
Published in Transactions on Machine Learning Research (12/2024)

Implicit Regularization of AdaDelta

Matthias Englert∗ m.englert@warwick.ac.uk
University of Warwick

Ranko Lazić∗ r.s.lazic@warwick.ac.uk
University of Warwick

Avi Semler∗ avi.semler@warwick.ac.uk
University of Warwick

Reviewed on OpenReview: https: // openreview. net/ forum? id= nm40lbbwoR

Abstract

We consider the AdaDelta adaptive optimization algorithm on locally Lipschitz, positively
homogeneous, and o-minimally definable non-smooth neural networks, with either the
exponential or the logistic loss. We prove that, after achieving perfect training accuracy,
the resulting adaptive gradient flows converge in direction to a Karush-Kuhn-Tucker point
of the margin maximization problem, i.e. perform the same implicit regularization as the
plain gradient flows. We also prove that the loss decreases to zero and the Euclidean norm
of the parameters increases to infinity at the same rates as for the plain gradient flows.
Moreover, we consider generalizations of AdaDelta where the exponential decay coefficients
may vary with time and the numerical stability terms may be different across the parameters,
and we obtain the same results provided the former do not approach 1 too quickly and the
latter have isotropic quotients. Finally, we corroborate our theoretical results by numerical
experiments on convolutional networks with MNIST and CIFAR-10 datasets.

1 Introduction

Understanding when, why, and how training overparameterized neural networks by gradient-based algorithms
achieves good generalization (Zhang, Bengio, Hardt, Recht, and Vinyals, 2021; Belkin, Hsu, Ma, and
Mandal, 2019) remains one of the central questions in machine learning, despite several years of vibrant
research. Much progress on the question has been made by investigating implicit regularization (or implicit
bias) (Neyshabur, Bhojanapalli, McAllester, and Srebro, 2017): the mysterious preference of the training
algorithms for interpolators that perform well at test time.

Buiding on the seminal work of Soudry, Hoffer, Nacson, Gunasekar, and Srebro (2018), one of the most
celebrated results in the field was obtained by Lyu and Li (2020); Ji and Telgarsky (2020): that after achieving
perfect training accuracy, gradient flow implicitly regularizes locally Lipschitz, positively homogenous, and
o-minimally definable non-smooth networks so that their parameters converge in direction to a margin
maximization KKT point. This precise bias towards margin maximization for this wide class of networks has
been the basis of numerous theoretical works (cf. Vardi (2023)), as well as remarkable practical methods such
as the reconstruction of training data by Haim, Vardi, Yehudai, Shamir, and Irani (2022); Buzaglo, Haim,
Yehudai, Vardi, Oz, Nikankin, and Irani (2023).

Nevertheless, already Soudry et al. (2018) observed that algorithms such as Adam (Kingma and Ba, 2015)
may not perform the same implicit regularization, and posed the research question:

Can we characterize the bias of adaptive optimization algorithms for classification problems?
∗Equal contribution.
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The pertinence of this question was further attested by Wilson, Roelofs, Stern, Srebro, and Recht (2017),
who demonstrated that, for several realistic deep learning models, the solutions found by adaptive methods
often generalize significantly worse than those found by stochastic gradient descent, even when the former
solutions have better training performance.

Extending the pioneering work of Gunasekar, Lee, Soudry, and Srebro (2018); Qian and Qian (2019); Zhou,
Feng, Ma, Xiong, Hoi, and E (2020), a major advance was made by Wang, Meng, Chen, and Liu (2021)
who proved that, for the same wide class of networks as admitted by Lyu & Li (2020); Ji & Telgarsky
(2020) and in the continuous setting corresponding to an infinitesimal learning rate, if the adapter1 of an
algorithm without momentum can be shown to converge to an isotropic vector without large fluctuations,
then the implicit regularization is the same as for plain gradient flow. They also established that this
holds for RMSProp (Hinton, Srivastava, and Swersky, 2012) and Adam without momentum,2 but fails for
AdaGrad (Duchi, Hazan, and Singer, 2011).

Our contributions. In this work, we tackle the posed research question for AdaDelta (Zeiler, 2012), which
has remained open. AdaDelta is one of the main adaptive optimization algorithms, implemented in PyTorch3,
and known to perform well in many circumstances compared to other algorithms including RMSProp and
Adam (cf. e.g. Ruder (2016)). Specifically:

• we overcome the technical challenge of AdaDelta having exponentially decaying averages in both the
numerator and the denominator of the adapter (which makes it not readily amenable to the techniques of
Wang et al. (2021)), and prove that the adapter has the required convergence properties, which enables us to
conclude the same implicit regularization as for plain gradient flow;

• we show that the implicit regularization critically depends on the numerical stability terms in the numerator
and the denominator of the adapter, and that it changes if they are permitted to have different components
so that their quotient is not isotropic;

• we also investigate permitting the exponential decay coefficients to vary with time, and show that under a
mild assumption on their integrals, the implicit regularization is not affected;

• we corroborate these theoretical results in three empirical settings, ranging from a simple visualization to
a 14-layer convolutional network on CIFAR-10.

Further related work. The implicit regularization of adaptive optimization algorithms was the focus of
several other recent works. Wang, Meng, Zhang, Sun, Chen, Ma, and Liu (2022) proved that momentum
does not affect the implicit bias towards margin maximization for linear classification. Tarzanagh, Li, Zhang,
and Oymak (2023) showed margin maximization when optimizing attention by gradient descent. Cattaneo,
Klusowski, and Shigida (2024) studied the implicit bias of Adam and RMSProp by backward error analysis.
Zhang, Zou, and Cao (2024) established that Adam without a numerical stability term maximizes the ∞-norm
margin for linear logistic regression. Some of the prior empirical works on generalization of adaptive methods
are Keskar and Socher (2017); Zaheer, Reddi, Sachan, Kale, and Kumar (2018); Luo, Xiong, Liu, and Sun
(2019); Chen, Zhou, Tang, Yang, Cao, and Gu (2020).

Convergence properties of the popular Adam algorithm have been considered further in works that include
the following. Wang, Fu, Zhang, Zheng, and Chen (2023) proved a tight upper bound on Adam’s iteration
complexity. Wang, Zhang, Zhang, Meng, Sun, Ma, Liu, Luo, and Chen (2024) studied convergence of
randomly reshuffled Adam with diminishing learning rate and without assuming bounded smoothness, and
showed that it can be faster than stochastic gradient descent with diminishing learning rate. Thilak, Littwin,
Zhai, Saremi, Paiss, and Susskind (2024) identified and investigated a slingshot phenomenon in late-stage
Adam and related it to grokking (Power, Burda, Edwards, Babuschkin, and Misra, 2022). Xie and Li (2024)
showed that Adam with decoupled weight decay implicitly performs constrained optimization.

1In an adaptive algorithm, for each model parameter, the learning rate is adapted by a separate coefficient. The “adapter”
consists of those coefficients, and is updated at every step of the algorithm.

2Here the difference between RMSProp and Adam without momentum is that the latter involves a bias-correction coefficient
in the computation of the exponentially decaying average.

3https://pytorch.org/docs/stable/generated/torch.optim.Adadelta.html
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A number of works have investigated convergence of classes of adaptive optimization algorithms with
momentum, often by means of continuous-time limits. Da Silva and Gazeau (2020) derived a system of
non-autonomous differential equations that is the limit for a class of algorithms that includes Adam, AdaFom,
Heavy Ball, and Nesterov’s Accelerated Gradient (NAG); and they studied convergence of its trajectories.
In a concurrent work, Barakat and Bianchi (2021) focused on a similar system of equations, handling an
irregular vector field that arises from the original version of Adam, and establishing further connections with
the discrete-time iterates. The latter were extended by Barakat, Bianchi, Hachem, and Schechtman (2021) to
allow noise in the Euler discretization of the non-autonomous differential equation system, thus being able to
express algorithms such as stochastic Heavy Ball and stochastic NAG, and in particular to prove convergence
of stochastic NAG in a non-convex setting. In a concurrent work, Gadat and Gavra (2022) were also able to
prove almost sure escape of local maxima with low mini-batch noise level. More recently, Xiao, Hu, Liu, and
Toh (2024) provided a framework for establishing convergence properties of Adam-family algorithms without
assuming smoothness, which is thus applicable to neural networks with non-smooth activations.

Understanding generalization in deep learning by means of obtaining bounds in terms of the normalized
margin and related quantities has attracted extensive attention, cf. e.g. Bartlett, Foster, and Telgarsky (2017);
Neyshabur, Bhojanapalli, and Srebro (2018); Golowich, Rakhlin, and Shamir (2018); Wei, Lee, Liu, and Ma
(2019); Wei and Ma (2020); Glasgow, Wei, Wootters, and Ma (2023). Although a variety of questions remain
open, there is significant evidence behind the general understanding that larger normalized margins lead
to better generalization, cf. e.g. (Jiang, Krishnan, Mobahi, and Bengio, 2019; Jiang, Neyshabur, Mobahi,
Krishnan, and Bengio, 2020).

2 Preliminaries

Basic notation. We write: [n] for the set {1, . . . , n}; ⟨u, v⟩ for the inner product of vectors u and v;
∥v∥ =

√
⟨v, v⟩ for the Euclidean length of a vector v; vi for the ith component of a vector v; 0, 1, ∞, etc.

for the vectors whose dimension is inferred from the context and whose all components are equal to the
specified value, so that for all i we have 0i = 0, 1i = 1, ∞i = ∞, etc.

Provided u and v are vectors of equal dimensions, we write uv, u/v, v2,
√

v, etc. for the component-wise
product, quotient, square, square root, etc. operations, so that for all i we have (uv)i = uivi, (u/v)i = ui/vi,
(v2)i = (vi)2, (

√
v)i = √

vi, etc. Similarly, we write u < v, u ≤ v, etc. for the component-wise less, less than
or equal, etc. relations, so that we have u < v ⇔ ∀i : ui < vi, u ≤ v ⇔ ∀i : ui ≤ vi, etc.

Local Lipschitz continuity and the Clarke subdifferential. Suppose a function f : Rk → R is locally
Lipschitz, i.e. every point v ∈ Rk has a neighborhood U such that f is Lipschitz continuous on U . By
Rademacher’s theorem (cf. e.g. Borwein and Lewis (2010, Theorem 9.1.2)), then f is differentiable almost
everywhere. The Clarke subdifferential of f at a point v is the convex hull

∂f(v) := conv
{

lim
i→∞

∇f(v(i))
∣∣∣ lim

i→∞
v(i) = v and ∇f(v(i)) exists for all i

}
.

It is nonempty and compact for all v, and equals the singleton {∇f(v)} if f is continuously differentiable
at v (Clarke, 1975). It consists of subgradients, which we may refer to simply as gradients.

O-minimal structures and definable functions. An o-minimal structure S is a family {Sk}∞
k=1 such

that: each Sk is a set of subsets of Rk; S1 is the set of all finite unions of open intervals and points; each Sk

contains the zero sets of all polynomials on Rk; each Sk is closed under finite union, finite intersection, and
complement; each Sk+k′ contains the Cartesian products of all sets in Sk and Sk′ ; each Sk contains the
projections of all sets in Sk+1 onto the first k components. A function f : Rk → Rk′ is definable in S if and
only if its graph is a set in Sk+k′ .

For every o-minimal structure, the collection of all definable functions is closed under algebraic operations,
composition, inverse, maximum, minimum, etc. (cf. e.g. Ji & Telgarsky (2020, Appendix B)). Moreover, by
Wilkie’s theorem (Wilkie, 1996), there exists an o-minimal structure in which the exponential function is
definable.
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Procedure 1 Discrete generalized AdaDelta. In step k + 1, using a current gradient ∂̃L(wk) ∈ ∂L(w(t)),
it computes the next exponentially decaying average gk+1 of squared gradients, and computes the next
adapted gradient ∆k+1. It then computes the next exponentially decaying average hk+1 of squared adapted
gradients, and computes the next parameter vector wk+1 by subtracting ∆k+1 scaled by the learning rate.
The hyperparameters are: learning rate η > 0, exponential decay coefficients ρk ∈ [0, 1]p, and numerical
stability terms δ > 0 and ε > 0. The implementation of AdaDelta in PyTorch3 corresponds to the special
case where ρk = ϱ 1 for all k, and δ = ε = ϵ 1. By specializing further to η = 1, we obtain the original
AdaDelta (Zeiler, 2012).

gk+1 = ρkgk + (1 − ρk)∂̃L(wk)2

hk+1 = ρkhk + (1 − ρk)∆2
k+1

wk+1 = wk − η∆k+1

∆k+1 =
√

ε + hk

δ + gk+1
∂̃L(wk)

Predictor and loss functions. We assume the following properties of the predictor function Φ(w, x) with
parameters w ∈ Rp, inputs x ∈ Rd, and scalar outputs. The L-positive homogeneity means that scaling the
parameters w by any α > 0 scales the output by αL, i.e. Φ(αw, x) = αLΦ(w, x).
Assumption 1. For some L > 0 and some o-minimal structure S in which the exponential function is
definable, for each x we have that Φ(w, x) as a function of w is: (i) locally Lipschitz; (ii) L-positively
homogeneous; (iii) definable in S.

This assumption admits neural networks that are constructed from a wide variety of layer types, including
fully connected, convolutional, ReLU, Leaky ReLU, Square ReLU, cube activation, and max-pooling, which
may be composed arbitrarily. Points of nondifferentiability, such as at 0 in the case of the ReLU nonlinearity,
are permitted because we assume only local Lipschitzness instead of continuous differentiability and we work
with the Clarke subdifferential instead of the gradient. However, due to the L-positive homogeneity (ii),
skip connections are excluded, biases are excluded except at the first layer, and activations based on the
exponential function (e.g. sigmoid activation) are excluded. The homogeneity exponent L is the degree to
which the parameters are multiplied when computing the network output — this may be determined by
starting with exponent 0, then going forwards through the layers and e.g.: adding 1 to the exponent if the
layer is fully connected, not changing the exponent if the layer is ReLU, doubling the exponent if the layer is
Square ReLU, etc.

We consider minimizing the total loss L(w) :=
∑n

i=1 ℓ
(
y(i)Φ(w, x(i))

)
, which is with respect to a finite

dataset
{

(x(i) ∈ Rd, y(i) ∈ {±1})
}n

i=1 and where the individual loss function is one of:

ℓ(z) :=
{

e−z for the exponential loss;
log(1 + e−z) for the logistic loss.

Now we make use of the definability of the exponential function in the o-minimal structure S from Assumption 1.
(The exponential function was effectively excluded by the homogeneity clause (ii) from the building of the
predictor function Φ(w, x).) Since the individual loss function ℓ (in both cases, exponential and logistic) is
locally Lipschitz and definable in S, the same is true of the total loss function L. Note however that the loss
functions we consider are not homogeneous.

Generalized AdaDelta flow trajectories. The starting point of our analysis is the adaptive gradient
descent of Procedure 1, which is a generalization of AdaDelta (Zeiler, 2012) by allowing: the learning rate to
be specified (this is already the case in the PyTorch implementation3), the exponential decay coefficients to
vary with time (e.g. by following a specified schedule), and both those coefficients and the numerical stability
terms to be specified differently across the vector components.

The focus of our theoretical study is the adaptive gradient flow that corresponds to the adaptive gradient
descent with an infinitesimal learning rate. To arrive at its definition, we first restate the equations of
Procedure 1 as follows. We eliminate the auxiliary variable ∆k+1, we suppose the hyperparameters ρk obey
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Process 2 Continuous generalized AdaDelta. This adaptive gradient flow, where ∂̃L(w(t)) ∈ ∂L(w(t))
is a gradient of the loss at the current parameters w(t), corresponds to the adaptive gradient descent of
Procedure 1 with an infinitesimal learning rate. The hyperparameters are: exponential decay coefficients
schedule ρ : [0, ∞) → [0, 1]p, and numerical stability terms δ > 0 and ε > 0.

g′(t) = (1 − ρ(t))(∂̃L(w(t))2 − g(t)) (1)
h′(t) = (1 − ρ(t))(w′(t)2 − h(t)) (2)

w′(t) = −
√

ε + h(t)
δ + g(t) ∂̃L(w(t)) (3)

that (1 − ρk)/η is constant with respect to the hyperparameter η, and we replace steps k by times t = kη:

g(t + η) − g(t)
η

= (1 − ρ(t))
(

∂̃L(w(t))2 − g(t)
)

h(t + η) − h(t)
η

= (1 − ρ(t))
((

w(t + η) − w(t)
η

)2
− h(t)

)
w(t + η) − w(t)

η
= −

√
ε + h(t)

δ + g(t + η) ∂̃L(w(t)) .

Now, regarding these equations as determining the endpoints g(t + η), h(t + η), w(t + η) of the next line
segments in some continuous polygonal curves g, h, w : [0, ∞) → Rp born from the adaptive gradient descent
of Procedure 1 with learning rate η (cf. e.g. Elkabetz and Cohen (2021)), letting η tend to 0 we obtain that
the limits of their directions are given by the right-hand sides of eqs. (1) to (3), which we take to be the
derivatives that determine the adaptive gradient flow we are seeking.

We therefore analyze trajectories g, h, w : [0, ∞) → Rp of the two exponentially decaying averages and of the
parameters, which are arcs (i.e. absolutely continuous on every compact subinterval) and which obey the
adaptive gradient flow of Process 2 for almost all t ≥ 0.
Assumption 2. (i)

∫∞
0 (1 − ρ(t))dt = ∞. (ii) g(0) ≥ 0 and h(0) ≥ 0. (iii) There exists a time t0 such

that L(w(t0)) < ℓ(0).

This is a mild regularity assumption. Part (i) ensures that the exponential decay coefficients are not scheduled
to approach 1 so fast that they stop the learning, and for example it is satisfied by any constant coefficients
smaller than 1. Part (ii) just requires that the exponentially decaying averages of squared gradients and
squared adapted gradients are initialized as nonnegative (in original AdaDelta they are initialized to zero).
Part (iii) assumes that the dataset is separable by the network, moreover that for every parameters trajectory w
that we consider arising from the generalized AdaDelta flow, there exists a time t0 at which a separation
(i.e. the perfect training accuracy) is achieved; this commonly occurs when training overparameterized neural
networks by gradient based algorithms (cf. e.g. Zhang et al. (2021)). We also remark that, for both the
exponential and the logistic individual loss function ℓ(z), if f(z) is defined by ℓ(z) = e−f(z), then f(z) is
monotonically increasing, and so the condition L(w(t0)) < ℓ(0) is equivalent to f−1(log(1/L(w(t0)))) > 0.

Admittance of a chain rule. Since the total loss function L is locally Lipschitz and definable in S (for
both the exponential and the logistic individual loss functions), and the trajectory w of the parameters is an
arc, we are able to use the following fact applied to them.
Proposition 1 (Davis, Drusvyatskiy, Kakade, and Lee (2020, Theorem 5.8)). If f : Rk → R is locally
Lipschitz and definable in an o-minimal structure, then it admits a chain rule: for all arcs v : [0, ∞) → Rk,
almost all t ≥ 0, and all u ∈ ∂f(v(t)), we have df(v(t))/dt = ⟨u, dv(t)/dt⟩.

Directional convergence, KKT conditions, and margin maximization. That a trajectory v converges
in direction to a vector u means limt→∞ v(t)/∥v(t)∥ = u/∥u∥.
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Following Dutta, Deb, Tulshyan, and Arora (2013, Section 2.2), supposing f, g1, . . . , gn : Rk → R are locally
Lipschitz, we have that v ∈ Rk is a Karush-Kuhn-Tucker point of the problem

minimize: f(v) subject to: gi(v) ≤ 0 for all i ∈ [n]

if and only if there exist Lagrange multipliers λ1, . . . , λn ≥ 0 such that:

(feasibility) gi(v) ≤ 0 for all i ∈ [n];

(equilibrium inclusion) 0 ∈ ∂f(v) +
∑n

i=1 λi∂gi(v);

(complementary slackness) λigi(v) = 0 for all i ∈ [n].

For local optimality, these first-order conditions are necessary, however in general not sufficient.

The margin of a parameters vector w is the smallest label-adjusted prediction for an input, i.e. formally
mini∈[n] y(i)Φ(w, x(i)). By the L-positive homogeneity of the predictor function (cf. Assumption 1.(ii)), the
normalized margin

min
i∈[n]

y(i)Φ(w, x(i))/∥w∥L = min
i∈[n]

y(i)Φ(w/∥w∥, x(i))

depends only on the direction of w, and it is straightforward to show that the directions that maximize it are
also the optimal directions of the problem

minimize: 1
2 ∥w∥2 subject to: y(i)Φ(w, x(i)) ≥ 1 for all i ∈ [n] . (4)

3 Main result

We prove that continuous generalized AdaDelta obeys the same tight rates for convergence of the loss and
growth of the parameters as were established for plain gradient flow by Lyu & Li (2020, Corollary A.11), and
also implicitly regularizes the parameters to converge in direction to a KKT point of a variant of the margin
maximization problem in eq. (4), in which the objective function 1

2 ∥w∥2 is replaced by the skewed 1
2 ∥ 4
√

δ
ε w∥2.

If the quotient δ/ε of the numerical stability hyperparameters is isotropic (i.e. δj/εj are equal for all j ∈ [p]),
then this modification does not alter the directions of the KKT points, so the implicit regularization is
the same as was established for plain gradient flow by Lyu & Li (2020, Theorem A.8) and Ji & Telgarsky
(2020, Theorem 3.1). Otherwise, the sets of points w that have the same objective value 1

2 ∥ 4
√

δ
ε w∥2 are

ellipsoids which are not spheres, and the directions of the KKT points may be different from those for the
margin maximization problem in eq. (4). Moreover, these conclusions are robust with respect to changing the
exponential decay coefficients schedule ρ hyperparameter.
Theorem 2. Under Assumptions 1 and 2, for the continuous generalized AdaDelta defined in Process 2, with
either the exponential loss or the logistic loss, we have that L(w(t)) = Θ

(
1

t(log t)2−2/L

)
, ∥w(t)∥ = Θ((log t)1/L),

and w(t) converges in direction to a KKT point of the problem

minimize: 1
2 ∥ 4
√

δ
ε w∥2 subject to: y(i)Φ(w, x(i)) ≥ 1 for all i ∈ [n] .

Remark 3. The growth of the Euclidean length ∥w(t)∥ of the parameters to infinity during the training
process is an artifact of the L-positively homogeneous predictor function and the strictly decreasing individual
loss function (both exponential and logistic) — indeed, once perfect training accuracy is achieved, scaling the
parameters w(t) by any α > 1 decreases the total loss. Theorem 2 however establishes that this growth is
slow, bounded above and below by the Lth root of log t. Note also that the convergence shown in Theorem 2
to a KKT point of the skewed normalized margin maximization problem is directional, and so independent of
the growth of ∥w(t)∥.

Our proof of Theorem 2 builds on the following result, stated here in terms of the notations in this paper.

6



Published in Transactions on Machine Learning Research (12/2024)

Theorem 4 (Wang et al. (2021, Theorems 2, 3, and 10)). Under Assumption 1, if χ ∈ Rp has no zero
component and v, β : [0, ∞) → Rp are arcs that obey the adaptive gradient flow

v′(t) = −β(t) ∂̃L̂(v(t)) for almost all t ≥ 0 ,

where L̂(v) := L(χ v) =
∑n

i=1 ℓ
(
y(i)Φ(χ v, x(i))

)
is with either exponential or logistic ℓ, if L̂(v(t0)) < ℓ(0) at

some time t0, if limt→∞ β(t) = 1, and if d log β(t)/dt is Lebesgue integrable, then we have that L̂(v(t)) =
Θ
(

1
t(log t)2−2/L

)
, ∥v(t)∥ = Θ((log t)1/L),4 and v(t) converges in direction to a KKT point of the problem

minimize: 1
2 ∥v∥2 subject to: y(i)Φ(χ v, x(i)) ≥ 1 for all i ∈ [n] .

To apply Theorem 4 to the continuous generalized AdaDelta in Process 2, we define for all t ≥ 0:

χ := 4
√

ε
δ v(t) := w(t)/χ β(t) :=

√
1+h(t)/ε
1+g(t)/δ ∂̃L̂(v(t)) := χ ∂̃L(w(t)) .

In terms of the skewing vector χ and the skewed adapter β(t), eq. (3) that governs the parameters trajectory
can then be restated as

w′(t) = −χ2 β(t) ∂̃L(w(t)) for almost all t ≥ 0 . (5)

Hence v′(t) = w′(t)/χ = −χ β(t) ∂̃L(w(t)) = −β(t) ∂̃L̂(v(t)) for almost all t ≥ 0, as required. From
Assumption 2.(iii), we have L̂(v(t0)) = L(w(t0)) < ℓ(0), also as required.

Therefore, to establish Theorem 2, it remains to prove that limt→∞ β(t) = 1 and that d log β(t)/dt is Lebesgue
integrable. The remainder of this section consists of a sequence of lemmas, which culminates in Lemma 8
that shows the former fact and Lemma 9 that shows the latter fact. The lemmas in particular make use
of Assumption 2.(ii) on the initialization of the arcs of the exponentially decaying averages g(t) and h(t),
and of Assumption 2.(i) on the unboundedness of the integrals of the complements of the exponential decay
coefficients, to show that each component of the skewed adapter β(t) monotonically (either from below or
from above, depending on g(0) and h(0), and on the numerical stability terms δ and ε) tends to 1 as the
time t tends to infinity.

Our first lemma shows a useful expression for the derivative of 1 minus the squared skewed adapter.
Lemma 5. For almost all t ≥ 0 we have d

dt (1 − β(t)2) = − 1−ρ(t)
1+g(t)/δ (1 − β(t)2).

Proof. Observe that

d
dt

(1 − β(t)2) = −h′(t)/ε + h′(t) g(t)/εδ − g′(t)/δ − g′(t) h(t)/δε

(1 + g(t)/δ)2 by the def. of β(t)

= − 1 − ρ(t)
(1 + g(t)/δ)2

(
w′(t)2/ε − h(t)/ε − ∂̃L(w(t))2/δ + g(t)/δ

+w′(t)2g(t)/εδ − ∂̃L(w(t))2h(t)/δε

)
by eqs. (1) and (2)

= − 1 − ρ(t)
(1 + g(t)/δ)2

(
g(t)/δ − h(t)/ε + (w′(t)2/ε)(1 + g(t)/δ)

−(∂̃L(w(t))2/δ)(1 + h(t)/ε)

)
rearranging

= − 1 − ρ(t)
(1 + g(t)/δ)2 (g(t)/δ − h(t)/ε) by eq. (5)

= − 1 − ρ(t)
1 + g(t)/δ

(1 − β(t)2) calculation

for almost all t ≥ 0.

The second lemma verifies that the exponentially decaying averages of squared gradients and squared adapted
gradients are nonnegative at all times.

4Wang et al. (2021, Theorem 10) contains a typo: the bound Θ
(

1
(log t)1/L

)
should be Θ((log t)1/L).
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Lemma 6. For all t ≥ 0 we have g(t) ≥ 0 and h(t) ≥ 0.

Proof. Suppose g(t)j < 0 for some t ≥ 0 and j ∈ [p]. By Assumption 2.(ii) and since gj : [0, ∞) → R is an arc,
there exists t0 < t such that g(t0)j = 0 and for all τ ∈ (t0, t] we have g(τ)j < 0. Recalling that ρj : [0, ∞) →
[0, 1], from eq. (1) we obtain that g′(τ)j ≥ 0 for almost all τ ∈ (t0, t]. Hence g(t)j = g(t0)j +

∫ t

t0
g′(τ)j dτ ≥ 0,

which is a contradiction.

Supposing h(t)j < 0 for some t ≥ 0 and j ∈ [p], we obtain a contradiction analogously, using eq. (2).

Consider an arbitrary jth component of the skewed adapter. By Assumption 2.(ii), its initial value β(0)j

is positive. The proof of the third lemma shows that there are three cases: if β(0)j < 1 then β(t)j is
monotonically nondecreasing and bounded above by 1, if β(0)j = 1 then β(t)j is constant, and if β(0)j > 1
then β(t)j is monotonically nonincreasing and bounded below by 1.
Lemma 7. The following hold for each j ∈ [p].

(i) For almost all t ≥ 0 we have: if 0 < β(t)j < 1 then β′(t)j ≥ 0, if β(t)j = 1 then β′(t)j = 0, and if
β(t)j > 1 then β′(t)j ≤ 0.
(ii) For all t ≥ 0 we have β(t)j ≥ min{β(0)j , 1}.

Proof. Consider an arbitrary j ∈ [p].

For part (i), suppose t ≥ 0 is such that Lemma 5 applies. If 0 < β(t)j < 1 then 1 − β(t)2
j > 0, so from

Lemmas 5 and 6, and by recalling that 0 ≤ ρ(t)j ≤ 1, we have d(1 − β(t)2
j )/dt ≤ 0, i.e. dβ(t)2

j/dt ≥ 0. But
dβ(t)2

j/dt = 2β(t)jβ′(t)j , and so β′(t)j ≥ 0. In the remaining two cases, namely if β(t)j = 1 or β(t)j > 1,
the reasoning is analogous.

Now part (ii) follows by part (i) and the fact that, since gj , hj : [0, ∞) → R are arcs, so is βj .

Lemma 7 provides a lower bound for the skewed adapter, but it leaves open its asymptotic behavior. The
next lemma fills that gap, establishing that all its components converge to 1. This equivalently means that
the continuous generalized AdaDelta adapter

√
ε+h(t)
δ+g(t) converges to the squared skewing vector χ2 =

√
ε
δ .

Lemma 8. We have that limt→∞ β(t) = 1.

Proof. We first use Lemma 7 to prove that the squared gradients have bounded integrals. To that end, for
all t ≥ 0 we have

L(w(0)) > L(w(0)) − L(w(t)) since L(w(t)) > 0

= −
∫ t

0
(dL(w(τ))/dτ)dτ calculus

= −
∫ t

0
⟨∂̃L(w(τ)), w′(τ)⟩dτ by Proposition 1

=
∫ t

0
⟨∂̃L(w(τ)),

√
ε
δ β(τ) ∂̃L(w(τ))⟩dτ by eq. (5)

≥
∫ t

0
⟨
√

ε
δ min{β(0), 1}, ∂̃L(w(τ))2⟩dτ by Lemma 7.(ii)

=
∑
j∈[p]

√
εj

δj
min{β(0)j , 1}

∫ t

0
∂̃L(w(τ))2

j dτ rearranging ,

so for each j ∈ [p] we have ∫ t

0
∂̃L(w(τ))2

j dτ <
√

δj

εj

L(w(0))
min{β(0)j , 1} =: Cj .
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Now suppose j ∈ [p]. Equation (1) and Lemma 6 imply that

g(t)j = g(0)j +
∫ t

0
g′(τ)j dτ ≤ g(0)j +

∫ t

0
∂̃L(w(τ))2

j dτ < g(0)j + Cj =: C†
j for all t ≥ 0 ,

so recalling Lemma 5 and Lemma 7.(i), and setting C‡
j := 1

1+C†
j

/δj
, we have

d log |1 − β(t)2
j |/dt ≤ −C‡

j (1 − ρ(t)j) for almost all t ≥ 0 such that β(t)j ̸= 1 .

Hence
|1 − β(t)2

j | ≤ |1 − β(0)2
j | exp

(
−C‡

j

∫ t

0
(1 − ρ(τ)j)dτ

)
for all t ≥ 0 ,

which by positivity of C‡
j and unboundedness of the integrals of the complements of the exponential decay

coefficients (cf. Assumption 2.(i)) establishes the lemma.

Our final lemma shows that the components of the skewed adapter converge without large fluctuations of
their logarithms.
Lemma 9. The function d log β(t)/dt is Lebesgue integrable.

Proof. For each j ∈ [p], from the proof of Lemma 7 we have that d log β(t)j/dt = β′(t)j/β(t)j is either
nonnegative for almost all t ≥ 0, or nonpositive for almost all t ≥ 0. Thus by Lemma 8 we have∫ ∞

0
|d log β(t)/dt|dt =

∣∣∣∣∫ ∞

0
(d log β(t)/dt)dt

∣∣∣∣ = | log 1 − log β(0)| = | log β(0)| < ∞ .

4 Experiments

To test our theoretical result for generalized AdaDelta, we evaluated comparatively five algorithms:

SGD: Stochastic gradient descent as implemented in PyTorch5.

AdaDelta: Its standard PyTorch implementation3, with the exponential decay coefficient ϱ = 0.9, and the
numerical stability term ϵ = 10−5.

AdaDeltaS: This is AdaDelta amended to have the exponential decay coefficients follow the schedule
ϱk = 1 − 0.1/(1 + ⌊100k/K⌋), where K is the total number of steps. Thus 1 − ϱk follows a harmonic sequence,
increasing the coefficient from ϱ0 = 0.9 at the first step to ϱK−1 = 0.999 at the last step, which lessens
aggressiveness of the decay in computing the averages of the squared gradients and the squared adapted
gradients along the training.

AdaDeltaN: This is AdaDelta amended to have the numerical stability terms different in the numerator and
the denominator of the adaptor, and different across the network parameters. At the start of the training,
each component of δ and of ε is sampled independently from 10−5+X , where X is a centered Gaussian with
standard deviation 1 for the smaller two networks we consider, and with standard deviation 0.25 for the
largest network.

AdaDeltaNS: This combines the extensions in AdaDeltaS and AdaDeltaN, i.e. has exponential decay
coefficients that follow the specified schedule as well as numerical stability terms whose components are
initialized randomly as above.

We performed experiments in the following three gradually more complex settings. The total compute for the
perceptron setting was around 10min on a mid-range CPU; whereas one run of all five algorithms for the
smaller convolutional setting took roughly 2h, and for the larger convolutional setting took roughly 12h, in
both cases on a mid-range GPU.

5https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
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Two-layer Leaky ReLU perceptron on a two-dimensional dataset. Following Wang et al. (2021),
we first considered a perceptron with parameters v ∈ R and w ∈ R2, whose prediction for an input x ∈ R2

equals v σ(⟨w, x⟩), where σ is the Leaky ReLU nonlinearity with inactive gradient 0.5.

The dataset
{

(x(1), y(1)), . . . , (x(100), y(100))
}

consists of 50 points sampled from (cos 0.5, sin 0.5) + u inde-
pendently and labelled 1, and 50 points sampled from −(cos 0.5, sin 0.5) + u independently and labelled −1,
where u is distributed uniformly on the square [−0.6, 0.6]2.

This toy setting is convenient for three-dimensional visualizations of the adapter’s reciprocal square roots.
We trained the network for K = 5000 full-batch epochs using the exponential loss, with learning rate 0.1 for
SGD and learning rate 1 for the four variants of AdaDelta. The learning rate for SGD was chosen so that it
achieves perfect training accuracy after a similar number of epochs as the four versions of AdaDelta. We
repeated the training 100 times, where in each round the five algorithms used the same randomly initialized
parameters and numerical stability terms (if applicable). The results are shown in fig. 1.

We observe that:

• all rounds achieve 100% training accuracy by around 256 epochs, in line with the separation Assump-
tion 2.(iii);

• the final normalized margin, which here equals mini∈[100] y(i) vK σ(⟨wK , x(i)⟩)/(v2
K + ∥wK∥2), is within a

higher and much narrower range for SGD and with isotropic numerical stability hyperparameters (i.e. for
AdaDelta and AdaDeltaS), confirming the prediction of Theorem 2 that, without the isotropy, the implicit
regularization may not be towards margin maximization;

• the final adapter’s reciprocal square root, which in the notations of Procedure 1 equals 4
√

δ+gK

ε+hK−1
, has a

large variance of its direction when the numerical stability hyperparameters have random components (i.e. for
AdaDeltaN and AdaDeltaNS), and it is the limit of this direction that according to the proof of Theorem 2
determines the nature of the implicit regularization.

Four-layer convolutional network on MNIST. Also following Wang et al. (2021), we then considered
the network from Mądry, Makelov, Schmidt, Tsipras, and Vladu (2018) with biases removed, and in order
consisting of: 32-channel 5×5-filter convolutional, ReLU, 2-kernel 2-stride max-pooling, 64-channel 3×3-filter
convolutional, ReLU, 2-kernel 2-stride max-pooling, 1024-width fully connected, ReLU, and 10-width fully
connected.

We trained the network on MNIST (LeCun, Bottou, Bengio, and Haffner, 1998) from the default PyTorch
random initialization for 500 epochs using the cross-entropy loss: in a finer regime with batch size 100,
learning rate 0.01 for SGD, and learning rate 0.1 for the four variants of AdaDelta; and in a coarser regime
with batch size 1000, learning rate 0.1 for SGD, and learning rate 1 for the four variants of AdaDelta. The
learning rates for SGD were chosen so that it achieves perfect training accuracy after a similar number of
epochs as the four versions of AdaDelta. The results are shown in fig. 2.

For both regimes, we observe that:

• all algorithms achieve perfect training accuracy by around 250 epochs, in line with the separation
Assumption 2.(iii);

• the normalized margin, whose values here are relatively small partly due to the division by the fourth
power of the norm of the network parameters, grows significantly higher for SGD and with isotropic numerical
stability hyperparameters (i.e. for AdaDelta and AdaDeltaS), confirming the prediction of Theorem 2 that,
without the isotropy, the implicit regularization may not be towards margin maximization;

• after all algorithms achieve perfect training accuracy, their test accuracies remain roughly constant, in the
finer regime without significant differences among the four versions of AdaDelta, and in the coarser regime
with AdaDelta and AdaDeltaS generalizing slightly but consistently better;

10



Published in Transactions on Machine Learning Research (12/2024)

• the training loss shrinks faster when the numerical stability hyperparameters have random components
(i.e. for AdaDeltaN and AdaDeltaNS), however remains within a constant multiplicative band of the training
loss when those hyperparameters are isotropic;

• the results are not substantially affected by whether the exponential decay coefficients follow the increasing
schedule, i.e. they are similar for AdaDelta and AdaDeltaS, and also for AdaDeltaN and AdaDeltaNS.

VGG on CIFAR-10. Following Lyu & Li (2020), we finally considered the 14-layer VGG-16 (Simonyan and
Zisserman, 2015) with biases only at the first level, and in order consisting of: 64-channel convolutional then
ReLU, repeated 2 times; max-pooling; 128-channel convolutional then ReLU, repeated 2 times; max-pooling;
256-channel convolutional then ReLU, repeated 3 times; max-pooling; 512-channel convolutional then ReLU,
repeated 3 times; max-pooling; 256-channel convolutional then ReLU, repeated 3 times; max-pooling; 10-width
fully connected. Each convolutional layer is 3 × 3-filter, and each max-pooling is 2-kernel 2-stride.

We trained the network on CIFAR-10 (Krizhevsky, 2009) from the default PyTorch random initialization for
1000 epochs using the cross-entropy loss: in a finer regime with batch size 100, and learning rate 0.1 for all
five algorithms; and in a coarser regime with batch size 250, and learning rate 0.25 for all five algorithms.
The results are shown in fig. 3.

For both regimes, we observe that:

• all algorithms achieve perfect training accuracy by around 250 epochs, in line with the separation
Assumption 2.(iii);

• the normalized margin, whose values here are relatively small partly due to the division by the 14th power of
the network norm, grows significantly higher for SGD and with isotropic numerical stability hyperparameters,
with the exception in the coarser regime of AdaDelta whose training loss shrinks considerably slower compared
with AdaDeltaS — this is in line with Theorem 2, whose prediction of implicit regularization towards margin
maximization depends both on the isotropy and on convergence to zero training loss;

• after all algorithms achieve perfect training accuracy, their test accuracies remain roughly constant and
without substantial differences among them (approximately within 81 ± 1% in the finer regime, or 79 ± 1% in
the coarser regime), with the exception in the coarser regime of AdaDelta and AdaDeltaN whose training
losses shrink considerably slower compared with AdaDeltaS and AdaDeltaNS;

• whether the exponential decay coefficients follow the increasing schedule does not substantially affect the
results in the finer regime, however in the courser regime AdaDeltaS and AdaDeltaNS shrink the training loss
considerably faster than AdaDelta and AdaDeltaN, leading to higher normalized margins as well as better
generalization.

5 Conclusion

Our main result, Theorem 2 which holds under Assumptions 1 and 2, indicates that AdaDelta may be used in
practical methods that rely on the optimization algorithm implicitly regularizing the network parameters to
converge in direction to a margin maximization KKT point, which places AdaDelta in the same category as
e.g. RMSProp and Adam without momentum (Wang et al., 2021, Theorem 7). This relies on the isotropy of
the quotient of the numerical stability hyperparameters, without which according to Theorem 2 the implicit
regularization of AdaDelta may not be towards margin maximization, as is the case for e.g. AdaGrad (Wang
et al., 2021, Theorem 6).

Relaxing Assumption 1 on the predictor function is challenging even without considering adaptive algorithms,
e.g. the definability excludes pathological examples such as based on the “Mexican hat” function (cf. Lyu &
Li (2020, Appendix J)).

We focused on binary classification for simplicity of presentation; it is straightforward to extend Theorem 2
for logistic loss to an arbitrary number of classes (cf. Wang et al. (2021, Appendix E)).

An important future goal is to obtain a counterpart of Theorem 2 directly for adaptive gradient descent as
in Procedure 1. This is also a challenge already without adaptivity: the directional convergence result (Ji
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Figure 1: We trained a two-layer Leaky ReLU perceptron on a synthetic binary classification dataset which
consists of 100 points in two-dimensional space. Each of 100 rounds of the experiment consisted of randomly
initializing the network parameters and the numerical stability terms (if applicable), and then running
separately each of the five algorithms for 5000 epochs. The plots in the top row show: on the left, the training
accuracy averaged over the rounds, depending on the epoch; and on the right, the normalized margin at the
end of the training, across each of the rounds. The plots in the next two rows visualize the direction of the
adapter’s reciprocal square root at the end of the training, where the isotropic direction is indicated by the
longer dashed orange arrow.
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Figure 2: The results of training a 4-layer convolutional network on MNIST, with batch sizes and learning
rates for the right-hand column that are 10 times larger than for the left-hand column. The solid lines show
the median values, and the shaded areas are between the 25th and 75th percentiles, over 19 runs.
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Figure 3: The results of training a 14-layer convolutional network on CIFAR-10, with batch sizes and learning
rates for the right-hand column that are 2.5 times larger than for the left-hand column. The solid lines show
the median values, and the shaded areas are between the 25th and 75th percentiles, over 19 runs.
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& Telgarsky, 2020, Theorem 3.1) is only for gradient flow, and the characterization of directional limits for
gradient descent (Lyu & Li, 2020, Theorem E.3) assumes C2-smoothness of the predictor function which
excludes nonlinearities such as ReLU and Leaky ReLU.
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