000
001LD-SDM:LANGUAGE-DRIVENHIERARCHICAL002
003SPECIES DISTRIBUTION MODELING

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

021

023

Paper under double-blind review

Abstract

We focus on species distribution modeling using global-scale presence-only data, leveraging geographical and environmental features to map species ranges, as in previous studies. However, we innovate by integrating taxonomic classification into our approach. Specifically, we propose using a large language model to extract a latent representation of the taxonomic classification from a textual prompt. This allows us to map the range of any taxonomic rank, including unseen species, without additional supervision. We also present a new proximity-aware evaluation metric, suitable for evaluating species distribution models, which addresses critical shortcomings of traditional metrics. We evaluated our model for species range prediction, zero-shot prediction, and geo-feature regression and found that it outperforms several state-of-the-art models. We will share code, data, and model checkpoints after acceptance.

1 INTRODUCTION

Species distribution modeling (SDM) is a challenging remote-sensing task that involves establishing the relationship between geographical, environmental, and biophysical conditions and species presence. The goal of SDM is to produce large-scale range maps for species. Such maps can then be used to develop tools for modeling habitat suitability, predicting future distributions, etc. These tools are essential for biodiversity conservation and understanding the environmental effects of climate change (Beery et al., 2021).

Traditionally, species ranges were mapped using geographical and environmental features. The 032 approaches were either limited to single-species models or modeled a fixed set of species. While the 033 current approaches have their merits, we contend they fall short in accurately representing the inter-034 species relationships inherent in the taxonomic hierarchy. For example, *species* belonging to the same genera tend to be found in similar locations. They often share many common characteristics, 036 including their general habitat preferences (Thorson et al., 2016). This pattern diminishes as one 037 moves up in the taxonomic hierarchy. To capture these complex hierarchical relationships between 038 the species, we use large language models (LLMs) to encode their taxonomic information in text (as 039 shown in Figure 1) in the form of species-specific embeddings. Moreover, by leveraging the vast knowledge of LLMs, our approach enhances the identification of rare taxa (Caradima et al., 2019). 040 To our knowledge, no previous work has incorporated LLMs for SDM. 041

042 Previous approaches to SDM (Mac Aodha et al., 2019; Cole et al., 2023; Lange et al., 2023) tried to 043 answer the question, "Which species are likely to be found at a given location?" However, to incor-044 porate species-specific rich information into SDM, it is necessary to reformulate the SDM problem. Therefore, in this paper, we reformulate the SDM problem as "Which locations are likely for a given species to be found?" Assuming uniform prior over the species distribution (Mac Aodha et al., 2019; 046 Lange et al., 2023), this is an equivalent formulation. But by doing so, we can now incorporate a 047 variety of information, including species-specific embeddings or any other metadata, which opens 048 up new opportunities for more accurate modeling. Alternatively, this formulation makes it easier to 049 incorporate unseen species that were not present in the training data. 050

Previously, SDMs were trained using environmental features while ignoring the geographic location aspect. Recently, several works showed the benefit of incorporating geographic locations in various applications including SDM (Cole et al., 2023; Botella et al., 2018; Tang et al., 2018) and fine-grained image classification (Ayush et al., 2021; Mac Aodha et al., 2019; Chu et al., 2019). A series

058

060 061

062

063

064 065 066

067

068

069

Figure 1: **Species Distribution Modeling using LLM Guidance.** We use text prompts in the form of key-value pairs for training our species distribution model. This kind of prompt captures the taxonomical hierarchy of species. We use only the exhaustive prompt (d) for training while the rest are used for zero-shot predictions.

of works (Bonev et al., 2023; Rußwurm et al., 2023) proposed spherical harmonics representation of geographic location. Inspired by these works, we propose to use the Spherical Fourier Neural Operators (SFNO's) (Bonev et al., 2023) as a geographical and environmental feature extractor for SDM.

One of the principal challenges in training SDM models with presence-only data is properly evaluating the resulting species distributions. One approach is to compare to hand-crafted range maps, but such maps are difficult to create and not widely available with sufficient quality to be suitable. To this end, we propose a proximity-adjusted evaluation metric that penalizes predictions based on their distance to the closest true locations. We construct a One-Way Probability-Weighted Chamfer Distance (PWCD) metric, that measures the dissimilarity between the true and predicted species range maps, which is robust to small shifts. This enables an effective evaluation of SDMs using pixel-level range maps and crowdsourced data (where absence is not confirmed).

078 079 The key contribution of our work are as follows:

- 1. We use large language models to encode taxonomic information of species, which allows mapping over any taxonomic level.
- 2. We reformulate the SDM problem which enables the use of species-specific embeddings. This allows inference on unseen species.
- 3. We propose a novel proximity-aware metric for assessing the performance of SDMs using pixel-level range maps.
- 087 088 089

081

082

084

085

2 RELATED WORKS

090 Species distribution modeling (SDM) methods use environmental, geographic, and species obser-091 vation data to predict species distribution across geographic space and time (Elith & Leathwick, 092 2009; Beery et al., 2021). In this context, we restrict ourselves to species range mapping over geographic space only. In the past, SDM relied on hand-crafted geographic and environmental features 094 as input to capture the implicit spatial correlations in data (Elith* et al., 2006; Norberg et al., 2019; 095 Valavi et al., 2022). These approaches were limited to one species per model due to their reliance 096 on traditional supervised learning algorithms. With advancements in deep neural network architectures, end-to-end frameworks can model joint species distributions and complex implicit relations 098 in data (Botella et al., 2018; Chen & Gomes, 2019; Cole et al., 2023).

099 Another important aspect of SDM is the type of species occurrence data. Species occurrence data 100 may exist in one of the two forms: presence-only and presence-absence. Collecting presence-101 absence observations is challenging, requiring expert surveys especially to confirm the absence of 102 a given species in some region (MacKENZIE, 2005). However, once collected, this kind of data 103 can be easily fed into supervised learning frameworks, without requiring sophisticated modifica-104 tions (Fink et al., 2010; Chen et al., 2016; Franceschini et al., 2018; Botella et al., 2018; Teng et al., 105 2023a). With no expert knowledge, presence-only data can be recorded when any species of interest is encountered. This way of collecting data does not require the data collector to confirm absences. 106 However, since there are no negative samples, it is difficult to use standard supervised learning 107 frameworks (Chen & Gomes, 2019; Johnston et al., 2020; Botella et al., 2021).

108 Most recent works formulate the problem of SDM using presence-only data as a multi-label classi-109 fication task (Mac Aodha et al., 2019; Cole et al., 2023). Here, the goal of SDM is to predict the 110 likelihood of species for a given location and environmental features. Many multi-label learning 111 losses have been proposed in the literature that can easily be plugged in for this task. For instance, 112 the AN-full (full assume negative) loss (Mac Aodha et al., 2019) randomly samples locations that are assumed to be negative during training. The ME-full (full maximum entropy) (Zhou et al., 2022) 113 tries to maximize the entropy of predictions of negative samples and at randomly sampled locations 114 during training. Other losses such as ASL (asymmetric loss) (Ridnik et al., 2021), Hill loss (Zhang 115 et al., 2021), and RAL (robust asymmetric loss) (Park et al., 2023) weigh the negative samples in a 116 way that easy negative and potential false negative samples are down-weighted. Cole et al. (2023) 117 evaluated the performance of SDMs trained with losses involving pseudo-negative sampling. We 118 extend their work by evaluating the impact of training their model with the ASL and RAL losses. 119

Several studies have attempted to assess the performance of species distribution models trained on
 presence-only data (Segurado & Araujo, 2004; Wilson, 2011; Norberg et al., 2019; Konowalik &
 Nosol, 2021; Valavi et al., 2022). They measure performance using Kappa index, Kullback–Leibler
 divergence, area under the curve (AUC), or mean average precision (MAP). However, these metrics
 are inadequate in quantifying the performance of models on pixel-level data. It is worth noting that
 none of these metrics consider the spatial proximity of predictions to their ground-truth observations,
 hence making them sensitive to spatial shifts in predictions.

Finally, another line of work uses high-resolution satellite imagery at each species occurrence lo-127 cation to guide SDM methods (Botella et al., 2019; Cole et al., 2020; Lorieul et al., 2021; 2022; 128 Sastry et al., 2024; Teng et al., 2023b; Dollinger et al., 2024). For example, (Teng et al., 2023b) uses 129 satellite imagery and geolocation to directly predict the likelihood over species while (Sastry et al., 130 2024) uses a contrastive learning framework to establish similarity between ground-level images of 131 species and corresponding satellite imagery. These methods are limited in geographic scale due to 132 the high-resolution nature of raw data (Cole et al., 2023). Except Teng et al. (2023b); Dollinger 133 et al. (2024), all the works view this problem as an information retrieval task rather than a species 134 prediction task.

135 136

137

3 Method

138 139 3.1 Problem Definition

140 We consider presence-only data in the form of occurrence records: $\mathcal{D} = \{(l_i, y_i) | i = 1, ..., N\}$ 141 where $l_i \in \mathbb{R}^2$ is the geolocation of each observation and $y_i \in [1, ..., S]$ is the species of the observed 142 organism. Additionally, a set of environmental features $e_i \in \mathbb{R}^n$ is included for each location l_i . 143 Many previous studies (Mac Aodha et al., 2019; Lange et al., 2023; Cole et al., 2023) have tackled 144 the task of SDM by training a neural network to model the conditional probability of p(y|l, e). This 145 translates to the problem of "How likely a species can be found at a given location?" However, our approach involves modeling the probability of $p(r|y, l_r, e_r)$, which answers the question "Is it 146 likely for a given species to be found at a given location?" Here, $r \in [1, ..., L]$ is a set of discrete 147 locations that are of interest when predicting the range of species belonging to some class. In this 148 framework, we define the set of locations r as a contiguous grid that is laid over the surface of the 149 globe. The variables l_r and e_r represent fixed parameters in the model, namely the location vectors 150 and environmental features defined at each location in r respectively. It is easy to see that the input 151 y and the parameters (l_r, e_r) can have any arbitrary representations. So, this new formulation allows 152 for flexible encoding of both the species class and geographic location, compared to the previous 153 formulation which only allowed flexibility in representing the geographic location.

154 155

156

3.2 ARCHITECTURE OVERVIEW

157 Our objective is to train a neural network of the form: $f_{\theta}(y; l_r, e_r) : \mathbb{R}^d \to [0, 1]^L$, where *d* is the 158 dimensionality of the species feature vector. f_{θ} is composed of three modules: 1) a location encoder 159 network f_{α} , 2) a species encoder network g_{β} , and 3) a multi-label classifier h_{γ} . See Figure 2 for a 160 high-level architecture diagram. The location encoder network f_{α} consists of convolutional feature 161 extractors and the Spherical Fourier Neural Operator (SFNO) (Bonev et al., 2023) blocks that take 162 as input the fixed parameters: l_r and e_r . The network processes the global environmental covariates

173

174

175

176

177

178 179

Figure 2: Proposed Architecture. During training, features extracted from the environmental covariates are added to a learnable positional embedding and passed to the spherical Fourier neural network (SFNO). The species range map is obtained by computing cross-attention between the representations from SFNO and embeddings obtained from LLaMA-2 for a text description of a given species. Inference requires only cross-attention computation if embeddings are precomputed.

180 (e_r) to extract feature maps that represent the geography of a region. To incorporate geographic 181 location-based features, we use sin-cos location encodings (l_r) as learnable positional encodings for the SFNO blocks. The species encoder g_{β} is a large language model that takes as input the text 182 descriptions corresponding to a particular species of class y. This allows for a flexible representation 183 of species-specific features in the form of natural language. The multi-label classifier h_{γ} consists of 184 a cross-attention network that fuses features from the SFNO and text encoder and performs multi-185 label classification using a linear layer. We call our model Language-Driven Species Distribution Model (LD-SDM).

187 188 189

3.3 SPECIES-SPECIFIC EMBEDDINGS

190 One of the novel contributions of this paper is incorporating natural language descriptions of species 191 for SDM. Many popular crowdsourcing science platforms, such as iNaturalist (Van Horn et al., 192 2018), contain not just occurrence records, but also valuable species-specific information. This 193 information may include the complete taxonomic hierarchy of each species (such as class, order, 194 family, etc.) or the IUCN red list category (such as endangered, near threatened, etc.). While 195 often ignored, this fine-grained information could be incorporated to enhance the performance and 196 interpretability of SDMs. In this work, we incorporate the taxonomic hierarchy of species into our 197 SDM in the form of text. Each species is uniquely identified by its taxonomic classification ranks, 198 which can be represented as key-value pairs. For instance, the key-value pairs that represent the 199 wild duck are defined as: $t = \{class: Aves, order: Anseriformes, family: Anatidae, genus: Anas, and Anas$ **species**: *Anas platyrhynchos*}. 200

201 Recently, Large Language Models (LLMs) have demonstrated excellent capabilities in representing 202 implicit knowledge, linguistic structure, and hierarchical concepts when trained on massive amounts 203 of data (Anil et al., 2023). With no finetuning, pretrained LLMs have shown impressive zero-shot 204 performance with zero in-domain data. In this work, we use the recently released, LLaMA-2 (Tou-205 vron et al., 2023) to encode the species-specific key-value pairs as text. We experiment with three variants of LLaMA-2 of which the 70B model produced the best performance. 206

- 207
- 208 3.4 Loss Functions 209

210 Species distribution modeling is a special case of multi-label learning. Numerous losses for 211 multi-label learning have been evaluated for SDM. Depending on the formulation of the SDM task, 212 it may fall in the domain of Single Positive Multi-Label Learning (SPML), where only a single 213 presence of species is known for a specific geographic location. We describe the loss functions considered in this work below and provide extensive experimentation to assess their impact in 214 Section 4.4. 215

Full Assume-Negative (AN-Full). This loss is a kind of pseudo-negative sampling multi-label learning loss based on the argument that the majority of the species are absent at any given location (Cole et al., 2023). This is typically used in SPML problems. The loss is given by:

$$\mathcal{L}_{\text{AN-full}}(\hat{y}, y) = -\frac{1}{S} \sum_{s=1}^{S} [\mathbb{1}_{[y_s=1]} \lambda log(\hat{y}_s) + \mathbb{1}_{[y_s=0]} log(1-\hat{y}_s) + log(1-\hat{r}_s)]$$
(1)

where \hat{r} is a uniformly randomly sampled location from the spatial domain of the globe.

Full Maximum-Entropy (ME-Full). This loss was introduced in (Zhou et al., 2022) to solve SPML problems. The idea of this loss is to maximize the entropy of predictions for negative samples and for randomly sampled pseudo-negative samples. The loss is given by:

$$\mathcal{L}_{\text{ME-full}}(\hat{y}, y) = -\frac{1}{S} \sum_{s=1}^{S} [\mathbb{1}_{[y_s=1]} \lambda log(\hat{y}_s) + \mathbb{1}_{[y_s=0]} H(\hat{y}_s) + H(\hat{r}_s)]$$

$$H(\hat{y}) = -[\hat{y} log(\hat{y}) + (1-\hat{y}) log(1-\hat{y})]$$
(2)

where again \hat{r} is a uniformly randomly sampled location.

Asymmetric Loss (ASL). This loss, proposed by (Ridnik et al., 2021), weights positive and negative
 samples differently. The positive and hard negative samples are given more weight. It is a fairly
 general loss for multi-label learning which can also be used for SPML, without the need for psuedo negative sampling. This loss is given by:

$$\mathcal{L}_{\text{ASL}}(\hat{y}, y) = -\frac{1}{S} \sum_{s=1}^{S} [\mathbb{1}_{[y_s=1]} (1 - \hat{y_s})^{\gamma^+} log(\hat{y_s}) + \mathbb{1}_{[y_s=0]} (p_s^{\tau})^{\gamma^-} log(1 - p_s^{\tau})]$$
(3)

where
$$p^{\tau} = \max(\hat{y} - \tau)$$
 is used for hard thresholding easy negatives.

Robust Asymmetric Loss (RAL). Recently, (Park et al., 2023) proposed an improved version of the ASL loss by combining the Asymmetric Polynomial Loss (APL) (Huang et al., 2023) and the Hill loss (Zhang et al., 2021), which makes it less sensitive to hyperparameters. This loss is given by:

 $\mathcal{L}_{\text{RAL}}(\hat{y_s}, y_s) = \left[\sum_{m=1}^{M} \mathbb{1}_{[y_s=1]} \alpha_m (1 - \hat{y_s})^{m+\gamma^+} + \sum_{m=1}^{N} \mathbb{1}_{[y_s=1]} \alpha_m (1 - \hat{y_s})^{m+\gamma^-}\right]$ (4)

$$+\sum_{n=1}^{N} \mathbb{1}_{[y_s=0]} \psi(\hat{y_s}) \beta_n(p_s^{\tau})^{n+\gamma^-}]$$

where $\psi(\hat{y}_s) = \delta - \hat{y}_s$ is the Hill loss term. M, N, α_n and β_n are balance parameters for positive and negative samples.

4 EXPERIMENTS

In this section, we describe the implementation details and performance of our models compared
 to the state-of-the-art models on the task of species range prediction and geo-feature regression.
 Additional quantitative results are reported in the appendix.

4.1 IMPLEMENTATION DETAILS

As described in Section 3.2, we use SFNO (Bonev et al., 2023) to extract geographic and environmental-specific features. We use two spectral and encoder layers in the SFNO. The encoder

Figure 3: Performance of our spatially-aware metric against the MAP score. The figure depicts the inability of the MAP score to distinguish between range maps with varying spatial distributions of false positives. (a) Ground truth range map. (b) Predicted range map with false positives spatially distant from true positives. (c) Predicted range map with false positives spatially close to true positives. (d) Predicted range map without false positives.

dimension used is 128 while the number of SFNO blocks are two. For the coordinate-only models, 284 we drop the environmental features during the training. For the text encoder, we use frozen LLaMA-285 2 (Touvron et al., 2023) (70B variant) and extract its encoder outputs for each species. Before 286 training, we precompute and save the embeddings for each species in the disk. For the multi-label 287 classifier, we use a single-layer multi-headed cross-attention network followed by a fully-connected 288 layer with sigmoid activations. We compare LD-SDM with two state-of-art-models: SINR (Cole 289 et al., 2023) and SIREN(SH) (Rußwurm et al., 2023). SINR learns an end-to-end neural representation of geographic locations that is used to predict the likelihood over species. SIREN(SH) uses 290 a spherical harmonic representation of geographic locations which is then used to predict the likelihood over species. The rest of the details about our models and the implementation of state-of-the-art models are described in Appendix C.

293 295

296

291

292

277

278

279

280

281 282 283

4.2 PROXIMITY-AWARE EVALUATION

When predicting species range, the evaluation process typically involves using range maps defined 297 by experts or curated carefully (Norberg et al., 2019; Valavi et al., 2022). However, these maps can 298 often be sparse and difficult to obtain. Alternatively, using crowdsourced species observation data 299 is challenging since the absence of a given species is not recorded. Intuitively, models with false 300 predictions close to their true locations are better than those with distant false predictions. This is 301 because models in the former case learn spatially localized species distributions. 302

Previous studies have used the area under the curve (AUC) (Norberg et al., 2019; Valavi et al., 2022) 303 and the mean average precision (MAP) (Cole et al., 2023) to evaluate SDMs. However, these metrics 304 ignore the spatial distribution of predictions and weigh them equally, making them highly sensitive 305 to spatial shifts in the predictions. This makes evaluating SDMs a challenging task since it requires 306 the comparison of spatially distributed probability values. Pixel-wise comparison methods are not 307 well-suited for this task since they are susceptible to spatial prediction shifts. 308

A well-known spatially explicit distance used for comparing any two distributions is the Earth-309 Mover (Wasserstein) Distance. Due to its computational requirements and infeasibility on large-310 scale data points, Chamfer Distance is a popularly used proxy (Bakshi et al., 2023). However, it has 311 only been developed for point clouds and there doesn't exist a chamfer distance measure to compare 312 two spatial probability distributions. Inspired by (Wu et al., 2021), we modify their Density-Aware 313 Chamfer Distance (DCD) metric that works for comparing a *predicted* probability distribution map 314 (P_1) with a binary probability map (P_2) representing the ground truth. We add a likelihood prob-315 ability term which weights the distance term. We call this metric One-Way Probability Weighted 316 Chamfer Distance (PWCD), which measures the false positive rate in a proximity-aware manner. 317 This metric is between [0,1] and could also be used to compute the number of false positives instead of the rate. It is given by: 318

319

$$d_{\text{PWCD}}(P_1, P_2) = \frac{1}{|N|} \sum_{x \in P_1} \left(1 - e^{-\alpha p(x)||x-y||_2} \right)$$
(5)

$$FP_{\text{PWCD}}(P_1, P_2) = \sum_{x \in P_1} \left(1 - e^{-\alpha p(x)||x-y||_2} \right)$$
(6)

where, $y = \underset{z \in P_2 \cap p(z)=1}{\operatorname{argmin}} ||x-z||_2$. This represents the nearest neighbor ground-truth observation of a

326 given pixel x in the predicted probability distribution map. $N = \{z \in P_2 | p(z) = 0\}$ is the set of all negative observations in the ground truth. α is a temperature parameter that controls the exponential 327 weighting of the distance. See Appendix B for more details. For our case, $|P_1| = |P_2| = L$. Notice 328 that we have omitted the density term in the metric as our probability maps are a contiguous grid of pixels and equally dense everywhere. Since it is a proxy for false positives, it can be plugged into any 330 other metric of choice such as the MAP and AUC. In this work, we report proximity-adjusted MAP 331 scores denoted as MAP(pa) by replacing false positives with our metric. All the scores reported 332 are an average over scores computed for each species category. Figure 6 illustrates three different 333 scenarios of predicted species range maps. While the MAP score yields identical results for cases 334 (a) and (b) despite the spatial distribution of the predictions being different, our proposed metric 335 penalizes distant false predictions and is capable of evaluating the predictions in both cases more 336 accurately. However, in case (c) where there are no false predictions, both MAP and MAP(pa) 337 produce the same results.

338

340

339 4.3 TRAINING AND EVALUATION

We focus on bird species occurrence data which is abundantly available yet challenging to model as 341 compared to other species due to complex migration patterns. In Table 1, we describe the overview 342 of each dataset compiled in this work. We compiled 131.7 million observations of 4141 species of 343 birds using the GBIF (gbif.org) platform which includes data from various community science 344 platforms. This data is collected for the years 2012-2020. For evaluation, we use curated research-345 grade observations from the iNaturalist (Van Horn et al., 2018) and eBird (Sullivan et al., 2009) 346 for 2021 and 2022. These contain 17.9 million and 17.2 million observations respectively. Using 347 the same platform, we created a dataset of 84 species that are unseen (not present in training data) 348 and rare (< 1000 observations) for zero-shot performance evaluation. This contains a total of 26k 349 observations. These platforms are useful since misclassification errors are highly mitigated due to community consensus (Lange et al., 2023), hence being a strong representative of the ground truth. 350 Further, we use the same procedure as described in (Cole et al., 2023) for the geo-feature regression 351 task. 352

353 354

355 356 357

359 360 Table 1: Number of observations in each dataset compiled in this work.

Dataset	Year	#Observations	#species
Train	2012-2020	131.7M	4141
Test	2021	17.9M	3960
Test	2022	17.2M	4010
Zero-Shot	2021-2022	26k	84

All the training and evaluations are done at a spatial resolution of 0.2° . This implies L = 1, 620, 000. During training, we create ground-truth pixel-level range maps for each species at 0.2° resolution using the observations present in the occurrence data. For this, we use the histogram binning technique and clip all the values greater than one to one (Cole et al., 2023). These maps are then used to calculate the various multi-label learning losses described previously. Finally, we report MAP(pa) and d_{PWCD} using $\alpha = 0.1$ for the species range prediction task and R^2 for the geo-feature regression task. See Appendix C for more details on the training settings and hyperparameters used.

368 369 4.4 RESULTS

370 Quantitative Evaluation. In Table 2, we report the performance of all the models considered in 371 this work. LD-SDM has shown better performance than the other models on the task of species 372 range prediction. The zero-shot performance of LD-SDM on unseen species is reasonably good. 373 Although it has an increased false-positive rate, it can be attributed to the model using higher-level 374 taxonomic relationships. Our metric is sensitive to model output confidence ranges. SINR and 375 SIREN(SH) output likelihood values in 0.0-0.3 range, while our model produces confidence in 0.0-1.0 range. This results in lower false positive and true positive rates for the former models than 376 ours. \mathcal{L}_{RAL} tends to produce overconfident predictions as noticeable from the high MAP(pa) scores 377 corresponding to high d_{PWCD} scores. On average, \mathcal{L}_{ASL} loss is likely to be better performing than

382				GBIF	" 2 1	GBIF	'22	Zero S	hot	Geo Feature
383	Loss	Env.	Method	$MAP(pa)\uparrow$	$d_{\rm PWCD}\downarrow$	$MAP(pa)\uparrow$	$d_{\rm PWCD}\downarrow$	$MAP(pa)\uparrow$	$d_{\rm PWCD}\downarrow$	(Mean \mathbb{R}^2)
384	$\mathcal{L}_{\text{AN-full}}$	X	SINR	62.64	0.177	60.28	0.178	-	-	0.446
385	$\mathcal{L}_{\text{ME-full}}$	X	SINR	61.88	0.189	58.81	0.187	-	-	0.518
386	$\mathcal{L}_{\mathrm{ASL}}$	X	SINR	67.11	0.152	64.55	0.155	-	-	0.619
387	$\mathcal{L}_{\mathrm{RAL}}$	X	SINR	62.02	0.291	60.42	0.297	-	-	0.536
388	$\mathcal{L}_{\text{AN-full}}$	X	SIREN(SH)	61.99	0.203	60.67	0.215	-	-	0.562
389	$\mathcal{L}_{\text{ME-full}}$	X	SIREN(SH)	64.44	0.197	64.16	0.212	-	-	0.630
200	$\mathcal{L}_{\mathrm{ASL}}$	X	SIREN(SH)	62.56	0.189	62.43	0.206	-	-	0.481
201	$\mathcal{L}_{\mathrm{RAL}}$	×	SIREN(SH)	63.13	0.192	62.98	0.209	-	-	0.488
391	$\mathcal{L}_{\mathrm{ASL}}$	X	LD-SDM (ours)	73.88	0.174	71.45	0.182	59.27	0.648	0.583
392	\mathcal{L}_{RAL}	×	LD-SDM (ours)	73.46	0.176	71.52	0.184	55.22	0.694	0.587
393	$\mathcal{L}_{\text{AN-full}}$	\checkmark	SINR	64.25	0.184	62.43	0.181	-	-	-
394	$\mathcal{L}_{\text{ME-full}}$	\checkmark	SINR	64.13	0.200	60.67	0.222	-	-	-
395	$\mathcal{L}_{\mathrm{ASL}}$	\checkmark	SINR	67.23	0.172	69.49	0.179	-	-	-
396	$\mathcal{L}_{\mathrm{RAL}}$	\checkmark	SINR	64.98	0.224	63.77	0.252	-	-	-
397	$\mathcal{L}_{\mathrm{ASL}}$	\checkmark	LD-SDM (ours)	74.16	0.222	72.54	0.231	61.14	0.702	-
398	\mathcal{L}_{RAL}	\checkmark	LD-SDM (ours)	75.26	0.219	74.13	0.224	59.65	0.715	-

Table 2: Comparison of performance of SDMs over a variety of multi-label learning losses on two
 tasks: species range prediction (and zero-shot range prediction) and geo-feature regression. The
 proximity-aware metrics proposed are defined in Section 4.2.

Table 3: Comparison of performance of our models using three different variants of LLaMA-2. The 70B variant achieves the best performance followed by the 7B and 13B variants.

		GBIF'21		GBIF'22		Zero Shot		Geo Feature	FLOPS
Text Encoder	encoding dim	$MAP(pa)\uparrow$	$d_{PWCD}\downarrow$	$MAP(pa)\uparrow$	$d_{PWCD}\downarrow$	$MAP(pa)\uparrow$	$d_{PWCD}\downarrow$	(Mean R^2)	TFLOPS
LLaMA-2-7B	4096	71.24	0.177	70.25	0.178	56.27	0.719	0.579	0.174
LLaMA-2-13B	5120	70.11	0.184	69.09	0.193	55.70	0.732	0.563	0.342
LLaMA-2-70B	8192	73.88	0.174	71.45	0.182	59.27	0.648	0.583	1.848

Table 4: Comparison of taxonomic mapping performance of our models using the three different variants of LLaMA-2 for taxonomic encoding. These performances are reported on the combined presence-only dataset from GBIF for the years 2012-2022. It is worth noting that LLaMA-2-13b has a lower performance than LLaMA-2-7b, possibly due to differences in their training data.

	LLaMA-2-7B		LLaMA	-2-13B	LLaMA-2-70B	
Taxonomic Level	MAP(pa) \uparrow	$d_{PWCD}\downarrow$	MAP(pa) \uparrow	$d_{PWCD}\downarrow$	MAP(pa) \uparrow	$d_{PWCD}\downarrow$
Class	97.10	0.117	95.2	0.204	97.52	0.163
Order	56.15	0.450	55.94	0.472	58.31	0.414
Family	38.18	0.659	36.47	0.688	40.13	0.632
Genus	24.95	0.710	24.97	0.711	27.86	0.692

the other losses over all the models. For SINR, \mathcal{L}_{ASL} performs the best as compared to the other losses by a large margin. This is also evident in the geo-feature regression task. Our model has also produced competitive scores on the task of geo-feature regression. The coordinate-only models perform nearly as well as models incorporating environmental features. So, dropping environmental features could result in faster training.

428 Qualitative Examples. In Figure 4, we show global-scale species distribution maps generated 429 for five bird species. To make fair comparisons, we used the best-performing coordinate-only 430 models to ensure no bias is added to models from the environmental features. Although SINR and 431 SIREN(SH) could generate species distribution maps at any spatial resolution, they tend to learn a very low-frequency function over the sphere as evident from the blob-like maps. SIREN(SH)

Figure 4: **Predicted Range Maps (Probability Values)**. The predictions are generated at a spatial resolution of 0.2 degrees. For the SIREN(SH) and SINR models, predictions are generated at the center of each raster cell. The visualizations show that our model performs better than other models at resolving higher frequencies over the sphere and localizing the species distribution.

453

454

458 produces a lot of false positive predictions possibly due to the limitation of the number of Legendre 459 polynomials it can fit. Our model on the other hand learns to predict species ranges at a more 460 fine-grained level. This is evident from the visualization of the geographic location features learned 461 by the location encoder of each model (shown in Appendix D). Fine-grained geographic features 462 are important for better geolocalization of species. SINR and SIREN(SH) tend to learn similar 463 features over large geographic regions while LD-SDM produces higher variability in the features 464 at a finer scale. The learned features could be used for other ecological mapping tasks that require 465 geography-aware features.

465 466

Effect of LLaMA-2 variants on LD-SDM. We assess the impact of using different variants of 467 LLaMA-2 for LD-SDM in Table 3. In particular, we compare the 7B, 13B, and 70B variants. 468 Surprisingly, the 13B variant performs the worst. This is possibly due to the differences in the 469 training data of the variants. Empirically, this can be explained by examining the T-SNE plots 470 of text embeddings. In Appendix A, we present T-SNE plots along with mean intra-cluster and 471 inter-cluster distances of text embeddings. Ideally, both intra-cluster and inter-cluster distances 472 should be high to ensure separability within a particular taxonomic class and between taxonomic 473 classes respectively. 13B variant has the poorest separability at every taxonomic rank. The 474 7B and 70B variants have almost identical separatabilities. The impressive performance of the 475 70B variant can be attributed to its high dimensionality of the species-specific encoding. Al-476 though 70B has noticeably higher computational overheads, it is compensated by precomputing the 477 text embeddings before training. Overall, all the variants can perform better than the state-of-the-art.

478

Taxonomic range mapping using LLaMA-2 variants. We perform range prediction over the taxonomic ranks: *class, order, family,* and *genus.* The procedure is the same as for generating species range maps. We precompute the embeddings for each rank as shown in Figure 1. The range map for the rank *class* represents the unconditional distribution of finding any bird *species* in the world. As one moves down in the hierarchy, the range maps become more and more fine-grained. As expected, the performance of LD-SDM drops as one moves down in the hierarchy (Table 4). This can be explained by examining the increasing *d*_{PWCD} scores. The T-SNE plots of the embeddings of various ranks in Appendix A help in better understanding the increase in false

positive rates as one moves down in the hierarchy. As it can be seen, the intra-cluster distances decrease substantially when moving down in the hierarchy. As a result, it becomes challenging for the model to distinguish between birds for example of *genera* belonging to the same *family*.

490 Spherical Harmonics are important for SDM We compare the performance of LD-SDM when us-491 ing different backbones in the location encoder network (Table 5). All the models are trained from 492 scratch using the LLaMA-2-70B variant. We use the same training inputs including the environmen-493 tal features. This is done since positional encodings are implicitly incorporated by the Segformer 494 and DINOv2 architectures. All the models are trained using the \mathcal{L}_{ASL} loss. Notice that SFNO gives 495 the best performance over Segformer and DINOv2. With SFNO, we observe a significant gain in 496 performance and a reduction in false positives. Overall, a robust geographic feature extractor is beneficial for SDM and SFNO proves to be one such architecture. 497

Table 5: Comparison of performance of three different backbones used in the parameterization network. All the models are trained with the same loss with environmental features included in the inputs.

	Params GBIF'21			GBIF'22	
Backbone	М	$MAP(pa) \uparrow$	$d_{PWCD}\downarrow$	MAP(pa) \uparrow	$d_{PWCD}\downarrow$
Segformer (Xie et al., 2021)	20.81	71.64	0.247	70.54	0.255
DINOv2 (Oquab et al., 2023)	41.34	72.19	0.232	72.01	0.240
SFNO (Bonev et al., 2023)	19.19	74.16	0.222	72.54	0.231

5 LIMITATIONS

As pointed out in (Cole et al., 2023), the crowdsourced data is biased towards regions with heavy human traffic. Most often, rich biodiverse regions are underrepresented limiting the performance of SDMs. In this work, we do not explicitly deal with the observation bias in presence-only SDM. However, our goal was to incorporate taxonomic information into SDM to enhance unseen species discovery.

Previous studies have evaluated species SDMs using expert range maps, which are only available for a limited number of species. Our proposed evaluation metric allows for the evaluation of SDMs using crowdsourced data, which provides a more comprehensive representation of numerous species. However, we note that none of these methods are error-free. Yet, with our proposed evaluation metric, innovative methods could be developed for the semi-automatic evaluation of SDMs in the future, to strike a balance between accuracy and efficiency.

523 524

498

499

500

501

511

6 CONCLUSIONS

525 526

We introduced a novel approach for species distribution modeling that uses a large-language model 527 to generate a representation of a species. This provides flexibility to generate distributions at dif-528 ferent levels of the taxonomic hierarchy and for unseen species. In addition, we introduced a new 529 evaluation metric, Probability Weighted Chamfer Distance. This metric computes the false positive 530 rate in species range mapping tasks in a proximity-aware manner. While our focus was on species 531 distribution modeling, the integration of large-language models points to some intriguing potential 532 future use cases. It might be possible, for example, to generate distribution models from arbitrary 533 text, such as "a large white bird" or "a flock of red-winged blackbirds". This is potentially more 534 useful for non-expert users. Finally, alternative text prompts could be explored as future work which may better reason about a species and its dependence on a particular geographic location. 535

- 536
- 537
- 538

540 REFERENCES

569

570

571

576

577

578

579

580

581

585

- Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
 Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. *arXiv preprint arXiv:2305.10403*, 2023.
- Kumar Ayush, Burak Uzkent, Chenlin Meng, Kumar Tanmay, Marshall Burke, David Lobell, and
 Stefano Ermon. Geography-aware self-supervised learning. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 10181–10190, 2021.
- Ainesh Bakshi, Piotr Indyk, Rajesh Jayaram, Sandeep Silwal, and Erik Waingarten. A near-linear time algorithm for the chamfer distance. *arXiv preprint arXiv:2307.03043*, 2023.
- Sara Beery, Elijah Cole, Joseph Parker, Pietro Perona, and Kevin Winner. Species distribution modeling for machine learning practitioners: A review. In *ACM SIGCAS conference on computing and sustainable societies*, pp. 329–348, 2021.
- Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik
 Kashinath, and Anima Anandkumar. Spherical fourier neural operators: Learning stable dy namics on the sphere. *International conference on machine learning*, 2023.
- Christophe Botella, Alexis Joly, Pierre Bonnet, Pascal Monestiez, and François Munoz. A deep learning approach to species distribution modelling. *Multimedia Tools and Applications for Environmental & Biodiversity Informatics*, pp. 169–199, 2018.
- Christophe Botella, Maximilien Servajean, Pierre Bonnet, and Alexis Joly. Overview of geolifectef
 2019: plant species prediction using environment and animal occurrences. In *CLEF 2019 Working Notes-Conference and Labs of the Evaluation Forum*, volume 2380, pp. 257, 2019.
- Christophe Botella, Alexis Joly, Pierre Bonnet, François Munoz, and Pascal Monestiez. Jointly estimating spatial sampling effort and habitat suitability for multiple species from opportunistic presence-only data. *Methods in Ecology and Evolution*, 12(5):933–945, 2021.
 - Bogdan Caradima, Nele Schuwirth, and Peter Reichert. From individual to joint species distribution models: A comparison of model complexity and predictive performance. *Journal of Biogeography*, 46(10):2260–2274, 2019.
- 572
 573 Di Chen and Carla P Gomes. Bias reduction via end-to-end shift learning: Application to citizen science. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pp. 493–500, 2019.
 - Di Chen, Yexiang Xue, Shuo Chen, Daniel Fink, and Carla Gomes. Deep multi-species embedding. arXiv preprint arXiv:1609.09353, 2016.
 - Grace Chu, Brian Potetz, Weijun Wang, Andrew Howard, Yang Song, Fernando Brucher, Thomas Leung, and Hartwig Adam. Geo-aware networks for fine-grained recognition. In *Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops*, pp. 0–0, 2019.
- Elijah Cole, Benjamin Deneu, Titouan Lorieul, Maximilien Servajean, Christophe Botella, Dan Morris, Nebojsa Jojic, Pierre Bonnet, and Alexis Joly. The geolifectef 2020 dataset. *arXiv preprint arXiv:2004.04192*, 2020.
- Elijah Cole, Grant Van Horn, Christian Lange, Alexander Shepard, Patrick Leary, Pietro Perona,
 Scott Loarie, and Oisin Mac Aodha. Spatial implicit neural representations for global-scale
 species mapping. *International conference on machine learning*, 2023.
- Johannes Dollinger, Philipp Brun, Vivien Sainte Fare Garnot, and Jan Dirk Wegner. Sat-sinr: High resolution species distribution models through satellite imagery. *ISPRS Annals of the Photogram- metry, Remote Sensing and Spatial Information Sciences*, 10:41–48, 2024.
- ⁵⁹³ Jane Elith and John R Leathwick. Species distribution models: ecological explanation and prediction across space and time. *Annual review of ecology, evolution, and systematics*, 40:677–697, 2009.

594 595 596 597	Jane Elith*, Catherine H. Graham*, Robert P. Anderson, Miroslav Dudík, Simon Ferrier, Antoine Guisan, Robert J. Hijmans, Falk Huettmann, John R. Leathwick, Anthony Lehmann, et al. Novel methods improve prediction of species' distributions from occurrence data. <i>Ecography</i> , 29(2): 129–151, 2006.
598 599 600	Stephen E Fick and Robert J Hijmans. Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. <i>International journal of climatology</i> , 37(12):4302–4315, 2017.
601 602 603	Daniel Fink, Wesley M Hochachka, Benjamin Zuckerberg, David W Winkler, Ben Shaby, M Arthur Munson, Giles Hooker, Mirek Riedewald, Daniel Sheldon, and Steve Kelling. Spatiotemporal exploratory models for broad-scale survey data. <i>Ecological Applications</i> , 20(8):2131–2147, 2010.
605 606 607	Simone Franceschini, Emanuele Gandola, Marco Martinoli, Lorenzo Tancioni, and Michele Scardi. Cascaded neural networks improving fish species prediction accuracy: the role of the biotic infor- mation. <i>Scientific Reports</i> , 8(1):4581, 2018.
608 609 610	Yusheng Huang, Jiexing Qi, Xinbing Wang, and Zhouhan Lin. Asymmetric polynomial loss for multi-label classification. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.
612 613 614	Alison Johnston, Nick Moran, Andy Musgrove, Daniel Fink, and Stephen R Baillie. Estimat- ing species distributions from spatially biased citizen science data. <i>Ecological Modelling</i> , 422: 108927, 2020.
615 616 617	Kamil Konowalik and Agata Nosol. Evaluation metrics and validation of presence-only species distribution models based on distributional maps with varying coverage. <i>Scientific Reports</i> , 11 (1):1482, 2021.
619 620	Christian Lange, Elijah Cole, Grant Van Horn, and Oisin Mac Aodha. Active learning-based species range estimation. <i>Advances in Neural Information Processing Systems</i> , 2023.
621 622 623	Titouan Lorieul, Elijah Cole, Benjamin Deneu, Maximilien Servajean, Pierre Bonnet, and Alexis Joly. Overview of geolifectef 2021: Predicting species distribution from 2 million remote sensing images. In <i>CLEF (Working Notes)</i> , pp. 1451–1462, 2021.
625 626 627 628	Titouan Lorieul, Elijah Cole, Benjamin Deneu, Maximilien Servajean, Pierre Bonnet, and Alexis Joly. Overview of geolifeclef 2022: Predicting species presence from multi-modal remote sensing, bioclimatic and pedologic data. In <i>CLEF 2022-Conference and Labs of the Evaluation Forum</i> , volume 3180, pp. 1940–1956, 2022.
629 630 631	Oisin Mac Aodha, Elijah Cole, and Pietro Perona. Presence-only geographical priors for fine- grained image classification. In <i>Proceedings of the IEEE/CVF International Conference on Com-</i> <i>puter Vision</i> , pp. 9596–9606, 2019.
633 634	DARRYL I MacKENZIE. What are the issues with presence-absence data for wildlife managers? <i>The Journal of Wildlife Management</i> , 69(3):849–860, 2005.
635 636 637 638	Anna Norberg, Nerea Abrego, F Guillaume Blanchet, Frederick R Adler, Barbara J Anderson, Jani Anttila, Miguel B Araújo, Tad Dallas, David Dunson, Jane Elith, et al. A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. <i>Ecological monographs</i> , 89(3):e01370, 2019.
639 640 641 642	Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual features without supervision. <i>arXiv preprint arXiv:2304.07193</i> , 2023.
643 644 645	Wongi Park, Inhyuk Park, Sungeun Kim, and Jongbin Ryu. Robust asymmetric loss for multi-label long-tailed learning. <i>arXiv preprint arXiv:2308.05542</i> , 2023.
646 647	Tal Ridnik, Emanuel Ben-Baruch, Nadav Zamir, Asaf Noy, Itamar Friedman, Matan Protter, and Lihi Zelnik-Manor. Asymmetric loss for multi-label classification. In <i>Proceedings of the IEEE/CVF International Conference on Computer Vision</i> , pp. 82–91, 2021.

- Tim Robertson, Markus Döring, Robert Guralnick, David Bloom, John Wieczorek, Kyle Braak, Javier Otegui, Laura Russell, and Peter Desmet. The gbif integrated publishing toolkit: facilitating the efficient publishing of biodiversity data on the internet. *PloS one*, 9(8):e102623, 2014.
- Marc Rußwurm, Konstantin Klemmer, Esther Rolf, Robin Zbinden, and Devis Tuia. Geographic location encoding with spherical harmonics and sinusoidal representation networks. *arXiv preprint arXiv:2310.06743*, 2023.
- Srikumar Sastry, Subash Khanal, Aayush Dhakal, Di Huang, and Nathan Jacobs. Birdsat: Cross view contrastive masked autoencoders for bird species classification and mapping. *IEEE/CVF Winter Conference on Applications of Computer Vision*, 2024.
- Pedro Segurado and Miguel B Araujo. An evaluation of methods for modelling species distributions.
 Journal of biogeography, 31(10):1555–1568, 2004.
- Brian L Sullivan, Christopher L Wood, Marshall J Iliff, Rick E Bonney, Daniel Fink, and Steve Kelling. ebird: A citizen-based bird observation network in the biological sciences. *Biological conservation*, 142(10):2282–2292, 2009.
- Luming Tang, Yexiang Xue, Di Chen, and Carla Gomes. Multi-entity dependence learning with rich context via conditional variational auto-encoder. In *Proceedings of the AAAI conference on artificial intelligence*, volume 32, 2018.
- Mélisande Teng, Amna Elmustafa, Benjamin Akera, Hugo Larochelle, and David Rolnick.
 Bird distribution modelling using remote sensing and citizen science data. *arXiv preprint arXiv:2305.01079*, 2023a.
- Mélisande Teng, Amna Elmustafa, Benjamin Akera, Yoshua Bengio, Hager Radi Abdelwahed, Hugo Larochelle, and David Rolnick. Satbird: Bird species distribution modeling with remote sensing and citizen science data. *Advances in Neural Information Processing Systems*, 2023b.
- James T Thorson, James N Ianelli, Elise A Larsen, Leslie Ries, Mark D Scheuerell, Cody Szuwalski, and Elise F Zipkin. Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring. *Global Ecology and Biogeography*, 25(9):1144–1158, 2016.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.
- Roozbeh Valavi, Gurutzeta Guillera-Arroita, José J Lahoz-Monfort, and Jane Elith. Predictive per formance of presence-only species distribution models: a benchmark study with reproducible
 code. *Ecological Monographs*, 92(1):e01486, 2022.
- Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
 Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
 Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8769–8778, 2018.
- Peter D Wilson. Distance-based methods for the analysis of maps produced by species distribution models. *Methods in Ecology and Evolution*, 2(6):623–633, 2011.
- Tong Wu, Liang Pan, Junzhe Zhang, Tai Wang, Ziwei Liu, and Dahua Lin. Density-aware chamfer
 distance as a comprehensive metric for point cloud completion. *Advances in Neural Information Processing Systems*, 2021.
- Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Seg former: Simple and efficient design for semantic segmentation with transformers. *Advances in Neural Information Processing Systems*, 34:12077–12090, 2021.
- Youcai Zhang, Yuhao Cheng, Xinyu Huang, Fei Wen, Rui Feng, Yaqian Li, and Yandong Guo.
 Simple and robust loss design for multi-label learning with missing labels. *arXiv preprint arXiv:2112.07368*, 2021.
- Donghao Zhou, Pengfei Chen, Qiong Wang, Guangyong Chen, and Pheng-Ann Heng. Acknowl edging the unknown for multi-label learning with single positive labels. In *European Conference* on Computer Vision, pp. 423–440. Springer, 2022.

A SPECIES-SPECIFIC EMBEDDINGS

727

As described in the paper, we encode the taxonomic information of species in the form of text. Text is a dictionary consisting of key-value pairs representing each taxonomic rank. We use hugging-face's library transformers to obtain all the LLaMA-2 variants used in the paper. We separately compute and save the embeddings of the key-value pairs for each variant. In Table 6, we report the number of tokens generated by the LLaMA-2 variants for each taxonomic rank.

Table 6: Total tokens generated by LLaMA-2 for each taxonomic rank. The dimensionality of each of these tokens depends on the type of LLaMA-2 variant used.

Taxonomic Rank	#tokens	#classes	#total tokens
order	13	40	520
family	19	211	4009
genus	25	1393	34,825
species	34	4141	140,794

We create T-SNE plots in 2-D for visualizing the embeddings at each rank resulting from the variants (Figure 5). To create the plot, we do an average pool across the number of tokens' dimension for each text embedding. We then use scikit-learn library to compute the T-SNE embeddings for each species and at every taxonomic rank. We color code the embeddings based on the taxonomic rank one level higher than the current rank. For example, the T-SNE embeddings for the rank *family* are color-coded by their *order*. Doing this provides a simple intuition for interpreting the separatability of species and taxonomic ranks.

Figure 5: T-SNE Plots of Text Embeddings. For each variant and taxonomic rank, we compute the
 T-SNE embeddings of all the text tokens generated. We do average pooling over the token dimension
 before computing T-SNE. These plots highlight the separatability degree of each variant over each taxonomic rank.

756 We compute average inter-cluster and intra-cluster distances based on the color coding for each 757 taxonomic rank. This is also done using the scikit-learn package. The inter-cluster distance 758 represents the average dissimilarity between *species* (or any other rank) of different classes. The 759 intra-cluster distance represents the average dissimilarity between species (or any other rank) of the 760 same class. Intuitively, both distances should be high enough to ensure good separatability for SDM. As we see, the distances decrease as we move down in the hierarchy. This is expected since the 761 distribution of each species becomes more and more fine-grained. The 13B variant has abruptly low 762 distances compared to the other variants suggesting poor performance in SDM. This can possibly be 763 due to differences in training data and the training procedure between the variants. 764

765 766

767

779

B PROBABILITY WEIGHTED CHAMFER DISTANCE

We proposed the Probability Weighted Chamfer Distance (PWCD) which is a spatially-aware proxy for false-positive rates when comparing two probability maps. This distance could also be used in other metrics such as precision, MAP, or AUC to make them spatially aware. In Listing 1, we describe NumPy-style pseudocode for computing this distance metric.

We use the xrspatial's proximity function for computing the nearest-neighbor distance map given the binary ground-truth range map. All the distances are measured in pixel units using Euclidean distance. The minimum possible distance is 0 which is for the positive pixels having *species* presence. The maximum possible distance depends on the spatial resolution of the range map. In our case, the spatial resolution of 0.2° gives a maximum distance of 2012.46. It is noteworthy that this distance function could be replaced with any other distance function for example the haversine distance.

Listing 1: NumPy-style pseudocode for computing d_{PWCD}

```
import xarray as xr
781
      from xrspatial import proximity
782
      import numpy as np
783
784
      #y_true[h, w]: true binary range map
785
      #y_pred[h, w]: predicted range map
786
      #a: temperature parameter
787
788
      def PWCD(y_true, y_pred, a):
           xr_true = xr. DataArray(y_true)
789
           prox_agg = np. array (proximity (xr_true))
790
          pwcd = 1 - np.exp(-a*y_pred*prox_agg)
791
          fps = np.sum(pwcd)
792
           neg = np.sum(y_true == 0)
793
           return fps / neg
794
```

We visualized the pixel-level d_{PWCD} map in Figure 6. Notice that the predictions spatially close to the true presence of *species* are weighted less than the predictions that are distant. This weighting is due to the nearest-neighbor distances of the pixels making the metric spatially-aware. The chamfer distance map describes the weighting of predictions as a function of distance from the nearest presence pixel. The weight gradually increases as the distance from the nearest presence pixel increases. Note that the nearest-neighbor distance map differs from the chamfer distance map, which is in the range of [0,1]. The chamfer distance map is computed using the nearest-neighbor distance map, using the formula for d_{PWCD} and a constant likelihood term equal to one.

In Figure 7, we show the effect of temperature parameter α on the d_{PWCD} metric. The figure shows chamfer distance as a function of nearest-neighbor distance at a fixed likelihood probability of one and varying values of α . The parameter α controls the exponential weighting of the nearest-neighbor distance in the metric. Increasing α gradually increases the weight of nearby pixels. The metric starts penalizing more of the nearby pixels in the computation of false positive rates. A large value of α will make the metric more sensitive to spatial shifts in the predictions while a lower value of α will be more robust towards spatial shifts. However, an extremely low value of α will make the metric ignore distant false positives. As a result, an optimal value of α is essential to evaluate SDMs.

Figure 6: **Probability Weighted Chamfer Distance**. Using the presence-only ground-truth maps, the nearest-neighbor distance map is computed. Finally, d_{PWCD} is calculated using the per-pixel activation values from the range map predicted by an SDM and the nearest-neighbor distance map. The distance metric for computing the nearest-neighbor distance map is the Euclidean Distance in pixel units.

852

853

In order to evaluate the localization of species distributions, we have plotted d_{PWCD} scores with varying α in Figure 8. The first plot shows the relationship between d_{PWCD} and the nearest neighbor distance for varying α values. By analyzing this graph, one can determine the optimal value of α for their specific application. For our purposes, we selected $\alpha = 0.1$, as it is robust to spatial shifts and accurately detects the distribution of species.

In the second plot, we have shown the d_{PWCD} scores as a function of the likelihood probability, at a constant nearest neighbor distance of 100 pixels. As the value of α increases, the metric starts

Figure 7: Effect of α on Chamfer Distance. With an increasing value of α , metric d_{PWCD} becomes more sensitive to prediction shifts. Lower values of α make the metric d_{PWCD} more robust to shifts at the cost of losing assessing spatial localizability in an effective sense.

penalizing low likelihood values. This gives us more control over the trade-off between the distance and likelihood scores, allowing us to determine the optimal α value for our application.

C TRAINING

917 Below we describe the details of the datasets used. We also describe the implementation details of the models and the losses. Each training run was done on a single NVIDIA A40 GPU.

Figure 8: Sensitivity of d_{PWCD} . We show the variation of d_{PWCD} as distance to ground truth observation increases (left). We also show the variation of d_{PWCD} with likelihood probability at a fixed distance of 100 pixels from ground-truth (right).

Figure 9: Histogram of Locations of Observations. We show the visualization of observations of the datasets considered in this study at a spatial resolution of 0.2° .

C.1 DATA

Our training and evaluation data was collected using various citizen science platforms such as the iNaturalist (inaturalist.org) (Van Horn et al., 2018) and eBird (ebird.org) (Sullivan et al., 2009). The maps in Figure 9 display the geographical locations of the observations for each dataset across the globe. They were compiled using the GBIF (gbif.org) (Robertson et al., 2014) platform, which hosts occurrence records of species from several citizen science platforms. For compilation, we used the following conditions:

- 1. All observations must have valid labels for each taxonomic rank and geographical location values.
- 2. All observations must have the research grade status label.

To avoid bias, we excluded species with less than 100 observations. The evaluation datasets only contain observations from iNaturalist and eBird. For zero-shot evaluation, we selected the species that were not present in the training dataset. Further, we filtered out species with more than 1000 observations to focus on rare species.

We use bioclimatic variables and elevation data as environmental covariates in the SDM. The variables are derived from the WorldClim dataset (worldclim.org) (Fick & Hijmans, 2017), which are at a spatial resolution of 0.01°. The dataset is resampled to 0.2° resolution using bilinear interpolation. In total, the dataset contains 20 different variables (channels). We use nine different geographic features in the geo-feature regression task as done by (Cole et al., 2023). These include above-ground carbon, elevation, etc. All the features are resampled to 0.2° resolution.

	Config	Value
	backbone	ResNet-style MLP
	encoding dim	256
	depth	4
	input encoding	sin-cos
	optimizer	AdamW
	base learning rate	Se-4
	batch size	2048
	epochs	10
	1	
	Table 8	: Training settings for SIREN(SH)
	Config	Value
	backbone	SIREN
	encoding dim	256
	depth	4
	input encoding	spherical-harmonics
	L	20 A damW
)	base learning rate	Adamw 1e-4
l .	learning rate scheduler	exponential decay
2	batch size	2048
3	epochs	20
1		
5		
3		
7	Table	9: Training settings for LD-SDM
3		
à	Config	Value
, J	backbone	SFNO
' I	encoding dim	128
- -	SFNO blocks	
1	multi-label classifier	hidden_dim: 64
5	ontimizer	hum_heads: 10
1	base learning rate	1e-5
5	batch size	1
5	accumulate grad batches	64
7	epochs	10
3		
)		
)		
C.2	Models	
2		

1023 We experimented with three different SDMs: 1) SINR (Cole et al., 2023); 2) SIREN(SH) (Rußwurm 1024 et al., 2023); LD-SDM (ours). For the baseline models, we used the same hyperparameters as 1025 reported by authors. Tables 7, 8 and 9, show the hyperparameters used for each model. We use L = 20 for SIREN(SH) since experiments with larger L were computationally infeasible.

Figure 10: Features Learned by Location Encoder. We show the visualization of location embeddings learned by the location encoder of various models. For visualization, the embeddings are projected to a 3-dimensional space using Independent Component Analysis. SINR learns a low-frequency representation of location while SIREN(SH) and LD-SDM learn to localize at a finegrained level.

C.3 Losses

We evaluated four different multi-label learning losses in our experiments, namely: 1) AN-full (Cole et al., 2023); 2) ME-full (Zhou et al., 2022); 3) ASL (Ridnik et al., 2021); 4) RAL (Huang et al., 2023). For AN-full and ME-full, we used a positive weight of 2048. The pseudo-negative sampling is done according to (Cole et al., 2023), by using a spherical buffer around each observation. In the case of ASL and RAL, we used 0 and 4 for γ^+ and γ^- respectively. In RAL, we set λ to 1.5.

1045 1046 1047

D LOCATION EMBEDDINGS

We present the location-specific features learned by the SDMs in Figure 10. The location embeddings displayed are the output of the location encoder network for each SDM. We use Independent Component Analysis (ICA) to project the high-dimensional embeddings to a 3-dimensional space. All the maps are generated at a spatial resolution of 0.2°. SINR produces a smooth map indicating that it has failed to learn high-frequency functions. SIREN(SH) produces noisy location features spread across the globe. LD-SDM produces a map that resembles the distribution of training data. We see that in the locations where observations are absent, LD-SDM has learned similar features.

1055 1056

E LIGHTWEIGHT SFNO PERFORMS SURPRISINGLY WELL

In Table 10, we show the effect on the performance of species range prediction due to different components of the SFNO. It is noteworthy that an encoder dimension of 128 for SFNO yields results on par with an encoder dimension of 256 while reducing computational complexity. On the other hand, having fewer encoder layers in SFNO is beneficial since performance gain from adding additional encoder layers is marginal. In conclusion, a lightweight SFNO is a strong geographic feature extractor that can be used in various downstream global-scale geospatial tasks.

Table 10: SFNO ablation in LD-SDM. We experiment on various values of hidden encoder dimension and the number of encoder layers in SFNO. All experiments run with the \mathcal{L}_{ASL} loss and the LLaMA-2-70B variant.

- 1068 1069 **GBIF'21 GBIF'22** 1070 Encoder Dim. MAP(pa) ↑ $MAP(pa) \uparrow$ $d_{PWCD}\downarrow$ $d_{PWCD}\downarrow$ 1071 0.149 64 68.55 0.147 67.28 128 73.88 0.174 71.45 0.182 73.67 0.178 71.82 0.188 256 1074 MAP(pa) ↑ $MAP(pa) \uparrow$ Encoder Layers $d_{PWCD}\downarrow$ $d_{PWCD}\downarrow$ 1075 2 73.88 0.174 71.45 0.182 3 73.39 0.171 72.11 0.174 1077 4 73.67 0.174 72.00 0.180 1078
- 1079