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ABSTRACT

The manifold hypothesis suggests that high-dimensional neural time series lie on
a low-dimensional manifold shaped by simpler underlying dynamics. To uncover
this structure, latent dynamical variable models such as state-space models, recur-
rent neural networks, neural ordinary differential equations, and Gaussian process
latent variable models are widely used. We propose MIP-CSDE (Marked Induc-
ing Point Cascaded SDE), a novel cascaded stochastic differential equation model
that balances computational efficiency with interpretability and addresses key lim-
itations of existing approaches. Our model assumes that a sparse set of trajectory
samples suffices to reconstruct the underlying smooth manifold. The manifold
dynamic is modeled using a set of Brownian bridge SEDs, with points—specified
in both time and value—drawn from a multivariate marked point process. These
Brownian bridges define the drift of a second set of SDEs, where their trajecto-
ries are mapped to the observed data. This yields a continuous, differentiable
latent process capable of modeling arbitrarily complex time series as the number
of inducing points increases. For MIP-CSDE, we derive efficient training and in-
ference procedures, demonstrating that its computational complexity of inference
per iteration scales as O(P - N ), exhibiting linear dependence on the observation
data length N, where P is the number of particles. We then show in both syn-
thetic data and neural recordings that our proposed model can accurately recovers
the underlying manifold structure and scales effectively with data dimensionality.

1 INTRODUCTION

The manifold hypothesis proposes that high-dimensional neural time series lie on a low-dimensional
manifold shaped by simpler latent dynamics (Whiteley et all, 2074). Evidence for such structure
appears in auditory cortex activity (Bondanelli_ef all, 2071)) and in speech signals constrained by
vocal tract mechanics (Gonzalez-Casfillo"ef_all, P073). Methods for uncovering latent manifolds
include state-space models (SSMs) (SArkkd and Svensson, P0773), dynamical autoencoders (Girin
ef_all, 2020), switching SSMs (Ghahramani and Hinfon, P000), Gaussian and Dirichlet processes

and Hinfon, PO0RX; McInnesef all, P(1TR), and Latent Neural ODEs (Rubanova ef all, P(1Y).

In this paper, we focus on SSMs for high-dimensional neural time series. Classical models include
Linear Gaussian SSMs (Kifagawa and Gersch, T996) and Hidden Markov Models (Rabiner, ZO07),
while modern variants include Deep SSMs (Rangapuram et all, POTR), Deep Kalman Filters (Krish
han_ef all, 20T54), GPDM (Wang et all, 2005), GPSSMs (Eleffheriadis_ef all, P0T7), and nonlinear
latent models such as LFADS (Sussilloef-all, PZ0T#) and GPFA (iref-all, PO0R). Recent approaches
such as SING improve inference for latent SDEs (Hiefall, D(175). Despite these advances, limita-
tions remain: some models fail to capture oscillatory dynamics, others require structural constraints,
and DNN-based approaches are data-hungry. Sequence models like RNNs and LSTMs (Chang et all,
20074 capture nonlinear dependencies but pose interpretability and training challenges (Glorof-and
Bengig, ZOT0).

To address these limitations, we propose MIP-CSDE (Marked Inducing Point Cascaded SDE), which
balances interpretability and expressive power. Inspired by findings that neural manifolds evolve
smoothly along low-dimensional trajectories (Cunningham and Yu, P0T4; Gosztolai_ef-all, 2023),
MIP-CSDE assumes that a sparse set of trajectory samples suffices to reconstruct the manifold. The
first layer models trajectories with Brownian bridge SDEs, using inducing points from a multivariate
marked point process (Daley and Vere-Jones, 2006; Dksendal, POT3). These trajectories define the
drift for a second SDE layer, whose outputs map to observed data. This cascaded structure yields
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Figure 1: Cascade SDE Model Structure and its Application in Decoding Lorenz System Trajectories:
(A) Shows the graphical representation of our proposed model, where inducing points (7;,m;) go through two
cascade SDEs (X,Y;) followed by projection to the observation domain (Z). (B) Top row shows the observed
data used as input to our proposed model. This data is generated by projecting the Lorenz trajectory through
a 10-dimensional linear mapping followed by adding multivalent gaussian noise. The bottom row shows the
underlying Lorenz trajectory and its estimation by our model, along with the timing of the inducing points.
Here, MIP-CSDE simultaneously learns the mapping from the manifold to the observed space while inferring
the nonlinear and complex dynamics of the Lorenz attractor. The timing and values of the inducing points
reflect their adaptive behavior in capturing both fast and slow transitions along the trajectory.

a continuous, differentiable latent process capable of modeling arbitrarily complex dynamics as
inducing points increase. We derive efficient inference and training procedures, with complexity
scaling linearly with data length, and show that MIP-CSDE recovers latent manifolds accurately in
both synthetic and neural datasets. Figure [ illustrates the graphical model and a Lorenz-projected
time series fit.

The paper is organized as follows. Section 2 presents MIP-CSDE, its properties, and inference
procedure. Section 3 applies the model to simulated and neural data. Section 4 provides discussion,
and Section 5 concludes.

2 MATERIALS & METHODS

In this section, we first define the components of our model, including the generation of inducing
points and the SDEs that map these points to the observed time series data. We establish the uni-
versal approximation properties of the proposed model and then develop its training and inference
procedures.

2.1 CASCADE SDE FRAMEWORK

Figure DA illustrates the model structure. The inducing points are a set of event-value pairs that
sample the underlying manifold in both time and value space. Each event is characterized by a
timestamp t¢; and an associated mark vector 171;. The model considers an arbitrary finite sequence of
these pairs, represented as the set Z = {(m;,¢;); ¢ = 1,2,...}. The joint probability distribution
over a period T for L events is given by:

T L
p({(tivmi)}iLzlaLvT) = €xXp </0 A(t | Ht) dt) ;I;E/\(tl | Ht7)p(ml ‘ ti?Hti) ()

where A(t; | Hy,) is the event occurrence rate conditioned on the history of previous events #,,
and p(m; | t;, He,) defines the mark distribution conditioned on the event time ¢; and the history
‘H,; (Tacabsen, P00A). The sequence of event can also be described using waiting times, defined
as 7, = t; — t;_1, which transforms the process into a renewal marked point process (Daley and
Vere-Tones, 2006).
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In the specific case, we can assume that the waiting times 7; are independent of the previous events.
Similarly, we can assume that m; is independent of the previous events and current waiting time.
Under these assumptions, the waiting times can be modeled using a Gamma distribution, and the
values 73; can be modeled using a multivariate normal distribution.

With the inducing points generated, we now introduce the remaining components of the model that
map these points to the observed time-series data. Let Z;, € RM denote the observed data at
discrete time points k = 1,..., K, which are modeled as functions of an underlying continuous
latent process Y; € RP, where D < M. Y; evolves according to another latent process X;, which
has the same dimension as Y;. The latent process X; = {z¢}2, is modeled using a set of SDEs,
where the process is constrained to reach the mark values at times specified by the inducing time
points - i.e, a Brownian bridge SDE (Pifman_and Yor, T99Y). Evolution of state process in each
dimension d = 1,..., D is defined by:

dzd = pddt + o dw, )

where w,fl is a standard Wiener process, uf is the drift term, and af is the time-dependent diffusion

coefficient. For t € [t;,t;41), which corresponds to the waiting period 7,1, the drift and diffusion

terms are defined as: 4 4
My — Ty a_ i =0 -t)
—, Oy =y
i1 —t

tiv1 —1;

where m¢ 1 is the d-th component of the mark vector 171;1, the value that the process must reach
at the event time ;. The latent process Y; = {y¢} (?:1 evolves according to:
dyl =z dt + 05 dvd, “)
d

where the drift term for y¢ is defined by ¢, ¢ is a standard Wiener process, and 03 is the diffusion
coefficient for the d-th component. Finally, the observations Zj, are defined as:

yliAt

Zi=w| | +en 5)
D
Yeat

where At denotes the sampling interval at which the observations Z, are collected, W € RM*P jsa
linear projection matrix, and £, ~ A'(0, R) represents Gaussian noise with covariance R € RM*M
Here, we assume a linear noisy projection; more generally, the framework can accommodate other
types of mappings. For instance, for the hippocampus data analyzed in Section B4, the mapping
between Y; and Zj, characterizes the rate function for a point process observation.

2.2 MODEL PROPERTIES

In this section, we discuss two key attributes of MIP-CSDE: its universal approximation capability
and its computational cost. Other aspects of the model, including its nonparametric nature and
strategies for managing the growth of inducing points, are discussed in the Appendix Bl

2.2.1 UNIVERSAL APPROXIMATION PROPERTY

When the process is deterministic and the inducing points are equally spaced, we can rely on the
sampling theorem which suggests that a signal can be completely reconstructed from its samples
(Shannon, 1949). In simple terms, any continuous function can be reconstructed from properly
sampled data points. Here, we extend a similar idea to cascade SDEs using the inducing points.

Theorem: Let f € C(]0,77]) be a continuous function and let £ > 0 be arbitrary. Then there exists
a choice of inducing points such that the expected one-dimensional component of the process, E[s;],
uniformly approximates the integral

g@)zﬂgﬂ@ds ©)

within error ¢, in the sense that
sup [E[si] — g(t)] < e. ™)
t€(0,T]
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Here, s; denotes the d-th component y of the process V; = {yf}2_,.

. . t . .
Proof: In our model, each component is given by s; = fo rdds + oW¢, where ¢ is a Brownian

bridge, Wtd is a standard Brownian motion, and o is the noise variance.

Let {¢;}}¥, be uniformly spaced inducing points, each associated with a mark m;. Define N by
piecewise linear interpolation of these inducing points. Since piecewise linear functions are dense in

C([0, 7)), we can choose {m;} such that =" — f(t) uniformly on [0, T]. Define s = [} 24N ds.
Because integration preserves uniform convergence, it follows that

E[sN] — g(t) = /Ot f(s)ds uniformly on [0, 7] (8)

The noise term satisfies E[cW¢] = 0 and Var(c W) = o2t. Applying Chebyshevs inequality, we
have P (\st — Els¢]| > 77) < ”;2T , so for sufficiently small o, the process s;] concentrates around

its expectation. In Appendix B, we establish that as N — oo, the spacing of the inducing points
converges to T'/N. Thus, by selecting appropriate inducing points {(¢;,m;)}, we ensure

sup [E[s,] — g(t)| < e ©)
t€[0,T]

Corollary: Given a proper set of inducing points, any multidimensional time series can be charac-
terized through our proposed model.

Proof: With the above theorem, we have shown that each dimension of Y; can be properly character-
ized using a finite set of inducing points. We can assume that each dimension of Y; is independent
of the others; thus, we only need to adjust the corresponding inducing point values to capture each
specific dynamic. Note that as the number of sample points increases, convergence to the bound is
achieved using the same set of inducing point times across dimensions.

This proof does not specify the manifold representation but shows that any such representation can
be constructed with suitable dimensions and a sparse set of inducing points. In practice, marks and
times are adjusted from the observations, creating dependencies across dimensions and among the
inducing points.

2.2.2 COMPUTATIONAL COST

A key advantage of the proposed model lies in its favorable computational complexity compared to
other non-parametric models such as GPs. Standard GPs require inversion of an N x N covariance
matrix in their prediction step, which results in a computational complexity of O(N?) (where N is
the number of samples or time points) (Seeget, Z004). This scaling substantially restricts the appli-
cability of Gaussian Processes for long temporal sequences or high-frequency data. In contrast, as
we show in the next section, inference for the discrete representation of our model can be performed
using a sequential Monte Carlo (SMC) (Doncef ef all, PO0T) approach. When using particle-based
methods such as Particle Marginal Metropolis-Hastings (PMMH) Andrien ef-all (20010), the compu-
tational cost of each trajectory inference run scales as O(P - N), where P is the number of particles
and [V again denotes the number of time points. This linear scaling with respect to N enables our
proposed model to handle long trajectories more efficiently, making it well suited for characteriza-
tion of high-resolution neural data. Moreover, the computational cost of inference is independent
of the number of inducing points, since neither their number nor their values affect the SMC pro-
cedure. While generating inducing points incurs additional computational cost, their sampling rate
is adapted to the underlying dynamics and scales as O(L), where L is the maximum number of
inducing points.

2.3 MODEL TRAINING AND INFERENCE

The training objective is to maximize the marginal likelihood (or evidence) of the observed data
{Zk},{,;o. This involves updating several sets of parameters, including the event-value posterior
distribution or parameters. Additionally, we must infer the trajectories of X; and Y; over t = [0, T.
For the training process, we use an Expectation-Maximization (EM) algorithm, which can deal with
latent process (Brown and Kass, POTS). It is also possible to use a variational inference approach
Blerefall (ZOT7), which is discussed in Appendix B73.
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To develop the EM algorithm, we first derive a discrete-time representation of our model. To accom-
plish this, we use the renewal waiting time process discussed in section 1. Under this assumption,
we can break the non-Markovian dependence of X;, which enables the use of recursive inference
methods such as SMC. Simply put, at time ¢, we already know when the next inducing point occurs
and its mark value, which breaks the dependence on the future trajectory of X;. It is worth pointing
out that inducing points are in continuous space, thus, we can reconstruct X; and Y; at any discrete
resolution. Appendix B4 discusses the discrete representation of SDEs. Given this representation,
Algorithm [ outlines the custom particle filtering algorithm developed for our model, which cor-
responds to inferring the states (X;, Y;, and the inducing points) when the model parameters are
known. A key component of this inference procedure is the proper sampling of event—value pairs,
which is addressed within the algorithm. A more detailed explanation of this approach is provided
in Appendix BT.

Algorithm 1 SMC for Joint Inference of Inducing Points and State Processes

1: Define:

2: p(Xo),p(Yo) Processes initial distribution

3: p(r,m | Hy) Event-value distribution priors

4: At Sampling interval

5:U Number of particles

6: ny Number of inducing points for particle u
T: 7( Xk, Yo | Xoik—1, Yoik—15 Zk, {7 M}Y0ing ) Proposal distribution

8: foru = 1to U do

9: Sample X ~ p(Xo), Yy" ~ p(Yo)

10: (mg,70) ~p(r,m | Hg)yn, =0
11: end for

12: for k = 1to K do

13: foru = 1to U do

14: if kAt > 7,7 then > Check if a new event-value pair is needed
15: Sample new (7%, m") ~ p(7,m | Hy)

16: Update particle with new {{7, m},, , 7%, m"} and increment n,,

17: end if

18: Sample (X}, Vi) ~ m(Xk, Yi | Xgip—1, Yoik—1, Zk, {7, m}g:nu)

19: Compute importance weight:

w P2k | X30) x p(Yy' | X)) x p(Xg [ {1, m}g.n,,)
e (X5 Vit | XGe—1 Yoo 1> Ze, {7 m}8.,)

20: end for “
21: Normalize weights: @} = Zwliuu
u k
22: Resample particles using ,, (Each particle encompasses both processes, X, and Y{;,, as well as the set of event-value pairs
{r,m}Gin,)
23: end for

In the M-step, we maximize the expectation of the complete log-likelihood with respect to the model
parameters. Using the particle filters from the E-step, we estimate the parameters of the event-time
and mark model by maximizing the posterior. For the inducing points, we apply a MAP proce-
dure, updating the parameters of the proposed distribution for each waiting period, so the number of
parameters evolves as the model adapts to the dynamics. Observation process parameters can be up-
dated in parallel. The M-step is computed numerically using a stochastic gradient ascent algorithm.
Further details are provided in the Appendix B4.

We defined the training and inference procedures for a single trial, but the model can be applied
to multiple trials. Parameters can be shared across trials, while each trial retains its own inducing
points and X and Y; trajectories.

3 RESULTS

In this section, we evaluate our framework on simulated and real datasets. We first consider a
one-dimensional chirp time series, then reconstruct a Lorenz system trajectory projected into a mul-
tidimensional observation space. We compare our approach to recent models for continuous latent
dynamics. Finally, we apply the method to neural recordings. We decode rat hippocampal place-cell
activity during navigation on a W-shaped maze and then apply our model to infer the underlying
low-dimensional manifold of monkey neural activity in M1 and PMd during a center-out reach task.
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3.1 CHIRP SIGNAL

For the first example, we use MIP-CSDE tore- A
construct a chirp time series signal. The chirp
consists of a single harmonic, with frequency ™
changing linearly or nonlinearly over time. We
consider it a good benchmark to assess whether 8
our model can adjust inducing points timing 2
and values to capture the dynamics. We gen- x ,
erated 500 samples at 20 Hz, adding Gaussian
noise (variance 0.1) to each sample of it. The ¢
frequency decreases linearly from 0.2 to 0.1 Hz L / A A \

over 25 seconds. X; and Y; are 1-dimensional : |4 | 4 P e ‘
processes (0, = 10-1, Oy = 10~%), with wait- g° \/ \/'j \ﬁ Q\“MM‘R{
ing times following a Gamma(2,1) prior (mean
2, SD 1.41) and values with a Normal(0,1) 10 —
prior. e

To fit the model, we ran the SMC inference al-
gorithm (Table 1) with 1000 particles over 12 0 100 200 e 400 500
EM iterations, to update inducing point param-

eters while reconstructing the signal. Smaller

Figure 2: Chirp Signal Reconstruction Using MIP-

: -~ . CSDE: (A) Simulated chirp signal with additive Gaus-
particle numbers were tested, and ~1000 parti sian noise. (B) Mean of X; inference derived using the

cles pro Vlde.d rObu.St 1qference. The mean num- SMC. (C) Inferred inducing points at the last iteration of
ber of inducing points increased from 13 at first gy (D) Y; trajectory generated through Cascade SDE.

itera.tionl O.f.SMC to 36 at the end, and.their. in- The generated Y; reasonably matches the ground truth
tensity, initially uniform, adapted per iteration gjgnal.

to capture the temporal in dynamics.

Figure D shows the modeling results. The inferred signal in Figure DB represents the bridge SE,
where corresponding inducing points are shown in Figure BC. Using these points, we can generate
trajectories (Figure PD) of process, which is close to the simulated chirp signal.

3.2 LORENZ SYSTEM TRAJECTORY RECONSTRUCTION

We applied our framework to simulated data generated by the Lorenz attractor system (Lorenz,
1963), a classic example of chaotic dynamics. This benchmark is ideal for assessing whether latent
variable models can recover complex attractor geometry from noisy, high-dimensional observations.

The three-dimensional Lorenz trajectories were projected into a 10-dimensional observation space
using a random Gaussian matrix (W in Equation H). The projected signal was sampled at 10 Hz
for 500 points, with correlated Gaussian noise added to generate Z. X; and Y; dimensions are set
to 3, and inference was performed using our SMC—-EM procedure with 20,000 particles and 25 EM
iterations (noise variance for the state processes are set ag =1 and UZ =10"3ford =1,2,3). The
model simultaneously learned W, Lorenz trajectories, and the timing and values of inducing points.
We checked the likelihood growth and parameter updates, which indicated stable convergence.

Figure MB shows the observed data (Z) and inferred manifold. The inferred trajectory closely
matches the simulated one. Inducing points concentrate during lobe transitions, demonstrating adap-
tive allocation to rapidly changing dynamics.

3.3 COMPARATIVE ANALYSIS ON SIMULATED DATASETS

To evaluate the performance of MIP-CSDE, we benchmark it against several continuous-time base-
lines in terms of both predictive accuracy and computational efficiency. The baselines include mod-
els of increasing flexibility: a Linear SDE, a Gaussian Process SDE (GP-SDE) (Dunckeref all, DOTY),
and the Gaussian Process Switching Linear Dynamical System (GP-SLDS) (Huefall, P024). To en-
sure a robust comparison, all baseline models were fitted using the highly efficient SING inference
framework (Hu_ef all, 2073).

We report performance using the MSE in the observation space. This choice of metric is necessitated
by a key property of the baseline models, where their latent spaces are only identified up to an
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Table 1: Performance comparison with baseline continuous-time models. For simulated data (Chirp, Lorenz),
we report MSE. (Results are reported as mean = standard error across 5 trials.)

Dataset MIP-CSDE Linear SDE  GP-SDE GP-SLDS

Chirp Signal 0.30+0.02 048+0.05 0.39+0.06 0.36=+£0.02
Lorenz System 0.18 £0.01 0.28£0.04 0.25+0.03 0.21+0.03

arbitrary affine transformation. This implies that a direct comparison between their inferred latent
trajectories and the ground truth is not meaningful without a post-hoc alignment procedure. The
reconsructed latent along with realigned version is presented in appendix B=R.

The quantitative results in Table 0 indicate that MIP-CSDE attains the lowest error on the Lorenz
system (MSE 0.18 4 0.01), while performing comparably to GP-SDE on the chirp signal (MSE
0.30£0.02 vs. 0.29£0.06). On the Lorenz benchmark, our implementation required approximately
290s, compared with 12s for Linear SDE, 38s for GP-SDE, and 252s for GP-SLDS. We also
observed higher memory usage for GP-SLDS on longer sequences, which is consistent with the
scaling behavior of GP-based kernels. For MIP-CSDE, runtime scales approximately linearly with
the number of particles increasing particles improves accuracy at additional computational cost,
reflecting an explicit accuracy-compute trade-off. Although implementation details and hardware
choices affect absolute timings, the observed trends are consistent with the computational analysis
presented in Section 727, As expected, measured runtimes scale approximately linearly with both
particle count and sequence length (Appendix [B™). Overall, these results support MIP-CSDE
as a more accurate and computationally competitive approach for recovering latent dynamics and
manifolds in continuous time.

3.4 RAT HIPPOCAMPUS: DECODING SPATIAL TRAJECTORIES FROM CA1 SPIKING

We applied MIP-CSDE to hippocampal CAl A id T A T T e,

place cells’ recording from a rat navigating a T X "'

W-shaped maze loo and Frank (2Z018). Decod- o
ing trajectories from place cells’ activity is a E™ v g e e vl gyl
longstanding benchmark task for SSMs. Prior

B WTTTTRRTIN RV RAN VTR 111k 1 I Iuhm Lol
work has used more flexible decoders, includ- i ot Sk B 7“".7,‘?"\'.. T bvm vk ot

b1 e WH-J-H-JI—

ing Gaussian mixtures and neural models, to e

improve robustness Yonsefi ef all (Z019); KarlsA cadt o M
son_and Frank (Z00R); Brown ef all (T99%). The B K e
dataset in this example contained spiking activ- 00
ity of 62 place cells sampled at every 33 ms. g =

Lat X1

X, and Y; dimensions are set at 2, with X, rep-
resents a proxy of the rat velocity of rat and e
Y; position. The cell spiking activity is char- .
acterized using a Poisson point-process model,

where the firing rate \; of cell ¢ is estimated

non-parametrically using kernel-based intensity 20 |
functions Yonsefi-efall (2019). Given the rate wor | [ |
function and cell spiking activity, the likelihood ul \J
of Y} is defined by o

—T4

_ (At )\l7t)2; eXp(_)\i’tAt) 1600—017 s Y2 Laty2 -

T\me (Si

Figure 3: MIP-CSDE Place Cell Decoder: (A) Raster
with At = 33 ms. The full likelihood given plot of 6.2 cells. (B) Inferred mean velocity.ip horizontal
62 cell activities is defined by the product of anc} vertical axes. (C) Dec}oded mean p031.t10n vs. true
their corresponding likelihood across cells. We trajectory. The model achieves high decoding accuracy
used 80% of the trajectory to estimate and build and robustness compared to others.
the cell rate models and decoded the remainder.
Decoding was performed with 10,000 particles, initialized at the rats starting location with zero
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velocity. Inducing-point priors were Gamma(8, 2) for waiting times and A/ ( [8] , 0.5 ngg) for
values.

Figure B shows the raster plot and mean of decoded trajectory, which closely follows the rats actual
path traversing left, middle, right arms. Inducing points were sparse on straight arms but concen-
trated in the central corridor and corners, consistent with pauses, turns (Appendix Figure [@). De-
coding accuracy was 6.1 £ 0.4 cm (2D MSE), outperforming state-of-the-art decoders such as SSM
(17.2 cm) and Gaussian Mixture SSM (14 cm). The results and almost real-time processing speed (2
msec per time interval) suggest MIP-CSDE can be deployed as a fast and accurate decoder model.

3.5 MANIFOLD DIFFRENTIOTION DURING MONKEY REACHING TASK

We applied our framework to the Neural La- ol ® Target onset
tents Benchmark (NLB) MC_Maze dataset (Pei ' T goae
ef_all, 2021), which contains high-resolution 014
electrophysiological recordings from macaque
dorsal premotor (PMd) and primary motor
(M1) cortices during a center-out reaching
task (Churchland ef all, POT74d). Previous anal-
yses of this dataset have shown that neural o]
activity in M1 and PMd during such stereo-

typed, planned movements can be predicted o2 00 o1 04 oe
from the population state at movement onset.

The dataset includes recordings from 182 neu- Figure 4: Inferred Neural Manifolds During Prepa-
rons sampled at 1 ms resolution, along with be- ration and Reach Phases. The inferred manifolds in

havioral covariates such as hand position, veloc- the preparation and reach phases show similar trajec-
ity, and cursor location. tories, with the reach phase an elongated replica of the

preparatory phase. This pattern is expected, as the reach
Our aim was to infer an unsupervised manifold phase usually takes longer to complete.
representation of neural activity and to examine
whether the inferred dynamics during the preparation phase correlate with those in the reach phase.
We hypothesized that the manifold representation in the preparatory phase would be a scaled version
of that in the acquisition phase, and potentially differ across reach targets.

A Target acquisition

Dim 2

0.0

We assumed a two-dimensional latent space, with each neurons spiking activity modeled as a
Bernoulli process, where the spiking probability depended on a linear combination of the latent
state at the same moment. We ran MIP-CSDE with 10,000 particles and 30 EM steps. Figure 4
shows the inferred manifolds for two example trials. Within each trial, the trajectories during the
reach and preparation phases were similar, but they differed across trials. These results are consistent
with previous findings.

We also observed a higher rate of inducing points during the preparatory phase, similar to what we
found in our rat hippocampus model, where the rate increased during more complex movements.
This suggests more intricate neural dynamics during these periods. A critical advantage of MIP-
CSDE is that it does not impose priors on the kernel or dynamics; the only prior assumption concerns
the latent dimensionality. We will address how this limitation can be further refined in the Discussion
section.

4 DISCUSSION

We developed the training and inference pipeline for a discretized version of our framework and
applied it to simulated and neural datasets. The first example introduced the core concept of the
model, showing its ability to draw proper inducing points that robustly captures temporal dynamics
present in the data. The second example used high-dimensional simulated data with nonlinear and
complex underlying dynamics, and highlights model capability to properly scale as the dimension
of observations or latent states grow. In the third example, we showed that the model can be uti-
lized as a robust and accurate dynamical decoder. In the fourth case, the model inference of latent
processes aligns with the preparatory phase of motor task, despite there is no prior knowledge on
how the neural activities encode movement. We also compared our model on simulated data against
models such as Latent ODEs, SING, and DiGP. Our model demonstrates comparable or even better
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prediction accuracy, while being computationally efficient and achieving similar runtime. These
collective results underscoring our proposed model usefulness in tasks like manifold discovery and
neural decoding. Besides, these results corroborate with the universal approximation of the model
as discussed in Section .

It is worth to mention that with other models such as DKF or GPs (Krishnan_ef all, PITSH) (Casald
efall, DOITR) , we can infer the latent processes or reconstruct the data; however, they require large
datasets, rely on strong priors on kernel or covariate choices, and involve more complex training
and inference steps. Our model does not require a pre-defined kernel or extensive dataset and more
importantly maintains a simple and interpretable structure. This is especially valuable in fields like
neuroscience, where understanding the relationship between latent dynamics and observed data is
crucial (Chnrchland ef all, ZOT7H). Furthermore, our model offers dual interpretability, one where
we can analyze the latent trajectories and their connection to other covariates, or we can examine
the timing and values of the inducing points that shape the manifold.

We used a discretized representation of the model to derive its training and inference. However,
extending to a continuous formulation similar to neural ODEs (Chen"ef all, OT8) could improve
inference robustness and will reduce numerical errors in generating states trajectory. Noise variance
in both the X; and Y; processes strongly influences the models behavior. High variance in the
drift complicates inducing points inference, while the variance in X; controls the flexibility of the
interpolation paths, from nearly linear to highly flexible. In current development of the model, we
adjust their values by checking different values for both; however, tuning these parameters can be
explored as part of the model training. Training and inference in the model are performed using a
custom SMC algorithm. While SMC in general can accommodate different observation types such
as the point process observation model we used in neural data example, there might be more efficient
algorithms for specific cases, such as the observation model defined in Equation (2). When event-
value pairs are known, the model reduces to a linear state-space system, allowing use of the Kalman
filter, which provides faster and more robust estimation. This motivates a hybrid approach, which
we can use SMC for the event-value inference and the Kalman filter for state estimation, which will
be explored in further development of this framework. Currently, we assume independence between
marks and waiting times, and no dependence on past events. This simplifies the model inference and
training but may reduce its ability to adjust inducing points to capture changes in data happening at
different temporal scales. For example, fast transition in the latent state may require shorter waiting
times and larger marks. As a result, exploring alternative distributions for mark and waiting time
including those that are time or history dependent, may be necessary to improve model performance.

In our framework, the dimensionality of the latent manifold is set as a model hyperparameter. To
determine an appropriate value, one can either evaluate performance across a range of candidate
dimensions or adopt an automatic relevance determination (ARD) ? strategy. In the latter approach,
priors are placed on the observation model linking latent processes to observations, allowing the
effective dimensionality to be learned through shrinkage.

5 CONCLUSION

Here, we introduce a cascade SDE framework to infer the underlying latent structure and manifold
present in high-dimensional time series using a sparse set of inducing points, adaptively placed in
both time and value space. The model achieves a high level of expressive power, while its computa-
tional cost grows only linearly in both data dimensions and time. The comparative analyses indicate
that it achieves reconstruction accuracy on par with or superior to state-of-the-art models. These
results suggest that the model holds promise as an unsupervised dimensionality reduction tool and
can be robustly applied as a dynamical neural decoder or adaptive feature extractor across a range
of neuroscience applications.
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A APPENDIX

A.1 NONPARAMETRIC AND NON-MARKOVIAN PROPERTIES

In our model, the X exhibits dynamics similar to that of samples from a GP with specific covari-
ance structures, for example, an Ornstein-Uhlenbeck process corresponding to an exponential kernel
(UhIenbeck and Ornsfein, T930). Within the model, the number of inducing points is not fixed in
advance and it adapts dynamically to the complexity of the observed dynamics. The nonparametric
and GP-like nature of our model makes it a alternative choice for machine learning and probabilistic
applications. In our proposed model, the trajectory of X, process is dependent to both past and fu-
ture event-value pairs; thus it does not satisfy the Markovian property. This might complicate both
training and inference within our framework. In section 11 , we reformulated the inducing point
distribution using a renewal marked point process, which lets us to define X; and Y; process with
a Markovian property. In section I3, we leverage this reformulation of SDEs for the inference and
training of the model.

A.2 CONVERGENCE OF SPACING BETWEEN ADJACENT SAMPLES

Let X1, Xy,..., Xy be iid. random variables uniformly distributed on [0, 7], and let X ;) <
X(2) < -+ < X(n) denote their order statistics. Define the adjacent spacings d; = X(;11) — X(y)
fore=1,...,N — 1.

From properties of uniform order statistics, the expected value of the i-th order statistic is E[X ;)] =

T
~1- 1t follows that

Eld;] = E[X(i41) — X)) = N1 (11)

which satisfies E[d;] — % as N — oc.

Moreover, the variance of d; satisfies Var(d;) = O(N ~2). By Chebyshevs inequality,

Var(d;) 1
P(d — Bla)| > < Y% _ o (NQ) (12)

which vanishes as N — co. Therefore, d; — % in probability.

Furthermore, classical results on uniform spacings imply that the maximum spacing max; d; satis-
fies

T —1/2
1§1;‘I§}\)7(—1dz N +0 (N ) (13)

with high probability, confirming that all gaps become uniformly close to % as N — oo.

A.3 VARIATIONAL INFERENCE FOR MODEL TRAINING

To complement the EM approach, we also develop a variational inference (VI) algorithm for training
our model. As in Section I, we begin with the discrete-time representation of the renewal process,
which breaks the non-Markovian dependence of X; by ensuring that the next inducing point and
its mark are known at any time ¢. This property makes recursive inference feasible, but instead of
relying on exact latent sampling as in the E-step of EM, we approximate the intractable posterior
using a variational family.

Specifically, we introduce the following structured mean-field approximation:

46 (Xo:rc, Yo, {miomitiey ) = ax (Xo.x: 0x) av (Yo.x; 8y) @rom ({7 miteys o), (14)
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where ¢ = {¢x,dy, drm} are variational parameters. This factorization decouples states and
inducing points while retaining the renewal structure. In practice, we amortize these distributions
using neural networks that map observed data into variational parameters.

The training objective is the evidence lower bound (ELBO):
‘C(ea ¢) = Eq¢ [logpe(ZO:K7 XO:K) YEJ:K7 {Tia mi}iLzl) - IOg Q¢<X0:K7 YO:Ka {Ti; ml}f:l)i| ) (15)

where 6 denotes the generative model parameters. Maximizing £(6, ¢) yields both approximate
posterior inference (via g4) and maximum likelihood estimation of 6.

We employ stochastic gradient variational Bayes (SGVB) with the reparameterization trick to obtain
low-variance gradient estimates. In this formulation, sampling of event—value pairs is embedded
directly into the variational distribution g ,,,, which is parameterized by waiting-time and mark
distributions. These distributions can be chosen flexibly, e.g., Gamma and Gaussian, or replaced
with neural flows for greater expressivity.

Algorithm 2 Variational Inference for Inducing Point and State Estimation

1: Initialize: model parameters 6, variational parameters ¢
2: for each training iteration do
3: Sample latent variables from gg:
Xox, Youre {mis mit iy ~ a
4: Compute stochastic ELBO estimate:

L= log po(Zo:xc, Xo: ¢+ Yourc, {Tismitiey) — log qs(Xo.xc, Yourcs {7i, mi Yoy

5: Update (6, ¢) via gradient ascent on £
6: end for

Unlike EM, where process noise parameters are typically fixed, VI allows them to be included in
the variational family and learned directly. In practice, however, we sometimes constrain these
parameters to preserve stability of the underlying SDEs.

Finally, while the description above applies to a single observed trajectory, the variational framework
naturally extends to multiple trials. Each trial maintains its own approximate posterior over inducing
points and latent trajectories, while global parameters 6 are shared across trials. This amortized
formulation enables scalable training across large experimental datasets.

A.4 DISCRETE REPRESENTATION OF HIERARCHICAL SDE

We focus on a discrete-time formulation of the model. To construct the discrete process, we assume
that X; and Y; are sampled at regular intervals of At. The discrete representation of z¢ is defined
as:

d d
g ) z M — Tk At \/( 41 )( ) AL g’

tir1 — kAL tiy1 — & (16)
wlccl ~ N(07 ng)
where w,f is a Gaussian noise term. Similarly, the discrete-time evolution of y¢ is:
y,‘iﬂzyﬁ—&—szt—!—vAtug, ygNN(O,JZQ) (17)
where 1/,‘3 is Gaussian noise. The discrete observation process is given by:
Zk =WYe + &, & ~N(,R) (18)
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Yi

whereY, = | | |, We RMXD 5 a projection matrix, and &, is observation noise.

UK
To ensure accuracy, At must be much smaller than the minimum inter-event time, i.e., At <
min(7;), so that no two inducing points fall within the same discrete time bin. This constraint can
be satisfied by analyzing the posterior distribution of waiting times and adjusting At accordingly.

In essence, we require an orderly event process—allowing at most one event per bin—which can be
enforced by carefully selecting the bin size At.

When using the waiting time representation, at time k, we already know when the next inducing
point (e.g., event 213) will occur and what its value will be. From a Markovian perspective, we
can assume that the entire process is determined at time k. This assumption simplifies the inference
procedure presented in Algorithm ??.

A.5 DETAILED VERSION OF THE SMC ALGORITHM

Here, we provide a more detailed description of the SMC algorithm introduced in the main text for
inference in our model. This is presented in Algorithm 2.

A.6 TRAINING STEP: M-STEP

For the M-step, we assume that the SMC algorithm has been run and that we have obtained D7, for
uw =1,...,U. The full likelihood of the process is defined as:

K
P(Zv.sc, Xouse, Yo Tiom s iin, s w, wo) = P(Xo, Yo) H (Zk | Y, W, R)p(Yi | Xp—1, Vi1, 0y)

Ny

p(Xk | Xk—la Tling Uya ml:ns) H p(’rn)p(mn)p(wg)
n=1

19)

Here, w represents the model parameters {W, R, 0y, 0 }, and wy is the set of hyperparameters defin-
ing the priors, as detailed in Appendix A.1. The term p(w{ ) appears for each evnt-mark pair because
the prior is applied individually to each waiting time and mark.

In the M-step, we compute the expectation of the full log-likelihood with respect to the posterior
distribution over the latent processes and variables in the model. The latent processes are denoted
by X and Y, while ¢; and m; represent another set of latent variables. The (Q-function, with respect
to which the expectation is taken, is defined as:

Q=E (XO Yok Ty st | Z1ic w) 1108 P(Z1:1¢, Xo:1¢, Y01 Tiimy, » Miin,, s W)

U K U K
—ZlogP (XY + D0 logp(Ze | Vi, W, R) + > Y logp(YVi | Xpt 1, Y3 1, 04)
u=1 u=1k=1 u=1k=1
U K
+ Z Zlogp(X}; | X313 Tl s Oy, MY, 30 = min Ty > k)
u=1k=1 "
+ Z Z log p(1yy) + Z Z log p(miy) + Z log p(wyy) (20)
u=1n=1 u=1n=1 n=1

For the observation model defined in Equation B, the estimation of parameters W and R corresponds
to a multivariate linear regression fit to samples of the X trajectory. Thus, W and R can be estimated
in closed form, similar to the approach used in linear regression. The waiting time distribution

15
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Algorithm 3 SMC Algorithm For Inferring Inducing Points and State Estimation

: Set Algorithm Hyperparameters:

: Set number of particles U

: Define initial distributions p(zo) and p(yo)

: Define proposal density mx (Tk, Yk | To:k—1, Y0:k—15 Zks T0ine  M0:ny, )
: Set hyperparameters ag, Ao For 7 distribution

: Set hyperparameters (o, o For m distribution

. Initialization:

: foru=1toU do

Sample 2 ~ p(zo), Y5 ~ p(yo)
10: Setmy =0, 7% =0,nu =0
11:  Setinitial weight wj = %

12: Initialize particle D§ = {z§, y5, 76", MG, Tu }
13: end for

14: Inference:

15: for k = 1to K do

16: 1. Time & Mark Sampling:

17: foru=1to U do

O 00 Uk W=

18: if k- At > T;;ax(nu) then

19: Sample 7y ~ I'(75 a0, Ao)

20: Sample my,, ~ N (m; wo, &o)

21: Update D}i = {xg:k—lz yg:k—h T()ltznu ) mg:nu 9 Tr;l::w7 mrtltew> zn + 1}
22: end if

23: end for

24: 2. Sampling:
25: foru =1to U do

26: Sample (.’L’Z, yl’ch) ~ Tk (.’L’k, Yk | mg:kfh yg‘:kfh Zks TOu;nu ) mg:nu)
27: Compute importance weight:
u o u p(Zk | yl”:) p(y]: ‘ xz‘fl) p(xz ‘ Tajznuamg:nu)
Wy = Wk—1 - U .U u u u u
Trk(xlwyk | xO:k717yO:k717zk7TO:nu7m0:nu)

28: end for
29: 3. Normalization:
30: foru=1to U do w

W = —h

25:1 wy,

31: end for
32: 4. Resampling:
33: Resample U particles Dy = {28k, Yiks Tom, » Moy, » M } from { D} }5_; with probabilities ;!
34 foru=1to U do
35: Reset weight: wj =
36: end for
37: end for

parameters, i.e., the shape and scale, and the mark distribution parameters, i.e., mean and covariance,
are estimated via MAP using optimization routines.

Given the model formulation, we require running 2n,, (maximum number of inducing points gener-
ated by the SMC algorithm): one per waiting time and one per mark. Although both o, and ¢, can
be learned, we typically fix o, to ensure meaningful propagation from Y to X. If o, is too large,
changes in Z are mostly captured by shifting Y, which limits the propagation of observed data in-
formation to X and the inducing points. On the other hand, o, can be optimized, and a closed-form
solution for its estimation can be derived. Similar to the waiting time and mark parameters, we can
use optimization techniques for its estimation.

In Equation 9, we assume shared o, and o, across latent dimensions, in practice, these can vary
per dimension.
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A.7 GAMMA DISTRIBUTION FOR WAITING TIMES AND PRIOR SELECTION FOR INDUCING
POINTS

To complete the Bayesian framework, we define priors for the model parameters. For the mark
distribution parameters, we assume:

i | i ~ N(po, AE;), X; ~ Inverse-Wishart(v, ¥) 21

where (1, A, v, and ¥ are hyperparameters. For the Gamma distribution parameters o and A govern-
ing the waiting times 7;, we consider the following prior options based on domain-specific knowl-
edge, though their specific forms remain to be fully specified in this study:

* For a:
beLo 1
- a ~ Gamma(ag, bp) = % ya e boar,

— a ~Exp()g) = Age 0,

it _ 2
- a ~ Lognormal(pg,03) = a\/ﬁ exp (_%)’
]
e For X:
dg°

— X ~ Gamma(cg, dp) = F(CO))\CU*Ie*df’)‘,

- A ~ InvGamma(~y, dp) = Fé((?y(;)/\—('yo+l)e—6o/>\7

2
where ag, by, Ao, 10, 0, Co, do, Yo, I are hyperparameters.

In our model, the waiting times 7; and the marks 7; associated with each event are generated
according to specific probabilistic distributions:

* Waiting Times 7;:
The waiting times between events are assumed to follow a Gamma distribution parameter-
ized by a shape parameter o and a rate parameter \. The probability density function for 7;

is given by:
p(7;) = Gamma(7;; v, A) (22)
where the Gamma distribution is defined as:
)\(X
Gamma(7; a, \) = Ta) o leTAL >0 (23)

and I'(«) denotes the Gamma function evaluated at a.

Motivation for using the Gamma distribution:

Consider N i.i.d. samples Uy, ..., Uy ~ Uniform(0,7T), and denote their order statistics
by Uy < - -+ < Ugyy. Define the gaps between consecutive order statistics as

AOZU(l), Al:U(l+1)_U('L) fOfiZl,...,N—l, AN:T—U(N) (14)

As N — oo, it is well-known that each gap satisfies A; 2, T/N, and the rescaled gaps
N A; converge in distribution to an exponential random variable, that is,

NA; 4, Exp(1) (15)

Moreover, the normalized gaps (Ag/T,...,An/T) jointly follow a Dirichlet(1,...,1)
distribution. Marginally, each normalized gap A;/T follows a Beta(1, N) distribution. As
N becomes large, the Beta(1, N) distribution approximates a Gamma(1, 1/N) distribution,
because

N - (Ay/T) % Exp(1) (16)

which suggests that
A; ~ Gamma(l,T/N) (17

Thus, in the large-sample limit, the gaps between ordered uniform samples behave approx-
imately like scaled exponential random variables.
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To simulate ordered points efficiently for a finite number M of samples, we propose sam-
pling M independent gaps

A; ~ Gamma(1,T/M) (18)
and constructing ordered points via the cumulative sums

i—1
Up =Y A i=1,....M (19)
j=0

This motivates our use of Gamma-distributed waiting times 7; in the model, capturing the
natural variability in the timing of events.

e Marks m;:
The marks, representing additional information associated with each event, are modeled
as drawn from a multivariate normal (Gaussian) distribution. Each mark vector /; has an
associated mean vector u; and covariance matrix X;, with the distribution:

p(mg) = N (15 i, Xi) (24)
explicitly given by:
N (7 i, i) =

1 Lo Tyl
i,z &P (—Q(W—ui) % (mi—ui)> 25)

where d is the dimensionality of the mark vector.

This modeling choice allows flexible and realistic characterization of the temporal dynamics 7; and
the event-related features 172; within the system under study.

A.8 COMPARISON OF LATENT TRAJECTORIES

In this section, we provide additional analyses of the latent trajectories inferred by the compared
models. As discussed in the main text, the latent spaces of baseline continuous-time models (e.g.,
Linear SDE, GP-SDE, GP-SLDS) are identifiable only up to an arbitrary affine transformation. To
enable meaningful comparisons, we apply a Procrustes-based alignment procedure between the in-
ferred latent trajectories and the ground-truth latent dynamics.

Representative examples are shown in Figure B, where we compare raw latent trajectories (top pan-
els) with their aligned counterparts (bottom panels) across baseline models. This visualization high-
lights the necessity of alignment for baseline approaches, as their raw latents are not directly com-
parable to the true dynamics.

The generative structure of MIP-CSDE naturally constrains its latent space, yielding trajectories
that are more directly interpretable without alignment. Nonetheless, for fairness, all quantitative
performance metrics reported in the main text are computed in the observation space.

A.9 RUNTIME SCALABILITY EXPERIMENTS

This appendix examines the empirical runtime scaling of the SMC—EM procedure used in our exper-
iments. We vary two primary factors that drive computational cost: the number of particles P in the
SMC layer and the sequence length K (number of time bins). For each setting, we run the Lorenz
benchmark ten times with independent random seeds and report wall-clock time averaged over runs.
Following common practice for GPU timing, we insert explicit CUDA synchronizations around the
timed region and use a high-resolution host timer; we discard a short warm-up to avoid one-time
kernel compilation and cache effects. All experiments use the same model configuration and batch
size as in the main results to isolate the effect of P and K.

Figure B summarizes the measurements. Panel (A) varies P at fixed K, plotting seconds per 1,000
time bins on a log scale. Panel (B) varies K at fixed P = 20,000, reporting seconds per 20,000 parti-
cles. In both regimes, ordinary least squares fits (orange) achieve R? > 0.995 against the measured
times (blue), consistent with the expected O(P) and O(K) complexity under our implementation.
Absolute times depend on hardware, kernel fusion, and memory bandwidth, but the trends align with
the cost analysis in Section ZZZ72. We note that memory usage grows linearly in P and modestly in
K due to buffering of particle states; for large P, gradient checkpointing and mixed precision can
reduce footprint without materially affecting the observed scaling.
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Figure 5: Reconstruction of the Lorenz Trajectory Using Baseline Models. Panels (A-B): Linear SDE;
(C-D): GP-SDE; (E-F): GP-SLDS. For each model, the top panel shows the raw reconstructed latent trajectory,
and the bottom panel shows the trajectory after Procrustes alignment to the ground truth.
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Figure 6: Runtime of the SMC-EM Algorithm With Varying Numbers of Particles on the Lorenz Bench-
mark. (A) Runtime vs. particle count P, shown on a log scale (seconds per 1k bins).(B) Runtime vs. sequence
length K (seconds per 20k particles). Results are averaged over 10 runs. In both cases, measured runtime (blue)
closely follow linear fits (orange, R* > 0.995), confirming the expected O(P - N) complexity discussed in
Section 2.2.2. Experiments were run on an NVIDIA T4 GPU (16 GB) using PyTorch + CUDA.
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Figure 7: Decoding of Rat Movement Trajectory Inside a W-Maze. (A) Decoding results using MIP-CSDE
closely follow the rat’s movement. A small rightward shift appears due to the training session, during which
the rat mostly moved toward the right side of the maze. The decoded trajectory remains inside the maze. (B)
Timing of inducing points overlaid on the decoded trajectory. A higher number of inducing points occurs toward
the ends of the arms, where the rat spends more time and movement patterns are less clear. Increased intensity
of inducing points is also observed in the middle arm and corners of the maze, suggesting that reconstructing
movement in these regions from observed spikes is more complex. Although not explicitly probed here, this
may reflect aspects of the rat’s decision-making and cognitive processing at these key locations
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Figure 8: Decoding of Lorenz Trajectory Using MIP-CSDE. Here, the projection matrix from the latent
process to observations and the additive noise covariance in the simulated data are known. The plot shows one
inferred trajectory (Y'), and dots indicate a sample set of inducing points. The decoded trajectory is aligned
with the generated trajectory.
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Figure 9: Raster Plots of Monkey PDM and M1 Neurons Along with Hand Position During the Reach
Task. (A, B) Raster plots of 182 neurons from M1 and PMd, showing activity before target onset, the go cue,
and target acquisition across two task trials. (C, D) Corresponding monkey hand positions during the same

trials.
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