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Abstract
We propose a new definition of instance optimal-
ity for differentially private estimation algorithms.
Our definition requires an optimal algorithm to
compete, simultaneously for every dataset D,
with the best private benchmark algorithm that
(a) knows D in advance and (b) is evaluated by
its worst-case performance on large subsets of
D. That is, the benchmark algorithm need not
perform well when potentially extreme points are
added to D; it only has to handle the removal of
a small number of real data points that already
exist. This makes our benchmark significantly
stronger than those proposed in prior work. We
nevertheless show, for real-valued datasets, how
to construct private algorithms that achieve our
notion of instance optimality when estimating a
broad class of dataset properties, including means,
quantiles, and `p-norm minimizers. For means
in particular, we provide a detailed analysis and
show that our algorithm simultaneously matches
or exceeds the asymptotic performance of existing
algorithms under a range of distributional assump-
tions.

1. Introduction
Differentially private algorithms intentionally inject noise to
obscure the contributions of individual data points (Dwork
et al., 2006; 2014). This noise, of course, reduces the ac-
curacy of the result, so it is natural to ask whether we can
derive a private algorithm that minimzes the cost to accuracy,
“optimally” estimating some property θ(D) of a dataset D
given the constraint of differential privacy.

But what do we mean by optimal? Optimal worst-case loss
is often achievable by algorithms that add noise calibrated
to the global sensitivity of θ (Dwork et al., 2006; Aldà &
Simon, 2017; Balle & Wang, 2018; Fernandes et al., 2021).

1Google Research, New York. Correspondence to: Ziteng Sun
<zitengsun@google.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

However, realistic datasets may have local sensitivities that
are much smaller, making this a weak notion of optimality
that does not reward reducing loss on typical “easy” exam-
ples (Nissim et al., 2007; Bun & Steinke, 2019). At the
other extreme, we might hope for instance optimality, where
a single algorithm competes, simultaneously for all datasets
D, with the best possible benchmark algorithm chosen with
knowledge of D. It is easy to see that this is too strong: a
constant algorithm that always returns exactly θ(D), regard-
less of its input, is perfectly private and gives zero loss on
D. Of course, we cannot hope to achieve zero loss for all
datasets at once.

Thus, there has been recent interest in finding variations
of instance optimality that are strong and yet still achiev-
able. Asi & Duchi (2020b) gave a variant defined using
local minimax risk, which softens the definition above by
allowing an optimal algorithm’s performance to degrade
on D whenever there is a second dataset D′ such that no
private algorithm can simultaneously achieve low loss on
both D and D′. Huang et al. (2021) gave a different vari-
ant of instance optimality for mean estimation in which the
worst-case loss across nearby datasets sharing support with
D defines the risk for D. Related ideas were also explored
by Błasiok et al. (2019); Brunel & Avella-Medina (2020);
McMillan et al. (2022), and others.

In this work we propose a new definition of instance optimal-
ity. We refer to our definition as subset optimality because
it calibrates the risk of a dataset D using only subsets of D.

To motivate this approach, consider the basic semantics of
differential privacy. A DP algorithm is required to give
similar output distributions on D and D′ whenever D′ is
a neighbor of D—that is, whenever D′ can be obtained
from D by adding or removing a single point. Technically,
this definition is symmetric, but in practice addition and re-
moval can have very different implications. For typical real
datasets where data points tend to be similar to one another,
removing a point may change the target property θ(D) only
modestly, and a correspondingly modest amount of noise
might ensure sufficiently similar output distributions. On
the other hand, an added point could potentially be an ex-
treme outlier that dramatically changes θ(D), requiring a
large amount of noise to conceal its presence.

Concretely, imagine we have a database reporting the annual
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incomes for n households in a particular neighborhood,
the largest of which happens to be $100,000. We wish to
privately compute the mean household income. Removing
one of the existing households from the database can change
the mean by at most roughly $100,000/n. Adding a new
household, on the other hand, could have a dramatically
larger effect—a new household’s income might theoretically
be, say, $100,000,000, requiring 1000x more noise. Thus,
an algorithm that is required to perform well only on subsets
of the real dataset intuitively has an advantage over one that
must perform well everywhere.

The surprising implication of our results is that this is not al-
ways true. We demonstrate how to construct subset-optimal
differentially private algorithms that simultaneously com-
pete, for all datasets D, with the best private algorithm that
(a) knows D in advance and (b) is evaluated by its worst-
case performance over only (large) subsets of D. Subset
optimality is achievable for a class of monotone properties
that include means, quantiles, and other common estimators,
despite being stronger than prior definitions in the literature.

We begin by describing our setting in more detail, defining
subset optimality, and comparing our definition to those
found in related work. We then show how to achieve subset
optimality for mean estimation, giving an algorithm that
simultaneously matches or exceeds the asymptotic perfor-
mance of existing algorithms under a range of distributional
assumptions (see Table 1). Finally, we generalize the result
for means and show how to construct optimal algorithms
for a broad class of monotone properties.

2. Problem formulation
A dataset D is a collection of points from the domain
[−R,R]. Let |D| be the cardinality of the set D. For two
datasets D and D′ we define the distance between them
to be the number of points that need to be added to and/or
removed from D to obtain D′. More formally,

d(D,D′) , |D \D′|+ |D′ \D|.

For example, d({1, 2, 3}, {2, 3, 4}) = 2. We refer to D and
D′ as neighboring datasets if d(D,D′) = 1 (Dwork et al.,
2014, Chapter 2).

Note that this notion of neighboring datasets is sometimes
called the add-remove model, in contrast to the swap model
where all datasets are the same size and datasets are neigh-
bors if they differ in a single point. We use the add-remove
model here since we study algorithms that accept input
datasets of various sizes. Because the add-remove model
leads to stronger privacy than the swap model, our algo-
rithms also provide guarantees in the swap model, with at
most a factor of two increase in the privacy parameter ε.

Definition 2.1 (Differential privacy). A randomized algo-

rithm A with rangeR satisfies ε-differential privacy if for
any two neighboring datasets D,D′ and for any output
S ⊆ R, it holds that

Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S].

Let Aε be the set of all ε-DP algorithms. Our goal is to
estimate some property of D, denoted by θ(D), and we
use a loss function ` : R × R → R≥0 to measure the
performance of an algorithm A on a dataset D as

`(A(D), θ(D)).

Given `, we would like to identify an algorithm A that
performs well not just on average or for certain datasets,
but simultaneously for every dataset D. For each D, we
will aim to compete with a benchmark algorithm that can be
selected using knowledge of D but is evaluated according
to its performance on large subsets of D. In particular, we
adopt the following definition of subset-based risk.

R(D, ε) , inf
A∈Aε

sup
D′⊆D

|D′|≥|D|−1/ε

E [`(A(D′), θ(D′))] 1 (1)

The benchmark algorithm for D is the one with the lowest
worst-case loss on datasets obtained by removing up to 1/ε
elements from D. Intuitively, if it is feasible to perform
well on all of these subsets at once, then the benchmark
risk is small and an optimal algorithm will be expected to
perform correspondingly well, even if adding elements to D
would dramatically increase the benchmark algorithm’s loss.
When no private algorithm performs well on all large subsets
of D, then an optimal algorithm will also be permitted to
have larger loss.

Definition 2.2. We say an algorithm A is subset-optimal
with respect to Aε if there exist constants α, β, and c such
that, for all D, we have

E [`(A(D), θ(D))] ≤ α ·R(D, ε) + β,

and A is c · ε-DP.

Ideally, we want the constants α and c to be close to 1 and
β to be close to 0.
Remark 2.3. The constraint |D′| ≥ |D| − 1/ε in Equa-
tion (1) could be generalized to |D| − τ for any τ ≥ 0.
Intuitively, smaller τ would lead to a stronger notion of
optimality, since the benchmark algorithm would need to
perform well on fewer datasets. Our choice of τ = 1/ε
gives the strongest possible optimality definition that re-
mains achievable: for any τ � 1/ε, it is impossible to

1We focus on the case when ε ≤ 1 in this paper. To simply
our notation, we often treat 1/ε as a positive integer. If this is not
the case, we can set ε′ = 1/d1/εe ∈ (ε/2, ε]. This will affect our
results by at most constant factors.
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compete with the benchmark algorithm. To see this, con-
sider the task of real mean estimation. Let D1 contain
(n− 1/ε) copies of 0 and 1/ε copies of 1, and let D2 con-
tain (n − 1/ε) copies of 0 and 1/ε copies of −1. Since
the add/remove distance between D1 and D2 and is 2/ε,
standard packing arguments (e.g., Lemma 4.4 or Lemma
8.4 in Dwork et al. (2014)) show that an (ε, δ)-DP algorithm
cannot give significantly different answers on D1 and D2,
and therefore must incur an error of at least Θ(1/nε) on
one of them. On the other hand, a benchmark algorithm that
knows the dataset can always output 1/nε for D1, and on
subsets of D1 with size at least |D1| − τ , the error will be
at most τ/n (and similarly for D2). Thus τ � 1/ε does not
yield an achievable definition of instance-optimality.

Notation. For a dataset D = {x1 ≤ x2 ≤ . . . ≤ xn},
let Lm(D) denote the multiset {x1, x2, . . . , xm} (the m
lower elements of D) and Um(D) denote the multiset
{xn−m+1, . . . , xn} (the m upper elements of D).

2.1. Our Contributions.

Subset-based instance optimality. We propose a new no-
tion of instance-optimality (Definition 2.2) for private es-
timation. The notion has the advantage of only consider-
ing the effect of removing values from the dataset, which
leads to tighter (or as tight) rates compared to other instance-
optimal formulations that need to handle extreme data points.
See Section 2.2 for a detailed discussion. Moreover, we pro-
pose Algorithm 4 based on private threshold estimation and
the inverse sensitivity mechanism of (Asi & Duchi, 2020a).
For real-valued datasets, the algorithm is subset-optimal for
a wide range of monotone properties with arbitrary β > 0
and α and c at most logarithmic in problem-specific pa-
rameters (see Section 4 and Theorem 4.3 for the precise
definition and statement).

Improvement on mean estimation. For the task of pri-
vate mean estimation (Section 3), we propose an efficient
algorithm (Algorithm 3) that is subset-optimal. In the statis-
tical setting (Section 5) we show how this algorithm obtains
distribution-specific rate guarantees that depend on all cen-
tralized absolute moments (Corollary 5.3). To the best of
our knowledge, the rate improves upon the previously best-
known distribution-specific results for distributions whose
kth-moment is much smaller than its best sub-Gaussian
proxy for some k ≥ 2. For distribution families with con-
centration assumptions, the distribution-specific rate recov-
ers (up to logarithmic factors) the min-max optimal rate
for each corresponding family. Moreover, our proposed
algorithm achieves this rate without explicit assumptions on
which family the distribution comes from. See Table 1 for a
detailed comparison.

2.2. Related Work

Instance-optimality in private estimation. Several vari-
ations of instance optimality for differential privacy have
been studied recently.

Asi & Duchi (2020b) initiated the study of instance optimal-
ity using the following notion of local minimax risk:

R1(D, ε) = sup
D′

inf
A∈Aε

sup
D̃∈{D,D′}

E[`(A(D̃), θ(D̃))].

They showed that the inverse sensitivity mechanism gives
nearly optimal results with respect to this notion of risk.
However, for mean estimation in one dimension, with all
values bounded in [−R,R], it can be shown that

R1(D, ε) '
R

nε

for every dataset D. In contrast, subset optimality provides
much tighter guarantees for mean estimation, roughly re-
placing the full range R with the range actually spanned by
D, as described in the sections below. For general losses,
Asi & Duchi (2020b) showed that

R1(D, ε) ≈ max
D′:d(D,D′)≤1/ε

`(θ(D), θ(D′)), (2)

while we show that

R(D, ε) ≈ max
D′:d(D,D′)≤1/ε,D′⊆D

`(θ(D), θ(D′)),

which is strictly tighter due to the subset constraint. (As
illustrated above, the difference can be dramatic for realistic
D.) McMillan et al. (2022) studied a quantity similar to
R1(D, ε) in the setting whereD is drawn from a distribution.
We focus on the comparison to Asi & Duchi (2020a) since
it is most relevant to our setting.

Huang et al. (2021) considered a slightly different notion of
instance optimality given by R2(D, ε) =

inf
A∈Aε

sup
supp(D′)⊆supp(D)

d(D,D′)=1

inf
η

{
Pr (`(A(D′),θ(D′))>η)<

2

3

}
,

where supp(D) denotes the set of unique elements in the
dataset D. They proposed an algorithm for d-dimensional
mean estimation and showed that it isO(

√
d/ρ)-optimal for

ρ-zCDP (concentrated differential privacy). Their definition
and results differ from R(D, ε) and R1(D, ε) in two basic
ways. First, their definition is a high probability definition,
whereas the others are in expectation. Second, even for
one-dimensional mean estimation, their proposed algorithm
is only O(1/

√
ρ) competitive with the lower bound, and

they further show that no algorithm can achieve a better
competitive guarantee. Our definition (modulo expectation)
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Table 1. Results for statistical mean estimation. R(A, p) is the expected absolute error of A given n i.i.d. samples from p (Equation (3)).
Mk(p) denotes the kth absolute central moment of p (Definition 5.2). σG(p) denotes the best sub-Gaussian proxy of p. † is due to (Huang
et al., 2021). ‡ is due to Kamath et al. (2020) and ∗ is due to Karwa & Vadhan (2017).

Assumption Metric Prior work This work

N.A. R(A, p) Õ

(√
M2(p)√
n

+ σG(p)
nε

)
† Õ

(√
M2(p)√
n

+mink
Mk(p)

1/k

(nε)1−1/k

)
Bounded Moment maxp:Mk(p)≤mk R(A, p) O

(
m

1/k
k√
n

+
m

1/k
k

(nε)1−1/k

)
‡ Õ

(
m

1/k
k√
n

+
m

1/k
k

(nε)1−1/k

)
Sub-Gaussian maxp:σG(p)≤σ R(A, p) Õ

(
σ√
n

+ σ
nε

)∗
Õ
(
σ√
n

+ σ
nε

)

coincides with this definition for ε = 1; however, we are
able to construct constant optimal algorithms for general ε.
We also show that our definition of optimality is achievable
for target properties beyond just means.
Remark 2.4. The definition of Huang et al. (2021) can be
extended by changing d(D,D′) = 1 to d(D,D′) ≤ 1/ε,
bringing it closer to our definition. However, this leads to
an instance-dependent risk of

R̃2(D, ε) ≈ sup
supp(D′)⊆supp(D)
d(D,D′)≤1/ε

`(θ(D), θ(D′)),

which can be much larger than bound in Lemma 3.2.

In Appendix F, we use `p minimization as a concrete exam-
ple to compare these instance-dependent risks and show that
our new definition gives significant quantitative improve-
ments for specific datasets.

It is worth remarking here that both Asi & Duchi (2020a)
and Huang et al. (2021) provide achievability results
when the dataset is supported over a high-dimensional
space while our result mainly focuses on one-dimensional
datasets. Whether our subset-based instance optimality can
be achieved in the high-dimensional setting is an interesting
future direction to explore.

Private statistical mean estimation. Private mean esti-
mation has been widely studied in the statistical setting,
where the dataset is assumed to be generated i.i.d. from
an underlying distribution. Classic methods such as the
Laplace or Gaussian mechanism (Dwork et al., 2014) incur
a privacy cost that scales with the worst-case sensitivity.
However, recently, by assuming certain concentration prop-
erties of the underlying distribution (e.g., sub-Gaussianity
(Karwa & Vadhan, 2017; Cai et al., 2019; Smith, 2011;
Kamath et al., 2019; Bun & Steinke, 2019; Biswas et al.,
2020), bounded moments (Feldman & Steinke, 2018; Ka-
math et al., 2020; Hopkins et al., 2022) and high probability
concentration (Levy et al., 2021; Huang et al., 2021)), it has

been shown that the privacy cost can be improved to scale
with the concentration radius of the underlying distribution.
These algorithms are in some cases known to be (nearly) op-
timal for distributions satisfying these specific concentration
properties.

It is worth remarking here that most of these works consider
high-dimensional distributions while our work only focuses
on real-valued datasets. Moreover, for moment-bounded dis-
tributions, (Kamath et al., 2020) achieves constant-optimal
estimation risk while our obtained rate is only optimal up to
logarithmic factors. The results are outlined in Table 1.

Our mean estimation algorithm is similar to that of (Huang
et al., 2021). However, we choose a tighter threshold in
the clipping bound estimation step, which is crucial in the
analysis to achieve the instance-optimal bound.

3. Subset-Optimal Private Means
We start by presenting an efficient subset-optimal algorithm
for estimating means; in Section 4 we will generalize this
approach to a larger class of properties.

Let µ(D) denote the mean of a dataset D. We will use
`(x, y) = |x − y| as our loss function. Our main result is
stated in the theorem below.
Theorem 3.1. Let D ⊂ [−R,R] be a multiset of points and
let µ̂ be the output of Algorithm 3 with parameters R and
ε > 0. Publishing µ̂ is 3ε-differentially private and for any
γ > 0, we have

E [|µ̂− µ(D)|] = O

(
R (D, ε) log

Rε

γ
+
γ

ε

)
.

We begin by establishing an up-to-constant characterization
of the subset-based risk for mean estimation under this loss.
Lemma 3.2. For any ε ∈ (0, 1] and multiset D ⊂ R with
|D| > 1

ε ,

R(D, ε) = cD,ε ·
(
µ(D \ L 1

ε
)− µ(D \ U 1

ε
)
)
,
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where cD,ε ∈ [1/(2e2), 1].

The upper bound is straightforward; the lower bound proof
is based on standard packing arguments (Dwork et al., 2014)
and appears in Appendix B.1.

Now we turn to designing a subset-optimal algorithm that is
competitive with this lower bound for every dataset D and
prove Theorem 3.1.

First, we describe a straightforward algorithm for private
mean estimation of bounded datasets. Pseudocode is given
in Algorithm 1, and privacy and utility analyses are given
in Lemma 3.3. We use D +m to denote {x+m | x ∈ D},
and clip(D, [l, u]) to denote {min(max(x, l), u) | x ∈ D}.

Algorithm 1 Bounded mean estimation
Input: Multiset D ⊂ [l, u], ε > 0.

1 Let w = u− l and m = l+u
2 .

2 Let D′ = D −m.
3 Let n̂ = n+ Zn, where n = |D′|, Zn ∼ Lap( 2

ε ).
4 Let ŝ = s+ Zs, where s =

∑
x∈D′ x, Zs ∼ Lap(wε ).

5 Output µ̂ = clip( ŝn̂ , [−
w
2 ,

w
2 ]) +m.

We provide the proof in Appendix B.2.

Lemma 3.3. Let [l, u] be any interval and ε > 0 be any
privacy parameter. Publishing µ̂ output by Algorithm 1 is
ε-differentially private. Furthermore,

E [|µ̂− µ(D)|] ≤ 3(u− l)
|D|ε

.

In order to construct a subset-optimal mean algorithm from
Algorithm 1, the high level idea is to first find an interval
[l̂, û] that contains all but a small number of outliers from
the dataset D, clip D to [l̂, û], and finally apply Algorithm 1.
The error of this algorithm will have two main components:
error incurred by clipping the data to [l̂, ĥ], and error due to
the noise added by Algorithm 1. Our analysis shows that
both error components are not significantly larger than the
lower bound given by Lemma 3.2.

We start by describing the subroutine that we use to choose
l̂ and û; following Lemma 3.2, our goal will be to find l̂ and
û that delineate approximately 1/ε elements of D each.

3.1. Private Thresholds

We present an ε-differentially private algorithm that, given
a multiset D of real numbers and a target rank r, outputs a
threshold τ ∈ R that is approximately a rank-r threshold
for D.

Roughly, τ being a rank-r threshold for D means that r
points in D are less than or equal to τ . However, if D

Rank 0
Rank 1

Rank 2

Rank 3
Rank 4

x1

x3

x2 x4

Figure 1. Example of ranks as defined in Definition 3.4. There are
4 points with x2 = x3. For each rank r ∈ {0, . . . , 4} we show the
interval of points that are rank-r thresholds. For r = 0, 1, . . . , 4,
the intervals of rank-r thresholds are given by I0 = [−∞, x1],
I1 = [x1, x2], I2 = {x2}, I3 = [x3, x4], and I4 = [x4,∞],
respectively.

has repeated points then there can be ranks for which no
such threshold exists. (In the extreme, consider the dataset
D = {x, . . . , x}, containing n copies of the same point;
exactly 0 or n points are less than or equal to any threshold
τ .)

We will therefore define a rank-r threshold in a slightly more
general way so that there is at least one rank-r threshold for
every r ∈ {0, . . . , |D|}. This definition is consistent with
the standard definition of quantiles for distributions with
point-masses.

Definition 3.4. Let D be any multiset of real numbers. We
say that τ ∈ R is a rank-r threshold for D if

∑
x∈D I{x <

τ} ≤ r and
∑
x∈D I{x ≤ τ} ≥ r. That is, there are at

most r points strictly smaller than x, and at least r points
that are greater than or equal to x. For any threshold τ , let
ranks(τ,D) denote the set of ranks r such that τ is a rank-r
threshold for D. See Figure 1 for an example of this rank
definition in a dataset with repeated points.

Definition 3.5. The rank error of a threshold τ for dataset
D and target rank r is

errrank(τ, r,D) = min
r′∈ranks(τ,D)

|r − r′|.

The rank error measures how close τ is to being a rank-r
threshold for D and is equal to 0 if and only if τ is a rank-r
threshold.

When privately estimating rank-r thresholds for a dataset
D, we will incur a bicriteria error: our output will be close
(on the real line) to a threshold with low rank error.

Definition 3.6. Let D be any multiset of real numbers.
We say that τ is an (α, β)-approximate rank-r threshold
for D if there exists τ ′ ∈ R so that |τ − τ ′| ≤ α and
errrank(τ ′, r,D) ≤ β.

Our algorithm for finding approximate rank-r thresholds
is an instance of the exponential mechanism. The loss (or
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Algorithm 2 Threshold estimation
Input: Dataset D ⊂ [a, b], target rank r, data range [a, b],
distance α > 0, privacy parameter ε > 0.

1 Define `(τ) = minτ−α≤τ ′≤τ+α errrank(τ ′, r,D).
2 Let f(τ) = exp(− ε2`(τ))/

∫ b
a

exp(− ε2`(τ)) dτ .
3 Output sample τ̂ in [a, b] drawn from density f .

negative utility) function that we minimize is parameterized
by the distance error α > 0, and the loss of a threshold τ is
defined to be the minimum rank-error of any threshold τ ′

within distance α of τ .

Intuitively, by allowing the loss function to “search” in a
window around τ , we guarantee that there is always an
interval of width α with loss zero (namely, any interval
centered around a true rank-r threshold). This is sufficient
to argue that the exponential mechanism outputs a low-loss
threshold with high probability and, by definition of the loss,
this implies that there is a nearby threshold with low rank-
error. Pseudocode is given in Algorithm 2. Since the density
f is piecewise constant with at most 2|D| discontinuities at
locations x ± α for x ∈ D, it is possible to sample from
f in time O(|D| log |D|) (see the proof of Theorem 3.7 for
details). Theorem 3.7, which is proved in Appendix A,
shows that this algorithm outputs an (α, β)-approximate
threshold.

Theorem 3.7. Fix data range [a, b], ε > 0, and distance
error 0 < α ≤ b−a

2 . For any dataset D ⊂ [a, b] and rank
1 ≤ r ≤ |D|, let τ̂ be the output of Algorithm 2 run on
D with parameters [a, b], α, and ε. Publishing τ̂ satisfies
ε-DP and, for any ζ > 0, with probability at least 1 − ζ,
τ̂ is an (α, β)-approximate rank-r threshold for D with
β = 2

ε log b−a
αζ . Moreover, Algorithm 2 can be implemented

with O(|D| log |D|) running time.

Next, we argue that when the dataset is supported on a
grid Z = {z1, . . . , zm}, where zi+1 = zi + γ, running
Algorithm 2 with a sufficiently small distance parameter α
and rounding to the nearest grid point results in a (0, β)-
approximate rank-r threshold with high probability. The
proof of Corollary 3.8 is in Appendix A.

Corollary 3.8. Let Z = {z1 ≤ · · · ≤ zm} be such that
zi+1 = zi + γ for all i = 1, . . . ,m − 1 and let D be any
multiset supported on Z . Let τ̂ be the output of Algorithm 2
run on D with parameters [a, b] = [z1, zm], α = γ/3,
and ε > 0, and let τ̃ the closest point in Z to τ̂ . Then
for any ζ > 0, with probability at least 1 − ζ we have
that τ̃ is a (0, β)-approximate rank-r quantile for D with
β = 2

ε log 3m
ζ .

3.2. Mean Estimation

We now present the pseudo-code for our subset-optimal
mean estimation algorithm in Algorithm 3 and give the
proof sketch of Theorem 3.1.

Proof sketch of Algorithm 3. We provide the proof sketch
here and provide a detailed proof in Appendix B.3. Our
goal is to show that the expected error of Algorithm 3 is not
much larger than

R(D, ε) ≥
µ(D \ L 1

ε
)− µ(D \ U 1

ε
)

2e2
.

With probability at least 1 − ζ, by Theorem 3.7 we are
guaranteed that l̂ and û are (α, β)-approximate rank-tl and
rank-tu thresholds, respectively for the values of α and β
defined in Algorithm 3. In particular, this implies that there
exist l′ and t′l such that |l̂ − l′| ≤ α, |t′l − tl| ≤ β, and l′ is
a rank-t′l threshold for D. Similarly, there exist u′ and t′u
such that |û − u′| ≤ α, |t′u − tu| ≤ β, and u′ is a rank-t′u
threshold for D. Let G denote this high probability event.
We first argue that conditioned on G, the expected loss of
µ̂ is small (where the expectation is taken only over the
randomness of Algorithm 1). To convert this bound into a
bound that holds in expectation, we bound the error when
G does not hold by 2R.

Let µ̂ be the output of Algorithm 3. We decompose the error
of µ̂ into three terms:

|µ̂− µ(D)| ≤ |µ̂− µ(clip(D, [l̂, û]))|

+ |µ(clip(D, [l̂, û])− µ(clip(D, [l′, u′])|
+ |µ(clip(D, [l′, u′]))− µ(D)|.

Roughly speaking, the first term captures the variance in-
curred by using Algorithm 1 to estimate the mean of the
clipped data, the second term measures our bias due to α
in our (α, β)-approximate thresholds, and the third term
measures the bias due to β. Our goal is to prove that all of
these terms are not much larger than R(D, ε).

Bounding first term. At a high level, we argue that all points
in L 1

ε
are to the left of l̂ + α, and all points in R 1

ε
are to

the right of û − α. It follows that the distance from any
point in L 1

ε
to any point in U 1

ε
is at least û − l̂ − 2α. In

particular, this guarantees that the difference between the
means of D \ L 1

ε
and D \ U 1

ε
must be at least û−l̂−2α

ε(|D|− 1
ε )

,

since we move 1/ε points a distance at least û − l̂ − 2α.
This expression is close to the loss incurred by Algorithm 1
when run on the clipped dataset.

2Note that when τ is a rank-r threshold for a datasetD,−τ is a
rank |D|−r threshold for−D. Therefore, we can use Algorithm 2
to find an approximate rank-(|D|− r) threshold for D by negating
an approximate rank-r threshold for −D.
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Algorithm 3 Subset optimal mean estimation
Input: Range R, dataset D ⊂ [−R,R], privacy parameter ε′ > 0 and α > 0.

1 Define α = γ
|D| , ζ = α

R|D|ε , β = 2
ε log 2R

αζ , tl = 1
ε + β, and tu = |D| − 1

ε − β.2

2 Let l̂ be the output of Algorithm 2 run on D with parameters [a, b] = [−R,R], r = tl, α, and ε.
3 Let û be the output of Algorithm 2 run on D with parameters [a, b] = [−R,R], r = tu, α, and ε.
4 Let µ̂ be the output of Algorithm 1 run on D with interval [a, b] = [l̂, û] and privacy parameter ε.
5 Output µ̂.

Bounding the second term. The key idea behind bounding
the second term is that, whenever l̂ is close to l′ and û is
close to u′, then clipping a point x to [l̂, û] is approximately
the same as clipping it to [l′, u′].

Bounding the third term. Our bound for the third term is
the most involved. At a high level, we show that the bias
introduced by clippingD to the interval [l′, u′] is at most the
worst “one-sided” clipping bias incurred clipping the points
to the left of l′ or to the right of u′. To see this, observe
that when we clip from both sides, the left and right biases
cancel out. Next, we argue that clipping points to the left of
l′ (or to the right of u′) introduces less bias than removing
those points. This step bridges the gap between Algorithm 1
which clips points and the lower bound on R(D, ε), which
removes points. We argue that the number of points removed
to the left of l′ or to the right of u′ is not much larger than
1
ε and use Lemma B.1 to show that the resulting bias is not
much larger than if we had removed exactly 1

ε points instead.
Finally, to finish the bound, combine our two “one-sided”
bias bounds to show that the overall bias is never much
larger than R(D, ε).

3.3. Intuition

The lower bound in Lemma 3.2 is obtained by showing
(roughly) that no private algorithm can reliably determine
whether O(1/ε) outliers have been removed from D. In
proving the upper bound in Theorem 3.1, then, the challenge
is to show that those outliers can be identified and removed
privately without introducing asymptotically larger error
even when D is not known in advance.

This is possible in Algorithm 3 due to a careful choice of
the rank targets tl and tu. In particular, if we are overly
aggressive in trying to privately remove outliers, we run the
risk of adding too much bias, since we are clipping away
important information about the mean. On the other hand,
if we are too tentative, we may end up with wide clipping
thresholds that require adding too much variance (in the
form of noise) when calling Algorithm 1. The key to our
construction, therefore, is choosing rank targets such that
the risk of excess bias and the risk of excess variance both
exactly balance with the lower bound; that is, they match
the error incurred by removing outliers in the first place.

There is no reason to think a priori that this should be
possible. Indeed, for certain properties (such as the mode),
such a result does not seem to exist—errors due to over- or
underestimating outliers can change the property arbitrarily.
However, we show in the next section that the result for
mean estimation can be extended to a relatively large class
of common properties.

4. Instance-optimal algorithm for monotone
properties

We now show that subset-optimal estimation algorithms can
be constructed for any “monotone” property. We start by
defining our notion of monotonicity.

Definition 4.1 (First-order stochastic dominance (Lehmann,
1955; Mann & Whitney, 1947)). Let D and D′ both be mul-
tisets of real numbers. D′ is said to dominate D (denoted
D′ � D) if, ∀v ∈ R,∑

x′∈D′ 1 {x′ ≤ v}
|D′|

≤
∑
x∈D 1 {x ≤ v}
|D|

.

In other words, first-order stochastic dominance requires the
cumulative density function (CDF) of D to be larger than
the CDF of D′ for all points on the real line.

Definition 4.2 (Monotone property). A property is called
monotone if, for all D′, D with D′ � D, we have

θ(D′) ≥ θ(D)

or, for all D′, D with D′ � D, we have

θ(D′) ≤ θ(D).

Intuitively, the definition requires that if we move points
from a dataset in one direction, we will always increase
(or always decrease) the property. The family of mono-
tone properties includes natural functions such as the mean,
median, and quantiles. It also includes minimizers of `p
distances, i.e.,

θp(D) = arg min
y

∑
x∈D
|x− y|p,

and other common estimators.

7
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Algorithm 4 Subset-optimal monotone property estimation
Input: Range R, dataset D ⊂ [−R,R], privacy parameter ε > 0, and discretization parameter β.

Algorithms: Private threshold algorithm PrvThreshold (Algorithm 2). Inverse sensitivity algorithm InvSen (Asi &
Duchi, 2020a) (Algorithm 5).

1: Quantize each value in the dataset D to the nearest multiple of β and denote the quantized dataset by Dquant.
2: Set error probability η = Lβ

B , rank r = 32 log(6R/ηβ)
ε .

3: l = PrvThreshold(Dquant, r/4, [−R,R], β/3, ε/4).
4: u = PrvThreshold(Dquant, |D| − r/4, [−R,R], β/3, ε/4).
5: Let Dquant = {x1 ≤ x2 ≤, . . . ,≤ xn}. For i ≤ 3r/2, let yi = xi − β, for i ≥ n − 3r/2 yi = xi + β and otherwise
yi = xi. Let D′quant = {y1 ≤ y2 ≤, . . . ,≤ yn}.

6: Prune the dataset to obtain
D[l,u] = D′quant ∩ [l, u].

7: Return the output of InvSen on D[l,u] with range [l, u], granularity β, and privacy parameter ε/2.

We also make the following assumptions on the property θ
and loss function `:

• For any dataset D supported on [−R,R], θ(D) ∈
[−R,R]3.

• ` is a metric; that is, it is commutative, it satisfies the
triangle inequality, and `(θ, θ) = 0.

• ` is finite and bounded for all datasets under considera-
tion. Let B = supD,D′ `(θ(D), θ(D′)).

• Whenever θ ≥ θ1 ≥ θ2,

`(θ, θ1) ≤ `(θ, θ2).

• ` is L-Lipschitz, as defined below4.
– Let xi(D) denote the ith largest element inD. For

all D,D′ such that |D| = |D′|, we have

`(θ(D), θ(D′)) ≤ L max
i≤|D|

|xi(D)− xi(D′)|.

– For all θ and θ1 6= θ2, we have

`(θ, θ1) ≤ `(θ, θ2) + L|θ1 − θ2|.

Observe that both mean and median are 1-Lipschitz
when `(θ, θ′) = |θ − θ′|.

Our main result is stated below.
Theorem 4.3. For any ε ∈ (0, c−1ε ), there exists a cε · ε-
DP Algorithm (Algorithm 4) with cε = 128 log(6RB/Lβ2),
whose output A(D) satisfies

E[`(A(D), θ(D))] ≤ 2e2R(D, ε) + 7Lβ.

We first show a simple lower bound on R(D, ε) for gen-
eral properties. This bound generalizes the mean estima-
tion lower bound in Lemma 3.2; the proof is given in Ap-
pendix D.1.

3In general, we only need to assume the property is bounded
and our result only depends on the bound logarithmically. We use
the same R here to simplify notations.

4The constants in the two conditions below need not be the
same. We use L here for both to keep notations simple.

Lemma 4.4. For ε ∈ [0, 1], let S = {(D1, D2) :
min(|D1|, |D2|) ≥ |D|−1/ε, d(D1, D2) ≤ 2/ε}. If S 6= ∅,
then R(D, ε) is at least

1

2e2
· max
(D1,D2)∈S

`(θ(D1), θ(D2)).

We show that the above lower bound can be achieved (up to
logarithmic factors). The algorithm is given in Algorithm 4.
It is similar in spirit to Algorithm 3, but we need to make a
few modifications to ensure the algorithm works for general
monotone properties. We briefly describe the steps in the
algorithm below.

Discretization: As before, we will use the private threshold
algorithm to remove outliers. The approximation guarantee
in Theorem 3.7 has an additive rank error β and an additive
threshold error α; however, for general properties, it is
technically challenging to bound the effects of nonzero α.
To work around this, we first discretize the interval into
steps of size β. This allows us to use Corollary 3.8 to get a
guarantee with α = 0.

Private thresholds: We then find the private thresholds
l and u as in Algorithm 3. As noted above, these esti-
mates come with (0, β) approximation guarantees due to
discretization.

Pruning outliers: In Algorithm 3, we clip outliers outside
the thresholds. However, the effect of clipping is difficult to
analyze generally. Instead, in Algorithm 4 we simply prune
outliers. Technically, it is possible for all values to lie on the
thresholds, in which case we might not prune any elements.
Hence, for ease of analysis, we deliberately move a small
fraction of points outside the thresholds.

Inverse sensitivity mechanism. Finally, while in Algo-
rithm 3 we directly computed the private mean of the clipped
dataset, here we use the inverse sensitivity mechanism (Asi
& Duchi, 2020a) to estimate the desired property.
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5. Implications on private statistical mean
estimation.

In this section, we apply our mean estimation algorithm to
the statistical mean estimation (SME) task where D = Xn,
which are i.i.d. samples from a distribution p with mean µ.
And the performance of the algorithm is measured by the
expected distance from the mean,

RSME(A, p):=E [|A(D)− µ|] . (3)

We apply Algorithm 3 on D and obtain obtain distribution-
specific bounds on RSME(A, p). For distribution families
with various concentration assumptions, we show that our
instance-based bound is almost as tight (up to logarithmic
factors) as algorithms designed for specific distribution fam-
ilies. We first state a generic result for statistical mean
estimation.

Theorem 5.1. Let D = Xn be i.i.d. samples from a distri-
bution p with mean µ and A be Algorithm 3. We have

RSME(A, p) ≤ E [|µ(D)− µ|]

+ C · E
[∣∣∣µ(D \ L 1

ε
)− µ(D \ U 1

ε
)
∣∣∣] ,

where C hides logarithmic factors in the problem parame-
ters.

Proof.

RSME(A, p) = E [|A(D)− µ|]
≤ E [|µ(D)− µ|] + E [|A(D)− µ(D)|] .

Applying Theorem 3.1 to the second term directly leads to
the claim.

The bound in Theorem 5.1 can be hard to compute for a spe-
cific distribution. For distributions with bounded moments,
we can obtain explicit upper bounds on the quantities above.

Definition 5.2. Let p be a distribution supported on R with
mean µ. Its kth absolute central moment is denoted as

Mk(p):=EX∼p
[
|X − µ(p)|k

]
if it is finite; otherwise Mk(p) =∞.

In Appendix E.1, we prove the following result for statistical
mean estimation on distributions with bounded moments.

Corollary 5.3. For any distribution p over [−R,R], Algo-
rithm 3 satisfies

RSME(A, p) = Õ

(
M2(p)1/2√

n
+ min

k≥2

Mk(p)1/k

(nε)1−1/k

)
.

Note that Algorithm 3 obtains the above instance-specific
rate without any knowledge on the underlying distribution
p. Moreover, for specific distribution families such as sub-
gaussian distributions and distributions with bounded kth
moments (k ≥ 2), Corollary 5.3 implies almost tight min-
max rates.

Subgaussian distributions. A distribution p is subgaus-
sian with proxy σ if ∀t ≥ 0,

P(|X − µ| ≥ t) ≤ 2 exp

(
− t

2

σ2

)
.

We denote all such distributions as Gσ. For such distribu-
tions, we have

max
p∈Gσ

RSME(A, p) = Õ

(
σ√
n

+
σ

nε

)
.

This matches the optimal rate for sub-Gaussian distributions
(e.g.,, in Karwa & Vadhan (2017); Kamath et al. (2019)).

Distributions with bounded moments. Let Mk,m be
the family of distributions with Mk(p) ≤ m, we have

max
p∈Mk,m

RSME(A, p) = Õ

(
M

1/k
k√
n

+
M

1/k
k

(nε)1−1/k

)
.

This matches the optimal rate for distributions with bounded
kth moment (e.g.,, in Kamath et al. (2020)). We list the
detailed comparisons in Table 1.

Extending to higher dimensions. For (ε, δ)-DP mean es-
timation in the high-dimensional case, algorithms in Levy
et al. (2021); Huang et al. (2021) rely on pre-processing tech-
niques (e.g., random rotation) and apply a one-dimensional
estimation algorithm to each dimension. Our algorithm
can also be combined with this procedure to obtain similar
bounds since our algorithm provably provides an instance-
optimal solution to each one-dimensional problem. We
leave exploring better instance-specific bounds in high di-
mension as a direction for future work.

6. Conclusion
We proposed a new definition of instance optimality for dif-
ferentially private estimation and showed that our notion of
instance optimality is stronger than those proposed in prior
work. We furthermore constructed private algorithms that
achieve our notion of instance optimality when estimating
a broad class of monotone properties. We also showed that
our algorithm matches the asymptotic performance of prior
work under a range of distributional assumptions on dataset
generation.
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A. Proofs for Section 3.1
We will make use of the following characterization of rank-r thresholds.

Lemma A.1. Let D be any multiset of real numbers. Then τ ∈ R is a rank-r threshold for D if and only if every point
x ∈ Lr satisfies x ≤ τ and every point x ∈ U|D|−r satisfies x ≥ τ .

Proof. First we show that if τ is a rank-r threshold for D, then every point x ∈ Lr satisfies x ≤ τ and every point
x ∈ U|D|−r satisfies x ≥ τ . By definition, we have that

∑
x∈D I{x ≤ τ} ≥ r, which means that there are at least r points

in D that are less than or equal to τ . Since Lr contains the r smallest points in D, every point in Lr must also be less than
or equal to τ . Similarly, by definition we have that r ≥

∑
x∈D I{x < τ} = |D| −

∑
x∈D I{x ≥ τ}, which means that there

are at least |D| − r points in D that are greater than or equal to τ . Since U|D|−r contains the largest |D| − r points in D,
they must all be greater than or equal to τ . This proves the first implication.

Now suppose that τ is a threshold with the property that every x ∈ Lr satisfies x ≤ τ and every x ∈ U|D|−r satisfies x ≥ τ .
We will show that this implies that τ is a rank-r threshold. Let x ∈ D be any point with x < τ . We know that all such points
must belong to Lr (since x ∈ U|D|−r would violate our assumption). It follows that

∑
x∈D I{x < τ} ≤ |Lr| = r. Now

let x ∈ D be any point with x > τ . We know that all such points must belong to U|D|−r (since x ∈ Lr would violate our
assumption). It follows that

∑
x∈D I{x ≤ τ} = |D| −

∑
x∈D I{x > τ} ≥ |D| − |U|D|−r| = r. Together, these arguments

show that
∑
x∈D I{x < τ} ≤ r and

∑
x∈D I{x ≤ τ} ≥ r, which proves the second implication.

It follows that τ is a rank-r threshold if and only if every point x ∈ Lr satisfies x ≤ τ and every point x ∈ U|D|−r satisfies
x ≥ τ .

Lemma A.2. Let D be a multiset of real numbers and τ ∈ R be any threshold. Then

ranks(τ,D) =

{∑
x∈D

I{x < τ}, . . . ,
∑
x∈D

I{x ≤ τ}

}
.

Proof. By definition, τ is a rank-r threshold if
∑
x∈D I{x < τ} ≤ r and

∑
x∈D I{x ≤ τ} ≥ r. Let rmin =

∑
x∈D I{x <

τ} and rmax =
∑
x∈D{x ≤ τ}. We will show that τ is a rank-r threshold for D if and only if rmin ≤ r ≤ rmax.

First, since rmin =
∑
x∈D I{x < τ}, we have that

∑
x∈D I{x < τ} ≤ r if and only if rmin ≤. Similarly, since

rmax =
∑
x∈D I{x ≤ τ}, we have that

∑
x∈D I{x ≤ τ} ≥ r if and only if r ≤ rmax. Since τ is a rank-r threshold if and

only if both of the above inequalities hold, it follows that τ is a rank-r threshold iff rmin ≤ r ≤ rmax, as required.

Theorem 3.7. Fix data range [a, b], ε > 0, and distance error 0 < α ≤ b−a
2 . For any dataset D ⊂ [a, b] and rank

1 ≤ r ≤ |D|, let τ̂ be the output of Algorithm 2 run on D with parameters [a, b], α, and ε. Publishing τ̂ satisfies ε-DP
and, for any ζ > 0, with probability at least 1− ζ, τ̂ is an (α, β)-approximate rank-r threshold for D with β = 2

ε log b−a
αζ .

Moreover, Algorithm 2 can be implemented with O(|D| log |D|) running time.

Proof. Algorithm 2 is an instance of the exponential mechanism, so to prove that it satisfies ε-differential privacy, it is
sufficient to argue that the sensitivity of the loss `(τ) is bounded by one. Let D and D′ be any neighboring datasets. Since
adding or removing a point from D changes the value of each sum in the expression for ranks(τ ′, D) given by Lemma A.2
by at most one, we are guaranteed that whenever r′ ∈ ranks(τ ′, D), then at least one of r′ − 1, r′, or r′ + 1 belongs to
ranks(τ ′, D′). From this, it follows that | errrank(τ ′, r,D)− errrank(τ ′, r,D′)| ≤ 1. Taking the minimum of both sides of
this inequality with respect to τ ′ ∈ [τ − α, τ + α] shows that the sensitivity of ` is bounded by one, as required.

Next we argue that there exists an interval I∗ ⊂ [a, b] of width at least α so that for every τ ∈ I∗ we have `(τ) = 0. Let
τ∗ ∈ [a, b] be any rank-r threshold for the dataset D. Next, define I∗ = [τ∗ − α, τ∗ + α] ∩ [a, b]. The width of I∗ is at
least α (since at least half of it is contained in [a, b]). Moreover, for every τ ∈ I∗ we have that `(τ) = 0, since τ is within
distance α of an exact rank-r threshold, as required.

Finally, we follow the standard analysis of the exponential mechanism to prove that this is sufficient to find an approximate
rank-r threshold. For any c ≥ 0, define Sc = {τ ∈ [a, b] | `(τ) ≥ c} to be the set of thresholds whose loss is at least c. We

12
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have that ∫
τ∈Sc

exp
(
−ε

2
`(τ)

)
dτ ≤

∫
τ∈Sc

exp
(
−εc

2

)
dτ

≤ (b− a) · exp
(
−εc

2

)
.

On the other hand, we have ∫ b

a

exp
(
−ε

2
`(τ)

)
dτ ≥

∫
I∗

exp(0) dτ ≥ α.

Together, it follows that

Pr(τ̂ ∈ Sc) =

∫
τ∈Sc

f(τ) dτ ≤ b− a
α

exp
(
−εc

2

)
.

Choosing c = 2
ε log b−a

αζ results in Pr(τ̂ ∈ Sc) ≤ ζ.

It follows that with probability at least 1− ζ, we have that `(τ̂) < 2
ε log b−a

αζ . From the definition of the loss, it follows that
τ̂ is an (α, β)-approximate rank-r threshold for S.

Finally, we prove the running time guarantee. First, the loss function `(τ) is piecewise constant with at most 2|D|
discontinuities. This is because, as we slide a threshold τ from left to right, the minimum rank error within the interval
[τ − α, τ + α] only changes when an endpoint of the interval crosses a datapoint in D, which can hapen at most 2|D| times.
It follows that the output distribution of Algorithm 2 is also piecewise constant with discontinuities (potentially) occurring
at x ± α for each x ∈ D. Let the constant intervals be I1, . . . , IM and let p1, . . . , pM be the value of the exponential
mechanism density on the intervals, respectively. Now let τ̂ be a sample from the output distribution and Î ∈ {I1, . . . , IM}
be the interval that contains τ̂ . The key idea behind the sampling strategy is to sample Î first, and then sample τ̂ conditioned
on the choice of Î . Since the density is constant on each interval I1, . . . , IM , the second step is equivalent to outputting
a uniformly random sample from Î . This works as long as the probability we choose Î = Ii is equal to the marginal
distribution of Î , which is given by P(Î = Ii) ∝ width(Ii) · pi.

The running time of the above approach is dominated by the cost of computing the piecewise constant representation of the
output density. This can be accomplished by constructing the set of 2|D| candidate discontinuity locations x± α for x ∈ D,
sorting them, and then making a linear pass from left to right computing the constant intervals and the value of `(τ) on each
interval. The overall running time of this is O(|D| log |D|).

Corollary 3.8. Let Z = {z1 ≤ · · · ≤ zm} be such that zi+1 = zi + γ for all i = 1, . . . ,m− 1 and let D be any multiset
supported on Z . Let τ̂ be the output of Algorithm 2 run on D with parameters [a, b] = [z1, zm], α = γ/3, and ε > 0, and
let τ̃ the closest point in Z to τ̂ . Then for any ζ > 0, with probability at least 1− ζ we have that τ̃ is a (0, β)-approximate
rank-r quantile for D with β = 2

ε log 3m
ζ .

Proof. For any threshold τ , Lemma A.2 guarantees that

ranks(τ,D) =

{∑
x∈D

I{x < τ}, . . . ,
∑
x∈D

I{x ≤ τ}

}
.

When the dataset D is supported on a grid Z , moving τ to its nearest grid point never removes ranks from ranks(τ,D),
since the left sum is either the same or decreases, and the right sum is either the same or increases. This implies that moving
τ to its closest grid point never increases its rank error.

By Theorem 3.7 we are guaranteed that with probability at least 1−ζ , there exists τ ′ with |τ̂−τ ′| ≤ α and errrank(τ ′, r,D) ≤
2
ε log b−a

αζ ≤ β (where we used the fact that (b− a)/α ≤ 3m). Assume this high probability event holds for the remainder
of the proof.

Let τ̃ and τ̃ ′ be the closest grid points to τ̂ and τ ′, respectively. If τ̃ = τ̃ ′ then we have that errrank(τ̃ , r,D) =
errrank(τ̃ ′, r,D) ≤ errrank(τ ′, r,D) ≤ β and we have shown that τ̃ is a (0, β)-approximate rank-r threshold for D.

Now suppose that τ̃ 6= τ̃ ′. First we argue that D ∩ [τ̂ , τ ′] must be the empty set. Suppose for contradiction that there is
x ∈ D ∩ [τ̂ , τ ′]. Then, x is a grid point, and we have that max{|τ̂ − x|, |τ ′ − x|} ≤ |τ̂ − τ ′| ≤ α = γ/3. In particular, this

13
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implies that both τ̂ and τ ′ are within distance γ/3 of the same grid point, which means we must have τ̃ = τ̃ ′, which is a
contradiction. Since there are no datapoints in [τ̂ , τ ′], by Lemma A.2 we have that ranks(τ̂ , D) = ranks(τ ′, D). It follows
that errrank(τ̃ , r,D) ≤ errrank(τ̂ , r,D) = errrank(τ ′, r,D) ≤ β.

In either case, we showed that the rank-error of τ̃ is bounded by β.

B. Proofs of mean estimation
B.1. Proof of Lemma 3.2

Upper bound. cD,ε ≤ 1. This can be seen since for all D′ ⊂ D′, |D′| ≥ |D| − 1/ε, we have

µ(D \ L 1
ε
) ≤ µ(D′) ≤ µ(D \ U 1

ε
).

Hence a fixed algorithm that outputs µ(D) will always have

|µ(D)− µ(D′)| ≤ µ(D \ L 1
ε
)− µ(D \ U 1

ε
).

Lower bound. cD,ε ≥ 1/(2e2). The proof follows from substituting D1 = D \ L 1
ε

and D2 = D \ U 1
ε

in Lemma 4.4.

B.2. Proof of Lemma 3.3

First we prove the privacy guarantee. Let D1 and D2 be any pair of datasets and let D′1 and D′2 be the shifted and clipped
versions of them for the interval [l, u]. The size of the symmetric difference between D′1 and D′2 cannot be larger than
between D1 and D2, so whenever D1 and D2 are neighbors, so are D′1 and D′2. It follows that we can ignore the shifting
and clipping step in the privacy analysis.

Since the add/remove sensitivity of n is 1, step 3 estimates n using the Laplace mechanism with a budget of ε/2. The
add/remove sensitivity of the sum s of the shifted data is w/2, so step 4 estimates s using the Laplace mechanism with a
budget of ε/2. The overall privacy guarantee of the algorithm then follows from basic composition and post-processing,
since w and m are public quantities (i.e., they depend on the algorithm parameters, not on the actual dataset).

Now we turn to the utility analysis. Recall that n = |D′| = |D|. Since D′ = D −m,

µ̂− µ(D) = clip

(
ŝ

n̂
,
[
−w

2
,
w

2

])
− µ(D′).

Since all all elements of D′ lie in [−w2 ,
w
2 ],

∣∣∣∣clip

(
ŝ

n̂
,
[
−w

2
,
w

2

])
− µ(D′)

∣∣∣∣ ≤ ∣∣∣∣ ŝn̂ − µ(D′)

∣∣∣∣ =

∣∣∣∣ ŝn̂ − s

n

∣∣∣∣ .
Hence, we can bound the desired expectation as

E [|µ̂− µ(D)|] = Pr(Zn < −n/2)E [|µ̂− µ(D)||Zn < −n/2] + Pr(Zn ≥ −n/2)E [|µ̂− µ(D)||Zn ≥ −n/2]

= Pr(Zn < −n/2)E [|µ̂− µ(D)||Zn < −n/2] + E
[∣∣∣∣ ŝn̂ − s

n

∣∣∣∣ |Zn ≥ −n/2]
≤ 1

2
e−nε/4|l − u|+ E

[∣∣∣∣ ŝn̂ − s

n

∣∣∣∣ |Zn ≥ −n/2] , (4)
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where the last inequality follows by observing that both µ̂ and µ(D) lie in [l, u]. We now simplify the second term in (4).

E
[∣∣∣∣ ŝn̂ − s

n

∣∣∣∣ |Zn ≥ −n/2] = E
[∣∣∣∣ s+ Zs
n+ Zn

− s

n

∣∣∣∣ |Zn ≥ −n/2]
= E

[∣∣∣∣ nZs
(n+ Zn)n

∣∣∣∣ |Zn ≥ −n/2]
= E

[∣∣∣∣ Zs
(n+ Zn)

∣∣∣∣ |Zn ≥ −n/2]
(a)
= E[|Zs|] · E

[∣∣∣∣ 1

(n+ Zn)

∣∣∣∣ |Zn ≥ −n/2]
≤ E[|Zs|] ·

2

n

=
(u− l)
ε

· 2

n
, (5)

where (a) uses the fact that Zs and Zn are independent of each other. Combining (4) and (5) yields,

E [|µ̂− µ(D)|] ≤ 1

2
e−nε/4|l − u|+ 2(u− l)

nε
≤ (u− l)

nε

(
2

e
+ 2

)
≤ 3(u− l)

nε
,

where the penultimate inequality uses the fact that e−xx ≤ e−1 for all x ≥ 0.

B.3. Proof of Theorem 3.1

Our goal is to show that the expected error of Algorithm 3 is not much larger than

R(D, ε) ≥
µ(D \ L 1

ε
)− µ(D \ U 1

ε
)

2e2
.

With probability at least 1− ζ, by Theorem 3.7 we are guaranteed that l̂ and û are (α, β)-approximate rank-tl and rank-tu
thresholds, respectively for the values of α and β defined in Algorithm 3. In particular, this implies that there exist l′ and t′l
such that |l̂− l′| ≤ α, |t′l− tl| ≤ β, and l′ is a rank-t′l threshold for D. Similarly, there exist u′ and t′u such that |û−u′| ≤ α,
|t′u − tu| ≤ β, and u′ is a rank-t′u threshold for D. Let G denote this high probability event. We first argue that conditioned
on G, the expected loss of µ̂ is small (where the expectation is taken only over the randomness of Algorithm 1). To convert
this bound into a bound that holds in expectation, we bound the error when G does not hold by 2R.

Let µ̂ be the output of Algorithm 3. We decompose the error of µ̂ into three terms:

|µ̂− µ(D)| ≤ |µ̂− µ(clip(D, [l̂, û]))|

+ |µ(clip(D, [l̂, û])− µ(clip(D, [l′, u′])|
+ |µ(clip(D, [l′, u′]))− µ(D)|

Roughly speaking, the first term captures the variance incurred by using Algorithm 1 to estimate the mean of the clipped
data, the second term measures our bias due to α in our (α, β)-approximate thresholds, and the third term measures the bias
due to β. Our goal is to prove that all of these terms are not much larger than R(D, ε).

Bounding first term. At a high level, we argue that all points in L 1
ε

are to the left of l̂ + α, and all points in R 1
ε

are to the

right of û − α. It follows that the distance from any point in L 1
ε

to any point in U 1
ε

is at least û − l̂ − 2α. In particular,

this guarantees that the difference between the means of D \ L 1
ε

and D \ U 1
ε

must be at least û−l̂−2α
ε(|D|− 1

ε )
, since we move 1/ε

points a distance at least û− l̂ − 2α. This expression is close to the loss incurred by Algorithm 1 when run on the clipped
dataset.

Formally, let S = (D \ L 1
ε
) ∩ (D \ U 1

ε
) be the set of common points in the two means from the lower bound. Then we
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have that

µ(D \ L 1
ε
)− µ(D \ U 1

ε
) =

1

|D| − 1
ε

∑
x∈S

x+
∑
x∈U 1

ε

x−
∑
x∈S

x−
∑
x∈L 1

ε

x


=

1

|D| − 1
ε

 ∑
x∈U 1

ε

x−
∑
x∈L 1

ε

x


Next, since l′ is a rank-t′l threshold with t′l ≥ 1

ε , we know that every x ∈ Lt′l ⊃ L 1
ε

satisfies x ≤ l′ ≤ l̂+α. Similarly, since
u′ is a rank-t′u threshold with t′u ≤ |D|+ β = |D| − 1

ε , we are guaranteed that every x ∈ U|D|−t′u ⊃ U|D|−|D|+ 1
ε

= U 1
ε

satisfies x ≥ u′ ≥ û− α. Substituting these bounds into the above expression gives

2e2R(D, ε) ≥ µ(D \ L 1
ε
)− µ(D \R 1

ε
)

≥ û− l̂ − 2α

ε|D| − 1

≥ û− l̂
ε|D|

− 2α

ε|D|
.

By Lemma 3.3, we have that the expectation of the first term in the error decomposition conditioned on the choice of l̂ and û
is bounded by 3(û−l̂)

|D|ε . It follows that

E
[
|µ̂− µ(clip(D, [l̂, û]))|

∣∣∣∣G] ≤ 6e2R(D, ε) +
6α

ε|D|
.

Bounding the second term. The key idea behind bounding the second term is that, whenever l̂ is close to l′ and û is close to
u′, then clipping a point x to [l̂, û] is approximately the same as clipping it to [l′, u′]. Formally, we have

|µ(clip(D, [l̂, û]))− µ(clip(D, [l′, u′]))| ≤ 1

|D|
∑
x∈D
| clip(x, [l̂, û])− clip(x, [l′, u′])|

=
1

|D|
∑
x∈D
|min(û,max(x, l̂))−min(u′,max(x, l′))|

≤ 1

|D|
∑
x∈D

2α

= 2α

Bounding the third term. Our bound for the third term is the most involved. At a high level, we show that the bias introduced
by clipping D to the interval [l′, u′] is at most the worst “one-sided” clipping bias incurred clipping the points to the left of
l′ or to the right of u′. To see this, observe that when we clip from both sides, the left and right biases cancel out. Next,
we argue that clipping points to the left of l′ (or to the right of u′) introduces less bias than removing those points. This
step bridges the gap between Algorithm 1 which clips points and the lower bound on R(D, ε), which removes points. We
argue that the number of points removed to the left of l′ or to the right of u′ is not much larger than 1

ε and use Lemma B.1 to
show that the resulting bias is not much larger than if we had removed exactly 1

ε points instead. Finally, to finish the bound,
combine our two “one-sided” bias bounds to show that the overall bias is never much larger than R(D, ε).

We begin by showing that the bias is bounded by the worst “one-sided” bias. We have that

µ(D) =
1

|D|

∑
x∈D
x<l′

x+
∑
x∈D

l′≤x≤u′

x+
∑
x∈D
x>u′

x


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and

µ(clip(D, [l′, r′])) =
1

|D|

∑
x∈D
x<l′

l′ +
∑
x∈D

l′≤x≤u′

x+
∑
x∈D
x>u′

u′

 .

Therefore, we have that

|µ(clip(D, [l′, u′]))− µ(D)| =
1

|D|

∣∣∣∣∣∣∣
∑
x∈D
x<l′

l′ − x+
∑
x∈D
x>u′

u′ − x

∣∣∣∣∣∣∣
≤ 1

|D|
max


∑
x∈D
x<l′

l′ − x,
∑
x∈D
x>u′

x− u′

 ,

where the inequality follows because the two sums have opposite signs. This expression is the maximum bias we introduce
if we only cliped either points to the left of l′ or to the right of u′.

Next, we relate the bias of clipping the points to the left of l′ to the bias of removing those points instead. Let q =∑
x∈D I{x < l′} be the number of points that are clipped to l′. Next, since adding copies of µ(D \ Lq) to D \ Lq does not

change its mean, we have that

µ(D \ Lq)− µ(D) =
1

|D|

 ∑
x∈D\Lq

(x− x) +
∑
x∈Lq

µ(D \ Lq)− x


=

1

|D|
∑
x∈Lq

µ(D \ Lq)− x

≥ 1

|D|
∑
x∈Lq

l′ − x,

where the final inequality follows from the fact that µ(D \ Lq) ≥ l′, since every element of D \ Lq is at least l′. We have
shown that the bias from clipping the points to l′ is at most the bias from deleting them.

Next, we use the fact that l′ is a rank-t′l threshold for D to argue that the number of points clipped, q, cannot be too large.
Since l′ is a rank-t′l threshold for D, we know that every x ∈ U|D|−t′l satisfies x ≥ l′. Therefore,∑

x∈D
I{x ≥ τ ′l} ≥ |U|D|−t′l = |D| − t′l.

Since q = |D| −
∑
x∈D I{x ≥ τ ′}, we have that q ≤ t′l ≤ 1

ε + 2β. Putting these bounds together and using Lemma B.1 to
handle the fact that q may be larger than 1

ε , we have

1

|D|
∑
x∈Lq

l′ − x ≤ µ(D \ Lq)− µ(D)

≤ 2q

1/ε

(
µ(D \ L 1

ε
)− µ(D)

)
≤ (2 + 4βε)

(
µ(D \ L 1

ε
)− µ(D)

)
Next we turn to the bias of clipping points to the right of u′. Let p =

∑
x∈D I{x > u′} be the number of points in D that

are strictly greater than u′. A similar argument to the above shows that p ≤ 1
ε + 2β and that

1

|D|
∑
x∈Uq

x− u′ ≤ µ(D)− µ(D \ Up) ≤ (2 + 4βε)
(
µ(D)− µ(D \R 1

ε
)
)
.
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Putting it all together, the third term of the error decomposition is upper bounded by

|µ(clip(D, [l′, u′]))− µ(D)|
≤ (2 + 4βε) max{µ(D \ L 1

ε
)− µ(D), µ(D)− µ(D \R 1

ε
)

≤ (2 + 4βε)
(
µ(D \ L 1

ε
)− µ(D \ U 1

ε
)
)

≤ 2e(2 + 4βε)R(D, ε),

where the second inequality follows from the fact that the maximum of two numbers is not larger than the sum.

Finally, conditioned on the good event G, we have shown that the expected loss of µ̂ is bounded by(
2e(2 + 4βε2) + 6e2

)
R(D, ε) + α

(
6

ε|D|
+ 2

)
.

Using the fact that β = 2
ε log 2R

αζ and bounding the error when the good event G fails to hold by 2R, we have that

E [|µ̂− µ(D)|]

≤
(

56 + 44 log
2R

αζ

)
R(D, ε) + α

(
6

ε|D|
+ 1

)
+ 2Rζ,

as required.
Lemma B.1. Let D be any multiset of real numbers of size n, and let n1 ≤ n2 ≤ n/2. Then we have

µ(D \ Ln2
)− µ(D) ≤ 2n2

n1

(
µ(D \ Ln1)− µ(D)

)
and

µ(D)− µ(D \Rn2) ≤ 2n2
n1

(
µ(D)− µ(D \Rn1)

)
Proof. We only prove the first inequality and the second will follow similarly. For any n′ ≤ n/2, we have∣∣µD − µD\Ln′ ∣∣ =

1

n

∑
i∈[n]

(µD\Ln′ −Xi)1{Xi ∈ Ln′}

=
∑
i∈[n]

(µD\Ln′ −Xi)1{Xi < a}+ (n− n′)µD\Ln′ − (n− n′)µD\Ln′

= n′µD\Ln′ + (n− n′)µD\Ln′ −
∑
i∈[n]

1{Xi < a}Xi −
∑
i∈[n]

1{Xi ≥ a}Xi

= n
(
µD\Ln′ − µD

)
.

Setting n′ to be n1, n2 respectively, it would be enough to prove that

µD\Ln2
− µLn2

≤ 2
(
µD\Ln1

− µLn1

)
.

This follows since

2
(
µD\Ln1

− µLn1

)
−
(
µD\Ln2

− µLn2

)
≥ 2µD\Ln1

− µD\Ln2
− µLn1

= 2µD\Ln1
−

(n− n1)µD\Ln1
−
∑n2

i=n1+1Xi

n− n2
− µLn1

=

(
2− n− n1

n− n2

)
µD\Ln1

+
n2 − n1
n− n2

µLn2\Ln1
− µLn1

≥ 0.
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C. Inverse sensitivity mechanism
In this section, we state the inverse sensitivity mechanism and its guarantee in the add/remove model of DP. Most of the
proof follows from (Asi & Duchi, 2020a) in the replacement model of DP. We include its add/remove variant here for
completeness.

We first provide a few definitions. Let D be a dataset supported over Z and ∀k ∈ N+, let ω`(D, k) be defined as

ω`(D, k):= max {`(θ(D), θ(D′)) | D′ ∈ Zn, d(D,D′) ≤ k}

i.e., the maximum change in the parameter by k add/remove operations on D. Let

lenθ(D, t):= min {d(D′, D) | θ(D′) = t} ,

which is the minimum number of add/remove operations needed to change D to some D′ with θ(D′) = t. Then the
add/remove version of inverse sensitivity mechanism is stated below.

Algorithm 5 Inverse Sensitivity Mechanism (Asi & Duchi, 2020a)
Input: Range R, dataset D ⊂ [−R,R], privacy parameter ε > 0 and granularity β > 0.

1: Let T be the set of points in [−R,R] that are also mulitples of β.
2: Output t ∈ T with distribution

Pr (A(D) = t) =
exp (−lenθ(D, t))∑

t′∈T exp (−lenθ(D, t′))
,

The following guarantee holds for the inverse sensitivity mechanism.

Theorem C.1 ((Asi & Duchi, 2020a)). For any β ∈ (0, B), the inverse sensitivity mechanism A with privacy parameter
ε′ = 2ε log 2BR

β satisfies that
E [`(A(D), θ(D))] ≤ ω`(D, 1/ε) + Lβ.

D. Proofs for the general algorithm
D.1. Proof of the Lemma 4.4

For any algorithm A,

max
D′⊆D:|D′|≥|D|−1/ε

E [`(A(D′), θ(D′))] ≥ max
(D1,D2)∈S

max (E [`(A(D1), θ(D1))] ,E [`(A(D2), θ(D2))])

≥ max
(D1,D2)∈S

0.5 · (E [`(A(D1), θ(D1))] + E [`(A(D2), θ(D2))]) .

Since d(D1, D2) ≤ 2/ε, if A ∈ Aε,

E [`(A(D1), θ(D1))] + E [`(A(D2), θ(D2))] ≥ e−(2/ε)εE [`(A(D2), θ(D1))] + E [`(A(D2), θ(D2))]

≥ e−2 (E [`(A(D2), θ(D1))] + E [`(A(D2), θ(D2))])

≥ e−2`(θ(D1), θ(D2))

≥ e−2`(θ(D1), θ(D2)).

Hence, for any algorithm A ∈ Aε,

max
D′⊆D:|D′|≥|D|−1/ε

E [`(A(D′), θ(D′))] ≥ max
max(D1,D2)∈S

1

2e2
`(θ(D1), θ(D2)).

D.2. Proof of Theorem 4.3

We first prove a general result on stochastic dominance which will be helpful later in our results. For a dataset D and
thresholds l, u, let D[l,u] = D ∩ [l, u].
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Lemma D.1. Let l and u satisfy,

2r ≥ |D ∩ (−∞, l)| ≥ 3

2
r,

2r ≥ |D ∩ (u,∞)| ≥ 3

2
r.

For all D′ such that all of their elements are in [l, u] and d(D[l,u], D
′) ≤ r/2,

D \ L4r(D) � D′ � D \ U4r(D).

Proof. Let L4r denote L4r(D) and U4r denote U4r(D) for convenience. We present the proof for D \ L4r � D′ and the
other relation will follow similarly. We divide the proof into three cases depending on the value of v in Definition 4.1.

Case v < minx∈D\L4r
x: Since there are no points in D \ L4r in this range,∑

x∈D\L4r
1 {x ≤ v}

|D \ L4r|
= 0 ≤

∑
x∈D′ 1 {x ≤ v}
|D′|

.

Case v ≥ u: Since all points of D′ lie below u,∑
x∈D\L4r

1 {x ≤ v}
|D \ L4r|

≤ 1 =

∑
x∈D′ 1 {x ≤ v}
|D′|

Case v ∈ [minx∈D\L4r
x, u): Since d(D[l,h], D

′) ≤ r/2,∑
x∈D′ 1 {x ≤ v}
|D′|

≥
∑
x∈D[l,u]

1 {x ≤ v} − r/2
|D[l,u]|+ r/2

≥
∑
x∈D[l,u]

1 {x ≤ v} − r/2
|D \ L4r|+ 3r/2

,

where the last inequality follows by observing that the assumptions in the lemma imply,

|D[l,u]|+ r/2 ≤ |D| − 5r/2 ≤ |D \ L4r|+ 3r/2.

For v ∈ [minx∈D\L4r
x, u), ∑

x∈D[l,u]

1 {x ≤ v} − r/2 ≥
∑
x∈D

1 {x ≤ v} − 2r − r/2

=
∑
x∈D

1 {x ≤ v} − 5r/2

=
∑

x∈D\L4r

1 {x ≤ v}+ 4r − 5r/2

=
∑

x∈D\L4r

1 {x ≤ v}+ 3r/2.

Hence, ∑
x∈D′ 1 {x ≤ v}
|D′|

≥
∑
x∈D\L4r

1 {x ≤ v}+ 3r/2

|D \ L4r|+ 3r/2

≥
∑
x∈D\L4r

1 {x ≤ v}
|D \ L4r|

.
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Proof of Theorem 4.3. In this proof, we show that Algorithm 4 is ε-DP and achieves

E[`(A(D), θ(D))] ≤ 2e2R(D, ε′) + 7Lβ,

where ε′ = ε
128 log(6RB/Lβ2) . Theorem 4.3 can be obtained by applying Algorithm 4 with privacy parameter

128 log(6RB/Lβ2)ε.

By composition theorem, the overall privacy budget is ε. In the rest of the proof, we focus on the utility guarantee. We
first quantify the effect of quantization. Observe that the output of the algorithm does not change for inputs D and the
corresponding quantized dataset Dquant. Hence together with the Lipschitz property of θ,

E[`(A(D), θ(D)] = E[`(A(Dquant), θ(D)]

≤ E[`(A(Dquant), θ(Dquant)] + `(θ(Dquant), θ(D)),

≤ E[`(A(Dquant), θ(Dquant)] + Lβ.

By Corollary 3.8, with probability at least 1− η, there exists a r′ such that |r′ − 7r/4| ≤ 8
ε log 6R

ηβ and r′ ∈ R(l,Dquant). In
other words,

R(l,Dquant) ∩ [3r/2, 2r] 6= ∅.

Hence,
|Dquant ∩ (−∞, l)| ≤ 2r,

and hence,
3r/2 ≤ |D′quant ∩ (−∞, l)| ≤ 2r.

Similarly,
3r/2 ≤ |D′quant ∩ (u,∞)| ≤ 2r.

Let E be the event where both the above equations hold. By triangle inequality,

E[`(A(D′quant), θ(D
′
quant)] ≤ E[`(A(D′quant), θ(D[l,h])] + E[`(θ(D′quant), θ(D[l,h])], .

Let L′4r = L4r(D
′
quant) and U ′4r = U4r(D

′
quant). By Lemma D.1, D′quant \ L4r � D[l,u] � D′quant \ U4r. Hence, conditioned

on the event E, by the monotonicity property

E[`(θ(D′quant), θ(D[l,h])] ≤ max
(
`(θ(D′quant), θ(D

′
quant \ L′4r), `(θ(D′quant), θ(D

′
quant \ U ′4r)

)
.

Furthermore by triangle inequality,

`(θ(Dquant), θ(D
′
quant \ L′4r) ≤ `(θ(D), θ(D \ L4r) + `(θ(D), D′quant)) + `(θ(D \ L4r, θ(D

′
quant \ L′4r)

≤ `(θ(D), θ(D \ L4r) + 4Lβ.

Similarly,
`(θ(D′quant), θ(D

′
quant \ U ′4r) ≤ `(θ(D), θ(D \ U4r) + 4Lβ.

Hence,

`(θ(D′quant), θ(D[l,h]) ≤ max (`(θ(D), θ(D \ L′4r), `(θ(D), θ(D \ U ′4r)) + 4Lβ

≤ max
D1,D2⊆D:d(D1,D2)≤4r

`(θ(D1), θ(D2)) + 4Lβ.

Therefore,

E[`(θ(Dquant), θ(D[l,h])] ≤ max
D1,D2⊆D:d(D1,D2)≤4r

`(θ(D1), θ(D2)) + 4Lβ + Pr(E)B

= max
D1,D2⊆D:d(D1,D2)≤4r

`(θ(D1), θ(D2)) + 6Lβ.
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Since inverse sensitivity mechanism is applied on D[l,u],

E[`(A(D′quant), θ(D[l,h])] = E[`(InvSen(D[l,h]), θ(D[l,h])].

By the guarantee of the inverse sensitivity mechanism,

E[`(InvSen(D[l,h]), θ(D[l,h])] ≤ max
D1,D2⊆D:d(D1,D2)≤r′

`(θ(D1), θ(D2)) + Lβ,

where r′ =
(

4 log((8BR)/Lβ2)
ε

)
. Combining the above equations yield

E[`(A(D), θ(D))] ≤ 2 max
D1,D2⊆D:d(D1,D2)≤max(4r,r′)

`(θ(D1), θ(D2)) + 7Lβ

≤ 2eR(D, ε′) + 7Lβ,

where ε′ = ε
128 log(6RB/Lβ2) .

E. Proofs for statistical mean estimation
E.1. Proof of Corollary 5.3

It is straightforward to see that

E [|µ(Xn)− µ|] ≤
√
E
[
|µ(Xn)− µ|2

]
=

√
M2(p)

n

Hence it remains to show that ∀k ≥ 2,

E
[∣∣∣µ(Xn \ L 1

ε
)− µ(Xn \ U 1

ε
)
∣∣∣]O(√M2(p)

n
+
Mk(p)1/k

(nε)1−1/k

)
. (6)

Our proof will be based on the lemma below.

Lemma E.1. For any sequence of samples Xn and k ≥ 2, let M̂k(Xn):= 1
n

∑n
i=1 |Xi − µ(Xn)|k, we have

∣∣∣µ(Xn \ L 1
ε
)− µ(Xn \ U 1

ε
)
∣∣∣ = O

(
M̂k(Xn)1/k

(nε)1−1/k

)

We first prove Equation (6) based on Lemma E.1 and then present the proof of Lemma E.1.

E
[∣∣∣µ(Xn \ L 1

ε
)− µ(Xn \ U 1

ε
)
∣∣∣] = O

(
E

[
M̂k(Xn)1/k

(nε)1−1/k

])

Moreover,

E
[
M̂k(Xn)1/k

]
= E

[(∑n
i=1 |Xi − µ(Xn)|k

n

)1/k
]

≤ 2E

[(∑n
i=1 |Xi − µ(p)|k

n

)1/k

+

(∑n
i=1 |µ(Xn)− µ(p)|k

n

)1/k
]

= 2E
[∑n

i=1 |Xi − µ(p)|k

n

]1/k
+ 2E [|µ(Xn)− µ(p)|]

≤ 2Mk(p)1/k +
2M2(p)1/2√

n
.
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Proof of Lemma E.1: By definition,

∣∣∣µ(Xn \ L 1
ε
)− µ(Xn \ U 1

ε
)
∣∣∣ =

1

n− 1/ε

∣∣∣∣∣∣∣
∑
i∈L 1

ε

Xi −
∑
i∈U 1

ε

Xi

∣∣∣∣∣∣∣
≤ 2

n

∑
i∈L 1

ε
∪U 1

ε

|Xi − µ(Xn)|

≤ 2

n

 ∑
i∈L 1

ε
∪U 1

ε

|Xi − µ(Xn)|k


1/k

·

 ∑
i∈L 1

ε
∪U 1

ε

1


(k−1)/k

≤ 2

n

∑
i∈[n]

|Xi − µ(Xn)|k
1/k

·

 ∑
i∈L 1

ε
∪U 1

ε

1


(k−1)/k

=
4M̂k(Xn)1/k

(nε)1−1/k
.

F. Comparison between different instance-dependent risks for `p minimization.
Consider the task of estimating the `p minimizer of a dataset over [0, R] with R� 1, i.e., for p > 1,

θ(D) = min
µ∈R

∑
x∈D
|x− µ|p.

Consider a dataset D consisting of n− 1 0’s and one 1. It can be shown that the minimizer is

µp(D) =
1

1 + (n− 1)1/(p−1)
.

Let `(x, x′) = |x− x′|. The definition in (Asi & Duchi, 2020a) (Equation (2)) will have

R1(D, ε) ≈ max
D′:d(D,D′)≤1/ε

`(θ(D), θ(D′)) ≥ R

1 + (nε− 1)1/(p−1)
− 1

1 + (n− 1)1/(p−1)
,

where we take D′1 to be the dataset with n− 1/ε 0’s and 1/ε R’s.

The modified definition of (Huang et al., 2021) (Remark 2.4) will lead to a instance dependent risk of

R̃2(D, ε) = sup
supp(D′)⊆supp(D)
d(D,D′)≤1/ε

`(θ(D), θ(D′)) ≥ 1

1 + (nε− 1)1/(p−1)
− 1

1 + (n− 1)1/(p−1)
,

where we take D′2 be the dataset with n− 1/ε 0’s and 1/ε 1’s.

Our propose subset-risk will only allow D′ ⊂ D. Hence µp(D′) ∈ [0, µp(D)], and

R(D, ε) ≈ sup
D′⊂D,d(D,D′)≤1/ε

`(θ(D), θ(D′)) ≤ 1

1 + (n− 1)1/(p−1)
.

In the regimen when p < log(nε), ε� 1 and R� 1, we have

R1(D, ε)� R̃2(D, ε)� R(D, ε).
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