
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENHANCING ZEROTH-ORDER FINE-TUNING FOR
LLMS VIA GRADIENT-GUIDED SUBSPACE SELECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

As a promising memory-efficient technique, zeroth-order (ZO) optimization enables
large language models (LLMs) to bypass the costly process of backpropagation
during fine-tuning by estimating gradients through function evaluations. However,
to minimize approximate variance in high-dimensional parameter spaces, existing
ZO methods focus on exploring the estimate of gradients within random subspaces,
neglecting the benefits of searching for more accurate subspaces of LLMs on
gradient estimates. Due to inaccurate gradient estimates obtained from random
spaces, fine-tuning performance is inevitably degraded, thus compromising the
performance of downstream tasks. To address the limitation of existing ZO meth-
ods, this paper proposes a novel ZO subspace fine-tuning method named SVD-0.
Based on singular value decomposition (SVD), SVD-0 can effectively obtain more
accurate subspace projection matrices, which can be used to improve the accuracy
of gradient estimates. Experimental results on various language modeling tasks
show that SVD-0 achieves better fine-tuning performance than SOTA ZO methods.

1 INTRODUCTION

Due to the powerful capabilities of language understanding and reasoning, large language models
(LLMs) have demonstrated significant performance on a wide range of tasks, such as mathematical
reasoning (Guo et al., 2025), creative writing (Shanahan & Clarke, 2023). Currently, fine-tuning (FT)
the pre-trained foundation model to adapt to downstream tasks has become the mainstream paradigm
for AI application development. However, due to the extremely large number of model parameters,
traditional first-order (FO) optimization-based fine-tuning methods face a serious challenge of
excessive memory consumption. Typically, since the backpropagation process in FO requires storing
activations and optimizer states, the memory requirements of FT are significantly larger than those of
reasoning, which severely limits the development of LLM-based applications.

To achieve memory-efficient FT, existing methods can be classified into two categories, i.e., parameter-
efficient fine-tuning (PEFT) methods (Liu et al., 2022; Han et al., 2024) and zeroth-order (ZO)
optimization methods (Malladi et al., 2023). PEFT methods attempt to reduce the number of trainable
parameters to alleviate memory requirements. However, since PEFT methods are still based on FO
optimization, they require a significant amount of memory to store intermediate training results, which
severely limits the choice of trainable parameters. ZO optimization methods (Malladi et al., 2023)
emerge as a promising alternative by estimating gradients through forward-pass perturbations, thereby
eliminating the memory overhead associated with backpropagation. However, conventional ZO
methods face a critical challenge: the high variance of gradient approximations in billion-parameter
spaces severely degrades optimization efficiency and model performance.

Recent advances in ZO optimization for LLMs, such as SubZero (Yu et al., 2024) and LOZO (Chen
et al., 2025), attempt to mitigate this issue by constraining perturbations to random low-dimensional
subspaces. These methods are based on the finding that gradient matrices become low-rank during
LLM training and fine-tuning (Zhao et al., 2024a). While these subspace methods reduce approxima-
tion variance, they fundamentally rely on arbitrary projection matrices that fail to match the low-rank
structure implied by the gradient. This limitation stems from a fundamental disconnect - the subspace
construction process ignores critical gradient information that could guide more effective parameter
updates. Therefore, how to determine the optimal low-dimensional subspaces without relying on
first-order optimizers poses a fundamental challenge.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

The similarity between the gradient estimated by ZO optimizers and the true gradient has been
experimentally demonstrated in (Malladi et al., 2023). We find it feasible to derive the low-rank
structure of the true gradient from the estimated gradient. In light of this idea, we conducted a
preliminary study (see details in Section 3). The experimental results indicate a significant similarity
between the estimated and true gradients, as demonstrated by the resemblance of their singular value
vectors. Consequently, we conclude that applying singular value decomposition (SVD) to the gradient
estimated by the ZO optimizer allows us to obtain a low-rank structure that closely resembles the
low-rank structure of the true gradient.

Motivated by the above findings, we propose SVD-0, a novel gradient-guided subspace optimization
framework that combines zeroth-order efficiency with principled subspace discovery. Our key
insight is that, while exact first-order gradients remain inaccessible due to memory constraints, ZO
gradient estimates contain sufficient directional information to reconstruct high-fidelity subspaces.
Specifically, SVD-0 periodically performs singular value decomposition (SVD) on ZO gradient
estimates to derive layer-wise projection matrices that capture dominant optimization directions. By
preserving the intrinsic structure of the subspace, our method effectively enhances the performance
of subspace-based ZO methods. The contributions of this work are summarized as follows:

• We propose a novel method for exploring more accurate subspace projection matrices and
conducting layer-wise perturbations on low-rank matrices. With periodic updates of the
projection matrices, our method continuously captures the subspaces of the parameters.

• We develop a novel gradient-guided ZO method to approximate these two projection matri-
ces, ensuring low memory usage throughout the entire fine-tuning process, to overcome the
paradox that obtaining subspace projection matrices requires FO gradients.

• We conduct comprehensive experiments on various model scales and language modeling
tasks. The corresponding results demonstrate the superiority of our method over various ZO
optimization methods specifically designed for LLM fine-tuning.

2 RELATED WORK

Memory-efficient fine-tuning for LLMs. Recent work has concentrated on exploring memory-
efficient fine-tuning methods to enable LLM fine-tuning on memory-intensive hardware. A critical
line of research centers on Parameter-Efficient Fine-Tuning (PEFT) methods (Liu et al., 2022; Han
et al., 2024) by freezing the backbone of LLMs while only tuning a small group of parameters.
For instance, LoRA (Hu et al., 2022) only updates parameters based on low-rank structures while
being competitive with full-parameter fine-tuning. LISA (Pan et al., 2024) distinguishes trainable
layers based on their contribution to task-specific performance and freezes other layers to reduce
the memory footprint. Further, parameter quantization (Lin et al., 2024; Frantar et al., 2022) has
played a pivotal role in enhancing memory efficiency. By discretizing model parameters (e.g., from
32-bit to 8-bit or lower precision), quantization methods such as QLoRA (Dettmers et al., 2023)
and LLM.int8() (Dettmers et al., 2022) reduce storage requirements without significant degradation
in task performance. Complementary to PEFT and the quantization method, subspace projection
techniques have emerged as a powerful strategy to reduce the dimensionality of the optimization
space. Galora (Zhao et al., 2024a) and FLORA (Hao et al., 2024) both leverage the low-rank property
of gradients to constrain updates on a compact subspace of the full parameter space (Huang et al.,
2025). By discovering the projection matrices of low-rank subspaces, the memory costs for storing
gradients and optimizer states (e.g., the first and second order states in Adam optimizer (Kingma &
Ba, 2014)) are greatly reduced.

Zero-order optimization. ZO approaches enable backpropagation-free optimization by approximat-
ing exact gradients through finite differences. This flexibility has driven interest in ZO for solving a
range of machine learning problems, including on-chip learning, black-box adversarial strategies,
and memory-efficient LLMs fine-tuning (Malladi et al., 2023; Zhang et al., 2024). Despite these
strengths, the practical application of ZO is primarily limited to smaller-scale tasks and models. A
critical limitation stems from the high error in its gradient approximations (Park et al., 2025), which
becomes more pronounced as problems grow larger and more complex, making scaling particularly
challenging. To address this issue, approaches such as MeZO-SVRG (Gautam et al., 2024) and
DiZO (Tan et al., 2025) utilize variance-reduction methodologies (Ma & Huang, 2025) to mitigate
gradient divergence. Furthermore, methods including SparseMezo (Liu et al., 2024), TeZO (Sun et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2025), and AdaZeta (Yang et al., 2024) have been proposed to diminish approximation errors by
reducing dependence on the parameter dimension through parameter sparsification and tensorization.
Subspace methods (Nozawa et al., 2025), including SubZero (Yu et al., 2024) and LOZO (Chen et al.,
2025), are explored to leverage low-rank structures for decreasing the error. Although they effectively
alleviate the variance of gradient approximation, the randomly generated projection matrices cannot
precisely reflect the transformation between the subspace and the full space, leading to degradation in
model performance.

3 PRESTUDY

In exploring the alignment between estimated ZO and true FO gradients in the parameter spaces of
large language models, we perform a targeted analysis using the OPT-1.3B model (Zhang et al., 2022)
on the RTE task (Dagan et al., 2005; Bar Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009). For every 50 training steps, we determine the exact FO gradients through backpropagation
with a batch size of 16 and ZO gradient estimates via MeZO’s simultaneous perturbation method
(Malladi et al., 2023). Subsequently, we apply singular value decomposition (SVD) to both gradient
matrices. We then assess the cosine similarity between the singular value vectors.

0 5000 10000 15000 20000

Steps

0.00

0.15

0.30

0.45

0.60

C
os

in
e

Si
m

ila
ri

ty

After SVD
Origin

Figure 1: Cosine similarities between
estimated ZO gradients and true gradi-
ents for “Origin” and “After SVD”.

Figure 3 illustrates that the singular vectors demonstrate
high cosine similarity. This finding indicates that the ZO
gradients maintain critical optimization directions and ex-
hibit a similar low-rank structure. This supports our main
hypothesis that ZO gradient estimates contain sufficient
spectral information to reconstruct low-rank subspaces
guided by FO methods. The preserved accuracy in direc-
tional estimates suggests that by limiting ZO perturbations
to the primary gradient subspaces, we can reduce approx-
imation variance while still achieving effective updates.
These concepts form the foundation of our SVD-0 opti-
mization framework, which systematically leverages the
inherent structure in ZO gradient estimates to achieve FO-guided efficiency without the computational
overhead associated with backpropagation. Additional experiments can be found in Appendix B.

4 METHODOLOGY

Layer 𝒍 Input

𝑸
𝑲
𝑽

𝒐

⨁

MLP

⨁

Layer 𝒍 Output

෩𝒁

SVD
෡𝜵𝓛(𝜽)

Layer 1

Layer 2

Layer 𝒍

Layer 𝑵− 𝟏

Layer 𝑵

Forward

Propagation

𝜽𝒁

𝑮𝒕

Random

𝑼𝒕−𝟏

𝑽𝒕−𝟏

Subspace Projection Matrix

𝑼𝒕

𝑽𝒕

Subspace Projection

Matrix

PerturbParams t = F

t = 1,2,…,F-1

𝒁

Random

𝜽

PerturbParams

Forward

Propagation
Projection

Parameter PerturbationMatrix Update

Gradient Calculation

⋮

⋮

Figure 2: Framework and workflow of our SVD-0 method.

Figure 2 illustrates our approach, which focuses on two main components: the matrix update module
and the parameter perturbation module. The matrix update module is for computing and adjusting
the projection matrices, represented as U ∈ Rm×r and V ∈ Rn×r. Together with a low-dimensional
random matrix Z ∈ Rr×r, these matrices are used to generate a low-rank perturbation Z̃.

Within the first module (i.e., the matrix update module), we introduce an innovative and precise
approach to acquire the matrices U and V , as detailed in Algorithm 1. Traditional approaches
often utilize random low-rank perturbation matrices (Chen et al., 2025; Yu et al., 2024). This
randomness contributed to uncertainty in the gradient update process during training. In contrast, our

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

approach computes the U and V matrices based on the gradient information derived using the MeZO
method (Malladi et al., 2023) before each update.

The second module serves to perturb the parameters, as described in Algorithm 2. Common en-
hancements, such as SubZero (Yu et al., 2024) and the SVD-0 approach proposed here, reformulate
the update mechanism by adopting a low-rank perturbation method. As illustrated in Figure 2, the
low-rank perturbation Z̃ ∈ Rm×n is determined in the following manner:

Z̃ = UZV T , (1)

where Z ∈ Rr×r is a random perturbation matrix sampled from N(0, 1). Consequently, the parameter
θt ∈ Rm×n during the tth iteration is determined by θ±t = θ± Z̃ = θ±UZV T . Thus, the gradient
is approximated using two forward evaluations as expressed below:

∇̂L(θ±t) =
L(θ+t ;B)− L(θ−t ;B)

2ϵ
UZV T . (2)

4.1 GRADIENT-GUIDED SUBSPACE PROJECTION MATRIX ACQUISITION

Algorithm 1 GenerateProjMatrix(G, r)

Input: i) G, estimated gradient of parameter
matrix; ii) r, rank.
Output: U , V , projection matrices.
1: (P ,S,Q)← SVD(G)
2: U ← P [:, : r]
3: V ← Q[:, : r]
4: return U , V

Existing approaches to projection matrix construc-
tion consist of a spectrum of techniques, ranging
from randomized sampling methods (Chen et al.,
2025; Yu et al., 2024) to computationally inten-
sive deterministic algorithms (Zhao et al., 2024b).
Although the former is computationally efficient,
it has the drawback of insufficient approximation
accuracy due to its reliance on randomness. The
latter introduces significant computational over-
head while not significantly improving the approx-
imation accuracy. To address this limitation, we propose a balancing strategy based on adaptive
subspace decomposition, as shown in lines 4-7 of Algorithm 3.

Algorithm 2 PerturbParams(W ,U ,V, r, ε, s)
Input: i) W , model parameter set; ii) U and V ,
projection matrix sets; iii) r, rank; iv) ε, pertur-
bation scale; v) s, seed.
Output: Model parameter set after perturbation.

1: ResetGenerator(s)
2: for i = 1, 2, . . . , l do
3: Zi ← GeneratePerturbMatrix(r)
4: Wi ←Wi + εUiZiV

T
i

5: end for
6: return W

To retain the advantage of memory efficiency of
zero-order optimizations, we calculate the gradient
using the MeZO (Malladi et al., 2023) method,
as shown in lines 5-6 of Algorithm 3. Before
calculating the projection matrix each time, the
gradient calculation is required. Then, as shown in
the algorithm 1, the U and V matrices are updated
according to the gradient obtained this time. We
use the SVD method to calculate the projection
matrix. Through this method, the original gradient
is projected onto a compact space R ∈ Rr×r:
R = UTGV . After that, we can generate a low-
rank perturbation Z in this space, as shown in
lines 3-4 of the Algorithm 2, and then use the previously calculated U and V matrices to restore
this low-rank perturbation to the original high-rank space. In this way, we can successfully apply
gradient-based low-rank perturbations to the parameters, and this process introduces no additional
overhead compared to the traditional ZO method (i.e., MeZO).

4.2 PERIODICAL SUBSPACE UPDATE

As mentioned above, we obtain the gradient using the MeZO (Malladi et al., 2023) method and then
calculate the projection matrices U and V via SVD. These two projection matrices jointly determine
the gradient approximation and the parameter update of the tth step. However, this iterative update
method presents a critical trade-off between computational efficiency and subspace adaptability. High-
frequency updates restrict the complete evolution of the gradient subspace while incurring substantial
computational costs, particularly due to the need for gradient recomputation before each projection
matrix update. In contrast, low-frequency updates may fail to capture the dynamic variations in the
gradient subspace throughout the training process.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Therefore, we propose a periodic subspace update strategy. As presented in lines 4-10 in Algorithm 3,
we use the MeZO method to calculate the gradient once at the start step and every F steps thereafter.
Then the obtained gradient is used to update the projection matrices U and V , and keep them
unchanged in the subsequent steps. We have experimentally proved the effectiveness and necessity of
this strategy. As shown in Table 4, the appropriate update frequency can not only ensure efficiency
but also bring significant improvements to model performance.

Algorithm 3 SVD-0
Input: i) Wi ∈ Rmi×ni , i = 1, . . . , l, parameter matrix in the i-th layer; ii) L, loss; iii) T , step
budget; iv) ϵ, perturbation scale; v) {ηt}, learning rate schedule; vi) F , subspace update frequency;
vii) r, rank.

1: for t = 1, . . . , T in parallel do
2: Bt ← SampleMinbatch (st) {Sample a minibatch Bt ⊂ D and a random seed st}
3: for i = 1, 2, . . . , l do
4: if t mod F ≡ 0 then
5: Gi ← EstimateGradient(W t

i , ϵ) {Estimate the gradient of W t
i using MeZO}

6: U t
i ,V t

i ← GenerateProjMatrix(Gi, r)
7: else
8: U t

i ← U t−1
i , V t

i ← V t−1
i

9: end if
10: end for

{W t = {W t
i }li=1, U t = {U t

i }li=1, Vt = {V t
i }li=1}

11: W t ← PerturbParams (W t,U t, Vt, r, ε, st)
12: ℓt+ ← L(W t;Bt)
13: W t ← PerturbParams (W t,U t, Vt, r,−2ε, st)
14: ℓt− ← L(W t;Bt)
15: W t ← PerturbParams (W t,U t, Vt, r, ε, st)
16: ρt←

(
ℓt+ − ℓt−

)
/(2ε)

17: ResetGenerator(s) {Reset random number generator with seed s }
18: for i = 1, 2, . . . , l do
19: Zt

i ← GeneratePerturbMatrix(r) {Regenerate the perturbation matrix Zt
i ∈ Rr×r whose

entries are sampled from N (0, 1)}
20: W t+1

i ←W t
i − ηtρt

(
U t

iZ
t
iV

t
i
T
)

21: end for
22: end for

Table 1: Computational cost (in minutes) comparison.

Method WIC ReCoRD FiQA-SA TFNS

MeZO (Malladi et al., 2023) 114.7 211.4 71.5 113.3
SubZero (Yu et al., 2024) 114.5 207.5 71.3 124.9

SVD-0 116.1 220.6 76.3 116.2

Table 2: Memory cost comparison.

Method RoBERTa-large OPT-1.3B OPT-13B

MeZO (Malladi et al., 2023) 2.042GB 4.732GB 27.693GB
LOZO (Chen et al., 2025) 2.042GB 4.732GB 27.789GB

SVD-0 2.562GB 4.891GB 28.767GB

As shown in Table 1, we compared two representative ZO variants (i.e., MeZO (Malladi et al., 2023)
and SubZero (Yu et al., 2024)) and our SVD-0 method. The findings show that SVD-0 requires a
marginally longer training period, approximately 7% longer than the two ZO variants. It’s worth
mentioning that the time complexity for SVD processes remains at O(n3), where n is the matrix’s
dimension, ensuring that the upper bound of the training time complexity remains unchanged. In
practice, the extra time required by SVD operations is negligible compared to the benefits gained in
classification, multiple-choice, and generation tasks.

Despite reducing computational complexity, this strategy will result in minimal additional memory
usage, as shown in Table 2. We adopt a layer-wise parameter update strategy, where we update only
the parameters of a specific layer of the model simultaneously. This means that during the entire
training process, we only need to store two additional small matrices at the same time, including
the projection matrices U ∈ Rm×r and V ∈ Rn×r, where r is much smaller than the dimension
of the parameter matrix θ ∈ Rm×n. Therefore, the memory usage introduced by the two matrices
remains at the same low level as that introduced in (Yu et al., 2024). This strategy makes our method
almost consistent with the memory required by the MeZO (Malladi et al., 2023) method without any
performance loss, and maintains the memory-saving advantage of the ZO method.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 CONVERGENCE ANALYSIS

In this section, we analyze the convergence of our proposed SVD-0. Following the derivations in (Yu
et al., 2024; Nozawa et al., 2025) and (Zhao et al., 2024a), we first present our proposition along with
the corresponding lemma.
Lemma 1. (Low-rank subspace of weight matrices (Zhao et al., 2024a)). Gradient matrices become
low-rank during fine-tuning. The weight matrix update can be formed as:

θT = θ0 + η

T−1∑
t=0

∇̃f(θ)t, ∇̃f(θ)t = Ut(U
⊤
t f(θ)tVt)V

⊤
t , (3)

where η is the learning rate, Ut ∈ Rm×r and Vt ∈ Rn×r are projection matrices and can be
approximated by the spectrum of ∇f(θ)t through (U, V) = SV D(∇f(θ)t).

Lemma 1 shows that subspace projection matrices can be approximated by adopting SVD on gradients.
Given that the SPSA is an unbiased approximation of the exact gradient∇f(θ), we can use the SPSA
gradient to compute the two projection matrices.
Proposition 1. (Block-diagonal matrix based on SVD). The singular matrices U and V are
column-orthogonal. Therefore, we can similarly define the following notations based on Equation 1:

P = bdiag(V1 ⊗U1, . . . ,Vl ⊗Ul),

z =
[
vec(Z1)

⊤, . . . , vec(Zl)
⊤]⊤ , z̃ =

[
vec(Z̃1)

⊤, . . . , vec(Z̃l)
⊤
]⊤

.

Proposition 1 indicates that the projection matrices in our method exhibit the same properties as the
column-orthogonal matrices discussed in (Yu et al., 2024). Consequently, the subsequent theoretical
analysis can follow the same approach as that demonstrated in (Yu et al., 2024).
Lemma 2. (Bounded gradient estimation error (Yu et al., 2024)). For the gradient estimation in
Equation 2, the following two properties hold.

i) By using gradient estimation in Equation 2, the estimated gradient ∇̂f(θ) is equivalent to:

∇̂f(θ) = f(θ + εPz)− f(θ − εPz)

2ε
Pz, (4)

where z ∼ N (0, Iq), ε > 0, P ∈ Rd×q satisfies P⊤P = Iq with d =
∑l

i=1 mini and q = lr2.

ii) Let z ∼ N (0, Iq), and f ∈ C2,2
L2

(Rd). Based on Equation 4 whose properties have been analyzed
in (Nozawa et al., 2025), our method has the same bounded gradient estimation error as that in (Yu
et al., 2024): ∥∥∥Ez

[
∇̂f(θ)

]
− PP⊤∇f(θ)

∥∥∥
2
≤ ε2

6
L2(q + 4)2. (5)

Note that f ∈ Cs,p
L (S) denotes the class of s-th smooth and p-th L-smooth functions over the set S.

Theorem 1. (Convergence of SVD-0). Consider the optimization problem x∗ = argmin
x∈Rd

f(x),

in which f ∈ C1,1
L1

(Rd) and f exhibits non-convex behavior. Define the stochastic sequence Ek =
(z0, z1, . . . ,zk), where each zk follows the normal distributionN (0, Iq). Set the step-size parameter

as η =
1

4(q + 4)L1
. Let {xk}k>0 denote the iterates produced via Algorithm 3. For SVD-0, we

establish its convergence rate as:

1

T

T−1∑
k=0

EEk

[∥∥∇f(xk)
∥∥2] ≤ ε,

Under the scaling T = Ω

(
d

ε2

)
for ε ≤ O

(
1

q3/2d1/2L
3/2
1

)
, this aligns with prior theoretical

derivations.

By combining Proposition 1 and Lemma 2 within the framework proposed in (Yu et al., 2024),

Theorem 1 demonstrates that our SVD-0 achieves a convergence rate of O(
√

d
T), matching the rate

derived in (Yu et al., 2024). For a more detailed explanation, please see Appendix C.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

6 EXPERIMENTS

To evaluate the effectiveness of our approach, we implemented SVD-0 using the PyTorch framework
(version 20.10). All experiments were conducted on a Linux workstation equipped with CentOS,
featuring two NVIDIA A100-40GB GPUs, dual Intel Xeon 6240R CPUs, and 384GB of RAM. The
following presents the dataset settings and ZO baselines used in the experiments. Please refer to
Appendix A for our detailed model settings.

Dataset Settings. For OPT models, we experimented with the SuperGLUE benchmark Wang et al.
(2019), which consists of various types of tasks, including classification tasks (e.g., SST-2 Socher
et al. (2013), RTE Bar Haim et al. (2006); Bentivogli et al. (2009); Dagan et al. (2005); Giampiccolo
et al. (2007), CB de Marneffe et al. (2019), BoolQ Clark et al. (2019), WSC Levesque et al. (2012),
and WIC Pilehvar & Camacho-Collados (2019)), multiple choice tasks (e.g., COPA Roemmele
et al. (2011) and ReCoRD Zhang et al. (2018)), and generation tasks (e.g., SQuAD Rajpurkar et al.
(2016) and DROP Dua et al. (2019)). Here, for each task, we randomly selected 1000 samples for
training, 500 samples for validation, and 1000 samples for testing. For the RoBERTa-large model,
in addition to the task SST-2, we investigated three more tasks, i.e., SST-5 (Socher et al., 2013),
SNLI (Bowman et al., 2015), and MNLI (Williams et al., 2018). In this case, we fixed the parameter
k at 512 throughout the training and validation phases, indicating that 512 samples are allocated for
each category. For the testing phase, we randomly chose a total of 1000 samples.

ZO Baselines. Our SVD-0 method was evaluated against six latest ZO optimization algorithms,
i.e., MeZO (Malladi et al., 2023), ZO-AdaMU (Jiang et al., 2024), S-MeZO (Liu et al., 2024),
SubZero (Yu et al., 2024), LOZO (Chen et al., 2025), and HiZOO (Zhao et al., 2024b). Meanwhile,
we examined three memory-efficient inference-only approaches, i.e., zero-shot evaluation, in-context
learning (ICL) (Brown et al., 2020), and linear probing (LP) (Kumar et al., 2022).

We designed our experiments to explore the following research questions (RQs).
RQ1 (Superiority of SVD-0): To what extent does SVD-0 outperform SOTA methods in accuracy?
RQ2 (Impact of Hyperparameters): What are the impacts of critical hyperparameters (e.g., learning
rate, subspace rank, subspace update frequency) on SVD-0-based fine-tuning?
RQ3 (Applicability of SVD-0): How does SVD-0 perform when fine-tuning models of varying sizes
or architectures (e.g., masked or causal language models)?

6.1 COMPARISON WITH STATE-OF-THE-ARTS (RQ1)

We compared our proposed SVD-0 method with the SOTA ZO optimizers. The experiments were
conducted on the SuperGLUE benchmark employing both the OPT-13B and OPT-1.3B language
models of different sizes. Note that in each experiment, we applied the adopted stochastic gradient
descent (SGD) or ZO method to all model parameters.
Table 3: Comparison of OPT-13B fine-tuning performance (%) on SuperGLUE, where the best results
are presented in bold and the second-best results are highlighted with underlines.

Method Classification Task Multiple Choice Task Generation Task All Task

SST-2 RTE CB BoolQ WSC WIC MultiRC Total COPA ReCoRD Total SQuAD DROP Total Total

SGD 94.9 82.3 85.7 78.4 65.3 65.8 74.2 - 90.0 82.4 - 88.0 35.5 - -

Zero-shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 - 80.0 81.2 - 46.2 14.6 - -
ICL (Brown et al., 2020) 87.0 62.1 57.1 66.9 39.4 50.5 53.1 - 87.0 82.5 - 75.9 29.6 - -
LP (Kumar et al., 2022) 93.4 68.6 67.9 59.3 63.5 60.2 63.5 - 55.0 27.1 - 3.7 11.1 - -

MeZO (Malladi et al., 2023) 92.1 71.5 71.4 74.4 61.5 60.0 60.1 0% 87.0 82.0 0% 84.2 31.2 0% 0%
ZO-AdaMU (Jiang et al., 2024) 92.1 72.9 67.9 73.0 61.5 60.7 63.0 0.02% 89.0 83.0 1.78% 82.4 32.0 -0.87% 0.27%

S-MeZO (Liu et al., 2024) 92.3 76.9 75.0 76.5 61.1 58.2 63.3 2.51% 87.0 71.2 -6.39% 77.9 31.9 -4.85% -0.53%
HiZOO (Zhao et al., 2024b) 91.3 69.3 69.4 67.3 63.5 59.4 55.5 -3.12% 88.0 81.4 0.24% 81.9 31.3 -1.91% -2.21%
LOZO (Chen et al., 2025) 91.7 70.4 69.6 71.9 63.5 60.8 63.0 -0.02% 89.0 81.3 0.77% 84.9 30.7 0.17% 0.18%
SubZero (Yu et al., 2024) 92.1 74.0 73.2 75.3 65.4 60.8 61.0 2.20% 88.0 82.3 0.77% 84.5 32.0 0.95% 1.70%

SVD-0 93.6 75.5 71.4 75.2 63.5 65.4 60.6 2.89% 89.0 82.2 1.30% 85.1 30.9 0.52% 2.19%

Table 3 compares the fine-tuning performance of the OPT-13B model on SuperGLUE benchmark
tasks. Here, we considered three types of fine-tuning methods: i) the traditional fine-tuning method
(i.e., SGD) with backpropagation; ii) inference-only methods (i.e., Zero-shot, ICL, and LP) without
fine-tuning; and iii) memory-efficient ZO-based methods. To enable a fair comparison between ZO-
based methods, we used the MeZO method here as a reference. We evaluated the overall performance
across each classification task category and denoted the improvement in performance compared to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

the baseline (i.e., MeZO) in the sub-column labeled “Total”. For example, the total performance
on multiple choice tasks with MeZO and SVD-0 is 169.0 and 171.2, respectively. In this case,
SVD-0 improves inference performance by 1.30% compared to MeZO. From the results provided in
the “Total” sub-columns, we can find that SVD-0 can always achieve top-2 inference performance.
Furthermore, we used the final column to show the relative performance improvement for all tasks.
From this column, we can find that SVD-0 achieves the best overall performance. Interestingly, while
S-MeZO matches SVD-0 in the number of tasks where it excels, its overall performance, shown in
the final column, is noticeably inferior to SVD-0 and even falls short of the reference (i.e., MeZO).

6.2 IMPACTS OF HYPERPARAMETERS (RQ2)

In this experiment, we investigate three key hyperparameters (i.e., subspace update frequency, rank,
and learning rate) to evaluate their impacts on fine-tuning performance.

Table 4: Impact of subspace update frequency, where the best results are highlighted in bold.
Frequency SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP

50 90.5 57.0 64.3 65.0 63.5 55.6 57.5 72.0 72.4 74.2 23.0
500 89.5 55.6 69.6 64.1 63.5 53.9 58.1 73.0 72.2 74.3 22.9

1000 90.6 58.5 71.4 65.2 63.5 56.4 58.2 73.0 72.1 73.7 24.0
2000 89.2 56.7 73.2 64.5 62.5 57.4 58.1 73.0 71.7 72.6 23.8
20000 89.8 56.3 71.4 65.3 62.5 57.5 58.2 72.0 72.1 72.6 22.6

For the subspace update frequency F , our goal is to evaluate the impact of varying this frequency
on model performance across different tasks. We conducted experiments based on the OPT-1.3B
model, with a fixed rank of r = 24 and a learning rate of 1e−7. In this analysis, we evaluated five
frequencies at varying magnitudes, specifically selected from the set {50, 500, 1000, 2000, 20000}.
Table 4 provides the experimental results. From this table, we can find that when the frequency is set
to 1000 (i.e., the subspace is updated every 1000 steps), SVD-0 achieves the best performance in
six of the eleven tasks. Note that SVD-0-based fine-tuning is not sensitive to the hyperparameter F .
Therefore, we suggest setting F to 1000 by default for fine-tuning.

Table 5: Impacts of rank and
learning rate on inference.

Rank\LR 1e−7 5e−7 1e−6

2 87.7 91.2 86.7
24 90.6 92.2 90.3
48 89.5 91.6 90.1
64 89.9 90.4 91.6

128 90.0 91.3 90.6

We investigated the rank of hyperspace (i.e., r) and the learning
rate in tandem. Table 5 presents the fine-tuning performance un-
der various combinations of these two hyperparameters, where the
rank is selected from {2, 24, 48, 64, 128} and the learning rate is
selected from {1e−7, 5e−7, 1e−6}. All the experimental results are
collected based on the SST-2 task using the OPT-1.3B model, with a
fixed subspace update frequency of 1000. This table shows that the
fine-tuning performance is weak when the rank is low (i.e., r = 2).
While elevating the rank can enhance fine-tuning performance, the
extent of this enhancement becomes negligible once the rank surpasses 24. At low ranks, the per-
formance can vary significantly with different learning rates. In contrast, increasing rank tends to
reduce this variability in performance. Moreover, we observe a similar trend for the learning rate
hyperparameter, where setting the learning rate to 5e−7 achieves the best performance for most rank
settings. However, increasing the learning rates can lead to a decline in inference performance.

6.3 IMPACT OF MODEL SIZES AND ARCHITECTURES (RQ3)

In Table 3, we have evaluated the adaptability of SVD-0 to large-scale LLMs. To further validate
the generalizability of our approach, we extended our evaluation to the OPT-1.3B model, using
representative tasks of different types. These tasks include SST-2 and WIC, which are classification
tasks, ReCoRD, a multiple-choice task, and SQuAD, a generation task. Table 6 presents the results of
the comparison between four ZO-based fine-tuning methods, where the last column shows the average
fine-tuning performance of the four tasks. According to this table, we can see that SVD-0 is also well-
suited for fine-tuning on small-scale LLMs. Although LOZO delivers the highest performance in this
experiment, the difference in average fine-tuning performance between SVD-0 and LOZO is minimal
(i.e., only 0.2%). Note that SVD-0 achieves better performance than MeZO, the reference method,
while SubZero fails to beat MeZO. Moreover, SVD-0 can consistently outperform its counterpart (i.e.,
SubZero) by an average of 0.7%. All these observations substantiate the efficiency of our method in
enhancing subspaces for optimizing LLMs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Fine-tuning performance (%) comparison
for OPT-1.3B, where the top-2 results are marked
in bold and with underlines, respectively.

Method SST-2 WIC ReCoRD SQuAD AVG.

MeZO (Malladi et al., 2023) 91.7 61.1 72.2 77.4 75.6
LOZO (Chen et al., 2025) 93.2 62.4 71.9 78.1 76.4
SubZero (Yu et al., 2024) 91.9 60.7 72.0 77.6 75.5

SVD-0 (Ours) 93.0 61.1 73.0 77.6 76.2

Table 7: Fine-tuning performance (%) comparison for
RoBERTa-large, where the top-2 results are marked in
bold and with underlines, respectively.

Method SST-2 SST-5 SNLI MNLI

Zero-shot 79.0 35.5 50.2 48.8
MeZO (Malladi et al., 2023) 93.7 (0.4) 53.9 (1.9) 84.8 (1.1) 76.6 (0.8)
LOZO (Chen et al., 2025) 94.1 (0.7) 53.0 (0.4) 85.4 (0.8) 80.4 (1.0)

SVD-0 (Ours) 94.4 (0.7) 54.4 (0.7) 85.4 (1.3) 80.4 (1.5)

We investigated the fine-tuning performance of different optimization methods on RoBERTa-large,
where we considered four downstream tasks, including two sentiment classification tasks (i.e., SST-2
and SST-5) and two natural language inference tasks (i.e., SNLI and MNLI). For a fair comparison,
like the work in (Chen et al., 2025), we performed fine-tuning on each task five times using different
random seeds. Table 7 presents the experimental results, reflecting both the average inference
performance and its standard deviation (indicated in parentheses) for each combination of fine-tuning
methods and tasks. From this table, we can see that SVD-0 performs the best compared to SOTA ZO
optimization methods, demonstrating the adaptability of our approach to various model architectures.

Table 8: Fine-tuning performance (%) comparison
for Qwen-1.8B, where the top-2 results are marked in
bold and with underlines, respectively.

Method SST-2 WIC ReCoRD Total

MeZO (Malladi et al., 2023) 78.3 55.6 64.8 0%
LOZO (Chen et al., 2025) 81.7 55.2 64.8 1.51%
SubZero (Yu et al., 2024) 80.8 56.7 65.2 2.01%

SVD-0 82.2 57.2 65.3 3.02%

Table 9: Fine-tuning performance (%) comparison for
OPT-1.3B on financial datasets, where the top-2 results
are marked in bold and with underlines, respectively.

Method FPB FIQA-SA TFNS NWGI Total

MeZO (Malladi et al., 2023) 65.3 81.4 74.7 48.5 0%
LOZO (Chen et al., 2025) 61.3 85.1 71.6 53.7 0.67%
SubZero (Yu et al., 2024) 66.4 84.0 78.4 49.7 3.19%

SVD-0 74.1 84.0 76.3 52.8 6.41%

To further validate the generalization ability of our method on cutting-edge models, we conducted
experiments based on the Qwen-1.8B model. We exclusively compared our method against the
baseline (i.e., MeZO (Malladi et al., 2023)) and the two most recent ZO baseline techniques (i.e.,
LOZO (Chen et al., 2025) and SubZero (Yu et al., 2024)). Table 8 shows that our approach still
achieves the best performance, indicating the adaptability and generalizability of our method in
cutting-edge models. Moreover, we assessed SVD-0 on datasets derived from four financial sentiment
analysis benchmarks, including FPB (Malo et al., 2014), FIQA-SA (Maia et al., 2018), TFNS (Magic,
2022), and NWGI (Yang, 2023). As shown in Table 9, SVD-0 achieves the highest total performance,
demonstrating the method’s reliability and efficiency across various domains and task types.

6.4 DISCUSSION

Limitations. While the SVD-0 technique improves the ZO subspace fine-tuning approach, the
accuracy of the subspace projection matrices is significantly influenced by the precision of the
ZO gradients. In smaller models, such as the OPT-1.3B, the ZO gradients may have a greater
approximation error, which can result in decreased precision in obtaining the projection matrices.

Border Impacts. In this paper, we introduced a new approach to derive more precise projection
matrices, which can be used to improve the effectiveness of ZO subspace fine-tuning techniques for
LLMs. Our method utilizes SVD on ZO gradients to extract projection matrices, eliminating the
need for the memory-demanding FO gradients. Our theoretical convergence analysis, in conjunction
with the experimental findings, demonstrates that our research makes a positive contribution to the
advancement of memory-efficient fine-tuning methods for LLMs.

7 CONCLUSION

Although various zeroth-order (ZO) optimization methods have been proposed to enable memory-
efficient fine-tuning for large language models (LLMs), due to the use of random subspaces, most
of them suffer from inaccurate gradient estimation, resulting in inferior training performance. To
address this problem, this paper presents a novel ZO subspace fine-tuning method named SVD-0. By
precisely capturing fine-tuning subspaces, SVD-0 enables the construction of projection matrices
with higher accuracy, thereby achieving more accurate gradient estimation and improving the LLM
fine-tuning performance. Extensive experimental findings demonstrate the efficacy of SVD-0 in
dealing with complex language modeling tasks. In the future, we plan to integrate our SVD-0 method
with parameter quantization techniques to reduce the memory requirements of LLM fine-tuning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. The second PASCAL recognising textual entailment challenge. In Proceedings of the
Second PASCAL Challenges Workshop on Recognising Textual Entailment, 2006.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth PASCAL recognizing
textual entailment challenge. In Proceedings of the Second Text Analysis Conference, 2009.

Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated
corpus for learning natural language inference. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 632–642, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models
are few-shot learners. Proceedings of the Advances on Neural Information Processing Systems
(NeurIPS), 33:1877–1901, 2020.

Yiming Chen, yuan zhang, Liyuan Cao, Kun Yuan, and Zaiwen Wen. Enhancing zeroth-order fine-
tuning for language models with low-rank structures. In Proceedings of International Conference
on Learning Representations (ICLR), 2025.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL), 2019.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The PASCAL recognising textual entailment
challenge. In Proceedings of the International Conference on Machine Learning Challenges: Eval-
uating Predictive Uncertainty Visual Object Classification, and Recognizing Textual Entailment,
2005.

Marie-Catherine de Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank: Inves-
tigating projection in naturally occurring discourse. In Proceedings of Sinn und Bedeutung 23,
2019.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 () 8-bit matrix
multiplication for transformers at scale. In Proceedings of the Advances on Neural Information
Processing Systems (NeurIPS), pp. 30318–30332, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. Proceedings of the Advances in Neural Information Processing Systems (NeurIPS),
36:10088–10115, 2023.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Proceedings of the Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL), pp. 2368–2378, 2019.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Tanmay Gautam, Youngsuk Park, Hao Zhou, Parameswaran Raman, and Wooseok Ha. Variance-
reduced zeroth-order methods for fine-tuning language models. In Proceedings of the International
Conference on Machine Learning (ICML), pp. 15180–15208, 2024.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third PASCAL recognizing
textual entailment challenge. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, 2007.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey. Transactions on Machine Learning Research (TMLR),
2024. ISSN 2835-8856.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: low-rank adapters are secretly gradient
compressors. In Proceedings of the International Conference on Machine Learning (ICML), pp.
17554–17571, 2024.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In Proceedings of the
International Conference on Learning Representations (ICLR), 2022.

Jia-Hong Huang, Yixian Shen, Hongyi Zhu, Stevan Rudinac, and Evangelos Kanoulas. Gradient
weight-normalized low-rank projection for efficient llm training. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), volume 39, pp. 24123–24131, 2025.

Shuoran Jiang, Qingcai Chen, Youcheng Pan, Yang Xiang, Yukang Lin, Xiangping Wu, Chuanyi Liu,
and Xiaobao Song. Zo-adamu optimizer: Adapting perturbation by the momentum and uncertainty
in zeroth-order optimization. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), volume 38, pp. 18363–18371, 2024.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-tuning can
distort pretrained features and underperform out-of-distribution. arXiv preprint arXiv:2202.10054,
2022.

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In
Proceedings of the International Conference on the Principles of Knowledge Representation and
Reasoning, 2012.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of the Machine Learning and Systems
(MLSys), 6:87–100, 2024.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics (ACL), pp. 61–68, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized BERT pretraining
approach. arXiv:1907.11692, 2019.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse mezo: Less
parameters for better performance in zeroth-order llm fine-tuning. arXiv preprint arXiv:2402.15751,
2024.

Shaocong Ma and Heng Huang. Revisiting zeroth-order optimization: Minimum-variance two-point
estimators and directionally aligned perturbations. In Proceedings of The Thirteenth International
Conference on Learning Representations (ICLR), 2025.

Neural Magic. Twitter financial news sentiment. https://huggingface.co/datasets/zeroshot/twitter-
financial-news-sentiment, 2022.

Macedo Maia, Siegfried Handschuh, André Freitas, Brian Davis, Ross McDermott, Manel Zarrouk,
and Alexandra Balahur. Www’18 open challenge: Financial opinion mining and question
answering. Companion Proceedings of the The Web Conference 2018, 2018. URL https:
//api.semanticscholar.org/CorpusID:13866508.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. In Proceedings of Advances in
Neural Information Processing Systems (NeurIPS), volume 36, pp. 53038–53075, 2023.

11

https://api.semanticscholar.org/CorpusID:13866508
https://api.semanticscholar.org/CorpusID:13866508

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

P. Malo, A. Sinha, P. Korhonen, J. Wallenius, and P. Takala. Good debt or bad debt: Detecting
semantic orientations in economic texts. Journal of the Association for Information Science and
Technology, 65, 2014.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

Ryota Nozawa, Pierre-Louis Poirion, and Akiko Takeda. Zeroth-order random subspace algorithm
for non-smooth convex optimization. Journal of Optimization Theory and Applications, 204(3):53,
2025.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: layerwise
importance sampling for memory-efficient large language model fine-tuning. Proceedings of the
Advances in Neural Information Processing Systems (NeurIPS), 37:57018–57049, 2024.

Sihwan Park, Jihun Yun, SungYub Kim, Souvik Kundu, and Eunho Yang. Unraveling zeroth-
order optimization through the lens of low-dimensional structured perturbations. arXiv preprint
arXiv:2501.19099, 2025.

Mohammad Taher Pilehvar and Jose Camacho-Collados. WiC: the word-in-context dataset for
evaluating context-sensitive meaning representations. In Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL), pp. 1267–1273, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 2383–2392, 2016.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. 2011.

Murray Shanahan and Catherine Clarke. Evaluating large language model creativity from a literary
perspective. arXiv preprint arXiv:2312.03746, 2023.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2013.

Yan Sun, Tiansheng Huang, Liang Ding, Li Shen, and Dacheng Tao. Tezo: Empowering the low-
rankness on the temporal dimension in the zeroth-order optimization for fine-tuning llms. arXiv
preprint arXiv:2501.19057, 2025.

Qitao Tan, Jun Liu, Zheng Zhan, Caiwei Ding, Yanzhi Wang, Jin Lu, and Geng Yuan. Harmony
in divergence: Towards fast, accurate, and memory-efficient zeroth-order llm fine-tuning. arXiv
preprint arXiv:2502.03304, 2025.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. In Proceedings of Advances in Neural Information Processing Systems
(NeurIPS), volume 32, 2019.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. In Proceedings of the Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL), 2018.

Hongyang Yang. Data-centric fingpt. open-source for open finance. https://github.com/
AI4Finance-Foundation/FinGPT, 2023.

Yifan Yang, Kai Zhen, Ershad Banijamali, Athanasios Mouchtaris, and Zheng Zhang. Adazeta:
Adaptive zeroth-order tensor-train adaption for memory-efficient large language models fine-
tuning. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 977–995, 2024.

12

https://github.com/AI4Finance-Foundation/FinGPT
https://github.com/AI4Finance-Foundation/FinGPT

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ziming Yu, Pan Zhou, Sike Wang, Jia Li, and Hua Huang. Subzero: Random subspace zeroth-order
optimization for memory-efficient llm fine-tuning. arXiv preprint arXiv:2410.08989, 2024.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, Kevin Duh, and Benjamin Van Durme.
ReCoRD: Bridging the gap between human and machine commonsense reading comprehension.
arXiv preprint 1810.12885, 2018.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open pre-trained transformer language
models. arXiv:2205.01068, 2022.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for
memory-efficient llm fine-tuning: a benchmark. In Proceedings of the International Conference
on Machine Learning (ICML), pp. 59173–59190, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. In Proceedings of
the International Conference on Machine Learning (ICML), pp. 61121–61143. PMLR, 2024a.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order
fine-tuning without pain for llms: A hessian informed zeroth-order optimizer. arXiv preprint
arXiv:2402.15173, 2024b.

A DETAILED EXPERIMENTAL SETTINGS

A.1 MODEL SETTINGS

In our experiments, we considered both large-scale autoregressive language models (i.e., OPT-1.3B
and OPT-13B (Zhang et al., 2022)) and a masked language model (i.e., RoBERTa-large (Liu et al.,
2019)). In the experiments, all ZO methods used a batch size of 16, except where specified, since
larger batches help minimize the gradient approximation variance. We chose MeZO as the main
baseline because it is the first widely adopted ZO optimizer for LLMs, and included the first-order
SGD as a reference for optimization. In line with previous research (Malladi et al., 2023; Zhang
et al., 2024), our experiments utilized standardized prompt templates, which are crucial in influencing
the performance of ZO methods. Moreover, to ensure a fair comparison, we considered multiple
values for each key hyperparameter. For example, we investigated the following hyperparameter
configurations for OPT-13B: a learning rate in {1e−7, 2e−7, 5e−7, 1e−6}, ϵ = 1e− 3, a batch size
of 16 (except for MultiRC and DROP which have a batch size of 8), a rank in {24, 32, 48, 64, 128},
and a subspace update frequency in {500, 1000, 2000}. Please refer to Appendix A for detailed
configurations of other models. Similar to the work in (Yu et al., 2024), we conducted an exhaustive
grid search over hyperparameters for each pairing of ZO methods and LLMs, using the best results
for an equitable comparison.

A.2 DATASET SETTINGS.

For OPT models, we experimented with the SuperGLUE benchmark (Wang et al., 2019), which
consists of various types of tasks, including classification tasks (e.g., SST-2 (Socher et al., 2013),
RTE (Bar Haim et al., 2006; Bentivogli et al., 2009; Dagan et al., 2005; Giampiccolo et al., 2007),
CB (de Marneffe et al., 2019), BoolQ (Clark et al., 2019), WSC (Levesque et al., 2012), and
WIC (Pilehvar & Camacho-Collados, 2019)), multiple choice tasks (e.g., COPA (Roemmele et al.,
2011) and ReCoRD (Zhang et al., 2018)), and generation tasks (e.g., SQuAD (Rajpurkar et al.,
2016) and DROP (Dua et al., 2019)). Here, for each task, we randomly selected 1000 samples for
training, 500 samples for validation, and 1000 samples for testing. For the RoBERTa-large model,
in addition to the task SST-2, we investigated three more tasks, i.e., SST-5 (Socher et al., 2013),
SNLI (Bowman et al., 2015), and MNLI (Williams et al., 2018). In this case, we fixed the parameter
k at 512 throughout the training and validation phases, indicating that 512 samples are allocated for
each category. For the testing phase, we randomly chose a total of 1000 samples.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 HYPERPARAMETER SETTINGS

This section provides a detailed overview of the hyperparameters employed in our grid search across
the experiments, as depicted in Tables 10 and 12. For the OPT model, we carried out 20,000 steps
for each method. Both the SGD and ZO methodologies were implemented for an identical number
of steps. In the remaining RoBERTa experiments, ZO optimization strategies were applied over
100,000 training steps. For both models, we evaluated the validation loss every 1,000 training steps
to determine the optimal model checkpoint. In the S-MeZO strategy, the sparsity rate is set to 0.75.

Table 10: The hyperparameter grids used for OPT-13B experiments.

Method Hyperparameters

Batch Size Learning Rate ϵ Rank Update Interval

SGD 16 {1e−4, 1e−3, 5e−3 } – – –
MeZO (Malladi et al., 2023) 16 {1e−7, 2e−7, 5e−7, 1e−6} 1e−3 – –
S-MeZO (Liu et al., 2024) 16 {1e−6, 5e−6} 1e−3 – –
LOZO (Chen et al., 2025) 16 {1e−7, 1e−6} {1e−3, 1e−4} {1, 2, 4} {50, 100}
SubZero (Yu et al., 2024) 16 {1e−7, 2e−7, 5e−7, 1e−6} 1e−3 {32, 64, 128, 256} {500, 1000, 2000}

SVD-0 16 {1e−7, 2e−7, 5e−7, 1e−6} 1e−3 {24, 32, 48, 64, 128} {500, 1000, 2000}

Table 11: The hyperparameter grids used for OPT-1.3B experiments.

Method Hyperparameters

Batch Size Learning Rate ϵ Rank Update Interval

MeZO (Malladi et al., 2023) 16 {1e−7, 5e−7, 1e−6} 1e−3 – –
LOZO (Chen et al., 2025) 16 {1e−7, 1e−6} {1e−3, 1e−4} {1, 2, 4} {50, 100}
SubZero (Yu et al., 2024) 16 {1e−7, 5e−7, 1e−6} 1e−3 {24, 48} 1000

SVD-0 16 {1e−7, 5e−7, 1e−6} 1e−3 {8, 24, 48} {50, 500, 1000}

For all previously mentioned ZO methods, we utilized a consistent learning rate schedule and set the
weight decay to zero. Typically, we chose a batch size of 16 for the OPT-1.3B and OPT-13B models
across various tasks. Nonetheless, due to limited GPU resources, we reduced the batch size to 8 for
the DROP, MultiRC, and SQuAD evaluations.

Table 12: The hyperparameter grids used for RoBERTa-large experiments.

Method Hyperparameters

Batch Size Learning Rate ϵ Rank Update Interval

MeZO (Malladi et al., 2023) 64 {1e−7, 1e−6, 1e−5} 1e−3 – –
LOZO (Chen et al., 2025) 64 2e−7 1e−3 {4, 8} {50, 100}

SVD-0 64 1e−6 1e−3 {8, 16, 24} 1000

B DETAILED PRESTUDY RESULTS

Table 13: Comparison between SVD and other dimensionality reduction techniques.
Method Mean Std Min Max Median

Origin 0.0000 0.0005 -0.0013 0.0012 0.0000
After SVD (ours) 0.4249 0.0257 0.3276 0.4774 0.4278

PCA -0.0003 0.0044 -0.0141 0.0101 -0.0004
NMF 0.2464 0.0442 0.1097 0.3594 0.2456

Factor Analysis 0.0001 0.0045 -0.0124 0.0136 -0.0002
Random Proj -0.0002 0.0045 -0.0112 0.0177 -0.0001

t-SNE -0.0009 0.0157 -0.0437 0.0567 -0.0012

We conducted experiments to investigate why SVD outperforms other methods for dimensionality
reduction. Table 13 presents a comparison between our dimensionality reduction strategy ("After
SVD") and other techniques (PCA, NMF, Factor Analysis, Random Projection, and t-SNE) based on
the calculated gradients. As shown in Table 13, our method yields the highest mean value (0.4249)
among all dimensionality reduction techniques, accompanied by a lower standard deviation (0.0257),
which highlights its superior and consistent performance.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C PROOFS

Here, we introduce some definitions and lemmas for continuous proofs. The following two lemmas
illustrate that the low-rank perturbation matrix for each layer can be represented as a layer-scale
projection matrix that is orthogonal across its columns.

Lemma 3. Let Z̃ = UZV T, where U ∈ Rm×r,Z ∈ Rr×r,V ∈ Rn×r, and UTU = V TV = Ir.
Then we have vec(Z̃) = P vec(Z) and P TP = Ir2 , where P = V ⊗U .

Proof. Since vec(UZV T) = (V ⊗U)vec(Z), we only need to show (V ⊗U)T(V ⊗U) = Ir2 .
In fact:

(V ⊗U)T(V ⊗U) = (V T ⊗UT)(V ⊗U) = (V TV)⊗ (UTU) = Ir ⊗ Ir = Ir2 .

The proof is completed.

We can also show that the low-rank perturbation matrices across all layers can be represented as a
model-scale projection matrix.

Lemma 4. Let a block diagonal matrix P = bdiag(P1,P2, · · · ,Pl) and z̃i = Pizi, where
P T

i Pi = Ir2 and i = 1, 2, . . . , l. Then we have z̃ = Pz, where z̃ = [z̃T
1 , . . . , z̃

T
l]

T, z = [zT
1 ,

. . . , zT
l]

T and P TP = Ilr2 .

Proof. It is easy to check that z̃ = Pz. Besides, we have:

P TP = bdiag(P T
1 , . . . ,P T

l)bdiag(P1, . . . ,Pl) = bdiag(P T
1 P1, . . . ,P

T
l Pl) = Ilr2 .

The proof is completed.

According to Lemma 4 and Proposition 1, the perturbation vector of SVD-0 is given by z̃ = Pz.
This is similar to existing random subspace methods, but SVD-0’s projection matrix is block diagonal
and orthogonal by columns.

Definition 1. We say that the vector z is a standard n-dimensional Gaussian vector, denoted by
z ∼ N (0, In), if its probability density function is given by p(z) = 1

κe
− 1

2∥z∥
2

, where κ > 0 satisfies
the condition

∫
Rn

1
κe

− 1
2∥z∥

2

dz = 1.

Definition 2. Let z ∼ N (0, In). We say that x is a chi-square random variable with n degrees of
freedom (denoted by x ∼ χ2(n)) if x = ∥z∥2.

Lemma 5. Let z ∼ N (0, In). For any orthogonal (n× n) matrix Q and any continuous function f ,
we have Ez[f(z)] = Ez[f(Qz)].

Lemma 6. If x ∼ χ2(n), then we have:

Ex[x] = n, Varx[x] = 2n.

Lemma 7. (Nesterov & Spokoiny, 2017) Let f ∈ C2,2
L2

(Rn). For all x,y ∈ Rn, we have:

|f(y)− f(x)− ⟨∇f(x),y − x⟩ − 1

2
⟨∇2f(x)(y − x),y − x⟩| ≤ L2

6
∥y − x∥3.

Lemma 8. (Nesterov & Spokoiny, 2017) Let z ∼ N (0, In). For 0 ≤ t ≤ 2, we have:

Ez[∥z∥t] ≤ nt/2.

For t ≥ 2, we have:

nt/2 ≤ Ez[∥z∥t] ≤ (n+ t)t/2.

Lemma 9. Let z ∼ N (0, In). For all y ∈ Rn, we have:

Ez[∥⟨y, z⟩z∥2] = (n+ 2)∥y∥2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Proof. Note that for any orthogonal (n× n)-matrix Q, we have:

∥⟨y,Qz⟩Qz∥2 = ∥⟨QTy, z⟩z∥2, ∥QTy∥ = ∥y∥.

In accordance with Lemma 5, we can set y = [1, 0, . . . , 0]T, and only need to prove Ez[∥⟨y, z⟩z∥2] =
n+ 2. Equipped with Lemma 6, we get:

Ez[∥⟨y, z⟩z∥2] = Ez

[
n∑

i=1

z2
1z

2
i

]
=

n∑
i=1

Ez[z
2
1z

2
i] = Ez1

[z4
1] + Ez1

[z2
1]

n∑
i=2

Ez[z
2
i] = n+ 2.

The proof is completed.

Here we provide the proof of Lemma 2.

Proof. a) The conclusion is clearly supported by Lemma 3 and Lemma 4.

b) Let az(τ) = f(x+ τz)− f(x)− τ⟨∇f(x), z⟩ − τ2

2 ⟨∇
2f(x)z,z⟩. Lemma 7 implies that:

|az(±ε)| ≤
ε3

6
L2∥z∥3.

Note that:

Ez[∇̂f(θ)]− PP T∇f(x)

=
P

2κε

∫
Rq

[f(x+ εPz)− f(x− εPz)− 2ε⟨∇f(z),Pz⟩]ze− 1
2∥z∥

2

dz.

Therefore, in accordance with Lemma 8, we have:

∥Ez[∇̂f(θ)]− PP T∇f(x)∥

≤ 1

2κε

∫
Rq

|f(x+ εPz)− f(x− εPz)− 2ε⟨∇f(z),Pz⟩|∥z∥e− 1
2∥z∥

2

dz

=
1

2κε

∫
Rq

|aPz(ε)− aPz(−ε)|∥z∥e−
1
2∥z∥

2

dz

≤ ε2L2

6κ

∫
Rq

∥z∥4e− 1
2∥z∥

2

dz ≤ ε2

6
L2(q + 4)2.

The proof is completed.

Theorem 2. Let f(x) = xTHx and z ∼ N (0, Iq), where H ∈ Rd×d is positive definite. We have:

Ez[∇̂f(θ)] = PP T∇f(x), (6)

Ez[∥∇̂f(θ)∥2] = (q + 2)∥P T∇f(x)∥2, (7)

Ez

[
⟨∇f(x), ∇̂f(θ)⟩2

∥P T∇f(x)∥2∥∇̂f(θ)∥2

]
=

1

q
. (8)

Proof. It is straightforward to verify that

∇̂f(θ) = P ⟨P T∇f(x),z⟩z.

Therefore, we can express the expected value as

Ez[∇̂f(θ)] = PP T∇f(x).

Combining this with Lemma 9, we find that

Ez[∥∇̂f(θ)∥2] = (q + 2)∥P T∇f(x)∥2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Additionally, it is important to note that for any orthogonal (q × q) matrix Q, we have:

Ez

[
⟨∇f(x), ∇̂f(θ)⟩2

∥P T∇f(x)∥2∥∇̂f(θ)∥2

]
= Ez

[
⟨P T∇f(x),z⟩2

∥P T∇f(x)∥2∥z∥2

]
= Ez

[
⟨P T∇f(x),Qz⟩2

∥P T∇f(x)∥2∥Qz∥2

]
= Ez

[
⟨QTP T∇f(x),z⟩2

∥QTP T∇f(x)∥2∥z∥2

]
.

In accordance with Lemma 5, we can set P T∇f(x) = [1, 0, . . . , 0]T. Thus, we have:

Ez

[
⟨∇f(x), ∇̂f(θ)⟩2

∥P T∇f(x)∥2∥∇̂f(θ)∥2

]
= Ez

[
z2
1

∥z∥2

]
=

1

q
.

The proof is completed.

To demonstrate the convergence of SVD-0 with SGD, we can structure our analysis into two main
segments. The first segment examines the convergence behavior of the SVD-0 solution process while
keeping the projection matrix P constant. The second segment evaluates the impact of performing
lazy updates to P . Through these assessments, we aim to establish the global convergence of SVD-0,
specifically in the context of a single layer.

In the initial stage, while P remains constant, we can reformulate the original SVD-0 problem
as an optimization problem constrained within that subspace. We define h(y) = f(x + Py),
hε(y) = Ez[h(y + εz)], and gε(y) =

h(y+εz)−f(y)
ε z. According to Lemma 10, if f demonstrates

first L1-smoothness, then h will also exhibit first L1-smoothness.
Lemma 10. Let h(y) = f(x + Py), where f ∈ C1,1

L1
(Rd), and P TP = I , then we have h ∈

C1,1
L1

(Rq).

Proof. The following demonstrates that if f is first L1-smooth, then h is also first L1-smooth. For
any y1 ∈ Rq and y2 ∈ Rq , we have:

∥∇h(y1)−∇h(y2)∥ =
∥∥P T∇(f(x+ Py1)− P T∇(f(x+ Py2)

∥∥
≤
∥∥P T

∥∥ ∥∇(f(x+ Py1)−∇(f(x+ Py2)∥
≤ L1 ∥P (y1 − y2)∥
= L1 ∥y1 − y2∥ .

The proof is completed.

We then analyze the convergence of SVD-0 while maintaining a fixed subspace.

Lemma 11. Nesterov & Spokoiny (2017) Let f ∈ C1,1
L1

(R). Then, for any x ∈ R, we have:

Ez[∥gε(x)∥2] = Ez

[
∥f(x+ εz)− f(x)

ε
∥2
]
≤ 4(n+ 4)∥∇fε(x)∥2 + 3ε2L2

1(f)(n+ 4)3, (9)

and

∥∇f(x)∥2 ≤ 2∥∇fε(x)∥2 +
ε2

2
L2
1(f)(n+ 6)3, (10)

where fε(x) = Ez[f(x+ εz)].

Lemma 12. Let y∗ = argminx∈Rq h(y), where h ∈ C1,1
L1

(Rq) and h is non-convex. Suppose
Ek = (z0, z1, · · · , zk−1, zk), where zk ∼ N (0, Iq) and η = 1

4(q+4)L1
. {yk}k>0 is the sequence

generated by Algorithm 3. Let ϕ0 = h(y0), and for k ≥ 1, ϕk = EEk−1
[h(yk)]. For the P defined in

Proposition 1, which is fixed, we have:

ϕk+1 − ϕk ≤ −
1

4
ηEEk

[
∥∇h(yk)∥2

]
+

ε2(q + 6)3

8
L2
1 +

3ε2(q + 4)

32
L1 (11)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proof. If we have a fixed subspace P ∈ Rd×q, we can reformulate the optimization objective as
follows:

min
y∈Rq

h(y) := f(x+ Py),

Let y0 represent the initial point, and let {ηk}k≥0 be a sequence of positive real numbers. We will
consider the randomized gradient search algorithmRGε(ε > 0):

1. Generate zk and the corresponding gε(yk), where zk ∼ N (0, Iq).

2. Update yk+1 = yk − ηkgε(yk).

Our goal is to estimate the evolution of the function hε after one iteration of this algorithm.

Given that h is L1-Lipschitz continuous for its first derivative, and hε is Lε-Lipschitz continuous for
its first derivative (where Lε ≤ L1)(Nesterov & Spokoiny, 2017), we have:

hε(yk+1) ≤ hε(yk)− ηk⟨∇hε(yk), gε(yk)⟩+
1

2
η2kLε∥gε(yk)∥2.

Taking expectation with respect to zk, we have:

Ezk
[hε(yk+1)] ≤ hε(yk)− ηk∥∇hε(yk)∥2 +

1

2
η2kLε Ezk

[∥gε(yk)∥2].

Since h ∈ C1,1(Rq), from Lemma 11, we have:

Ezk
[hε(yk+1)] ≤ hε(yk)− ηk∥∇hε(yk)∥2

+
1

2
η2kL1

(
4(q + 4)∥∇hε(yk)∥2 + 3ε2L2

1(q + 4)3
)
.

Setting ηk = η̂ = 1
4(q+4)L1

, we get:

Ezk
[hε(yk+1)] ≤ hε(yk)−

1

2
η̂∥∇hε(yk)∥2 +

3ε2

32
L1(q + 4).

Taking the expectation with respect to Ek, we get:

ϕk+1 ≤ ϕk −
1

2
η̂EEk

[∥∇hε(yk)∥2] +
3ε2(q + 4)

32
L1,

From Lemma 11, we have EEk
[∥∇h(yk)∥2] ≤ 2EEk

[∥∇hε(yk)∥2] + ε2(q+6)3

2 L2
1. Therefore:

ϕk+1 − ϕk ≤ −
1

4
η̂EEk

[
∥∇h(yk)∥2

]
+

ε2(q + 6)3

8
L2
1 +

3ε2(q + 4)

32
L1. (12)

The proof is completed.

Next, we need to assess the randomness of our random subspace. According to Lemma 16, if we obtain
the projection matrix using Algorithm 1, the expected value can be expressed as E[PP T] = q

dI . In
this equation, q represents the dimension of the subspace, d indicates the dimension of the original
space, and P is defined as V ⊗U .
Lemma 13. Let matrix A = (a1,a2, · · · ,ar) ∈ Rn×r be composed of column vectors ak

which are mutually independent and ak ∈ N (0, In). Suppose Gram-Schmidt process uk =

ak −
∑k−1

s=1 ⟨ak, es⟩ es and ek = uk

∥uk∥ . [ak]i ↔ [ak]j represents the exchange of the i-th element
and the j-th element of ak, while all other elements remain unchanged. [ak]i = −1× [ak]i signifies
that only the i-th element of ak is multiplied by −1, while all other elements remain unchanged. Sup-
pose f(A,U ,E) be a function of the matrix A, U = (u1,u2, · · · ,ur) and E = (e1, e2, · · · , er),
then

(1) if [ak]i ↔ [ak]j or [ak]i = −1× [ak]i, E[f] remain unchanged.

(2) if [ak]i ↔ [ak]j ⇒ [uk]i ↔ [uk]j and [ek]i ↔ [ek]j .

(3) if [ak]i = −1 × [ak]i ⇒ [uk]i = −1 × [uk]i , [ek]i = −1 × [ek]i, [uk]j = 1 × [uk]j , and
[ek]j = 1× [ek]j , where i ̸= j.

(4) E
[

[uk]
2
i

⟨uk,uk⟩

]
= 1

n .

(5) E
[
[uk]i[uk]j
⟨uk,uk⟩

]
= 0, where i ̸= j.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Proof. In real analysis, a matrix A usually possesses full rank when it follows a Gaussian distribution,
and it is common for both uk and ek to be non-zero.

(1) Given that ak is independently and identically distributed, this condition clearly applies.

(2) For the base case k = 1, it is obviously true. Assume that the result holds for all k = 1, 2, · · · , k−
1, where k ≥ 2, then [ak]i ↔ [ak]j ⇒ [uk]i = [ak]i −

∑k−1
s=1 ⟨ak, es⟩ [es]i, [uk]j = [ak]j −∑k−1

s=1 ⟨ak, es⟩ [es]j , [ek]i =
[uk]i
∥uk∥ , and [ek]j =

[uk]j
∥uk∥ .

Thus, by strong induction, we have [uk]i ↔ [uk]j and [ek]i ↔ [ek]j .

(3) For base case k = 1, it obviously holds. Assume the result holds for all k = 1, 2, · · · , k − 1,
where k ≥ 2, then

[ak]i = −1× [ak]i ⇒
{
[uk]i = [ak]i × (−1)−

∑k−1
s=1 ⟨ak, es⟩ [es]i × (−1) = [uk]i × (−1)

[uk]j = [uk]j × 1, i ̸= j

⇒
{
[ek]i × (−1) = [uk]i

∥uk∥ × (−1)
[ek]j = [ek]j × 1, j ̸= i

By strong induction, we have [uk]i = −1 × [uk]i , [ek]i = −1 × [ek]i, [uk]j = 1 × [uk]j , and
[ek]j = 1× [ek]j , where i ̸= j.

(4) Since
∣∣∣ [uk]

2
i

⟨uk,uk⟩

∣∣∣ ≤ 1, E
[

[uk]
2
i

⟨uk,uk⟩

]
exists. [ak]i ↔ [ak]j ⇒ [uk]

2
i

⟨uk,uk⟩ ↔
[uk]

2
j

⟨uk,uk⟩ .

Thus, E
[

[uk]
2
i

⟨uk,uk⟩

]
× n =

∑n
s=1 E

[
[uk]

2
s

⟨uk,uk⟩

]
= E

[
⟨uk,uk⟩
⟨uk,uk⟩

]
= 1⇒ E

[
[uk]

2
i

⟨uk,uk⟩

]
= 1

n .

(5) Since
∣∣∣ [uk]i[uk]j

⟨uk,uk⟩

∣∣∣ ≤ ∣∣∣ [uk]
2
i+[uk]

2
j

2⟨uk,uk⟩

∣∣∣ ≤ 1, E
[
[uk]i[uk]j
⟨uk,uk⟩

]
exists.

[ak]i = [ak]i ×−1⇒ E
[
[uk]i[uk]j
⟨uk,uk⟩

]
= E

[
−[uk]i[uk]j
⟨uk,uk⟩

]
= 0, where i ̸= j.

Lemma 14. Let A ∈ Rn×r be a matrix with independent standard normal entries, i.e., each
element of A is an i.i.d. N (0, 1) random variable. Suppose A undergoes QR decomposition via the
Gram-Schmidt process to yield a column-orthogonal matrix Q ∈ Rn×r with orthonormal columns
e1, e2, . . . ,er and an upper triangular matrix R ∈ Rr×r. Then, for each k = 1, 2, . . . , r, the
expected value of the outer product of the k-th orthonormal column vector ek of Q is given by:

E[ekeTk] =
1

n
I,

where I is the n× n identity matrix.

Proof. By the Gram-Schmidt process, we have ek = uk

∥uk∥ , where uk = ak −
∑k−1

s=1 ⟨ak, es⟩es.

Thus, ekeTk =
uku

T
k

⟨uk,uk⟩ .

The (i, j)-th entry of E[ekeTk] can be written as:

E[[ekeTk]ij] = E
[
[uk]i[uk]j
⟨uk,uk⟩

]
.

For diagonal entries (i = j): When i = j, from Lemma 13(4), we have:

E[[ekeTk]ii] = E
[

[uk]
2
i

⟨uk,uk⟩

]
=

1

n
.

For off-diagonal entries (i ̸= j): When i ̸= j, from Lemma 13(5), we have:

E[[ekeTk]ij] = E
[
[uk]i[uk]j
⟨uk,uk⟩

]
= 0.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Combining these two cases, we conclude that E[ekeTk] is a diagonal matrix with all diagonal entries
equal to 1

n . Thus,

E[ekeTk] =
1

n
I,

where I is the n× n identity matrix. The proof is completed.

Lemma 15. Let A ∈ Rn×r be a matrix with independent standard normal entries, i.e., each element
of A is an i.i.d. N (0, 1) random variable. Suppose A undergoes QR decomposition to yield an
orthogonal matrix Q ∈ Rn×r with orthonormal columns and an upper triangular matrix R ∈ Rr×r.
Then, the expected value of the outer product of the matrix Q with itself is given by:

E[QQT] =
r

n
I

where I is the n× n identity matrix.

Proof. The QR decomposition of the matrix A is expressed as A = QR, where Q is an orthogonal
matrix with columns denoted as e1, e2, . . . ,er, and R is an upper triangular matrix. Since Q is
orthogonal, it satisfies the condition QQT = Ir, where Ir represents the r × r identity matrix. Our
objective is to compute E[QQT]. By leveraging the linearity of expectation and the fact that the
columns of Q are orthonormal, we find:

E[QQT] = E

[
r∑

k=1

eke
T
k

]
=

r∑
k=1

E[ekeTk].

From Lemma 14, we know that E[ekeTk] =
1
nI for each k. Therefore:

E[QQT] =

r∑
k=1

1

n
I =

r

n
I.

The proof is completed.

Lemma 16. Let A1 ∈ Rm×r and A2 ∈ Rn×r be matrices with independent standard normal entries,
i.e., each element of A1 and A2 is an i.i.d. N (0, 1) random variable. Suppose A1 and A2 undergo
QR decomposition to yield orthogonal matrices Q1 ∈ Rm×r and Q2 ∈ Rn×r with orthonormal
columns, respectively. Define P = Q2 ⊗Q1, where ⊗ denotes the Kronecker product. Then, the
expected value of the outer product of the matrix P with itself is given by:

E[PP T] =
r2

mn
I,

where I is the mn×mn identity matrix.

Proof. The Kronecker product P = Q2 ⊗ Q1 produces a matrix P ∈ Rmn×r2 . According to
Lemma 15, we know that Q1Q

T
1 = r

mI and Q2Q
T
2 = r

nI . Our goal is to compute E[PP T]. By
utilizing the properties of the Kronecker product, we can proceed with our computation:

E[PP T] = E[(Q2 ⊗Q1)(Q
T
2 ⊗QT

1)] = E[(Q2Q
T
2)]⊗ E[(Q1Q

T
1)] =

r2

mn
I ⊗ I =

r2

mn
I

The proof is completed.

Now we can assess the impact of the lazy updates to P . Here we provide the proof of Theorem 1.

Proof. Let Pj = (P0,P1, . . . ,Pj), where Pj is the sequence generated by Proposition 1 and j ≤ K.
According to Lemma 10 and Lemma 12, when the subspace is fixed, we can transform the original
problem f ∈ C1,1

L1
(Rd) into h ∈ C1,1

L1
(Rq) using the transformation h(y) = f(x+ Py). Consider

the following update rule:

yj,0 = 0, hj(y) = f(xjF + Pjy), ∀j ∈ 0, 1, · · · ,K − 1 (13)

yj,k = yj,k−1 − η∇̂hj(yj,k−1), ∀k ∈ 0, 1, · · · , F (14)
xjF+k = xjF + Pjyk, (15)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

In the j-th subspace, the projection matrix Pj is constant, allowing us to accumulate the changes of ϕ
within this subspace. By applying Lemma 12, we obtain:

ϕ(j+1)F − ϕjF ≤ −
1

4
η̂

K−1∑
i=0

EEjF+i

[
∥∇hj(yj,i)∥2

]
+

ε2(q + 6)3

8
KL2

1 +
3ε2(q + 4)

32
KL1 (16)

≤ −1

4
η̂EEjF

[
∥∇hj(yj,0)∥2

]
+

ε2(q + 6)3

8
KL2

1 +
3ε2(q + 4)

32
KL1. (17)

Furthermore, we note that ∇hj(yj,0) = (Pj)
T∇f(xjF). By taking expectations over the overall

historical projection matrix Pj and applying Lemma 16, we find that E[Pj(Pj)
T] = q

dI , with Pj

being independent of xjF . Thus, we obtain:

EPj+1 [ϕ(j+1)F]− EPj [ϕjF] ≤ −
1

4
η̂EEjF ,Pj

[
∥(Pj)

T∇f(xjF)∥2
]
+

ε2(q + 6)3

8
KL2

1 +
3ε2(q + 4)

32
KL1

(18)

= − q

4d
η̂EEjF ,Pj

[
∥∇f(xjF)∥2

]
+

ε2(q + 6)3

8
KL2

1 +
3ε2(q + 4)

32
KL1.

(19)

Assuming f(x) ≥ f∗ holds for all x ∈ Rd, and letting T = KF , summing the inequality yields:

EPK−1
[ϕT] ≤ EP0 [ϕ0]−

q

4d
η̂

K−1∑
j=0

EEjF ,Pj

[
∥∇f(xjF)∥2

]
+ T

ε2(q + 6)3

8
L2
1 + T

3ε2(q + 4)

32
L1.

(20)

Since EPK−1
[ϕT] ≥ f∗, we have:

f∗ ≤ EP0
[ϕ0]−

q

4d
η̂

K−1∑
j=0

EEjF ,Pj

[
∥∇f(xjF)∥2

]
+ T

ε2(q + 6)3

8
L2
1 + T

3ε2(q + 4)

32
L1. (21)

Rearranging the inequality, we get:

q

4d
η̂

K−1∑
j=0

EEjF ,Pj

[
∥∇f(xjF)∥2

]
≤ EP0

[ϕ0]− f∗ + T
ε2(q + 6)3

8
L2
1 + T

3ε2(q + 4)

32
L1. (22)

Substituting η̂ = 1
4(q+4)L1

, we obtain:

q

16d(q + 4)L1

K−1∑
j=0

EEjF ,Pj

[
∥∇f(xjF)∥2

]
≤ EP0 [ϕ0]− f∗ + T

ε2(q + 6)3

8
L2
1 + T

3ε2(q + 4)

32
L1.

(23)

Thus, we have:

1

T

T−1∑
k=0

EEk,P⌊k/F⌋

[
∥∇f(xk)∥2

]
≤ 16(q + 4)dL1(EP0 [ϕ0]− f∗)

qT
+

2ε2(q + 6)3(q + 4)d

q
L3
1 +

3ε2(q + 4)2d

2q
L2
1.

(24)

To ensure
∑T−1

k=0 EEk,P⌊k/F⌋

[
∥∇f(xk)∥2

]
≤ ϵ, we can choose:

ε ≤ O

(
1

q3/2d1/2L
3/2
1

)
.

As a result, the convergence rate is O(
√

d
T). The proof is completed.

21

	Introduction
	Related Work
	Prestudy
	Methodology
	Gradient-Guided Subspace Projection Matrix Acquisition
	Periodical Subspace Update

	Convergence Analysis
	Experiments
	Comparison with State-of-the-Arts (RQ1)
	Impacts of Hyperparameters (RQ2)
	Impact of Model Sizes and Architectures (RQ3)
	Discussion

	Conclusion
	Detailed Experimental Settings
	Model Settings
	Dataset Settings.
	Hyperparameter Settings

	Detailed Prestudy Results
	Proofs

