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Abstract

In a systematic way, we investigate a widely001
asked question: Do LLMs really understand002
what they say?, which relates to the more famil-003
iar term Stochastic Parrot. To this end, we pro-004
pose a summative assessment over a carefully005
designed physical concept understanding task,006
PHYSICO. Our task alleviates the memoriza-007
tion issue via the usage of grid-format inputs008
that abstractly describe physical phenomena.009
The grids represents varying levels of under-010
standing, from the core phenomenon, applica-011
tion examples to analogies to other abstract012
patterns in the grid world. A comprehensive013
study on our task demonstrates that: (1) state-014
of-the-art LLMs lag behind humans by ∼40%;015
(2) the stochastic parrot phenomenon is present016
in LLMs, as they fail on our grid task but can017
describe and recognize the same concepts well018
in natural language; (3) our task challenges the019
LLMs due to intrinsic difficulties rather than020
the unfamiliar grid format, as in-context learn-021
ing and fine-tuning on same formatted data022
added little to their performance. Our data and023
code will be released for public research.024

1 Introduction025

Recent years have witnessed remarkable advance-026

ments in large language models (LLMs) (Brown027

et al., 2020; Achiam et al., 2023; Team et al., 2023).028

Thanks to the substantial model capacity and mas-029

sive training data, LLMs have achieved new state-030

of-the-arts on a variety of NLP tasks are even sur-031

passing humans on some of them (Min et al., 2023;032

Chang et al., 2024). Nowadays the application of033

LLMs has become widespread, facilitating daily034

work and life, and profoundly influencing people’s035

work and lifestyles (Bommasani et al., 2021; Peng036

et al., 2024; Demszky et al., 2023).037

On the other hand, despite the great success of038

LLMs, many researchers argue that LLMs may not039

really understand what they claim they do (Ben-040

der and Koller, 2020; Bender et al., 2021; Bom-041

Figure 1: Illustration of a “Stochastic Parrot” by our
PHYSICO task consisting of both low-level and high-
level subtasks in parallel. For a concept Gravity, an
LLM can generate its accurate description in natural lan-
guage, but cannot interpret its grid-format illustration.

masani et al., 2021; Mitchell and Krakauer, 2023) 042

due to their strong memorization ability. In par- 043

ticular, Bender et al. (2021) questioned whether 044

LLMs are just Stochastic Parrots that repeat words 045

based on correlations without true understanding. 046

This argument has been acknowledged by many 047

research papers and dozens of them even include 048

this term in their titles.1 Unfortunately, to our best 049

knowledge, there are no quantitative experiments to 050

verify the stochastic parrot phenomenon in LLMs. 051

Existing studies indicate that LLMs may fail on 052

one particular challenging task (Chakrabarty et al., 053

2022; Shapira et al., 2023; Hessel et al., 2023; Tong 054

et al., 2024), but they do not demonstrate that LLMs 055

claimed to understand those tasks by providing a 056

controlled and paired evidence. 057

This paper aims to provide quantitative evidence 058

to validate the argument of stochastic parrot in 059

LLMs. To this end, from the perspective of ed- 060

ucational and cognitive psychology, we first em- 061

ploy the approach of summative assessment (Black 062

1
https://scholar.google.com/scholar?hl=en&as_sdt=

0%2C5&q=llms+are+stochastic+parrot&btnG=.
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and Wiliam, 1998a,b) to measure understanding in063

LLMs. Its key idea is to design various tasks that064

test different understanding levels regarding a spe-065

cific concept. Following the principle of Bloom’s066

taxonomy (Armstrong, 2010; Krathwohl, 2002),067

we design tasks that reflect different levels of un-068

derstanding. Consequently, we develop PHYSICO,069

a task designed to assess understanding of basic070

physical concepts from high school such as Gravity.071

Our focus on physical concepts stems from both072

their fundamental relevance to important topics of073

world models and embodied systems (Savva et al.,074

2019; Duan et al., 2022; Xiang et al., 2023), and075

their rich denotations and connotations that enable076

effective design of summative assessment tasks.077

Specifically, PHYSICO includes two subtasks078

corresponding to two coarse levels of understand-079

ing in Bloom’s taxonomy, as shown in Figure 1.080

One is the low-level understanding subtask in the081

natural language format, aimed at measuring the082

remembering (or memorization) ability of LLMs.083

The other involves the same concepts but in an ab-084

stract representation format inspired by (Chollet,085

2019), which is designed to measure the high-level086

understanding beyond remembering of LLMs.087

We conduct comprehensive experiments on088

PHYSICO with representative open-source and089

commercial LLMs. We obtain two key findings:090

1) LLMs perform perfectly on the low-level un-091

derstanding subtask (>95% in Accuracy) but lags092

behind humans by a large margin (∼40% in Accu-093

racy) on the high-level subtask, which verifies the094

stochastic parrot phenomenon in LLMs. 2) Further095

analysis shows that our high-level subtask chal-096

lenges LLMs due to the intrinsic difficulty of deep097

understanding rather than the unfamiliar format.098

This paper makes the following contributions:099

• We introduce a psychology-appealing approach100

(summative assessment) to measure the under-101

standing of LLMs.102

• To fulfil summative assessment, we propose a103

challenging task PHYSICO to evaluate LLMs.104

• Based on PHYSICO, we provide a quantitative105

experiment to successfully verify the stochastic106

parrot phenomenon in LLMs.107

2 Measuring Concept Understanding via108

Summative Assessment109

It is intrinsically challenging to measure the extent110

to which LLMs understand a sentence or concept.111

Indeed, Bender and Koller (2020) provide a defini-112

tion of "understanding" from a linguistic perspec- 113

tive, but this definition depends on another abstract 114

and unmeasurable term, “meaning”. Therefore, 115

even with this definition, accurately measuring "un- 116

derstanding" remains elusive. 117

In general, “understanding” is not only a term 118

in linguistics but also in educational and cognitive 119

psychology. Hence, we approach the measurement 120

of whether LLMs understand a concept from an ed- 121

ucational and cognitive perspective, using summa- 122

tive assessment (Black and Wiliam, 1998a). The 123

key idea is illustrated by the following example. 124

A Motivating Example Suppose a middle school 125

physics teacher is explaining the concept of “Grav- 126

ity” to students. How can the teacher know whether 127

a student truly understands this concept? In prac- 128

tice, the teacher would design a series of questions 129

specifically related to gravity to assess comprehen- 130

sion, e.g., the properties like inverse square law and 131

examples like orbital motions. If a student strug- 132

gles to answer many of these questions, the teacher 133

may conclude that the student does not understand 134

the concept well or has a poor grasp of it. 135

Summative Assessment Summative assessment, 136

which is widely used by educators, is an appealing 137

strategy to evaluate students’ understanding and 138

knowledge acquisition in educational and cognitive 139

psychology (Black and Wiliam, 1998a,b; Harlen 140

and James, 1997). In this paper, we extend it from 141

evaluating humans to evaluating machines. 142

Assume S denotes an intelligent system and C is 143

a specific concept. To evaluate the extent how S un- 144

derstands the concept C, our summative assessment 145

includes the following two steps: 146

• Task design towards C: design several concept 147

understanding tasks, each of which consists of a 148

lot of questions manually created towards under- 149

standing the concept C. 150

• Evaluating S: ask S to answer the questions 151

from the tasks and calculate its accuracy. 152

Requirements for Validity The success (valid- 153

ity) of the proposed evaluation approach highly 154

depends on the task design (Black and Wiliam, 155

1998a,b). For example, if the questions are too easy, 156

even a weak system could answer them correctly. 157

This leads to an overestimation of the system’s un- 158

derstanding capabilities, making the assessment in- 159

effective. To ensure good validity, we adhere to the 160

principles outlined in summative assessment (Black 161

and Wiliam, 1998a,b) for task design: 162
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• Alignment with evaluating objectives: the ques-163

tions should be related to the targeted concept,164

and should measure the specific knowledge about165

the targeted concept.166

• Different difficulty levels: the questions should167

be with different difficulty levels from easy to168

difficult level, to ensure that the evaluation results169

have distinctiveness for different systems.170

• Variety: the questions should reflect various un-171

derstanding aspects of the targeted concept; ad-172

dressing both its denotation and connotation.173

3 Task Design and Dataset Construction174

3.1 Task Design Principle175

We borrow the idea of Bloom’s taxonomy (Krath-176

wohl, 2002; Armstrong, 2010) from education re-177

search to fulfill the requirements for task design178

in Section 2, so as to ensure the assessment valid-179

ity. Bloom’s taxonomy offers an ideal principle to180

these requirements with an ordering of six cogni-181

tive skills (from low to high level) for knowledge182

understanding: Remembering, Understanding, Ap-183

plying, Analyzing, Evaluating and Creating.184

Generally, it is nontrivial to strictly follow this185

principle since there is no clear boundary among186

the last four skills of understanding. As a result,187

we group the last four high-level skills into one and188

consider the following two levels of understanding:189

• Low-level Understanding: covering the two190

lowest-level skills in Bloom’s taxonomy, i.e.,191

retrieving relevant knowledge from long-term192

memory and rephrasing in one’s own words.193

• High-level Understanding: covering the aspects194

for understanding the knowledge beyond memo-195

rization, e.g., applying the knowledge to explain196

a physical phenomenon, analyzing a concrete197

property of a concept in a generalized and ab-198

stract manner,2 and explaining phenomena by199

connecting different concepts.200

Based on the two levels of understanding, we de-201

sign PHYSICO task for summative assessment.202

3.2 Our PHYSICO Task203

PHYSICO is essentially a physical concept under-204

standing task, which primarily targets on 42 phys-205

ical concepts or phenomena: e.g., gravity, light206

reflection, acceleration, buoyancy, inertia, etc (see207

Appendix A for the full list). Our focus on physi-208

cal concepts is motivated by two main reasons: 1)209

2For example, the flow of electric current can be abstracted as moving from
high potential to low potential.

understanding physical concepts is critical for intel- 210

ligent systems to interact with the world, which is 211

ultimate goal of embodied AI (Savva et al., 2019; 212

Duan et al., 2022; Xiang et al., 2023); 2) design- 213

ing tasks centered around physical concepts allows 214

us to more easily control different levels of under- 215

standing and ensure the diversity of each concept. 216

For each physical concept, PHYSICO involves 217

both low-level understanding subtasks and high- 218

level subtasks, following our task design principles. 219

3.2.1 Low-level Understanding Subtasks 220

Physical Concept Selection Subtask To eval- 221

uate whether an LLM possesses the knowledge 222

of our included concepts, we design a task for 223

LLMs to recognize a concept from its correspond- 224

ing Wikipedia definition. We manually masked 225

the synonyms of the concept with placeholder 226

[PHENOMENON]. Additionally, highly relevant en- 227

tities were masked as [MASK] to alleviate short- 228

cuts. For example, in the definition of Gravity, the 229

terms “gravity” and “gravitation” were masked as 230

[PHENOMENON], while “Isaac Newton” was masked 231

as [MASK]. Detailed process is described in Ap- 232

pendix B. We then present the models with four 233

choices for concept identification, consistent with 234

the following high-level subtasks. 235

Physical Concept Generation Subtask As the 236

second subtask, we directly ask the LLMs to gener- 237

ate the description of a concept with its core prop- 238

erties and representative examples. For instance, 239

the concept Gravity was described as “a force that 240

pulls objects with mass towards each other”, fol- 241

lowed by the example “an apple falls to the ground” 242

as shown in Figure 1. We then evaluate the quality 243

of the description and its coverage of knowledge 244

required by our PHYSICO. This provides a quanti- 245

tative measure of the knowledge LLMs can recall 246

and rephrase in the context of our assessment. 247

3.2.2 High-level Understanding Subtasks 248

The low-level subtasks are depicted in natural lan- 249

guage thus are likely to be remembered by the 250

LLMs due to their extensive training data. To as- 251

sess whether the LLMs possess a deep understand- 252

ing of the knowledge, we require the subtasks that 253

can 1) represent the high-level understanding skills; 254

2) avoid the effects of memorization. 255

The Abstraction and Reasoning Corpus 256

(ARC) (Chollet, 2019) provides a compelling way 257

by using grids (or matrices) instead of texts to 258

represent a concept. While the LLMs have seen 259
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Figure 2: Examples of input-output grid representation
labeled as Gravity, with increasing difficulty levels.

matrices during pre-training, the data is less likely260

to be correlated to physical concepts. We hence261

adopt this idea to represent our subtask as abstract262

representations in the grid world that associate to263

the key properties of a physical concept.264

The PHYSICO-CORE Set Our first subtask aims265

to cover the core properties or most representative266

examples/applications of the assessed concepts. To267

ensure our set remains generally comprehensible268

to humans, we maintain a high school-level diffi-269

culty and selected 27 common physical concepts270

within the curriculum. To enhance the diversity271

and richness, five annotators have labeled multiple272

core aspects of each concept. For example, the an-273

notated core aspects of Gravity include attraction274

between two bodies, motion on an inclined plane,275

objects falling to grounds and orbital motions.276

For each aspect of a concept, the annotator is277

asked to draw several pairs of abstract grid repre-278

sentations. The aspect of the concept is guaranteed279

to be illustrated by the pair, such that it explains280

the transformation from the input to the output. For281

example, Figure 1 forms a direct abstract visual-282

ization of the Gravity concept from textbooks, i.e.,283

apple falling from a tree. This results in 600 paired284

instances for the 27 concepts.285

Figure 2 presents two examples from this subtask286

that delve deeper into the concept of Gravity com-287

pared to Figure 1. The top example demonstrates288

an application of the inverse square law of grav-289

ity. The bottom one presents a parabola, linking290

the knowledge of gravity to inertia. These exam-291

ples demonstrate the difficulty of inferring their292

ground-truth labels solely by recalling the concept293

of Gravity without high-level understanding skills.294

The PHYSICO-ASSOCIATIVE Set Many in-295

stances in the original ARC dataset can be solved296

RQ1: Do LLMs possess the necessary knowledge in 
natural language format to succeed in low-level tasks?

RQ2: Can humans perform well on the high-level tasks?

RQ3: Can LLMs perform well on the high-level tasks 
using matrix-format input representations?

RQ4: Can LLMs perform well on the high-level tasks 
using visual input representations?

RQ5: Are our tasks challenging for LLMs primarily due 
to their unfamiliarity with grid representations?

RQ6: Can LLMs easily benefit from supervised training 
on labeled data?

Hypothesis1: SOTA LLMs 
exhibit the Stochastic Parrot 
Phenomenon

Hypothesis2: SOTA LLMs lag 
behind humans on our high-
level tasks by a large margin

Hypothesis3: The primary 
challenge for LLMs in our 
tasks is the intrinsic difficulty 
of deep understanding, rather 
than the unfamiliar format.

Figure 3: Overview of the research questions answered
in our study and their relationships.

via association or analogy to physical concepts. 297

Therefore, as a second source of subtasks, we 298

ask annotators to manually pick input-output grids 299

from ARC that can evoke their associations to spe- 300

cific physical concepts and assign these concepts 301

as ground-truth labels. Different from PHYSICO- 302

CORE, we adopt an open-coding schema and al- 303

low the inclusion of new concepts during anno- 304

tation. The annotators have reviewed 500 ARC 305

instances to filter out the required ones. After cross- 306

validation to ensure agreement, it results in a collec- 307

tion of 200 instances with physical concept labels. 308

This relabelling approach covers additional 15 309

physical concepts. The resulted subtasks have each 310

example grid represent an abstract aspect of a con- 311

cept with possible distracting information. Conse- 312

quently, the resulted task is more subjective hence 313

more challenging than the PHYSICO-CORE Set. 314

Creation of Classification Tasks We create four- 315

choice tasks on the annotated data. Each instance 316

consists of at least 3 unique grid pairs as input ex- 317

amples. This results in 200 instances for PHYSICO- 318

CORE and 200 instances for ASSOCIATIVE respec- 319

tively. For each instance, we select three addi- 320

tional labels from our concept pool, along with 321

the ground-truth label, as candidate options. We 322

manually avoid ambiguity during the negative sam- 323

pling. For example, if Gravity is the ground-truth, 324

concepts like Magnet will not be sampled. 325

4 Overview of Our Studies 326

In the following sections, we conduct a series 327

of studies on our PHYSICO tasks. Our studies 328

are organized into six Research Questions (RQs), 329

through which we aim to answer three Hypotheses 330

as shown in Figure 3. In summary, we propose to: 331

(1) Examine the quantitative disparity in LLMs’ 332

performances between low-level (RQ 1) and high- 333

level subtasks (RQ 3, RQ 4). This aims to highlight 334

the existence of stochastic parrot phenomenon 335

in LLMs’ understanding of physical concepts. 336
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(2) Assess the performance gap between LLMs337

(RQ 3, RQ 4) and humans on our high-level sub-338

tasks (RQ 2). This aims to demonstrate that LLMs339

fall significantly short of human understanding.340

(3) Investigate the shortcomings of in-context341

learning and supervised fine-tuning in improving342

LLMs on our high-level subtasks (RQ 5, RQ 6).343

This aims to underscore the intrinsic limitations344

of SOTA LLMs in achieving deep understanding.345

Experimented Models We use commercial346

LLMs, including GPT-3.5 (gpt-3.5-turbo-1106),347

GPT-4 and GPT-4v (gpt-4-turbo-2024-04-09)348

and GPT-4o (gpt-4o-2024-05-13); and349

open-source LLMs, including Llama-3350

(Llama-3-8B-Instruct) (MetaAI, 2024) and351

Mistral (Mistral-7B-Instruct-v0.2) (Jiang352

et al., 2023), InternVL-Chat-V1-5 (Chen et al.,353

2023, 2024)3 and LLaVA-NeXT-34B (Liu et al.,354

2023a,b). We use the default inference configura-355

tions of the LLMs. Considering the randomness,356

we run each experiment 3 times and compute the357

average and standard derivation.358

5 Validation on Low-Level Subtasks359

To illustrate the stochastic parrot phenomenon360

with PHYSICO, a necessary condition is to ensure361

the LLMs can perform well on the low-level un-362

derstanding subtasks, i.e., whether LLMs exhibit363

strong skills of recalling and describing the defini-364

tions, core properties and representative examples365

of the physical concepts in our tasks. That is:366

RQ 1: Can LLMs perform well on low-level sub-367

tasks, i.e., understanding the definitions of physi-368

cal concepts in natural language?369

To answer RQ 1, we evaluate the LLMs’ abilities370

to comprehend the definitions of these concepts and371

generate their descriptions and examples in natural372

language, as defined in Section 3.2.1.373

5.1 Concept Selection Subtask374

Settings We provide the standard definition of375

a concept based on Wikipedia with its synonyms376

masked; then ask the LLMs to identify the concept,377

under the same four-choice setting throughout the378

experiments. We evaluate the representative text-379

only LLMs and compute the accuracy.380

Results Table 1 shows that the GPT models per-381

form near perfect on recognition of our physical382

concepts from standard written definitions. A small383

3Best open-source vision-language model at OpenVLM Leaderboard.

Mistral Llama-3 GPT-3.5 GPT-4

81.0±1.3 88.5±0.7 97.3±0.3 95.0±0.9

Table 1: Accuracy on the concept selection subtask.

Mistral Llama-3 GPT-3.5 GPT-4

Human 92.6 100 100 100

SP 89.2±1.6 91.9±0.6 96.0±0.4 99.8±0.2

Table 2: Evaluations on the concept generation subtask,
with metrics of Self-Play success and Human evaluation.

number of errors stem from confusing reflection or 384

light imaging with refraction. Open-source models 385

make mistakes on the same concepts but more fre- 386

quently, showing a misunderstanding of the three 387

concepts. Additionally, the models occasionally 388

fail to follow instruction, and predict a synonym 389

instead of selecting the correct answer. 390

5.2 Concept Generation Subtask 391

Settings This subtask evaluates the descriptions 392

LLMs generate for a concept. It is a text generation 393

task, the evaluation of which is in general difficult. 394

Moreover, in our scenario each concept have many 395

different ground-truth examples in its description, 396

thus existing automatic metrics such as BLEU (Pa- 397

pineni et al., 2002) and METEOR (Banerjee and 398

Lavie, 2005) are not capable of accurately measur- 399

ing the quality. Therefore, we propose an alterna- 400

tive automatic metric via a self-play game as well 401

as human evaluation for this subtask. 402

• Automatic evaluation metric via self-play 403

game: For each generated description of a con- 404

cept, we mask the synonyms of the concept in 405

it as in the previous selection subtask, and ask 406

the same LLM to identify the concept being de- 407

scribed from four options. This metric evaluates 408

the quality of LLMs’ generated concept descrip- 409

tions in an objective manner. 410

• Human evaluation metric: We ask the anno- 411

tators to evaluate the quality of the generated 412

descriptions. The evaluation uses binary scores: 413

each description receives a score of 0 if it consists 414

of any factual error on the concept itself or any 415

unfaithful examples,4 and a score of 1 otherwise. 416

Results The results of automatic and human eval- 417

uations are shown in Table 2. According to hu- 418

man evaluation, there are no factual errors in the 419

generated descriptions except for Mistral, confirm- 420

ing that our selected concepts rely on basic and 421

widely accepted knowledge. Thought accurate, the 422

4For example, if the LLMs generated a wrong year in the description, it is
not counted as incorrect physical knowledge.
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open-source LLMs sometimes include correct but423

uncommon facts, e.g., listing single-slit diffraction424

as an example of Wave Interference.425

In the self-play test, all LLMs can accurately rec-426

ognize the physical concepts from the descriptions427

they wrote by themselves. Combined with the con-428

clusion from human evaluation, it shows the LLMs429

can generate correct and sufficient information.430

Remark We also ask the annotators of our431

PHYSICO-CORE to evaluate whether the core prop-432

erties they annotated are covered by the LLMs’ gen-433

erated descriptions. This corresponds to measuring434

the recall of the generated descriptions on core435

properties/examples of concepts from PHYSICO-436

CORE. The recall rates for GPT-3.5 and GPT-4437

are 85.0 and 90.0, respectively. Of course, there438

are some exceptional examples from PHYSICO-439

CORE missed in the descriptions. One example440

is that the LLMs fails to draw the connection be-441

tween movable pulley and the Lever concept. More-442

over, by manually checking these missed proper-443

ties and examples, we found that most of them444

can be recalled if we query the LLMs in a second445

turn by prompting “Any more core properties446

or examples?”. This confirms that the LLMs are447

aware of and are able to recall the core proper-448

ties of concepts covered by the PHYSICO-CORE,449

though some of them may not have the top condi-450

tional probabilities of generation.451

Conclusion LLMs understand the concepts cov-452

ered by PHYSICO in natural language format. No-453

tably, we find that the properties and examples454

annotated in PHYSICO-CORE are within the LLMs’455

knowledge and are highly likely to pop up when the456

corresponding physical concepts are queried.457

6 Experiments on High-Level Subtasks458

This section answers the research questions regard-459

ing our high-level understanding subtasks.460

RQ 2: Can Humans understand the abstract rep-461

resentations?462

First of all, we investigate the performance of463

humans who possess the knowledge required by464

our PHYSICO. For each instance in our PHYSICO,465

we asked three independent annotators who were466

not involved in our task design to perform the same467

classification task presented to the LLMs. The re-468

sults indicate that our tasks are largely solvable to469

people with a college-level education. Specifically,470

on the PHYSICO-CORE tasks, humans achieved471

Models CORE ASSOCIATIVE

Random 25.0 25.0

te
xt

-o
nl

y

GPT-3.5 26.5±2.5 30.0±2.5
GPT-4 41.3±1.3 38.3±1.2
GPT-4o 34.0±2.9 35.5±2.5

Mistral 21.5±0.3 23.2±0.4
Llama-3 23.5±2.5 21.7±2.0

m
ul

ti-
m

od
al GPT-4v 34.2±1.6 32.0±1.5

GPT-4o 52.3±0.8 36.5±0.4
+CoT 46.0±2.5 39.5±1.1

InternVL-Chat-V1-5 26.3±1.6 24.8±1.3
LLaVA-NeXT-34B 26.2±1.1 24.7±3.2

Humans 92.0±4.3 77.8±6.3

Table 3: Performance of different text-only and multi-
modal LLMs on our tasks.

an accuracy rate higher than 90%. The PHYSICO- 472

ASSOCIATIVE tasks present greater challenges and 473

subjectivity because the annotations are personal- 474

ized based on the annotators’ individual perspec- 475

tives and experiences. Despite these challenges, 476

humans can still achieve a notable average accu- 477

racy of 77.8% in solving these tasks. 478

We conducted a detailed investigation into 479

human performance on a subset of PHYSICO- 480

ASSOCIATIVE. Participants were asked to anno- 481

tate instances where they believed none of the four 482

candidate answers adequately explained the inputs. 483

The results revealed a 10.4% rate of disagreement. 484

On these disagreed-upon examples, human accu- 485

racy was 33.3%, explaining a major factor for the 486

human performance decline. 487

Conclusion Our study demonstrates that humans 488

can perform the PHYSICO tasks quite well. 489

RQ 3: Can LLMs understand concepts in the 490

abstract representations of the matrix format? 491

A straightforward solution for our PHYSICO is 492

to represent the grid-formatted examples as ma- 493

trices. By representing the matrices with a token 494

sequence, they can be integrated into an instruc- 495

tion prompt for text-based LLMs, following exist- 496

ing prompting methods for ARC tasks (Acquaviva 497

et al., 2022; Xu et al., 2023; Wang et al., 2023, 498

2024). We use the prompt shown in Figure 7 to 499

query the answers from the evaluated LLMs. 500

Results The top (text-only) section of Table 3 501

presents the results. All the LLMs perform poorly 502

on the two sets of our PHYSICO. Notably, GPT- 503

3.5, Mistral, and Llama-3 failed to show significant 504

improvement over random performance. 505
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Conclusion Comparing the human performance506

in RQ 2 to the best-performing LLMs reveals a507

huge gap. While these tasks are simple or triv-508

ial for humans, LLMs face substantial challenges,509

indicating a lack of deep understanding.510

When comparing LLMs’ performance on low-511

level natural language tasks in RQ 1 to high-level512

abstract pattern understanding tasks, we observe513

significant declines. This highlights the presence514

of the stochastic parrot phenomenon in LLMs.515

Our dataset also quantifies the severity of this phe-516

nomenon. For example, while GPT-3.5 performs517

on par with GPT-4 on the low-level tasks, it nearly518

drops to random guessing on our high-level tasks,519

revealing its tendency to act as a stochastic parrot520

with the physical concepts in our dataset.521

RQ 4: Can multimodal LLMs perform well on522

our tasks with visual input representations?523

Next, we explore whether multi-modal LLMs524

can effectively solve our tasks when the input ex-525

amples are presented as visual images rather than526

matrices like in RQ 3. We use the prompt in Fig-527

ure 8 to query the answers from evaluated LLMs.528

Results The bottom (multi-modal) section of Ta-529

ble 3 shows the results. Consistent with the ob-530

servations in RQ 3, a significant gap between the531

performance of LLMs and humans exists.532

Notably, the recently introduced GPT-4o outper-533

forms all other LLMs on PHYSICO-CORE by 10%534

with visual inputs but lags behind GPT-4 on matrix535

inputs. This discrepancy may be due to GPT-4o’s536

training on images that directly illustrate physical537

concepts, making it more adept at solving problems538

like in Figure 1. However, this advantage does not539

extend to the more abstract problems in PHYSICO-540

ASSOCIATIVE that require further knowledge appli-541

cation skills, highlighting the LLMs’ lack of deep542

understanding even with multi-modal training.5543

Finally, given that LLMs can generate high-544

quality descriptions of the concepts (see RQ 1),545

we adopt a chain-of-thought (Wei et al., 2022) ap-546

proach. It first asks the LLMs to describe each547

choice and then makes predictions. The results in548

Table 3 (+CoT) show limited improvement or per-549

formance drop, further confirming the presence of550

the stochastic parrot phenomenon.551

RQ 5: Is PHYSICO challenging mainly due to552

LLMs’ unfamiliarity with grid representations?553

5This suggests that the stochastic parrot phenomenon may also exist in
visual understanding, which we left for future work.

One possible reason for the challenges of 554

PHYSICO might be the uncommon nature of the 555

task format (especially the matrix-format inputs) 556

encountered during LLM training, rather than a 557

lack of deep understanding. We aim to disprove 558

this hypothesis through the following experiments: 559

• (exp 5.1) ICL on other concepts. Compare the 560

performance of zero-shot GPT-4 with GPT-4 us- 561

ing in-context learning (ICL) on few-shot exam- 562

ples from concepts other than the assessed one. 563

• (exp 5.2) FT on synthetic matrix data. Com- 564

pare the open-source LLMs before and after fine- 565

tuning on a large amount of matrix-input data 566

(Appendix D.1) 567

• (exp 5.3) FT on the ARC task. Compare the open- 568

source LLMs before and after fine-tuning on the 569

original ARC (Chollet, 2019) task, which ensures 570

that all inputs from the PHYSICO-ASSOCIATIVE 571

examples have been seen during model training. 572

Results and Conclusion Despite that both the 573

ICL and SFT approaches make LLMs more fa- 574

miliar with matrix-format inputs, neither approach 575

significantly improves the results as shown in Ta- 576

ble 4. It confirms that merely familiarizing LLMs 577

with grid-format inputs does not enhance their per- 578

formance on our tasks. 579

RQ 6: How much can LLMs benefit from training 580

on labeled data? 581

Many tasks that challenge LLMs can see signif- 582

icant performance boosts through ICL or SFT on 583

labeled data (Hessel et al., 2023; Yu et al., 2023; 584

Berglund et al., 2023). When such improvements 585

are observed, it suggests that LLMs inherently pos- 586

sess the necessary skills to excel in their tasks, need- 587

ing only minimal training effort. 588

In this study, we demonstrate that this is not the 589

case for our tasks, where light-weight training on 590

labeled data does not improve LLM performance 591

for our tasks. Given the current lack of large-scale 592

training data for our purpose, we conduct an ex- 593

treme case study: models learn from the same con- 594

cepts in PHYSICO-COREand are tested on the same 595

concepts in PHYSICO-ASSOCIATIVE. To this end, 596

we select the instances that consists of at least two 597

choices that exist in the PHYSICO-CORE, leaving 598

80 examples. We conduct the following experi- 599

ments on this subset to answer RQ 6: 600

• (exp 6.1) ICL on the same concepts. Compare 601

the zero-shot GPT-4 and GPT-4 with ICL on ex- 602

amples for the same concepts from PHYSICO- 603

CORE. Specifically, for each instance, we sample 604
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Models CORE ASSOCIATIVE

GPT-4 41.3±1.3 39.0±0.6
w/ ICL-3-shot 39.5±1.6 36.2±1.7
w/ ICL-9-shot 32.8±1.0 39.0±1.6

Mistral 21.5±0.3 23.2±0.4
w/ FT on syn-tasks 20.9±0.7 22.5±0.5
w/ FT on ARC 20.9±0.8 25.5±0.9

Llama-3 23.5±2.5 21.7±2.0
w/ FT on syn-tasks 23.0±1.1 23.2±2.7
w/ FT on ARC 22.2±1.6 22.4±1.2

Table 4: Performance of LLMs with in-context learning
or fine-tuning on grid-format data.

GPT-4 42.9±2.4 Llama-3 22.1±2.8
+ ICL on CORE 40.0±1.0 + SFT on CORE 20.9±2.7

Table 5: Accuracy on PHYSICO-ASSOCIATIVE’s subset
that has overlapped choices with PHYSICO-CORE.

9 examples from PHYSICO-COREwith their la-605

bels among the choices of the instance.606

• (exp 6.2) SFT on the CORE set. Compare the607

open-source LLMs before and after fine-tuning608

on labeled data from PHYSICO-CORE.609

Results Table 5 shows that ICL and SFT on the610

labeled examples of the same concepts even hurt611

the performance. This is likely because the models612

are overfitted to the “clean” examples from the613

PHYSICO-CORE. The difficulty of generalization614

within the same concepts indicates the challenges615

of our tasks to the supervised fine-tuning paradigm.616

Conclusion Together with the results for RQ 5617

and RQ 6, it suggests that the low performance of618

LLMs is not likely to be improved from prompting619

techniques alone. There exists intrinsic inefficiency620

in the pre-training of LLMs, which results in the621

lack of necessary skills for deep understanding.622

7 Related Work623

Stochastic Parrots on LLMs The pioneer study624

by (Bender and Koller, 2020) questioned the un-625

derstanding ability of large models; and Bender626

et al. (2021) first introduced the terminology of627

stochastic parrot. The concept of stochastic parrot628

has received great attention, leading to a surge of629

studies on this topic. According to Google Scholar,630

the term “stochastic parrot” appears in the titles of631

dozens of papers from diverse research fields (Borji,632

2023; Li, 2023; Duan et al., 2024; Henrique et al.,633

2023). However, although the concept of stochas-634

tic parrots in LLMs is widely accepted and recog-635

nized, to the best of our knowledge, there is a lack636

of quantitative experiments to precisely verify this 637

viewpoint. This gap directly motivates our work. 638

Abstract Reasoning Challenge Abstract reason- 639

ing challenge (ARC) aims to examine the induc- 640

tive reasoning ability in a few-shot scenario (Chol- 641

let, 2019): a system is required to generate the 642

output grid for an input grid given a set of input- 643

output examples. ARC has been used as a remark- 644

able testbed to measure the intelligence of LLMs. 645

Recently, many research efforts have been made 646

on improving the performance of LLMs on ARC 647

benchmark (Tan and Motani, 2023; Wang et al., 648

2023; Xu et al., 2023; Mirchandani et al., 2023; 649

Wang et al., 2024; Huang et al., 2024). 650

We draw inspiration from ARC by utilizing 651

input-output grids as abstract representations in our 652

task design. However, our task is significantly dif- 653

ferent from the ARC-style work — our high-level 654

understanding task focuses on comprehending the 655

transformation rules from inputs to outputs and re- 656

lating them to physical concepts, and is designed to 657

assess the stochastic parrot phenomenon in LLMs. 658

Challenging Tasks towards LLMs’ Understand- 659

ing Extensive recent efforts have been made on 660

designing tasks that challenge the understanding 661

abilities of LLMs (Chakrabarty et al., 2022; Tong 662

et al., 2024; Shapira et al., 2023; Hessel et al., 2023; 663

Donadel et al., 2024; Li et al., 2024). For exam- 664

ple, Hessel et al. (2023) proposed a humor under- 665

standing task, revealing a large performance gap 666

between LLMs and humans. 667

As a by-product, our PHYSICO challenges the 668

understanding capabilities of LLMs, relating it to 669

the above studies. However, we make primary con- 670

tribution to provide an quantitative experiment to 671

verify stochastic parrots in LLMs via controllably 672

paired low-level and high-level tasks. 673

8 Conclusion 674

We introduce PHYSICO, a novel task to assess ma- 675

chines’ understanding of physical concepts at dif- 676

ferent levels. Our experiments reveal that: 1) LLMs 677

lag significantly behind humans on PHYSICO, indi- 678

cating a lack of deep understanding of the covered 679

concepts; 2) LLMs exhibit the stochastic parrot 680

phenomenon, as they excel at low-level remember- 681

ing tasks but struggle with high-level understanding 682

tasks; 3) LLMs’ poor performance stems from its 683

intrinsic deficiencies, as neither in-context learning 684

nor fine-tuning improves their results. 685
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Limitations686

Our proposed dataset creation approach is gener-687

ally extendable but has some limitations. First,688

the creation of PHYSICO-ASSOCIATIVE relies689

on the existing ARC dataset, which, despite690

ongoing additions (https://arc-editor.691

lab42.global/playground), offers a lim-692

ited number of usable instances. Second, the grid693

world’s representation strength is limited, making it694

challenging to illustrate many phenomena. Finally,695

the current PHYSICO-ASSOCIATIVE includes sub-696

jective cases that are difficult to obtain (see RQ 2697

for details), introducing noises. In the future, we698

will continue expanding our tasks along the path699

of PHYSICO-CORE, by broadening the scope of700

concepts and their corresponding examples and ex-701

ploring more ways to represent examples in deeper702

understanding levels.703
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A Details of the Included Concepts in our945

PHYSICO946

Concepts in PHYSICO-CORE The concepts in947

PHYSICO-CORE are basic physical concepts that948

we manually design problems for. The set covers949

27 concepts as follows:950

reference frame 12 gravity 10
reflection 10 refraction 10
light imaging 10 communicating vessels 10
cut 10 laser 10
surface tension 10 move 10
buoyancy 10 acceleration 10
inertia 10 electricity 10
repulsive force 8 wave 8
lever 6 optical filters 6
compression 4 diffuse reflection of light 4
wave interference 4 diffusion 4
vortex 4 expansion 4
nuclear fission 2 nuclear fusion 2
diffraction of waves 2

Table 6: Concepts and their corresponding number of
instances in PHYSICO-CORE.

All Concepts in PHYSICO The following table951

summarized all the concepts from both PHYSICO-952

CORE and PHYSICO-ASSOCIATIVE:953

laser 30 mirror 30
wave 21 reference frame 20
gravity 19 move 18
reflection 15 zoom in 15
compression 14 magnet 14
expansion 13 explosion 11
refraction 10 light imaging 10
communicating vessels 10 cut 10
surface tension 10 buoyancy 10
acceleration 10 inertia 10
electricity 10 rotation 10
repulsive force 8 diffusion 8
optical filters 7 water ripples 7
long exposure 7 lever 6
wave interference 5 vortex 5
wetting 5 diffuse reflection of light 4
nuclear fission 3 nuclear fusion 3
zoom out 3 diffraction of waves 2
projection 2 polarization of light 1
chemical bond 1 squeeze 1
lumination 1 vacuum 1

Table 7: Concepts and their corresponding number of
instances in PHYSICO-CORE.

B Details of Analysis Methods in RQ 1954

B.1 Masking of Textual Descriptions955

This experiment follows the setting in the “Phys-956

ical Concept Selection Subtask” in section 3.2.1.957

The definitions of the corresponding phenomena958

were extracted from Wikipedia as well as generated959

by GPT-3.5 and GPT-4. To maintain consistency,960

the terms representing concepts were masked as 961

[PHENOMENON] while relevant terms are masked 962

as [MASK]. For instance, “interference” which cor- 963

responds to the phenomenon “wave interference” 964

was masked as [PHENOMENON]. In contrast, “New- 965

ton’s first law of motion” which corresponds to the 966

phenomenon “inertia” was masked as [MASK]. 967

An example of the masked description can be 968

found in Figure 6. 969

B.2 Prompts Used for Description Generation 970

and Classification 971

[SYSTEM]
You are an expert in physics. You task is
↪→ to provide a comprehensive definition of
↪→ a given physical concept or phenomenon,
↪→ with the key properties or key examples
↪→ of the concept included.

[USER]
Please provide me with the definition of
↪→ the physical concept "{{ CONCEPT }}",
↪→ with the key properties or key examples
↪→ included.

Figure 4: The prompt template used for generating de-
scriptions of physical concepts (denoted as the variable
CONCEPT) in RQ 2.

[SYSTEM]
You will be playing a game:
You are given a definition of a physical
↪→ phenonmenon, where the names of the
↪→ phenonmenon are masked.
Your task is to guess which phenonmenon the
↪→ definiton refers to.
Please select the most close answer from
↪→ the provided options.

[USER]
Here is a definition of a physical
↪→ phenonmenon, where the names of the
↪→ phenonmenon are masked:

[Definition]

{{ MASKED DESCRIPTION }}

Please guess which phenonmenon the
↪→ definiton refers to. You should choose
↪→ your answer from the following options:
↪→ {{ CANDIDATE ANSWERS }}

Your response should end with your choice
↪→ of answer.

Figure 5: The prompt template used for guessing the
referred physical concept from four candidates (denoted
as the variable CANDIDATE ANSWERS) from the natural
language descriptions (denoted as the variable MASKED
DESCRIPTION) in RQ 2.
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[PHENOMENON] is a fundamental concept in physics that describes the resistance of any physical
↪→ object to a change in its state of motion. This concept is a central part of [MASK], often
↪→ referred to as the law of [PHENOMENON]. According to this law, an object at rest will stay at
↪→ rest, and an object in motion will continue to move at a constant velocity, unless acted upon by
↪→ a net external force. Here are the key properties and examples of [PHENOMENON]:

### Key Properties:
1. **Dependence on Mass**: The [PHENOMENON] of an object is directly proportional to its mass. The
↪→ greater the mass of an object, the greater its [PHENOMENON], and hence, the more force it
↪→ requires to change its state of motion.

2. **Resistance to Acceleration**: [PHENOMENON] is essentially the resistance of an object to any
↪→ change in its velocity, which includes changes in the speed or direction of the object's motion.

3. **Universal Applicability**: [PHENOMENON] applies to all objects with mass, whether they are
↪→ microscopic or astronomical in scale.

4. **Independence from External Factors**: The [PHENOMENON] of an object is inherent and does not
↪→ depend on external conditions such as the environment, temperature, or pressure.

### Key Examples:
1. **A Parked Car**: A parked car will not move unless a force is applied to it. Once moving, it
↪→ will continue to move at a constant speed in a straight line unless forces like friction or
↪→ brakes are applied to change its state.

2. **Astronauts and Objects in Space**: In the vacuum of space, where there is little to no
↪→ external force, an astronaut or any other object will continue moving in the same direction and
↪→ at the same speed until acted upon by another force. This is an example of [PHENOMENON] in a
↪→ microgravity environment.

3. **Seatbelts in Vehicles**: When a car suddenly stops, the passengers inside tend to lurch
↪→ forward. This is due to the [PHENOMENON] of their bodies; their bodies were in motion and tend to
↪→ remain in motion despite the car stopping. Seatbelts provide the necessary force to counteract
↪→ this [PHENOMENON] and keep the passengers safe.

4. **Tablecloth Trick**: A classic example demonstrating [PHENOMENON] is the tablecloth trick,
↪→ where a quick pull of the tablecloth can leave dishes undisturbed on a table. The [PHENOMENON] of
↪→ the dishes (their tendency to resist changes in motion) allows them to remain relatively still
↪→ while the tablecloth is quickly pulled from under them.

Understanding [PHENOMENON] is crucial for analyzing the motion of objects in various physical
↪→ contexts, from everyday life to complex scientific scenarios. It is a cornerstone in the study of
↪→ dynamics and plays a critical role in engineering, automotive safety, aerospace technology, and
↪→ many other fields.

Figure 6: An example of our masked description for the concept inertia.

C Details of the Methods Used in RQ 3972

and RQ 4973

We use the prompt template in Figure 7 for experi-974

ments on text-only LLMs (RQ 3); and the template975

in Figure 8 for multi-modal LLMs (RQ 4).976

D Details of Supervised LLM977

Fine-Tuning in RQ 5 and RQ 6978

D.1 Construction of Synthetic Training Data979

in RQ 5980

We investigate whether fine-tuning LLMs on ma-981

trix property-related questions could improve their982

performances on our tasks. Specifically, we gen-983

erate 3000 extra input-output grid pairs calculate984

the size, transpose, and locations of the subgrid’s985

corner elements for these matrices as ground truths.986

Furthermore, since correctly recognizing the loca-987

tion of the subgrid may contribute more to finish988

the Move and Copy tasks compared to other prop-989

erties, we create additional ground truths only with990

the gold locations of the subgrid’s corner elements.991

D.2 Training Details for RQ 5 and RQ 6 992

For all the fine-tuning experiments, we use 993

LoRA (Hu et al., 2021). We fine-tune each model 994

for 3 epochs with a batch size of 4 on a single 995

machine with 8 A100 GPUs. The dimension of 996

LoRA’s attention layer is set to 64, and the α and 997

dropout rates are set to 16 and 0.1, respectively. 998

The learning rate and weight decay are set to 2e-4 999

and 0.001, respectively. The hyperparameters are 1000

selected according to the development performance 1001

on the synthetic matrix data in Appendix D.1. 1002
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[SYSTEM]
You will be playing a game:
You are given several examples. Each example consists of an``input grid'' and an ``output grid'' of
↪→ numbers from 0-9, where each number corresponds to a color.
Your task if try to find the common patterns from the examples and abstract the meanings of the
↪→ patterns in the physical or mathematics world.
Based on the recognized meaning, please select the most close description of the common pattern
↪→ from the provided options.

[USER]
Lets play a game where you are transforming an input grid of numbers into an output grid of numbers.
↪→

The numbers represent different colors:
0 = black
1 = blue
2 = red
3 = green
4 = yellow
5 = gray
6 = magenta
7 = orange
8 = cyan
9 = brown

Here are examples of input grids and its corresponding output grids:

Example input grid:
{{ INPUT GRID1 }}

Example output grid:
{{ OUTPUT GRID1 }}

Example input grid:
{{ INPUT GRID2 }}

Example output grid:
{{ OUTPUT GRID2 }}

Example input grid:
{{ INPUT GRID3 }}

Example output grid:
{{ OUTPUT GRID3 }}

Please first try to find the common patterns from the input-output pairs, then answer the following
↪→ question:

What meanings in the physical or mathematics world can be abstracted from the patterns? Please
↪→ choose your answer from the following options:
{{ CANDIDATE ANSWERS }}

Your response should end with your choice of answer.

Figure 7: The prompt template used in RQ 3. The pair of an INPUT GRID and an OUTPUT GRID consists of one
example of a physical phenomenon in matrix format.

{{ UPLOADED IMAGE }}
[USER]
In the given image, there are two columns of matrices with elements represented by different colors.
↪→
The left column represents the inputs, and the right column represents the corresponding outputs.
For each row in the image, the output is derived from the input using the same transformation rule,
which corresponds to a real-world physical concept.

Your task is to identify the physical concept demonstrated in this image from the following options:
↪→

{{ CANDIDATE ANSWERS }}

Please select and provide the correct option that matches the transformation shown in the image.
Your response should end with your choice of answer.

Figure 8: The prompt template used in RQ 4. UPLOADED IMAGE is an image consists of three or more examples
like in Figure 2.
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