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Figure 1: Our Occupancy World Model can generate long-duration occupancy forecasts and can be
effectively controlled by trajectory conditions.

ABSTRACT

We propose DOME, a diffusion-based world model that predicts future occupancy
frames based on past occupancy observations. The ability of this world model to
capture the evolution of the environment is crucial for planning in autonomous
driving. Compared to 2D video-based world models, the occupancy world model
utilizes a native 3D representation, which features easily obtainable annotations and
is modality-agnostic. This flexibility has the potential to facilitate the development
of more advanced world models. Existing occupancy world models either suffer
from detail loss due to discrete tokenization or rely on simplistic diffusion archi-
tectures, leading to inefficiencies and difficulties in predicting future occupancy
with controllability. Our DOME exhibits two key features: (1) High-Fidelity and
Long-Duration Generation. We adopt a spatial-temporal diffusion transformer
to predict future occupancy frames based on historical context. This architecture
efficiently captures spatial-temporal information, enabling high-fidelity details and
the ability to generate predictions over long durations. (2) Fine-grained Control-
lability. We address the challenge of controllability in predictions by introducing
a trajectory resampling method, which significantly enhances the model’s ability
to generate controlled predictions. Extensive experiments on the widely used
nuScenes dataset demonstrate that our method surpasses existing baselines in both
qualitative and quantitative evaluations, establishing a new state-of-the-art perfor-
mance on nuScenes. Specifically, our approach surpasses the baseline by 10.5% in
mIoU and 21.2% in IoU for occupancy reconstruction and by 36.0% in mIoU and
24.6% in IoU for 4D occupancy forecasting.

1 INTRODUCTION

Autonomous driving has recently benefited from rapidly advancing learning techniques and increas-
ingly sophisticated data collection pipelines (Chen et al., 2024). However, significant challenges
remain, such as the long-tail distribution and corner cases, which are difficult to address even with the
state-of-the-art (SOTA) methods (Hu et al., 2023b) or extensive data collection efforts. A promising
approach to addressing these challenges lies in world models. World models incorporate historical
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context and alternative agents’ actions to predict the future evolution of environmental observa-
tions. This allows the autonomous driving model to anticipate further into the future, improving the
evaluation of action viability (Yang et al., 2023).

World models can be categorized into several types, including 2D video-based models and 3D
representation-based models, such as those utilizing LiDAR and occupancy frameworks. While video-
based world models have shown considerable success in predicting realistic camera observations, they
still face challenges in maintaining cross-view and cross-time consistency. These limitations hinder
their applicability in real-world scenarios. On the other hand, recent occupancy-based world models
naturally avoid this issue. These models take historical occupancy sequences as input and predict
future occupancy observations, benefiting from the raw 3D representation that ensures intrinsic 3D
consistency. Moreover, occupancy annotations are relatively easy to acquire, as they can be efficiently
learned from sparse LiDAR annotations (Tian et al., 2023) or potentially through self-supervision
from temporal frames. Occupancy-based models are also modality-agnostic, meaning that they can
be generated from monocular or surrounding cameras (Zheng et al., 2024), or from LiDAR sensors
(Zuo et al., 2023).

Existing occupancy world models can be categorized into two types: autoregressive-based and
diffusion-based. Autoregressive-based methods (Zheng et al., 2023; Wei et al., 2024) predict future
occupancy using discrete tokens in an autoregressive manner. However, because these methods rely
on discrete tokenizers, the process of quantization results in information loss, which limits the ability
to predict high-fidelity occupancy. Moreover, autoregressive methods struggle to generate realistic
long-duration occupancy sequences because training GPT-based methods is challenging. Diffusion-
based approach (Wang et al., 2024) flattens spatial and temporal information into a one-dimensional
sequence of tokens rather than separating and processing them individually, causing struggles to
capture spatial-temporal information efficiently. Consequently, integrating historical occupancy
information into the model becomes difficult because spatial and temporal data are combined. This
limitation means the model can generate outputs but cannot predict, restricting its applicability
in real-world scenarios. Furthermore, we found that most occupancy world models demonstrate
insufficient exploration of fine-grained control, leading to overfitting to specific scenes and limiting
their applicability to downstream tasks.

To address the aforementioned issues, we propose a novel method for predicting future occupancy
frames, called DOME. Specifically, our approach consists of two components: the Occ-VAE and the
spatial-temporal diffusion transformer. To overcome the limitations of discrete tokens, our Occ-VAE
utilizes a continuous latent space to compress occupancy data. This allows for effective compression
while preserving high-fidelity details. Our world model demonstrates two key features: (1) High-
Fidelity and Long-Duration Generation. We employ a spatial-temporal diffusion transformer to
predict future occupancy frames. By utilizing contextual occupancy conditioning, we incorporate
historical occupancy information as input. The spatial-temporal architecture efficiently captures
both spatial and temporal information, resulting in fine details and enabling the generation of long-
duration predictions (32s). (2) Fine-grained Controllability. We address the challenge of precise
control with trajectories, particularly the issue that occupancy predictions often fail to accurately
capture the diverse actions of the ego vehicle. To enhance controllability, we propose a trajectory
resampling method, which significantly improves the model’s ability to generate more precise and
varied occupancy predictions. We conducted experiments on the widely used nuScenes benchmark
(Caesar et al., 2019), and the quantitative results demonstrate that our method can achieve SOTA
performance in both 3D occupancy reconstruction and 4D occupancy prediction. Our approach
outperforms the baseline by a significant margin, with a 36.0% improvement in mIoU and a 24.6%
improvement in IoU.

To summarize, our contributions are as follows:

• We propose DOME, a novel diffusion-based world model that predicts future occupancy frames
based on historical occupancy observations. It incorporates Occ-VAE, which utilizes a continuous
latent space for high-fidelity occupancy compression, and a spatial-temporal diffusion transformer
for efficient 4D occupancy prediction.

• We address the challenge of precise control using trajectory conditions, introducing a trajectory re-
sampling method to enhance controllability, which significantly improves the control capabilities
of our world model.
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• Experimental results demonstrate that our method achieves SOTA performance on the nuScenes
dataset for both 3D occupancy reconstruction and 4D occupancy prediction.

2 RELATED WORK

2.1 3D OCCUPANCY PREDICTION

The task of 3D occupancy prediction involves predicting both the occupancy status and the semantic
label of each 3D voxel (Zhang et al., 2023; Huang et al., 2023; Li et al., 2023b). Recent approaches
(Huang et al., 2023; Li et al., 2023b) have focused on vision-based occupancy prediction, utilizing
images as input. These methods can be categorized into three mainstream types based on their feature
enhancement: Bird’s Eye View (BEV), Tri-Perspective View (TPV), and voxel-based methods.

The BEV-based method (Li et al., 2023b; Philion & Fidler, 2020) learns features in BEV space,
which is less sensitive to occlusion. It first extracts 2D image features using a backbone network,
applies a viewpoint transformation to obtain BEV features, and finally uses a 3D occupancy head
for prediction. However, BEV methods struggle to convey detailed 3D information due to their
top-down projection. To address this limitation, TPV-based methods (Huang et al., 2023; Zuo et al.,
2023) leverage three orthogonal projection planes, enhancing the ability to describe fine-grained
3D structures. These methods also extract 2D image features, which are then lifted to three planes
before summing the projected features to form the 3D space representation. In contrast to these
projection-based approaches, voxel-based methods (Li et al., 2023a; Zheng et al., 2024) directly learn
from the raw 3D space, effectively capturing comprehensive spatial information. These methods
extract 2D image features from a backbone network and transform them into a 3D representation,
which is subsequently processed by a 3D occupancy head to make occupancy predictions.

2.2 AUTONOMOUS DRIVING WORLD MODEL

The world model is a representation of the surrounding environment of an agent (Ha & Schmidhuber,
2018). Given the agent’s actions and historical observations, it predicts the next observation, helping
the agent develop a comprehensive understanding of its environment. The most popular approach
involves predicting images or videos of driving scenes (Hu et al., 2023a; Zhao et al., 2024; Su
et al., 2024). These methods can be considered as driving simulators, as they generate front-view or
range-view outputs from car cameras. Hu et al. (2023a) introduces GAIA-1, a generative world model
for autonomous driving that uses video, text, and action inputs to create realistic driving scenarios.

Recent methods aim to extend the autonomous driving world model by incorporating different
modalities, such as point clouds (Zhang et al., 2024; Zyrianov et al., 2024), or 3D occupancy (Ma
et al., 2023; Wang et al., 2024). LiDAR-based world models forecast 4D LiDAR point clouds. Zhang
et al. (2024) propose Copilot4D, a world modeling approach using VQVAE and discrete diffusion
to predict future observations. It improves prediction accuracy by over 50% on several datasets,
showcasing the potential of GPT-like unsupervised learning in robotics. Another approach is the
occupancy-based world model, which forecasts future scenes via 3D occupancy. Zheng et al. (2023)
introduce OccWorld, a 3D world model for autonomous driving that predicts ego car movement and
surrounding scene evolution using 3D occupancy. Wang et al. (2024) propose OccSora, a diffusion-
based model for simulating 3D world development in autonomous driving. It uses a 4D scene
tokenizer and a DiT world model for occupancy generation, aiding decision-making in autonomous
driving. However, it focuses solely on generating occupancy rather than predicting observations based
on historical data, raising questions about its efficacy as a world model and limiting its applicability
in realistic scenarios.

3 METHOD

In this section, we introduce DOME, a diffusion-based occupancy world model. Our method
consists of two main components: Occ-VAE Sec. 3.1 and DOME Sec. 3.2. To align the world model
with trajectory conditions, we present a trajectory encoder and a trajectory resampling technique,
specifically designed to enhance the model’s controllability, as described in Sec. 3.3. Finally, we
demonstrate the applications of our DOME in Sec. 3.4.
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Figure 2: (a): Occ-VAE Pipeline. This component encodes occupancy frames into a continuous
latent space, enabling efficient data compression. (b): DOME Pipeline. This component learns to
predict 4D occupancy based on historical occupancy observations.

3.1 OCC-VAE

Occ-VAE is a core component of our model, utilizing a variational autoencoder (VAE) (Kingma &
Welling, 2013) to compress occupancy data into a latent space, which is essential for improving the
representation compactness and the efficiency of world model predictions. Noticing that discrete
tokenizers often fail to retain the fine details of occupancy frames, we propose encoding the dense
occupancy data into a continuous latent space to better preserve intricate spatial information. The
proposed architecture, as illustrated in Fig. 2, is detailed as follows:

Occupancy Data: As Occ-VAE is specifically designed for occupancy data, we begin by discussing
this 3D scene representation. The 3D occupancy data x ∈ RH×W×D voxelizes the surrounding
environment of the ego vehicle into an H ×W × D voxel grid, where each grid cell is assigned
semantic labels based on the objects it contains.

Encoder: Inspired by image-based VAE methods (Kingma & Welling, 2013), we propose a con-
tinuous VAE specifically designed for occupancy data. To handle the 3D occupancy data x, which
consists of discrete semantic IDs, we first transform it into a Bird’s Eye View (BEV) style tensor
xbev ∈ RH×W×DCemb by indexing a learnable class embedding Ecls ∈ Rn×Cemb . This process
flattens the occupancy data into a consistent feature dimension. Subsequently, an encoder network
qϕ(z | x) encodes the transformed data into a compressed representation. This representation is
then split into µ ∈ Rnh×nw×C and σ ∈ Rnh×nw×C along the channel dimension, where nh and nw

represent the spatial dimensions of the encoded data, and C denotes the channel dimension. After
encoding, the continuous latent variable z ∼ qϕ(z | x) is sampled using the reparameterization trick,
following the approach used in image-based VAEs (Kingma & Welling, 2013): z = µ + σ ⊙ ϵ,
where ϵ ∼ N (0, I) is a noise vector sampled from a standard normal distribution, and ⊙ denotes
element-wise multiplication.

The encoder incorporates both 2D convolutional layers and attention blocks. The class embedding
Ecls is initialized randomly and trained jointly with the Occ-VAE.

Decoder: The decoder network pθ(x | z) is responsible for reconstructing the input occupancy
from the sampled latent variable z. It employs 3D deconvolution layers to upsample the latent
representation, ensuring improved temporal consistency (Blattmann et al., 2023). The upsampled
features F are then reshaped into H ×W × D × Cemb. The logits score s is computed through
the dot product with the class embedding, where the argmax of the logits determines the final class
prediction.
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Training Loss: During the training of Occ-VAE, our loss function consists of two components: the
reconstruction loss and the KL divergence loss, following the standard VAE framework (Kingma &
Welling, 2013). We employ cross-entropy loss as the reconstruction loss. Additionally, to address
class imbalance in predictions, we incorporate the additional Lovasz-softmax loss following (Berman
et al., 2018), which helps alleviate the imbalance issue. The total loss is defined as follows:

LOcc-VAE = LCE (x, s) + βDKL

(
qϕ(z | x)∥p(z)

)
+ λLlovasz(x, s) (1)

where λ and β are the loss weights for the Lovasz-softmax loss and the KL divergence loss, re-
spectively. After training, the Occ-VAE model is frozen, with its encoder serving as a feature
extractor to obtain latent representations for DOME training, while its decoder reconstructs the latent
representations from DOME to generate occupancy data.

3.2 DOME: A DIFFUSION-BASED OCCUPANCY WORLD MODEL

Occupancy world models predict future occupancy observations ot based on the agent’s historical
data (o1, a1, . . . , ot−1, at−1), where o represents occupancy observations and a denotes the agent’s
actions. To achieve this, we employ a latent diffusion model with temporal-aware layers, which
enables the model to effectively learn from temporal variations. Historical occupancy observations
are integrated using a temporal mask, encouraging the model to learn to predict future frames based
on the conditional frame. Furthermore, to provide the world model with enhanced motion priors and
controllability, our trajectory encoder incorporates the ego vehicle’s actions, allowing for precise
next-frame predictions controlled by given camera poses. Specifically, our model takes as input
an encoded latent z ∈ Rnf×nh×nw×C along with the ego vehicle’s trajectory as input, where nf

represents the temporal dimension corresponding to the number of frames in the 4D occupancy data.
The latent is partially masked, allowing visibility for only nc frames (nc < nf ), and the model is
trained to predict the remaining masked frames.

Spatial-Temporal Diffusion Transformer: To predict future occupancy with temporal awareness,
we adopt a spatial-temporal latent diffusion transformer inspired by video-based methods (Ma et al.,
2024). We first patchify the latent representation z into nf frames of sequence tokens, with each
sequence containing nt =

nh

p ×
nw

p tokens, where p represents the patch size. Positional embeddings
are then added to both the spatial and temporal dimensions (see the appendix for details). As
illustrated in Fig. 2, our model is composed of two fundamental types of blocks: spatial blocks and
temporal blocks. The spatial blocks capture spatial information across frames that share the same
temporal index, while the temporal blocks extract temporal information along the temporal axis at
a fixed spatial index. These blocks are arranged in a staggered fashion to effectively capture both
spatial and temporal dependencies, as shown in Fig. 2.

Historic Occupancy Condition: To enable the model to predict future occupancy features, it is
essential to condition the generation on historical occupancy data. This is achieved using a condi-
tioning mask. Given a multi-frame context of occupancy data and a hyperparameter nc representing
the number of context frames, the latent zc is encoded from the historical occupancy observations.
We then construct a conditioning maskM = [t < nc | t ∈ {0, 1, 2, . . . , nf}], which ensures that the
model conditions its predictions on the available context frames. During training, the noised tokens zi
are partially replaced by the context latents according to the condition mask for any training iteration
that uses context frames:

ẑi =M · zc + (1−M) · zi. (2)
To enable the model to generate without conditioning, we apply a dropout mechanism in which, for a
fixed proportion of iterations, the model is trained without context frames.

Loss Function: We extend the vanilla diffusion loss to a spatial-temporal version, making it compati-
ble with contextual occupancy conditions. Since we predict a sequence of feature occupancies, the
overall loss is computed across all frames. During contextual occupancy conditions, the nc noised
latents are replaced by the ground truth (as explained above), and thus, the loss for those frames is
ignored using the condition maskM. The loss function for training the diffusion model is defined as:

Ldiffusion = Et,ϵ∈N (0,1),i

[
(1−Mt)⊙

∥∥∥ϵθ (ẑti)− ϵ
∥∥∥2] (3)

where ẑti is the t-th frame at diffusion timestamp i, and ϵθ is the denoising network, specifically our
DOME model.
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3.3 TRAJECTORY AS CONDITIONING

Figure 3: (a) Trajectory Resampling Pipeline: This process resamples multiple diverse and feasible
occupancy sequences from a single ground-truth occupancy sequence. (b) BEV Map Voxelization:
The road point clouds are voxelized into voxel grids to construct a BEV map representing the drivable
area. (c) Trajectory Sampling: The smoothed A* algorithm is applied to generate multiple feasible
trajectories on the BEV map.

Trajectory Condition Injection: Action conditioning is essential for world models, as the world
observation ot should change coherently and reasonably based on the agent’s last action at. We
inject trajectory information into our model for conditional generation. Specifically, given the ego
car’s pose, we first calculate the relative translation ∆tt and relative rotation ∆Rt. From ∆tt, we
extract [x, y] ∈ Rnf×2, and from ∆Rt, we obtain the yaw angle θyaw ∈ Rnf×1, representing the ego
vehicle’s heading. We then apply positional encoding (Mildenhall et al., 2020) to [x, y, θyaw], project
the encoded values to the hidden size using a linear layer, and combine them with the time embedding.
These combined values are then passed to the adaptive layer normalization (adaLN) block.

Trajectory Resampling: This issue stems from the imbalance and limited diversity in the training
dataset. For example, in the nuScenes dataset (Caesar et al., 2019), the training set consists of 700
scenes, but the majority involve the vehicle moving straight (approximately 87%, see Fig. 4 (c)),
highlighting the imbalance problem. Furthermore, in each scene, the vehicle only passes through
once, resulting in a lack of diverse 3D occupancy samples under varying trajectory conditions within
the same scene. This leads the model to overfit to the scenes, learning only the ground truth feature
observations based on the contextual observation. The original trajectory distribution is shown in
Fig. 4 (a).

Figure 4: Trajectory distribution and histograms comparing the scenarios with and without trajectory
resampling. For Figure (a) and (c), we use uniformly sampled trajectories from the dataset for better
illustration and visualization.

To address this issue, we propose a trajectory resampling method, illustrated in Fig. 3 (a), with the
corresponding pseudo-code provided in the Appendix. Our objective is to diversify the actions of
the ego vehicle and the resulting sampled occupancy for each scene. The procedure consists of the
following steps: (1) Multi-frame Point Cloud Aggregation: We start by converting the occupancy
sequence in the ego frame into 3D point clouds, which are then transformed into the world frame
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using the ego pose. Potential dynamic objects (e.g., cars, pedestrians) are filtered out by selecting
based on the point cloud’s semantic labels. (2) Obtaining Drivable Area: To generate diverse
observations, we create various feasible trajectories based on the drivable area of the scene. After
aggregating all point clouds into the world frame, we filter for road classes and voxelize the road
point clouds from a top-down view to produce a Bird’s Eye View (BEV) map (see Fig. 3 (b)). (3)
Generating Diverse and Feasible Trajectories: Using the BEV map, we randomly sample two
points representing the start and goal positions. We apply a smoothed A* algorithm (Hart et al., 1968)
to generate a trajectory connecting these points, simulating the ego vehicle’s driving trajectory. The
resulting trajectory is converted into an R4×4 pose, with the z coordinate set to 0. (4) Extracting
Resampled Occupancy: Using the trajectory pose, we apply an occupancy ground truth extraction
method similar to that of Tian et al. (2023) to resample occupancy from the point cloud.

Our resampled trajectory distribution is illustrated in Fig. 4 (b). Compared to Fig. 4 (a), it fills the
gaps in the trajectory distribution, demonstrating that our method enhances diversity and mitigates
imbalance. This improvement is further supported by the driving direction histograms shown in Fig. 4
(c).

In conclusion, our trajectory resampling method is both simple and effective. To the best of our
knowledge, we are the first to explore occupancy data augmentation for the task of world model
prediction. This method is highly generalizable and can be applied to all types of occupancy data,
including machine-annotated, LiDAR-collected, or self-supervised data. It requires only pose and
occupancy data, without the need for LiDAR data or 3D bounding boxes.

Figure 5: Qualitative result of 4D occupancy forecasting.

3.4 APPLICATIONS OF WORLD MODELS

4D Occupancy Forecasting: During inference, we begin with random noise corresponding to the
buffer size of frames (the number of frames to be predicted) and encode nc contextual occupancy
frames via Occ-VAE to obtain contextual latents. We replace the nc frames in the random noise with
these contextual latents and then pass the input to our spatial-temporal DiT (see the bottom of Fig. 2).
Throughout the denoising loop, the contextual latents remain unchanged as they are replaced in each
iteration. After obtaining the denoised latent, we pass it to the Occ-VAE’s decoder to generate the
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final occupancy prediction. The hyperparameter nc can be adjusted based on different requirements.
We set nc = 4 for precise occupancy forecasting, as longer historical frames provide more scene and
motion information. When greater controllability is needed, as dictated by the trajectory signal, we
set nc = 1 to reduce the influence of occupancy motion information while maintaining a controllable
starting observation.

Rollout for Long Duration Generation: Due to limitations in computational resources and memory
constraints, our model processes only nf frames of occupancy data for both training and inference.
To generate longer occupancy predictions, we implement a rollout strategy similar to autoregressive
approaches. Specifically, after generating the first nf frames, we reuse the last predicted frame as
the contextual frame for predicting the next nf frames. An offset slices the corresponding trajectory
to align with the contextual frame. This strategy can be applied iteratively to achieve long-term
occupancy predictions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datsets: We conduct our experiments on the widely used nuScenes dataset (Caesar et al., 2019),
utilizing occupancy annotations from Occ3D (Tian et al., 2023). Following the setup of Zheng et al.
(2023), we use the default training and validation settings, which include 700 and 150 occupancy
sequences, respectively. Each occupancy sequence contains approximately 40 frames, sampled at
a rate of 2 Hz. For each occupancy frame, the sample resolution is [0.4, 0.4, 0.4] meters, covering
a perception range of [−40m,−40m,−1m, 40m, 40m, 5.4m], resulting in occupancy grids of size
[200, 200, 16]. Each grid cell is assigned one of 17 semantic class labels based on LiDAR semantics.

Figure 6: Demonstration of long-duration generation capability. Red borders indicate the condi-
tion frame.

Evaluation Metric: We use IoU and mIoU metrics for both Occupancy Reconstruction and 4D Occu-
pancy Prediction. Higher IoU and mIoU values indicate reduced information loss during compression,
reflecting better reconstruction performance and demonstrating a more accurate understanding of the
surrounding environment for future predictions.

4.2 OCCUPANCY RECONSTRUCTION

Precisely reconstructing the occupancy while compressing it as much as possible is crucial for down-
stream tasks such as prediction and generation. Here, we compare Occ-VAE with existing methods
that utilize an occupancy tokenizer and evaluate their reconstruction accuracy. The quantitative results
of occupancy reconstruction are presented in Tab. 1. We achieve SOTA reconstruction performance
for both IoU and mIoU metrics, with 83.1% for mIoU and 77.3% for IoU. Additionally, we have
a relatively high compression rate of 64 times, being able to compress the occupancy data four
times smaller than Zheng et al. (2023) and (Wei et al., 2024). Notably, we employ the same spatial
compression rate (64 times) as described in Wang et al. (2024), but we differ in our approach by
not applying the additional 8-times compression in the temporal dimension as they do. Instead, we
strike a balance between compression and reconstruction performance. Moreover, excessive spatial
downsampling would make contextual conditioning less inconvenient.

4.3 4D OCCUPANCY PREDICTION

We compare our method with existing 4D occupancy prediction approaches under various settings
(Wei et al., 2024; Zheng et al., 2023). These settings include using ground-truth 3D occupancy data
(-O) as input and using predicted results from off-the-shelf 3D occupancy predictors (-F). Following
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Figure 7: Demonstration of different trajectory controls given the same contextual frame. Red
borders indicate the condition frame.

the experimental setup of Wei et al. (2024), we employ FB-OCC (Li et al., 2023b) as the occupancy
extractor, utilizing predictions from camera input.

The qualitative results are shown in Fig. 5. The quantitative results shown in Tab. 2 indicate that our
DOME-O achieves SOTA performance, with 27.10% for mIoU and 36.36% for IoU. We observe
significant improvements over SOTA methods in both short-term (1s) and long-term (3s) predictions,
demonstrating that our model effectively captures the fundamental evolution of the scene over time.
The DOME-F can be considered an end-to-end vision-based 4D occupancy forecasting method, as it
uses only surrounding camera captures as input. Despite the challenging nature of the task, our method
achieves competitive performance, further demonstrating that DOME has strong generalizability

We also demonstrate our model’s ability for long-duration generation, as shown in Fig. 6, and its
capacity to be manipulated by trajectory conditions given the same starting frame, as illustrated in
Fig. 7. Additionally, we compare our method’s generation capability to existing occupancy world
models in Tab. 4, where our approach shows the ability to generate the longest duration, achieving
ten times the length of OccWorld and twice that of OccSora.

4.4 ABLATION STUDY

Different Trajectory Condition: We tested different settings of the trajectory condition, and the
results are shown in Tab. 3. Traj. indicates whether or not to use the pose condition for prediction, Res.
indicates whether or not to use our trajectory resampling enhancement, and Yaw indicates whether or
not to add yaw angle embedding. Even without using any pose condition, we found that our model
outperforms OccWorld (Zheng et al., 2023). Trajectory information significantly improves prediction
by providing the model with a clear direction of scenario change, instead of requiring it to infer from
multiple possibilities. The yaw angle embedding offers a slight improvement in IoU.

Number of Contextual Frames: We found that providing more contextual frames during the
prediction process leads to better predictions (see Tab. 5), as additional frames give the model more
explicit information about motion and changes in other vehicles and the scene. However, we also
observed that increasing the number of frames is less efficient than using trajectory information, as
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Table 1: The quantitative analysis of occupancy reconstruction.

Method Compression
Ratio ↑ mIoU ↑ IoU ↑
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OccWorld 16 65.7 62.2 45.0 72.2 69.6 68.2 69.4 44.4 70.7 74.8 67.6 54.1 65.4 82.7 78.4 69.7 66.4 52.8 43.7
OccSora 512 27.4 37.0 11.7 22.6 0.0 34.6 29.0 16.6 8.7 11.5 3.5 20.1 29.0 61.3 38.7 36.5 31.1 12.0 18.4
OccLLaMA 16 75.2 63.8 65.0 87.4 93.5 77.3 75.1 60.8 90.7 88.6 91.6 67.3 73.3 81.1 88.9 74.7 71.9 48.8 42.4
DOME (ours) 64 83.1 77.3 36.6 90.9 95.9 85.8 92.0 69.1 95.3 96.8 92.5 77.5 86.8 93.6 94.2 89.0 85.5 72.2 58.7

Table 2: 4D occupancy forecasting performance. Avg. denotes the average performance across 1s,
2s, and 3s. We use bold numbers to denote the best results.The suffix signifies different settings, with
-O indicating that the input is occupancy. Other configurations first acquire occupancy through a 3D
occupancy predictor before being input into the world model.

Method Input mIoU (%) ↑ IoU (%) ↑
Recon. 1s 2s 3s Avg. Recon. 1s 2s 3s Avg.

Copy&Paste 3D-Occ 66.38 14.91 10.54 8.52 11.33 62.29 24.47 19.77 17.31 20.52
OccWorld-D Camera 18.63 11.55 8.10 6.22 8.62 22.88 18.90 16.26 14.43 16.53
OccWorld-T Camera 7.21 4.68 3.36 2.63 3.56 10.66 9.32 8.23 7.47 8.34
OccWorld-S Camera 0.27 0.28 0.26 0.24 0.26 4.32 5.05 5.01 4.95 5.00
OccWorld-F Camera 20.09 8.03 6.91 3.54 6.16 35.61 23.62 18.13 15.22 18.99
OccWorld-O 3D-Occ 66.38 25.78 15.14 10.51 17.14 62.29 34.63 25.07 20.18 26.63
OccLLaMA-F Camera 37.38 10.34 8.66 6.98 8.66 38.92 25.81 23.19 19.97 22.99
OccLLaMA-O 3D-Occ 75.20 25.05 19.49 15.26 19.93 63.76 34.56 28.53 24.41 29.17
DOME-F (ours) Camera 75.00 24.12 17.41 13.24 18.25 74.31 35.18 27.90 23.435 28.84
DOME-O (ours) 3D-Occ 83.08 35.11 25.89 20.29 27.10 77.25 43.99 35.36 29.74 36.36

the model must navigate ambiguous frame histories to predict future movements. This ambiguity is
unnecessary for a world model that predicts scenes based on agent-determined movements.

Table 3: Ablation on key components. Traj. for
trajectory, Res. for resampling augmentation.

Spatio-Temp Traj. Control mIoU (%) ↑ IoU (%) ↑
Traj. Res. Yaw

✗ ✗ ✗ ✗ 13.08 23.10
✓ ✗ ✗ ✗ 18.60 28.09
✓ ✓ ✗ ✗ 24.24 34.28
✓ ✓ ✓ ✗ 27.00 36.39
✓ ✓ ✓ ✓ 27.10 36.36

Table 4: Comparison of generation durations
across different methods.

Method Frame Rate Frames ↑ Duration (s) ↑
OccWorld 2Hz 6 3
OccLLaMA 2Hz 6 3
OccSora 2Hz 32 16
DOME (ours) 2Hz 64 32

Table 5: Ablation on different numbers of contextual frames and usage of trajectory.
Cont.
Frames Traj. mIoU (%) ↑ IoU (%) ↑

1 ✗ 12.59 22.74
2 ✗ 20.01 29.19
3 ✗ 20.70 29.87
4 ✗ 20.07 28.95

Cont.
Frames Traj. mIoU (%) ↑ IoU (%) ↑

1 ✓ 22.24 32.71
2 ✓ 25.41 35.00
3 ✓ 26.61 36.14
4 ✓ 27.10 36.36

5 CONCLUSION

In this paper, we propose DOME, a diffusion-based world model that forecasts future occupancy
frames conditioned on historical data. It integrates Occ-VAE with a trajectory encoder and resampling
technique to enhance controllability. To the best of our knowledge, we are the first to propose occu-
pancy data augmentation for world model prediction. DOME demonstrates high-fidelity generation,
effectively predicting future scene changes in occupancy space, and can generate long-duration
occupancy sequences that are twice as extensive as those produced by previous methods. This
approach holds promising applications for enhancing end-to-end planning in autonomous driving.

Limitations and Future Work. We found that training our model still requires significant computa-
tional resources. In the future, we will explore methods that are more lightweight and computationally
efficient, or employ a fine-tuning paradigm to reduce resource requirements.
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A APPENDIX

Preliminaries of Diffusion Model: We begin by revisiting the fundamental concepts of the diffusion
model (Ho et al., 2020). A diffusion model consists of two processes: the noising process and the
denoising process. During the noising process, Gaussian noise ϵi ∼ N (0, I) is gradually added to the
real data sample x0 to obtain the corrupted data xi:

xi =
√
ᾱix0 +

√
1− ᾱiϵi,

where the granularity of the noise is controlled by the hyperparameter ᾱi. During the denoising
process, the model learns to predict a denoised sample xi−1:

pθ
(
xi−1 | xi

)
= N

(
µθ (xi) ,Σθ (xi)

)
.

12
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The denoising process is optimized using the evidence lower bound (ELBO) (Kingma & Welling,
2013):

L(θ) = −p
(
x0 | x1

)
+
∑
i

DKL

(
q∗

(
xi−1 | xi, x0

)
∥pθ

(
xi−1 | xi

))
,

which can be simplified by calculating the mean squared error (MSE) between the predicted noise
and the ground truth noise:

Lsimple(θ) =
∥∥ϵθ (xi)− ϵi

∥∥2
2
.

Spatial-temporal Forward Details: When processing each spatial block lϕ, the model treats the
latent as a batch of separate patched images by integrating the temporal layers with the batch
layers. When processing temporal blocks, the latent’s spatial dimension is combined with the batch
dimension.

This process can be written in einops (Rogozhnikov, 2022) notation as:

z′ ← rearrange
(
z, (b, nf , t, c)→ (b× nf , t, c)

)
z′ ← liθ

(
z′, c

)
z′ ← rearrange

(
z′, (b× nf , t, c)→ (b× t, nf , c)

)
z′ ← liϕ

(
z′, c

)
z′ ← rearrange

(
z′, (b× t, nf , c)→ (b, nf , t, c)

)
where b is the batch size dimension and c is the condition injected into DiT.

Spatial and Temporal Positional Embedding: After patchification, to enhance the model’s un-
derstanding of spatial order, a ViT-style spatial positional embedding is applied to the tokens. The
embedding weights are initialized using 2D sine and cosine functions and are fixed during training.
This embedding is added to the spatial tokens across all temporal dimensions.

z′i ← PEspatial + zi, ∀i ∈ {0, 1, . . . , nf}

Where PEspatial ∈ Rt×c and zi ∈ Rt×c. Similarly, we add positional embeddings to the temporal
dimension to enhance the model’s understanding of temporal correlations. We implement this using
1D sine and cosine functions, which are added across all spatial dimensions.

z′j ← PEtemperal + zj , ∀j ∈ {0, 1, . . . , t}

Where PEtemperal ∈ Rnf×c and zj ∈ Rnf×c.

Trajectory Positional Encoding: The function γ is the positional encoding function, following the
standard method of encoding positions using sine and cosine functions (Mildenhall et al., 2020):

γ(p) =

(
sin

(
20πp

)
, cos

(
20πp

)
, · · · , sin

(
2L−1πp

)
, cos

(
2L−1πp

))

Trajectory Resampling Pseudo Code:
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Figure 8: Rollout Generation Demonstration.

Algorithm 1 Trajectory Resampling Method

1: Input: Occupancy sequence in ego frame
2: Output: Diversified actions and sampled occupancy
3: procedure TRAJECTORYRESAMPLING(occupancySequence, egoPose, numSamples)
4: pointClouds← AggregatePointClouds(occupancySequence)
5: worldPointClouds← TransformToWorldFrame(pointClouds, egoPose)
6: filteredClouds← FilterDynamicObjects(worldPointClouds)
7: drivableArea← GenerateDrivableArea(filteredClouds)
8: BEVMap← VoxelizeRoadClasses(drivableArea)
9: resampledOccupancy ← InitializeEmptyList()

10: for sample in 1 to numSamples do
11: (start, goal)← RandomSamplePoints(BEVMap)
12: trajectory ← SmoothedAStar(start, goal)
13: pose← ConvertToPose(trajectory)
14: occupancy ← ExtractOccupancy(pose)
15: resampledOccupancy.Append(occupancy)
16: end for
17: return resampledOccupancy
18: end procedure

Rollout for Long Duration Generation: Our rollout strategy is illustrated in Fig. 8. Each time,
the world model predicts the content of the masked region within a denoising window. Once the
denoising loop concludes, we replace the masked section with the content generated during denoising.
In the subsequent denoising loop, the content from the end of the previous prediction is used as
context. This process continues iteratively until all placeholders have been predicted.

Implementation Details: We train Occ-VAE using AdamW with a learning rate of 1× 10−3 and a
cosine scheduler on input shapes 200× 200× 16, with a batch size of 10 per GPU for 200 epochs
on 8 RTX 4090 GPUs. For the second and third stages, we use the model with 14 spatial and 14
temporal layers, trained with AdamW and EMA, at a batch size of 8 per GPU for 2000 epochs on 32
RTX 4090 GPUs. We employ xformers, mixed precision, and gradient checkpointing to reduce
memory usage. We use DDPM with 1000 diffusion steps for training and 20 steps for inference. We
set nf = 11, nc = 4, nh = nw = 25, and the patch size p = 1.

Visualization of 4D Occupancy forecasting samples. We demonstrate our 4D occupancy forecasting
samples here. The red-bordered box indicates the conditional frames, while the remaining frames are
the predicted forecasts.
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Figure 9: 4D Occupancy forecasting samples. Red borders indicate the condition frame.

Figure 10: 4D Occupancy forecasting samples. Red borders indicate the condition frame.
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Figure 11: 4D Occupancy forecasting samples. Red borders indicate the condition frame.

Figure 12: 4D Occupancy forecasting samples. Red borders indicate the condition frame.
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Figure 13: 4D Occupancy forecasting samples. Red borders indicate the condition frame.

Figure 14: 4D Occupancy forecasting samples. Red borders indicate the condition frame.
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Figure 15: 4D Occupancy forecasting samples. Red borders indicate the condition frame.

Figure 16: 4D Occupancy forecasting samples. Red borders indicate the condition frame.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 17: 4D Occupancy forecasting samples. Red borders indicate the condition frame.

Figure 18: 4D Occupancy forecasting samples. Red borders indicate the condition frame.
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Figure 19: 4D Occupancy forecasting samples. Red borders indicate the condition frame.

Figure 20: 4D Occupancy forecasting samples. Red borders indicate the condition frame.
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Figure 21: 4D Occupancy forecasting samples. Red borders indicate the condition frame.

Figure 22: 4D Occupancy forecasting samples. Red borders indicate the condition frame.

21


