure 2: Framework and workflow of our SVD-0 method.

Figure 2 illustrates our approach, which focuses on two main components: the matrix update module
and the parameter perturbation module. The matrix update module is for computing and adjusting
the projection matrices, represented as U ∈ Rm×r and V ∈ Rn×r. Together with a low-dimensional
random matrix Z ∈ Rr×r, these matrices are used to generate a low-rank perturbation Z̃.

Within the first module (i.e., the matrix update module), we introduce an innovative and precise
approach to acquire the matrices U and V , as detailed in Algorithm 1. Traditional approaches
often utilize random low-rank perturbation matrices (Chen et al., 2025; Yu et al., 2024). This
randomness contributed to uncertainty in the gradient update process during training. In contrast, our
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approach computes the U and V matrices based on the gradient information derived using the MeZO
method (Malladi et al., 2023) before each update.

The second module serves to perturb the parameters, as described in Algorithm 2. Common en-
hancements, such as SubZero (Yu et al., 2024) and the SVD-0 approach proposed here, reformulate
the update mechanism by adopting a low-rank perturbation method. As illustrated in Figure 2, the
low-rank perturbation Z̃ ∈ Rm×n is determined in the following manner:

Z̃ = UZV T , (1)

where Z ∈ Rr×r is a random perturbation matrix sampled from N(0, 1). Consequently, the parameter
θt ∈ Rm×n during the tth iteration is determined by θ±t = θ± Z̃ = θ±UZV T . Thus, the gradient
is approximated using two forward evaluations as expressed below:

∇̂L(θ±t ) =
L(θ+t ;B)− L(θ−t ;B)

2ϵ
UZV T . (2)

4.1 GRADIENT-GUIDED SUBSPACE PROJECTION MATRIX ACQUISITION

Algorithm 1 GenerateProjMatrix(G, r)

Input: i) G, estimated gradient of parameter
matrix; ii) r, rank.
Output: U , V , projection matrices.
1: (P ,S,Q)← SVD(G)
2: U ← P [:, : r]
3: V ← Q[:, : r]
4: return U , V

Existing approaches to projection matrix construc-
tion consist of a spectrum of techniques, ranging
from randomized sampling methods (Chen et al.,
2025; Yu et al., 2024) to computationally inten-
sive deterministic algorithms (Zhao et al., 2024b).
Although the former is computationally efficient,
it has the drawback of insufficient approximation
accuracy due to its reliance on randomness. The
latter introduces significant computational over-
head while not significantly improving the approx-
imation accuracy. To address this limitation, we propose a balancing strategy based on adaptive
subspace decomposition, as shown in lines 4-7 of Algorithm 3.

Algorithm 2 PerturbParams(W ,U ,V, r, ε, s)
Input: i) W , model parameter set; ii) U and V ,
projection matrix sets; iii) r, rank; iv) ε, pertur-
bation scale; v) s, seed.
Output: Model parameter set after perturbation.

1: ResetGenerator(s)
2: for i = 1, 2, . . . , l do
3: Zi ← GeneratePerturbMatrix(r)
4: Wi ←Wi + εUiZiV

T
i

5: end for
6: return W

To retain the advantage of memory efficiency of
zero-order optimizations, we calculate the gradient
using the MeZO (Malladi et al., 2023) method,
as shown in lines 5-6 of Algorithm 3. Before
calculating the projection matrix each time, the
gradient calculation is required. Then, as shown in
the algorithm 1, the U and V matrices are updated
according to the gradient obtained this time. We
use the SVD method to calculate the projection
matrix. Through this method, the original gradient
is projected onto a compact space R ∈ Rr×r:
R = UTGV . After that, we can generate a low-
rank perturbation Z in this space, as shown in
lines 3-4 of the Algorithm 2, and then use the previously calculated U and V matrices to restore
this low-rank perturbation to the original high-rank space. In this way, we can successfully apply
gradient-based low-rank perturbations to the parameters, and this process introduces no additional
overhead compared to the traditional ZO method (i.e., MeZO).

4.2 PERIODICAL SUBSPACE UPDATE

As mentioned above, we obtain the gradient using the MeZO (Malladi et al., 2023) method and then
calculate the projection matrices U and V via SVD. These two projection matrices jointly determine
the gradient approximation and the parameter update of the tth step. However, this iterative update
method presents a critical trade-off between computational efficiency and subspace adaptability. High-
frequency updates restrict the complete evolution of the gradient subspace while incurring substantial
computational costs, particularly due to the need for gradient recomputation before each projection
matrix update. In contrast, low-frequency updates may fail to capture the dynamic variations in the
gradient subspace throughout the training process.

4
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Therefore, we propose a periodic subspace update strategy. As presented in lines 4-10 in Algorithm 3,
we use the MeZO method to calculate the gradient once at the start step and every F steps thereafter.
Then the obtained gradient is used to update the projection matrices U and V , and keep them
unchanged in the subsequent steps. We have experimentally proved the effectiveness and necessity of
this strategy. As shown in Table 4, the appropriate update frequency can not only ensure efficiency
but also bring significant improvements to model performance.

Algorithm 3 SVD-0
Input: i) Wi ∈ Rmi×ni , i = 1, . . . , l, parameter matrix in the i-th layer; ii) L, loss; iii) T , step
budget; iv) ϵ, perturbation scale; v) {ηt}, learning rate schedule; vi) F , subspace update frequency;
vii) r, rank.

1: for t = 1, . . . , T in parallel do
2: Bt ← SampleMinbatch (st) {Sample a minibatch Bt ⊂ D and a random seed st}
3: for i = 1, 2, . . . , l do
4: if t mod F ≡ 0 then
5: Gi ← EstimateGradient(W t

i , ϵ) {Estimate the gradient of W t
i using MeZO}

6: U t
i ,V t

i ← GenerateProjMatrix(Gi, r)
7: else
8: U t

i ← U t−1
i , V t

i ← V t−1
i

9: end if
10: end for

{W t = {W t
i }li=1, U t = {U t

i }li=1, Vt = {V t
i }li=1}

11: W t ← PerturbParams (W t,U t, Vt, r, ε, st)
12: ℓt+ ← L(W t;Bt)
13: W t ← PerturbParams (W t,U t, Vt, r,−2ε, st)
14: ℓt− ← L(W t;Bt)
15: W t ← PerturbParams (W t,U t, Vt, r, ε, st)
16: ρt←

(
ℓt+ − ℓt−

)
/(2ε)

17: ResetGenerator(s) {Reset random number generator with seed s }
18: for i = 1, 2, . . . , l do
19: Zt

i ← GeneratePerturbMatrix(r) {Regenerate the perturbation matrix Zt
i ∈ Rr×r whose

entries are sampled from N (0, 1)}
20: W t+1

i ←W t
i − ηtρt

(
U t

iZ
t
iV

t
i
T
)

21: end for
22: end for

Table 1: Computational cost (in minutes) comparison.

Method WIC ReCoRD FiQA-SA TFNS

MeZO (Malladi et al., 2023) 114.7 211.4 71.5 113.3
SubZero (Yu et al., 2024) 114.5 207.5 71.3 124.9

SVD-0 116.1 220.6 76.3 116.2

Table 2: Memory cost comparison.

Method RoBERTa-large OPT-1.3B OPT-13B

MeZO (Malladi et al., 2023) 2.042GB 4.732GB 27.693GB
LOZO (Chen et al., 2025) 2.042GB 4.732GB 27.789GB

SVD-0 2.562GB 4.891GB 28.767GB

As shown in Table 1, we compared two representative ZO variants (i.e., MeZO (Malladi et al., 2023)
and SubZero (Yu et al., 2024)) and our SVD-0 method. The findings show that SVD-0 requires a
marginally longer training period, approximately 7% longer than the two ZO variants. It’s worth
mentioning that the time complexity for SVD processes remains at O(n3), where n is the matrix’s
dimension, ensuring that the upper bound of the training time complexity remains unchanged. In
practice, the extra time required by SVD operations is negligible compared to the benefits gained in
classification, multiple-choice, and generation tasks.

Despite reducing computational complexity, this strategy will result in minimal additional memory
usage, as shown in Table 2. We adopt a layer-wise parameter update strategy, where we update only
the parameters of a specific layer of the model simultaneously. This means that during the entire
training process, we only need to store two additional small matrices at the same time, including
the projection matrices U ∈ Rm×r and V ∈ Rn×r, where r is much smaller than the dimension
of the parameter matrix θ ∈ Rm×n. Therefore, the memory usage introduced by the two matrices
remains at the same low level as that introduced in (Yu et al., 2024). This strategy makes our method
almost consistent with the memory required by the MeZO (Malladi et al., 2023) method without any
performance loss, and maintains the memory-saving advantage of the ZO method.
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5 CONVERGENCE ANALYSIS

In this section, we analyze the convergence of our proposed SVD-0. Following the derivations in (Yu
et al., 2024; Nozawa et al., 2025) and (Zhao et al., 2024a), we first present our proposition along with
the corresponding lemma.
Lemma 1. (Low-rank subspace of weight matrices (Zhao et al., 2024a)). Gradient matrices become
low-rank during fine-tuning. The weight matrix update can be formed as:

θT = θ0 + η

T−1∑
t=0

∇̃f(θ)t, ∇̃f(θ)t = Ut(U
⊤
t f(θ)tVt)V

⊤
t , (3)

where η is the learning rate, Ut ∈ Rm×r and Vt ∈ Rn×r are projection matrices and can be
approximated by the spectrum of ∇f(θ)t through (U, V ) = SV D(∇f(θ)t).

Lemma 1 shows that subspace projection matrices can be approximated by adopting SVD on gradients.
Given that the SPSA is an unbiased approximation of the exact gradient∇f(θ), we can use the SPSA
gradient to compute the two projection matrices.
Proposition 1. (Block-diagonal matrix based on SVD). The singular matrices U and V are
column-orthogonal. Therefore, we can similarly define the following notations based on Equation 1:

P = bdiag(V1 ⊗U1, . . . ,Vl ⊗Ul),

z =
[
vec(Z1)

⊤, . . . , vec(Zl)
⊤]⊤ , z̃ =

[
vec(Z̃1)

⊤, . . . , vec(Z̃l)
⊤
]⊤

.

Proposition 1 indicates that the projection matrices in our method exhibit the same properties as the
column-orthogonal matrices discussed in (Yu et al., 2024). Consequently, the subsequent theoretical
analysis can follow the same approach as that demonstrated in (Yu et al., 2024).
Lemma 2. (Bounded gradient estimation error (Yu et al., 2024)). For the gradient estimation in
Equation 2, the following two properties hold.

i) By using gradient estimation in Equation 2, the estimated gradient ∇̂f(θ) is equivalent to:

∇̂f(θ) = f(θ + εPz)− f(θ − εPz)

2ε
Pz, (4)

where z ∼ N (0, Iq), ε > 0, P ∈ Rd×q satisfies P⊤P = Iq with d =
∑l

i=1 mini and q = lr2.

ii) Let z ∼ N (0, Iq), and f ∈ C2,2
L2

(Rd). Based on Equation 4 whose properties have been analyzed
in (Nozawa et al., 2025), our method has the same bounded gradient estimation error as that in (Yu
et al., 2024): ∥∥∥Ez

[
∇̂f(θ)

]
− PP⊤∇f(θ)

∥∥∥
2
≤ ε2

6
L2(q + 4)2. (5)

Note that f ∈ Cs,p
L (S) denotes the class of s-th smooth and p-th L-smooth functions over the set S.

Theorem 1. (Convergence of SVD-0). Consider the optimization problem x∗ = argmin
x∈Rd

f(x),

in which f ∈ C1,1
L1

(Rd) and f exhibits non-convex behavior. Define the stochastic sequence Ek =
(z0, z1, . . . ,zk), where each zk follows the normal distributionN (0, Iq). Set the step-size parameter

as η =
1

4(q + 4)L1
. Let {xk}k>0 denote the iterates produced via Algorithm 3. For SVD-0, we

establish its convergence rate as:

1

T

T−1∑
k=0

EEk

[∥∥∇f(xk)
∥∥2] ≤ ε,

Under the scaling T = Ω

(
d

ε2

)
for ε ≤ O

(
1

q3/2d1/2L
3/2
1

)
, this aligns with prior theoretical

derivations.

By combining Proposition 1 and Lemma 2 within the framework proposed in (Yu et al., 2024),

Theorem 1 demonstrates that our SVD-0 achieves a convergence rate of O(
√

d
T ), matching the rate

derived in (Yu et al., 2024). For a more detailed explanation, please see Appendix C.
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6 EXPERIMENTS

To evaluate the effectiveness of our approach, we implemented SVD-0 using the PyTorch framework
(version 20.10). All experiments were conducted on a Linux workstation equipped with CentOS,
featuring two NVIDIA A100-40GB GPUs, dual Intel Xeon 6240R CPUs, and 384GB of RAM. The
following presents the dataset settings and ZO baselines used in the experiments. Please refer to
Appendix A for our detailed model settings.

Dataset Settings. For OPT models, we experimented with the SuperGLUE benchmark Wang et al.
(2019), which consists of various types of tasks, including classification tasks (e.g., SST-2 Socher
et al. (2013), RTE Bar Haim et al. (2006); Bentivogli et al. (2009); Dagan et al. (2005); Giampiccolo
et al. (2007), CB de Marneffe et al. (2019), BoolQ Clark et al. (2019), WSC Levesque et al. (2012),
and WIC Pilehvar & Camacho-Collados (2019)), multiple choice tasks (e.g., COPA Roemmele
et al. (2011) and ReCoRD Zhang et al. (2018)), and generation tasks (e.g., SQuAD Rajpurkar et al.
(2016) and DROP Dua et al. (2019)). Here, for each task, we randomly selected 1000 samples for
training, 500 samples for validation, and 1000 samples for testing. For the RoBERTa-large model,
in addition to the task SST-2, we investigated three more tasks, i.e., SST-5 (Socher et al., 2013),
SNLI (Bowman et al., 2015), and MNLI (Williams et al., 2018). In this case, we fixed the parameter
k at 512 throughout the training and validation phases, indicating that 512 samples are allocated for
each category. For the testing phase, we randomly chose a total of 1000 samples.

ZO Baselines. Our SVD-0 method was evaluated against six latest ZO optimization algorithms,
i.e., MeZO (Malladi et al., 2023), ZO-AdaMU (Jiang et al., 2024), S-MeZO (Liu et al., 2024),
SubZero (Yu et al., 2024), LOZO (Chen et al., 2025), and HiZOO (Zhao et al., 2024b). Meanwhile,
we examined three memory-efficient inference-only approaches, i.e., zero-shot evaluation, in-context
learning (ICL) (Brown et al., 2020), and linear probing (LP) (Kumar et al., 2022).

We designed our experiments to explore the following research questions (RQs).
RQ1 (Superiority of SVD-0): To what extent does SVD-0 outperform SOTA methods in accuracy?
RQ2 (Impact of Hyperparameters): What are the impacts of critical hyperparameters (e.g., learning
rate, subspace rank, subspace update frequency) on SVD-0-based fine-tuning?
RQ3 (Applicability of SVD-0): How does SVD-0 perform when fine-tuning models of varying sizes
or architectures (e.g., masked or causal language models)?

6.1 COMPARISON WITH STATE-OF-THE-ARTS (RQ1)

We compared our proposed SVD-0 method with the SOTA ZO optimizers. The experiments were
conducted on the SuperGLUE benchmark employing both the OPT-13B and OPT-1.3B language
models of different sizes. Note that in each experiment, we applied the adopted stochastic gradient
descent (SGD) or ZO method to all model parameters.
Table 3: Comparison of OPT-13B fine-tuning performance (%) on SuperGLUE, where the best results
are presented in bold and the second-best results are highlighted with underlines.

Method Classification Task Multiple Choice Task Generation Task All Task

SST-2 RTE CB BoolQ WSC WIC MultiRC Total COPA ReCoRD Total SQuAD DROP Total Total

SGD 94.9 82.3 85.7 78.4 65.3 65.8 74.2 - 90.0 82.4 - 88.0 35.5 - -

Zero-shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 - 80.0 81.2 - 46.2 14.6 - -
ICL (Brown et al., 2020) 87.0 62.1 57.1 66.9 39.4 50.5 53.1 - 87.0 82.5 - 75.9 29.6 - -
LP (Kumar et al., 2022) 93.4 68.6 67.9 59.3 63.5 60.2 63.5 - 55.0 27.1 - 3.7 11.1 - -

MeZO (Malladi et al., 2023) 92.1 71.5 71.4 74.4 61.5 60.0 60.1 0% 87.0 82.0 0% 84.2 31.2 0% 0%
ZO-AdaMU (Jiang et al., 2024) 92.1 72.9 67.9 73.0 61.5 60.7 63.0 0.02% 89.0 83.0 1.78% 82.4 32.0 -0.87% 0.27%

S-MeZO (Liu et al., 2024) 92.3 76.9 75.0 76.5 61.1 58.2 63.3 2.51% 87.0 71.2 -6.39% 77.9 31.9 -4.85% -0.53%
HiZOO (Zhao et al., 2024b) 91.3 69.3 69.4 67.3 63.5 59.4 55.5 -3.12% 88.0 81.4 0.24% 81.9 31.3 -1.91% -2.21%
LOZO (Chen et al., 2025) 91.7 70.4 69.6 71.9 63.5 60.8 63.0 -0.02% 89.0 81.3 0.77% 84.9 30.7 0.17% 0.18%
SubZero (Yu et al., 2024) 92.1 74.0 73.2 75.3 65.4 60.8 61.0 2.20% 88.0 82.3 0.77% 84.5 32.0 0.95% 1.70%

SVD-0 93.6 75.5 71.4 75.2 63.5 65.4 60.6 2.89% 89.0 82.2 1.30% 85.1 30.9 0.52% 2.19%

Table 3 compares the fine-tuning performance of the OPT-13B model on SuperGLUE benchmark
tasks. Here, we considered three types of fine-tuning methods: i) the traditional fine-tuning method
(i.e., SGD) with backpropagation; ii) inference-only methods (i.e., Zero-shot, ICL, and LP) without
fine-tuning; and iii) memory-efficient ZO-based methods. To enable a fair comparison between ZO-
based methods, we used the MeZO method here as a reference. We evaluated the overall performance
across each classification task category and denoted the improvement in performance compared to
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the baseline (i.e., MeZO) in the sub-column labeled “Total”. For example, the total performance
on multiple choice tasks with MeZO and SVD-0 is 169.0 and 171.2, respectively. In this case,
SVD-0 improves inference performance by 1.30% compared to MeZO. From the results provided in
the “Total” sub-columns, we can find that SVD-0 can always achieve top-2 inference performance.
Furthermore, we used the final column to show the relative performance improvement for all tasks.
From this column, we can find that SVD-0 achieves the best overall performance. Interestingly, while
S-MeZO matches SVD-0 in the number of tasks where it excels, its overall performance, shown in
the final column, is noticeably inferior to SVD-0 and even falls short of the reference (i.e., MeZO).

6.2 IMPACTS OF HYPERPARAMETERS (RQ2)

In this experiment, we investigate three key hyperparameters (i.e., subspace update frequency, rank,
and learning rate) to evaluate their impacts on fine-tuning performance.

Table 4: Impact of subspace update frequency, where the best results are highlighted in bold.
Frequency SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP

50 90.5 57.0 64.3 65.0 63.5 55.6 57.5 72.0 72.4 74.2 23.0
500 89.5 55.6 69.6 64.1 63.5 53.9 58.1 73.0 72.2 74.3 22.9

1000 90.6 58.5 71.4 65.2 63.5 56.4 58.2 73.0 72.1 73.7 24.0
2000 89.2 56.7 73.2 64.5 62.5 57.4 58.1 73.0 71.7 72.6 23.8
20000 89.8 56.3 71.4 65.3 62.5 57.5 58.2 72.0 72.1 72.6 22.6

For the subspace update frequency F , our goal is to evaluate the impact of varying this frequency
on model performance across different tasks. We conducted experiments based on the OPT-1.3B
model, with a fixed rank of r = 24 and a learning rate of 1e−7. In this analysis, we evaluated five
frequencies at varying magnitudes, specifically selected from the set {50, 500, 1000, 2000, 20000}.
Table 4 provides the experimental results. From this table, we can find that when the frequency is set
to 1000 (i.e., the subspace is updated every 1000 steps), SVD-0 achieves the best performance in
six of the eleven tasks. Note that SVD-0-based fine-tuning is not sensitive to the hyperparameter F .
Therefore, we suggest setting F to 1000 by default for fine-tuning.

Table 5: Impacts of rank and
learning rate on inference.

Rank\LR 1e−7 5e−7 1e−6

2 87.7 91.2 86.7
24 90.6 92.2 90.3
48 89.5 91.6 90.1
64 89.9 90.4 91.6

128 90.0 91.3 90.6

We investigated the rank of hyperspace (i.e., r) and the learning
rate in tandem. Table 5 presents the fine-tuning performance un-
der various combinations of these two hyperparameters, where the
rank is selected from {2, 24, 48, 64, 128} and the learning rate is
selected from {1e−7, 5e−7, 1e−6}. All the experimental results are
collected based on the SST-2 task using the OPT-1.3B model, with a
fixed subspace update frequency of 1000. This table shows that the
fine-tuning performance is weak when the rank is low (i.e., r = 2).
While elevating the rank can enhance fine-tuning performance, the
extent of this enhancement becomes negligible once the rank surpasses 24. At low ranks, the per-
formance can vary significantly with different learning rates. In contrast, increasing rank tends to
reduce this variability in performance. Moreover, we observe a similar trend for the learning rate
hyperparameter, where setting the learning rate to 5e−7 achieves the best performance for most rank
settings. However, increasing the learning rates can lead to a decline in inference performance.

6.3 IMPACT OF MODEL SIZES AND ARCHITECTURES (RQ3)

In Table 3, we have evaluated the adaptability of SVD-0 to large-scale LLMs. To further validate
the generalizability of our approach, we extended our evaluation to the OPT-1.3B model, using
representative tasks of different types. These tasks include SST-2 and WIC, which are classification
tasks, ReCoRD, a multiple-choice task, and SQuAD, a generation task. Table 6 presents the results of
the comparison between four ZO-based fine-tuning methods, where the last column shows the average
fine-tuning performance of the four tasks. According to this table, we can see that SVD-0 is also well-
suited for fine-tuning on small-scale LLMs. Although LOZO delivers the highest performance in this
experiment, the difference in average fine-tuning performance between SVD-0 and LOZO is minimal
(i.e., only 0.2%). Note that SVD-0 achieves better performance than MeZO, the reference method,
while SubZero fails to beat MeZO. Moreover, SVD-0 can consistently outperform its counterpart (i.e.,
SubZero) by an average of 0.7%. All these observations substantiate the efficiency of our method in
enhancing subspaces for optimizing LLMs.
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Table 6: Fine-tuning performance (%) comparison
for OPT-1.3B, where the top-2 results are marked
in bold and with underlines, respectively.

Method SST-2 WIC ReCoRD SQuAD AVG.

MeZO (Malladi et al., 2023) 91.7 61.1 72.2 77.4 75.6
LOZO (Chen et al., 2025) 93.2 62.4 71.9 78.1 76.4
SubZero (Yu et al., 2024) 91.9 60.7 72.0 77.6 75.5

SVD-0 (Ours) 93.0 61.1 73.0 77.6 76.2

Table 7: Fine-tuning performance (%) comparison for
RoBERTa-large, where the top-2 results are marked in
bold and with underlines, respectively.

Method SST-2 SST-5 SNLI MNLI

Zero-shot 79.0 35.5 50.2 48.8
MeZO (Malladi et al., 2023) 93.7 (0.4) 53.9 (1.9) 84.8 (1.1) 76.6 (0.8)
LOZO (Chen et al., 2025) 94.1 (0.7) 53.0 (0.4) 85.4 (0.8) 80.4 (1.0)

SVD-0 (Ours) 94.4 (0.7) 54.4 (0.7) 85.4 (1.3) 80.4 (1.5)

We investigated the fine-tuning performance of different optimization methods on RoBERTa-large,
where we considered four downstream tasks, including two sentiment classification tasks (i.e., SST-2
and SST-5) and two natural language inference tasks (i.e., SNLI and MNLI). For a fair comparison,
like the work in (Chen et al., 2025), we performed fine-tuning on each task five times using different
random seeds. Table 7 presents the experimental results, reflecting both the average inference
performance and its standard deviation (indicated in parentheses) for each combination of fine-tuning
methods and tasks. From this table, we can see that SVD-0 performs the best compared to SOTA ZO
optimization methods, demonstrating the adaptability of our approach to various model architectures.

Table 8: Fine-tuning performance (%) comparison
for Qwen-1.8B, where the top-2 results are marked in
bold and with underlines, respectively.

Method SST-2 WIC ReCoRD Total

MeZO (Malladi et al., 2023) 78.3 55.6 64.8 0%
LOZO (Chen et al., 2025) 81.7 55.2 64.8 1.51%
SubZero (Yu et al., 2024) 80.8 56.7 65.2 2.01%

SVD-0 82.2 57.2 65.3 3.02%

Table 9: Fine-tuning performance (%) comparison for
OPT-1.3B on financial datasets, where the top-2 results
are marked in bold and with underlines, respectively.

Method FPB FIQA-SA TFNS NWGI Total

MeZO (Malladi et al., 2023) 65.3 81.4 74.7 48.5 0%
LOZO (Chen et al., 2025) 61.3 85.1 71.6 53.7 0.67%
SubZero (Yu et al., 2024) 66.4 84.0 78.4 49.7 3.19%

SVD-0 74.1 84.0 76.3 52.8 6.41%

To further validate the generalization ability of our method on cutting-edge models, we conducted
experiments based on the Qwen-1.8B model. We exclusively compared our method against the
baseline (i.e., MeZO (Malladi et al., 2023)) and the two most recent ZO baseline techniques (i.e.,
LOZO (Chen et al., 2025) and SubZero (Yu et al., 2024)). Table 8 shows that our approach still
achieves the best performance, indicating the adaptability and generalizability of our method in
cutting-edge models. Moreover, we assessed SVD-0 on datasets derived from four financial sentiment
analysis benchmarks, including FPB (Malo et al., 2014), FIQA-SA (Maia et al., 2018), TFNS (Magic,
2022), and NWGI (Yang, 2023). As shown in Table 9, SVD-0 achieves the highest total performance,
demonstrating the method’s reliability and efficiency across various domains and task types.

6.4 DISCUSSION

Limitations. While the SVD-0 technique improves the ZO subspace fine-tuning approach, the
accuracy of the subspace projection matrices is significantly influenced by the precision of the
ZO gradients. In smaller models, such as the OPT-1.3B, the ZO gradients may have a greater
approximation error, which can result in decreased precision in obtaining the projection matrices.

Border Impacts. In this paper, we introduced a new approach to derive more precise projection
matrices, which can be used to improve the effectiveness of ZO subspace fine-tuning techniques for
LLMs. Our method utilizes SVD on ZO gradients to extract projection matrices, eliminating the
need for the memory-demanding FO gradients. Our theoretical convergence analysis, in conjunction
with the experimental findings, demonstrates that our research makes a positive contribution to the
advancement of memory-efficient fine-tuning methods for LLMs.

7 CONCLUSION

Although various zeroth-order (ZO) optimization methods have been proposed to enable memory-
efficient fine-tuning for large language models (LLMs), due to the use of random subspaces, most
of them suffer from inaccurate gradient estimation, resulting in inferior training performance. To
address this problem, this paper presents a novel ZO subspace fine-tuning method named SVD-0. By
precisely capturing fine-tuning subspaces, SVD-0 enables the construction of projection matrices
with higher accuracy, thereby achieving more accurate gradient estimation and improving the LLM
fine-tuning performance. Extensive experimental findings demonstrate the efficacy of SVD-0 in
dealing with complex language modeling tasks. In the future, we plan to integrate our SVD-0 method
with parameter quantization techniques to reduce the memory requirements of LLM fine-tuning.
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A DETAILED EXPERIMENTAL SETTINGS

A.1 MODEL SETTINGS

In our experiments, we considered both large-scale autoregressive language models (i.e., OPT-1.3B
and OPT-13B (Zhang et al., 2022)) and a masked language model (i.e., RoBERTa-large (Liu et al.,
2019)). In the experiments, all ZO methods used a batch size of 16, except where specified, since
larger batches help minimize the gradient approximation variance. We chose MeZO as the main
baseline because it is the first widely adopted ZO optimizer for LLMs, and included the first-order
SGD as a reference for optimization. In line with previous research (Malladi et al., 2023; Zhang
et al., 2024), our experiments utilized standardized prompt templates, which are crucial in influencing
the performance of ZO methods. Moreover, to ensure a fair comparison, we considered multiple
values for each key hyperparameter. For example, we investigated the following hyperparameter
configurations for OPT-13B: a learning rate in {1e−7, 2e−7, 5e−7, 1e−6}, ϵ = 1e− 3, a batch size
of 16 (except for MultiRC and DROP which have a batch size of 8), a rank in {24, 32, 48, 64, 128},
and a subspace update frequency in {500, 1000, 2000}. Please refer to Appendix A for detailed
configurations of other models. Similar to the work in (Yu et al., 2024), we conducted an exhaustive
grid search over hyperparameters for each pairing of ZO methods and LLMs, using the best results
for an equitable comparison.

A.2 DATASET SETTINGS.

For OPT models, we experimented with the SuperGLUE benchmark (Wang et al., 2019), which
consists of various types of tasks, including classification tasks (e.g., SST-2 (Socher et al., 2013),
RTE (Bar Haim et al., 2006; Bentivogli et al., 2009; Dagan et al., 2005; Giampiccolo et al., 2007),
CB (de Marneffe et al., 2019), BoolQ (Clark et al., 2019), WSC (Levesque et al., 2012), and
WIC (Pilehvar & Camacho-Collados, 2019)), multiple choice tasks (e.g., COPA (Roemmele et al.,
2011) and ReCoRD (Zhang et al., 2018)), and generation tasks (e.g., SQuAD (Rajpurkar et al.,
2016) and DROP (Dua et al., 2019)). Here, for each task, we randomly selected 1000 samples for
training, 500 samples for validation, and 1000 samples for testing. For the RoBERTa-large model,
in addition to the task SST-2, we investigated three more tasks, i.e., SST-5 (Socher et al., 2013),
SNLI (Bowman et al., 2015), and MNLI (Williams et al., 2018). In this case, we fixed the parameter
k at 512 throughout the training and validation phases, indicating that 512 samples are allocated for
each category. For the testing phase, we randomly chose a total of 1000 samples.
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A.3 HYPERPARAMETER SETTINGS

This section provides a detailed overview of the hyperparameters employed in our grid search across
the experiments, as depicted in Tables 10 and 12. For the OPT model, we carried out 20,000 steps
for each method. Both the SGD and ZO methodologies were implemented for an identical number
of steps. In the remaining RoBERTa experiments, ZO optimization strategies were applied over
100,000 training steps. For both models, we evaluated the validation loss every 1,000 training steps
to determine the optimal model checkpoint. In the S-MeZO strategy, the sparsity rate is set to 0.75.

Table 10: The hyperparameter grids used for OPT-13B experiments.

Method Hyperparameters

Batch Size Learning Rate ϵ Rank Update Interval

SGD 16 {1e−4, 1e−3, 5e−3 } – – –
MeZO (Malladi et al., 2023) 16 {1e−7, 2e−7, 5e−7, 1e−6} 1e−3 – –
S-MeZO (Liu et al., 2024) 16 {1e−6, 5e−6} 1e−3 – –
LOZO (Chen et al., 2025) 16 {1e−7, 1e−6} {1e−3, 1e−4} {1, 2, 4} {50, 100}
SubZero (Yu et al., 2024) 16 {1e−7, 2e−7, 5e−7, 1e−6} 1e−3 {32, 64, 128, 256} {500, 1000, 2000}

SVD-0 16 {1e−7, 2e−7, 5e−7, 1e−6} 1e−3 {24, 32, 48, 64, 128} {500, 1000, 2000}

Table 11: The hyperparameter grids used for OPT-1.3B experiments.

Method Hyperparameters

Batch Size Learning Rate ϵ Rank Update Interval

MeZO (Malladi et al., 2023) 16 {1e−7, 5e−7, 1e−6} 1e−3 – –
LOZO (Chen et al., 2025) 16 {1e−7, 1e−6} {1e−3, 1e−4} {1, 2, 4} {50, 100}
SubZero (Yu et al., 2024) 16 {1e−7, 5e−7, 1e−6} 1e−3 {24, 48} 1000

SVD-0 16 {1e−7, 5e−7, 1e−6} 1e−3 {8, 24, 48} {50, 500, 1000}

For all previously mentioned ZO methods, we utilized a consistent learning rate schedule and set the
weight decay to zero. Typically, we chose a batch size of 16 for the OPT-1.3B and OPT-13B models
across various tasks. Nonetheless, due to limited GPU resources, we reduced the batch size to 8 for
the DROP, MultiRC, and SQuAD evaluations.

Table 12: The hyperparameter grids used for RoBERTa-large experiments.

Method Hyperparameters

Batch Size Learning Rate ϵ Rank Update Interval

MeZO (Malladi et al., 2023) 64 {1e−7, 1e−6, 1e−5} 1e−3 – –
LOZO (Chen et al., 2025) 64 2e−7 1e−3 {4, 8} {50, 100}

SVD-0 64 1e−6 1e−3 {8, 16, 24} 1000

B DETAILED PRESTUDY RESULTS

Table 13: Comparison between SVD and other dimensionality reduction techniques.
Method Mean Std Min Max Median

Origin 0.0000 0.0005 -0.0013 0.0012 0.0000
After SVD (ours) 0.4249 0.0257 0.3276 0.4774 0.4278

PCA -0.0003 0.0044 -0.0141 0.0101 -0.0004
NMF 0.2464 0.0442 0.1097 0.3594 0.2456

Factor Analysis 0.0001 0.0045 -0.0124 0.0136 -0.0002
Random Proj -0.0002 0.0045 -0.0112 0.0177 -0.0001

t-SNE -0.0009 0.0157 -0.0437 0.0567 -0.0012

We conducted experiments to investigate why SVD outperforms other methods for dimensionality
reduction. Table 13 presents a comparison between our dimensionality reduction strategy ("After
SVD") and other techniques (PCA, NMF, Factor Analysis, Random Projection, and t-SNE) based on
the calculated gradients. As shown in Table 13, our method yields the highest mean value (0.4249)
among all dimensionality reduction techniques, accompanied by a lower standard deviation (0.0257),
which highlights its superior and consistent performance.
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C PROOFS

Here, we introduce some definitions and lemmas for continuous proofs. The following two lemmas
illustrate that the low-rank perturbation matrix for each layer can be represented as a layer-scale
projection matrix that is orthogonal across its columns.

Lemma 3. Let Z̃ = UZV T, where U ∈ Rm×r,Z ∈ Rr×r,V ∈ Rn×r, and UTU = V TV = Ir.
Then we have vec(Z̃) = P vec(Z) and P TP = Ir2 , where P = V ⊗U .

Proof. Since vec(UZV T) = (V ⊗U)vec(Z), we only need to show (V ⊗U)T(V ⊗U) = Ir2 .
In fact:

(V ⊗U)T(V ⊗U) = (V T ⊗UT)(V ⊗U) = (V TV )⊗ (UTU) = Ir ⊗ Ir = Ir2 .

The proof is completed.

We can also show that the low-rank perturbation matrices across all layers can be represented as a
model-scale projection matrix.

Lemma 4. Let a block diagonal matrix P = bdiag(P1,P2, · · · ,Pl) and z̃i = Pizi, where
P T

i Pi = Ir2 and i = 1, 2, . . . , l. Then we have z̃ = Pz, where z̃ = [z̃T
1 , . . . , z̃

T
l ]

T, z = [zT
1 ,

. . . , zT
l ]

T and P TP = Ilr2 .

Proof. It is easy to check that z̃ = Pz. Besides, we have:

P TP = bdiag(P T
1 , . . . ,P T

l )bdiag(P1, . . . ,Pl) = bdiag(P T
1 P1, . . . ,P

T
l Pl) = Ilr2 .

The proof is completed.

According to Lemma 4 and Proposition 1, the perturbation vector of SVD-0 is given by z̃ = Pz.
This is similar to existing random subspace methods, but SVD-0’s projection matrix is block diagonal
and orthogonal by columns.

Definition 1. We say that the vector z is a standard n-dimensional Gaussian vector, denoted by
z ∼ N (0, In), if its probability density function is given by p(z) = 1

κe
− 1

2∥z∥
2

, where κ > 0 satisfies
the condition

∫
Rn

1
κe

− 1
2∥z∥

2

dz = 1.

Definition 2. Let z ∼ N (0, In). We say that x is a chi-square random variable with n degrees of
freedom (denoted by x ∼ χ2(n)) if x = ∥z∥2.

Lemma 5. Let z ∼ N (0, In). For any orthogonal (n× n) matrix Q and any continuous function f ,
we have Ez[f(z)] = Ez[f(Qz)].

Lemma 6. If x ∼ χ2(n), then we have:

Ex[x] = n, Varx[x] = 2n.

Lemma 7. (Nesterov & Spokoiny, 2017) Let f ∈ C2,2
L2

(Rn). For all x,y ∈ Rn, we have:

|f(y)− f(x)− ⟨∇f(x),y − x⟩ − 1

2
⟨∇2f(x)(y − x),y − x⟩| ≤ L2

6
∥y − x∥3.

Lemma 8. (Nesterov & Spokoiny, 2017) Let z ∼ N (0, In). For 0 ≤ t ≤ 2, we have:

Ez[∥z∥t] ≤ nt/2.

For t ≥ 2, we have:

nt/2 ≤ Ez[∥z∥t] ≤ (n+ t)t/2.

Lemma 9. Let z ∼ N (0, In). For all y ∈ Rn, we have:

Ez[∥⟨y, z⟩z∥2] = (n+ 2)∥y∥2.
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Proof. Note that for any orthogonal (n× n)-matrix Q, we have:

∥⟨y,Qz⟩Qz∥2 = ∥⟨QTy, z⟩z∥2, ∥QTy∥ = ∥y∥.

In accordance with Lemma 5, we can set y = [1, 0, . . . , 0]T, and only need to prove Ez[∥⟨y, z⟩z∥2] =
n+ 2. Equipped with Lemma 6, we get:

Ez[∥⟨y, z⟩z∥2] = Ez

[
n∑

i=1

z2
1z

2
i

]
=

n∑
i=1

Ez[z
2
1z

2
i ] = Ez1

[z4
1 ] + Ez1

[z2
1 ]

n∑
i=2

Ez[z
2
i ] = n+ 2.

The proof is completed.

Here we provide the proof of Lemma 2.

Proof. a) The conclusion is clearly supported by Lemma 3 and Lemma 4.

b) Let az(τ) = f(x+ τz)− f(x)− τ⟨∇f(x), z⟩ − τ2

2 ⟨∇
2f(x)z,z⟩. Lemma 7 implies that:

|az(±ε)| ≤
ε3

6
L2∥z∥3.

Note that:

Ez[∇̂f(θ)]− PP T∇f(x)

=
P

2κε

∫
Rq

[f(x+ εPz)− f(x− εPz)− 2ε⟨∇f(z),Pz⟩]ze− 1
2∥z∥

2

dz.

Therefore, in accordance with Lemma 8, we have:

∥Ez[∇̂f(θ)]− PP T∇f(x)∥

≤ 1

2κε

∫
Rq

|f(x+ εPz)− f(x− εPz)− 2ε⟨∇f(z),Pz⟩|∥z∥e− 1
2∥z∥

2

dz

=
1

2κε

∫
Rq

|aPz(ε)− aPz(−ε)|∥z∥e−
1
2∥z∥

2

dz

≤ ε2L2

6κ

∫
Rq

∥z∥4e− 1
2∥z∥

2

dz ≤ ε2

6
L2(q + 4)2.

The proof is completed.

Theorem 2. Let f(x) = xTHx and z ∼ N (0, Iq), where H ∈ Rd×d is positive definite. We have:

Ez[∇̂f(θ)] = PP T∇f(x), (6)

Ez[∥∇̂f(θ)∥2] = (q + 2)∥P T∇f(x)∥2, (7)

Ez

[
⟨∇f(x), ∇̂f(θ)⟩2

∥P T∇f(x)∥2∥∇̂f(θ)∥2

]
=

1

q
. (8)

Proof. It is straightforward to verify that

∇̂f(θ) = P ⟨P T∇f(x),z⟩z.

Therefore, we can express the expected value as

Ez[∇̂f(θ)] = PP T∇f(x).

Combining this with Lemma 9, we find that

Ez[∥∇̂f(θ)∥2] = (q + 2)∥P T∇f(x)∥2.
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Additionally, it is important to note that for any orthogonal (q × q) matrix Q, we have:

Ez

[
⟨∇f(x), ∇̂f(θ)⟩2

∥P T∇f(x)∥2∥∇̂f(θ)∥2

]
= Ez

[
⟨P T∇f(x),z⟩2

∥P T∇f(x)∥2∥z∥2

]
= Ez

[
⟨P T∇f(x),Qz⟩2

∥P T∇f(x)∥2∥Qz∥2

]
= Ez

[
⟨QTP T∇f(x),z⟩2

∥QTP T∇f(x)∥2∥z∥2

]
.

In accordance with Lemma 5, we can set P T∇f(x) = [1, 0, . . . , 0]T. Thus, we have:

Ez

[
⟨∇f(x), ∇̂f(θ)⟩2

∥P T∇f(x)∥2∥∇̂f(θ)∥2

]
= Ez

[
z2
1

∥z∥2

]
=

1

q
.

The proof is completed.

To demonstrate the convergence of SVD-0 with SGD, we can structure our analysis into two main
segments. The first segment examines the convergence behavior of the SVD-0 solution process while
keeping the projection matrix P constant. The second segment evaluates the impact of performing
lazy updates to P . Through these assessments, we aim to establish the global convergence of SVD-0,
specifically in the context of a single layer.

In the initial stage, while P remains constant, we can reformulate the original SVD-0 problem
as an optimization problem constrained within that subspace. We define h(y) = f(x + Py),
hε(y) = Ez[h(y + εz)], and gε(y) =

h(y+εz)−f(y)
ε z. According to Lemma 10, if f demonstrates

first L1-smoothness, then h will also exhibit first L1-smoothness.
Lemma 10. Let h(y) = f(x + Py), where f ∈ C1,1

L1
(Rd), and P TP = I , then we have h ∈

C1,1
L1

(Rq).

Proof. The following demonstrates that if f is first L1-smooth, then h is also first L1-smooth. For
any y1 ∈ Rq and y2 ∈ Rq , we have:

∥∇h(y1)−∇h(y2)∥ =
∥∥P T∇(f(x+ Py1)− P T∇(f(x+ Py2)

∥∥
≤
∥∥P T

∥∥ ∥∇(f(x+ Py1)−∇(f(x+ Py2)∥
≤ L1 ∥P (y1 − y2)∥
= L1 ∥y1 − y2∥ .

The proof is completed.

We then analyze the convergence of SVD-0 while maintaining a fixed subspace.

Lemma 11. Nesterov & Spokoiny (2017) Let f ∈ C1,1
L1

(R). Then, for any x ∈ R, we have:

Ez[∥gε(x)∥2] = Ez

[
∥f(x+ εz)− f(x)

ε
∥2
]
≤ 4(n+ 4)∥∇fε(x)∥2 + 3ε2L2

1(f)(n+ 4)3, (9)

and

∥∇f(x)∥2 ≤ 2∥∇fε(x)∥2 +
ε2

2
L2
1(f)(n+ 6)3, (10)

where fε(x) = Ez[f(x+ εz)].

Lemma 12. Let y∗ = argminx∈Rq h(y), where h ∈ C1,1
L1

(Rq) and h is non-convex. Suppose
Ek = (z0, z1, · · · , zk−1, zk), where zk ∼ N (0, Iq) and η = 1

4(q+4)L1
. {yk}k>0 is the sequence

generated by Algorithm 3. Let ϕ0 = h(y0), and for k ≥ 1, ϕk = EEk−1
[h(yk)]. For the P defined in

Proposition 1, which is fixed, we have:

ϕk+1 − ϕk ≤ −
1

4
ηEEk

[
∥∇h(yk)∥2

]
+

ε2(q + 6)3

8
L2
1 +

3ε2(q + 4)

32
L1 (11)
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Proof. If we have a fixed subspace P ∈ Rd×q, we can reformulate the optimization objective as
follows:

min
y∈Rq

h(y) := f(x+ Py),

Let y0 represent the initial point, and let {ηk}k≥0 be a sequence of positive real numbers. We will
consider the randomized gradient search algorithmRGε(ε > 0):

1. Generate zk and the corresponding gε(yk), where zk ∼ N (0, Iq).

2. Update yk+1 = yk − ηkgε(yk).

Our goal is to estimate the evolution of the function hε after one iteration of this algorithm.

Given that h is L1-Lipschitz continuous for its first derivative, and hε is Lε-Lipschitz continuous for
its first derivative (where Lε ≤ L1)(Nesterov & Spokoiny, 2017), we have:

hε(yk+1) ≤ hε(yk)− ηk⟨∇hε(yk), gε(yk)⟩+
1

2
η2kLε∥gε(yk)∥2.

Taking expectation with respect to zk, we have:

Ezk
[hε(yk+1)] ≤ hε(yk)− ηk∥∇hε(yk)∥2 +

1

2
η2kLε Ezk

[∥gε(yk)∥2].

Since h ∈ C1,1(Rq), from Lemma 11, we have:

Ezk
[hε(yk+1)] ≤ hε(yk)− ηk∥∇hε(yk)∥2

+
1

2
η2kL1

(
4(q + 4)∥∇hε(yk)∥2 + 3ε2L2

1(q + 4)3
)
.

Setting ηk = η̂ = 1
4(q+4)L1

, we get:

Ezk
[hε(yk+1)] ≤ hε(yk)−

1

2
η̂∥∇hε(yk)∥2 +

3ε2

32
L1(q + 4).

Taking the expectation with respect to Ek, we get:

ϕk+1 ≤ ϕk −
1

2
η̂EEk

[∥∇hε(yk)∥2] +
3ε2(q + 4)

32
L1,

From Lemma 11, we have EEk
[∥∇h(yk)∥2] ≤ 2EEk

[∥∇hε(yk)∥2] + ε2(q+6)3

2 L2
1. Therefore:

ϕk+1 − ϕk ≤ −
1

4
η̂EEk

[
∥∇h(yk)∥2

]
+

ε2(q + 6)3

8
L2
1 +

3ε2(q + 4)

32
L1. (12)

The proof is completed.

Next, we need to assess the randomness of our random subspace. According to Lemma 16, if we obtain
the projection matrix using Algorithm 1, the expected value can be expressed as E[PP T ] = q

dI . In
this equation, q represents the dimension of the subspace, d indicates the dimension of the original
space, and P is defined as V ⊗U .
Lemma 13. Let matrix A = (a1,a2, · · · ,ar) ∈ Rn×r be composed of column vectors ak

which are mutually independent and ak ∈ N (0, In). Suppose Gram-Schmidt process uk =

ak −
∑k−1

s=1 ⟨ak, es⟩ es and ek = uk

∥uk∥ . [ak]i ↔ [ak]j represents the exchange of the i-th element
and the j-th element of ak, while all other elements remain unchanged. [ak]i = −1× [ak]i signifies
that only the i-th element of ak is multiplied by −1, while all other elements remain unchanged. Sup-
pose f(A,U ,E) be a function of the matrix A, U = (u1,u2, · · · ,ur) and E = (e1, e2, · · · , er),
then

(1) if [ak]i ↔ [ak]j or [ak]i = −1× [ak]i, E[f ] remain unchanged.

(2) if [ak]i ↔ [ak]j ⇒ [uk]i ↔ [uk]j and [ek]i ↔ [ek]j .

(3) if [ak]i = −1 × [ak]i ⇒ [uk]i = −1 × [uk]i , [ek]i = −1 × [ek]i, [uk]j = 1 × [uk]j , and
[ek]j = 1× [ek]j , where i ̸= j.

(4) E
[

[uk]
2
i

⟨uk,uk⟩

]
= 1

n .

(5) E
[
[uk]i[uk]j
⟨uk,uk⟩

]
= 0, where i ̸= j.
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Proof. In real analysis, a matrix A usually possesses full rank when it follows a Gaussian distribution,
and it is common for both uk and ek to be non-zero.

(1) Given that ak is independently and identically distributed, this condition clearly applies.

(2) For the base case k = 1, it is obviously true. Assume that the result holds for all k = 1, 2, · · · , k−
1, where k ≥ 2, then [ak]i ↔ [ak]j ⇒ [uk]i = [ak]i −

∑k−1
s=1 ⟨ak, es⟩ [es]i, [uk]j = [ak]j −∑k−1

s=1 ⟨ak, es⟩ [es]j , [ek]i =
[uk]i
∥uk∥ , and [ek]j =

[uk]j
∥uk∥ .

Thus, by strong induction, we have [uk]i ↔ [uk]j and [ek]i ↔ [ek]j .

(3) For base case k = 1, it obviously holds. Assume the result holds for all k = 1, 2, · · · , k − 1,
where k ≥ 2, then

[ak]i = −1× [ak]i ⇒
{
[uk]i = [ak]i × (−1)−

∑k−1
s=1 ⟨ak, es⟩ [es]i × (−1) = [uk]i × (−1)

[uk]j = [uk]j × 1, i ̸= j

⇒
{
[ek]i × (−1) = [uk]i

∥uk∥ × (−1)
[ek]j = [ek]j × 1, j ̸= i

By strong induction, we have [uk]i = −1 × [uk]i , [ek]i = −1 × [ek]i, [uk]j = 1 × [uk]j , and
[ek]j = 1× [ek]j , where i ̸= j.

(4) Since
∣∣∣ [uk]

2
i

⟨uk,uk⟩

∣∣∣ ≤ 1, E
[

[uk]
2
i

⟨uk,uk⟩

]
exists. [ak]i ↔ [ak]j ⇒ [uk]

2
i

⟨uk,uk⟩ ↔
[uk]

2
j

⟨uk,uk⟩ .

Thus, E
[

[uk]
2
i

⟨uk,uk⟩

]
× n =

∑n
s=1 E

[
[uk]

2
s

⟨uk,uk⟩

]
= E

[
⟨uk,uk⟩
⟨uk,uk⟩

]
= 1⇒ E

[
[uk]

2
i

⟨uk,uk⟩

]
= 1

n .

(5) Since
∣∣∣ [uk]i[uk]j

⟨uk,uk⟩

∣∣∣ ≤ ∣∣∣ [uk]
2
i+[uk]

2
j

2⟨uk,uk⟩

∣∣∣ ≤ 1, E
[
[uk]i[uk]j
⟨uk,uk⟩

]
exists.

[ak]i = [ak]i ×−1⇒ E
[
[uk]i[uk]j
⟨uk,uk⟩

]
= E

[
−[uk]i[uk]j
⟨uk,uk⟩

]
= 0, where i ̸= j.

Lemma 14. Let A ∈ Rn×r be a matrix with independent standard normal entries, i.e., each
element of A is an i.i.d. N (0, 1) random variable. Suppose A undergoes QR decomposition via the
Gram-Schmidt process to yield a column-orthogonal matrix Q ∈ Rn×r with orthonormal columns
e1, e2, . . . ,er and an upper triangular matrix R ∈ Rr×r. Then, for each k = 1, 2, . . . , r, the
expected value of the outer product of the k-th orthonormal column vector ek of Q is given by:

E[ekeTk ] =
1

n
I,

where I is the n× n identity matrix.

Proof. By the Gram-Schmidt process, we have ek = uk

∥uk∥ , where uk = ak −
∑k−1

s=1 ⟨ak, es⟩es.

Thus, ekeTk =
uku

T
k

⟨uk,uk⟩ .

The (i, j)-th entry of E[ekeTk ] can be written as:

E[[ekeTk ]ij ] = E
[
[uk]i[uk]j
⟨uk,uk⟩

]
.

For diagonal entries (i = j): When i = j, from Lemma 13(4), we have:

E[[ekeTk ]ii] = E
[

[uk]
2
i

⟨uk,uk⟩

]
=

1

n
.

For off-diagonal entries (i ̸= j): When i ̸= j, from Lemma 13(5), we have:

E[[ekeTk ]ij ] = E
[
[uk]i[uk]j
⟨uk,uk⟩

]
= 0.
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Combining these two cases, we conclude that E[ekeTk ] is a diagonal matrix with all diagonal entries
equal to 1

n . Thus,

E[ekeTk ] =
1

n
I,

where I is the n× n identity matrix. The proof is completed.

Lemma 15. Let A ∈ Rn×r be a matrix with independent standard normal entries, i.e., each element
of A is an i.i.d. N (0, 1) random variable. Suppose A undergoes QR decomposition to yield an
orthogonal matrix Q ∈ Rn×r with orthonormal columns and an upper triangular matrix R ∈ Rr×r.
Then, the expected value of the outer product of the matrix Q with itself is given by:

E[QQT ] =
r

n
I

where I is the n× n identity matrix.

Proof. The QR decomposition of the matrix A is expressed as A = QR, where Q is an orthogonal
matrix with columns denoted as e1, e2, . . . ,er, and R is an upper triangular matrix. Since Q is
orthogonal, it satisfies the condition QQT = Ir, where Ir represents the r × r identity matrix. Our
objective is to compute E[QQT ]. By leveraging the linearity of expectation and the fact that the
columns of Q are orthonormal, we find:

E[QQT ] = E

[
r∑

k=1

eke
T
k

]
=

r∑
k=1

E[ekeTk ].

From Lemma 14, we know that E[ekeTk ] =
1
nI for each k. Therefore:

E[QQT ] =

r∑
k=1

1

n
I =

r

n
I.

The proof is completed.

Lemma 16. Let A1 ∈ Rm×r and A2 ∈ Rn×r be matrices with independent standard normal entries,
i.e., each element of A1 and A2 is an i.i.d. N (0, 1) random variable. Suppose A1 and A2 undergo
QR decomposition to yield orthogonal matrices Q1 ∈ Rm×r and Q2 ∈ Rn×r with orthonormal
columns, respectively. Define P = Q2 ⊗Q1, where ⊗ denotes the Kronecker product. Then, the
expected value of the outer product of the matrix P with itself is given by:

E[PP T ] =
r2

mn
I,

where I is the mn×mn identity matrix.

Proof. The Kronecker product P = Q2 ⊗ Q1 produces a matrix P ∈ Rmn×r2 . According to
Lemma 15, we know that Q1Q

T
1 = r

mI and Q2Q
T
2 = r

nI . Our goal is to compute E[PP T ]. By
utilizing the properties of the Kronecker product, we can proceed with our computation:

E[PP T ] = E[(Q2 ⊗Q1)(Q
T
2 ⊗QT

1 )] = E[(Q2Q
T
2 )]⊗ E[(Q1Q

T
1 )] =

r2

mn
I ⊗ I =

r2

mn
I

The proof is completed.

Now we can assess the impact of the lazy updates to P . Here we provide the proof of Theorem 1.

Proof. Let Pj = (P0,P1, . . . ,Pj), where Pj is the sequence generated by Proposition 1 and j ≤ K.
According to Lemma 10 and Lemma 12, when the subspace is fixed, we can transform the original
problem f ∈ C1,1

L1
(Rd) into h ∈ C1,1

L1
(Rq) using the transformation h(y) = f(x+ Py). Consider

the following update rule:

yj,0 = 0, hj(y) = f(xjF + Pjy), ∀j ∈ 0, 1, · · · ,K − 1 (13)

yj,k = yj,k−1 − η∇̂hj(yj,k−1), ∀k ∈ 0, 1, · · · , F (14)
xjF+k = xjF + Pjyk, (15)
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In the j-th subspace, the projection matrix Pj is constant, allowing us to accumulate the changes of ϕ
within this subspace. By applying Lemma 12, we obtain:

ϕ(j+1)F − ϕjF ≤ −
1

4
η̂

K−1∑
i=0

EEjF+i

[
∥∇hj(yj,i)∥2

]
+

ε2(q + 6)3

8
KL2

1 +
3ε2(q + 4)

32
KL1 (16)

≤ −1

4
η̂EEjF

[
∥∇hj(yj,0)∥2

]
+

ε2(q + 6)3

8
KL2

1 +
3ε2(q + 4)

32
KL1. (17)

Furthermore, we note that ∇hj(yj,0) = (Pj)
T∇f(xjF ). By taking expectations over the overall

historical projection matrix Pj and applying Lemma 16, we find that E[Pj(Pj)
T] = q

dI , with Pj

being independent of xjF . Thus, we obtain:

EPj+1 [ϕ(j+1)F ]− EPj [ϕjF ] ≤ −
1

4
η̂EEjF ,Pj

[
∥(Pj)

T∇f(xjF )∥2
]
+

ε2(q + 6)3

8
KL2

1 +
3ε2(q + 4)

32
KL1

(18)

= − q

4d
η̂EEjF ,Pj

[
∥∇f(xjF )∥2

]
+

ε2(q + 6)3

8
KL2

1 +
3ε2(q + 4)

32
KL1.

(19)

Assuming f(x) ≥ f∗ holds for all x ∈ Rd, and letting T = KF , summing the inequality yields:

EPK−1
[ϕT ] ≤ EP0 [ϕ0]−

q

4d
η̂

K−1∑
j=0

EEjF ,Pj

[
∥∇f(xjF )∥2

]
+ T

ε2(q + 6)3

8
L2
1 + T

3ε2(q + 4)

32
L1.

(20)

Since EPK−1
[ϕT ] ≥ f∗, we have:

f∗ ≤ EP0
[ϕ0]−

q

4d
η̂

K−1∑
j=0

EEjF ,Pj

[
∥∇f(xjF )∥2

]
+ T

ε2(q + 6)3

8
L2
1 + T

3ε2(q + 4)

32
L1. (21)

Rearranging the inequality, we get:

q

4d
η̂

K−1∑
j=0

EEjF ,Pj

[
∥∇f(xjF )∥2

]
≤ EP0

[ϕ0]− f∗ + T
ε2(q + 6)3

8
L2
1 + T

3ε2(q + 4)

32
L1. (22)

Substituting η̂ = 1
4(q+4)L1

, we obtain:

q

16d(q + 4)L1

K−1∑
j=0

EEjF ,Pj

[
∥∇f(xjF )∥2

]
≤ EP0 [ϕ0]− f∗ + T

ε2(q + 6)3

8
L2
1 + T

3ε2(q + 4)

32
L1.

(23)

Thus, we have:

1

T

T−1∑
k=0

EEk,P⌊k/F⌋

[
∥∇f(xk)∥2

]
≤ 16(q + 4)dL1(EP0 [ϕ0]− f∗)

qT
+

2ε2(q + 6)3(q + 4)d

q
L3
1 +

3ε2(q + 4)2d

2q
L2
1.

(24)

To ensure
∑T−1

k=0 EEk,P⌊k/F⌋

[
∥∇f(xk)∥2

]
≤ ϵ, we can choose:

ε ≤ O

(
1

q3/2d1/2L
3/2
1

)
.

As a result, the convergence rate is O(
√

d
T ). The proof is completed.

21


	Introduction
	Related Work
	Prestudy
	Methodology
	Gradient-Guided Subspace Projection Matrix Acquisition
	Periodical Subspace Update

	Convergence Analysis
	Experiments
	Comparison with State-of-the-Arts (RQ1)
	Impacts of Hyperparameters (RQ2)
	Impact of Model Sizes and Architectures (RQ3)
	Discussion

	Conclusion
	Detailed Experimental Settings
	Model Settings
	Dataset Settings.
	Hyperparameter Settings

	Detailed Prestudy Results
	Proofs

