
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MARKED INDUCING POINT CASCADED SDES FOR
NEURAL MANIFOLD LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The manifold hypothesis suggests that high-dimensional neural time series lie on
a low-dimensional manifold shaped by simpler underlying dynamics. To uncover
this structure, latent dynamical variable models such as state-space models, recur-
rent neural networks, neural ordinary differential equations, and Gaussian process
latent variable models are widely used. We propose MIP-CSDE (Marked Induc-
ing Point Cascaded SDE), a novel cascaded stochastic differential equation model
that balances computational efficiency with interpretability and addresses key lim-
itations of existing approaches. Our model assumes that a sparse set of trajectory
samples suffices to reconstruct the underlying smooth manifold. The manifold
dynamic is modeled using a set of Brownian bridge SEDs, with points–specified
in both time and value–drawn from a multivariate marked point process. These
Brownian bridges define the drift of a second set of SDEs, where their trajecto-
ries are mapped to the observed data. This yields a continuous, differentiable
latent process capable of modeling arbitrarily complex time series as the number
of inducing points increases. For MIP-CSDE, we derive efficient training and in-
ference procedures, demonstrating that its computational complexity of inference
per iteration scales as O(P ·N), exhibiting linear dependence on the observation
data length N , where P is the number of particles. We then show in both syn-
thetic data and neural recordings that our proposed model can accurately recovers
the underlying manifold structure and scales effectively with data dimensionality.

1 INTRODUCTION

The manifold hypothesis proposes that high-dimensional neural time series lie on a low-dimensional
manifold shaped by simpler latent dynamics (Whiteley et al., 2024). Evidence for such structure
appears in auditory cortex activity (Bondanelli et al., 2021) and in speech signals constrained by
vocal tract mechanics (Gonzalez-Castillo et al., 2023). Methods for uncovering latent manifolds
include state-space models (SSMs) (Särkkä and Svensson, 2023), dynamical autoencoders (Girin
et al., 2020), switching SSMs (Ghahramani and Hinton, 2000), Gaussian and Dirichlet processes
(Fox et al., 2008; Eleftheriadis et al., 2017; Wang et al., 2005), t-SNE and UMAP (Van der Maaten
and Hinton, 2008; McInnes et al., 2018), and Latent Neural ODEs (Rubanova et al., 2019).

In this paper, we focus on SSMs for high-dimensional neural time series. Classical models include
Linear Gaussian SSMs (Kitagawa and Gersch, 1996) and Hidden Markov Models (Rabiner, 2002),
while modern variants include Deep SSMs (Rangapuram et al., 2018), Deep Kalman Filters (Krish-
nan et al., 2015a), GPDM (Wang et al., 2005), GPSSMs (Eleftheriadis et al., 2017), and nonlinear
latent models such as LFADS (Sussillo et al., 2016) and GPFA (Yu et al., 2008). Recent approaches
such as SING improve inference for latent SDEs (Hu et al., 2025). Despite these advances, limita-
tions remain: some models fail to capture oscillatory dynamics, others require structural constraints,
and DNN-based approaches are data-hungry. Sequence models like RNNs and LSTMs (Chang et al.,
2024) capture nonlinear dependencies but pose interpretability and training challenges (Glorot and
Bengio, 2010).

To address these limitations, we propose MIP-CSDE (Marked Inducing Point Cascaded SDE), which
balances interpretability and expressive power. Inspired by findings that neural manifolds evolve
smoothly along low-dimensional trajectories (Cunningham and Yu, 2014; Gosztolai et al., 2023),
MIP-CSDE assumes that a sparse set of trajectory samples suffices to reconstruct the manifold. The
first layer models trajectories with Brownian bridge SDEs, using inducing points from a multivariate
marked point process (Daley and Vere-Jones, 2006; Oksendal, 2013). These trajectories define the
drift for a second SDE layer, whose outputs map to observed data. This cascaded structure yields

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

A B

x0

y t

x t

y2 t

z2 t

x2 t

y3 t

z3 t

x3 t

y4 t

z4 t

i

mi

i+1

mi+1

i+2

mi+2

i+3

mi+3

z t

Figure 1: Cascade SDE Model Structure and its Application in Decoding Lorenz System Trajectories:
(A) Shows the graphical representation of our proposed model, where inducing points (τi,mi) go through two
cascade SDEs (Xt,Yt) followed by projection to the observation domain (Zk). (B) Top row shows the observed
data used as input to our proposed model. This data is generated by projecting the Lorenz trajectory through
a 10-dimensional linear mapping followed by adding multivalent gaussian noise. The bottom row shows the
underlying Lorenz trajectory and its estimation by our model, along with the timing of the inducing points.
Here, MIP-CSDE simultaneously learns the mapping from the manifold to the observed space while inferring
the nonlinear and complex dynamics of the Lorenz attractor. The timing and values of the inducing points
reflect their adaptive behavior in capturing both fast and slow transitions along the trajectory.

a continuous, differentiable latent process capable of modeling arbitrarily complex dynamics as
inducing points increase. We derive efficient inference and training procedures, with complexity
scaling linearly with data length, and show that MIP-CSDE recovers latent manifolds accurately in
both synthetic and neural datasets. Figure 1 illustrates the graphical model and a Lorenz-projected
time series fit.

The paper is organized as follows. Section 2 presents MIP-CSDE, its properties, and inference
procedure. Section 3 applies the model to simulated and neural data. Section 4 provides discussion,
and Section 5 concludes.

2 MATERIALS & METHODS

In this section, we first define the components of our model, including the generation of inducing
points and the SDEs that map these points to the observed time series data. We establish the uni-
versal approximation properties of the proposed model and then develop its training and inference
procedures.

2.1 CASCADE SDE FRAMEWORK

Figure 1A illustrates the model structure. The inducing points are a set of event-value pairs that
sample the underlying manifold in both time and value space. Each event is characterized by a
timestamp ti and an associated mark vector m⃗i. The model considers an arbitrary finite sequence of
these pairs, represented as the set I = {(m⃗i, ti); i = 1, 2, . . . }. The joint probability distribution
over a period T for L events is given by:

p
(
{(ti, m⃗i)}Li=1, L, T

)
= exp

(
−
∫ T

0

λ(t | Ht) dt

)
L∏

i=1

λ(ti | Hti) p(m⃗i | ti,Hti) (1)

where λ(ti | Hti) is the event occurrence rate conditioned on the history of previous events Hi,
and p(m⃗i | ti,Hti) defines the mark distribution conditioned on the event time ti and the history
Hi (Jacobsen, 2006). The sequence of event can also be described using waiting times, defined
as τi = ti − ti−1, which transforms the process into a renewal marked point process (Daley and
Vere-Jones, 2006).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In the specific case, we can assume that the waiting times τi are independent of the previous events.
Similarly, we can assume that m⃗i is independent of the previous events and current waiting time.
Under these assumptions, the waiting times can be modeled using a Gamma distribution, and the
values m⃗i can be modeled using a multivariate normal distribution.

With the inducing points generated, we now introduce the remaining components of the model that
map these points to the observed time-series data. Let Zk ∈ RM denote the observed data at
discrete time points k = 1, . . . ,K , which are modeled as functions of an underlying continuous
latent process Yt ∈ RD, where D ≪ M . Yt evolves according to another latent process Xt, which
has the same dimension as Yt. The latent process Xt = {xd

t }Dd=1 is modeled using a set of SDEs,
where the process is constrained to reach the mark values at times specified by the inducing time
points - i.e, a Brownian bridge SDE (Pitman and Yor, 1999). Evolution of state process in each
dimension d = 1, . . . , D is defined by:

dxd
t = µd

t dt+ σd
t dw

d
t , (2)

where wd
t is a standard Wiener process, µd

t is the drift term, and σd
t is the time-dependent diffusion

coefficient. For t ∈ [ti, ti+1), which corresponds to the waiting period τi+1, the drift and diffusion
terms are defined as:

µd
t =

md
i+1 − xd

t

ti+1 − t
, σd

t =

√
(ti+1 − t)(t− ti)

ti+1 − ti
, (3)

where md
i+1 is the d-th component of the mark vector m⃗i+1, the value that the process must reach

at the event time ti+1. The latent process Yt = {ydt }Dd=1 evolves according to:

dydt = xd
t dt+ σd

y dν
d
t , (4)

where the drift term for ydt is defined by xd
t , νdt is a standard Wiener process, and σd

y is the diffusion
coefficient for the d-th component. Finally, the observations Zk are defined as:

Zk = W

y1k∆t
...

yDk∆t

+ εk, (5)

where ∆t denotes the sampling interval at which the observations Zk are collected, W ∈ RM×D is a
linear projection matrix, and εk ∼ N (0, R) represents Gaussian noise with covariance R ∈ RM×M .
Here, we assume a linear noisy projection; more generally, the framework can accommodate other
types of mappings. For instance, for the hippocampus data analyzed in Section 3.4, the mapping
between Yt and Zk characterizes the rate function for a point process observation.

2.2 MODEL PROPERTIES

In this section, we discuss two key attributes of MIP-CSDE: its universal approximation capability
and its computational cost. Other aspects of the model, including its nonparametric nature and
strategies for managing the growth of inducing points, are discussed in the Appendix A.1.

2.2.1 UNIVERSAL APPROXIMATION PROPERTY

When the process is deterministic and the inducing points are equally spaced, we can rely on the
sampling theorem which suggests that a signal can be completely reconstructed from its samples
(Shannon, 1949). In simple terms, any continuous function can be reconstructed from properly
sampled data points. Here, we extend a similar idea to cascade SDEs using the inducing points.

Theorem: Let f ∈ C([0, T]) be a continuous function and let ε > 0 be arbitrary. Then there exists
a choice of inducing points such that the expected one-dimensional component of the process, E[st],
uniformly approximates the integral

g(t) =

∫ t

0

f(s) ds (6)

within error ε, in the sense that
sup

t∈[0,T]

|E[st]− g(t)| < ε. (7)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Here, st denotes the d-th component ydt of the process Yt = {ydt }Dd=1.

Proof: In our model, each component is given by st =
∫ t

0
xd
s ds + σW d

t , where xd
t is a Brownian

bridge, W d
t is a standard Brownian motion, and σ is the noise variance.

Let {ti}Ni=1 be uniformly spaced inducing points, each associated with a mark mi. Define xd,N
t by

piecewise linear interpolation of these inducing points. Since piecewise linear functions are dense in
C([0, T]), we can choose {mi} such that xd,N

t → f(t) uniformly on [0, T]. Define sNt =
∫ t

0
xd,N
s ds.

Because integration preserves uniform convergence, it follows that

E[sNt] → g(t) =

∫ t

0

f(s) ds uniformly on [0, T] (8)

The noise term satisfies E[σW d
t] = 0 and Var(σW d

t) = σ2t. Applying Chebyshevs inequality, we
have P

(
|st − E[st]| ≥ η

)
≤ σ2T

η2 , so for sufficiently small σ, the process st] concentrates around
its expectation. In Appendix A.2, we establish that as N → ∞, the spacing of the inducing points
converges to T/N . Thus, by selecting appropriate inducing points {(ti,mi)}, we ensure

sup
t∈[0,T]

|E[st]− g(t)| < ε (9)

Corollary: Given a proper set of inducing points, any multidimensional time series can be charac-
terized through our proposed model.

Proof: With the above theorem, we have shown that each dimension of Yt can be properly character-
ized using a finite set of inducing points. We can assume that each dimension of Yt is independent
of the others; thus, we only need to adjust the corresponding inducing point values to capture each
specific dynamic. Note that as the number of sample points increases, convergence to the bound is
achieved using the same set of inducing point times across dimensions.

This proof does not specify the manifold representation but shows that any such representation can
be constructed with suitable dimensions and a sparse set of inducing points. In practice, marks and
times are adjusted from the observations, creating dependencies across dimensions and among the
inducing points.

2.2.2 COMPUTATIONAL COST

A key advantage of the proposed model lies in its favorable computational complexity compared to
other non-parametric models such as GPs. Standard GPs require inversion of an N ×N covariance
matrix in their prediction step, which results in a computational complexity of O(N3) (where N is
the number of samples or time points) (Seeger, 2004). This scaling substantially restricts the appli-
cability of Gaussian Processes for long temporal sequences or high-frequency data. In contrast, as
we show in the next section, inference for the discrete representation of our model can be performed
using a sequential Monte Carlo (SMC) (Doucet et al., 2001) approach. When using particle-based
methods such as Particle Marginal Metropolis-Hastings (PMMH) Andrieu et al. (2010), the compu-
tational cost of each trajectory inference run scales as O(P ·N), where P is the number of particles
and N again denotes the number of time points. This linear scaling with respect to N enables our
proposed model to handle long trajectories more efficiently, making it well suited for characteriza-
tion of high-resolution neural data. Moreover, the computational cost of inference is independent
of the number of inducing points, since neither their number nor their values affect the SMC pro-
cedure. While generating inducing points incurs additional computational cost, their sampling rate
is adapted to the underlying dynamics and scales as O(L), where L is the maximum number of
inducing points.

2.3 MODEL TRAINING AND INFERENCE

The training objective is to maximize the marginal likelihood (or evidence) of the observed data
{Zk}Kk=0. This involves updating several sets of parameters, including the event-value posterior
distribution or parameters. Additionally, we must infer the trajectories of Xt and Yt over t = [0, T].
For the training process, we use an Expectation-Maximization (EM) algorithm, which can deal with
latent process (Brown and Kass, 2018). It is also possible to use a variational inference approach
Blei et al. (2017), which is discussed in Appendix A.3.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To develop the EM algorithm, we first derive a discrete-time representation of our model. To accom-
plish this, we use the renewal waiting time process discussed in section 2.1. Under this assumption,
we can break the non-Markovian dependence of Xt, which enables the use of recursive inference
methods such as SMC. Simply put, at time t, we already know when the next inducing point occurs
and its mark value, which breaks the dependence on the future trajectory of Xt. It is worth pointing
out that inducing points are in continuous space, thus, we can reconstruct Xt and Yt at any discrete
resolution. Appendix A.4 discusses the discrete representation of SDEs. Given this representation,
Algorithm 1 outlines the custom particle filtering algorithm developed for our model, which cor-
responds to inferring the states (Xt, Yt, and the inducing points) when the model parameters are
known. A key component of this inference procedure is the proper sampling of event–value pairs,
which is addressed within the algorithm. A more detailed explanation of this approach is provided
in Appendix A.5.

Algorithm 1 SMC for Joint Inference of Inducing Points and State Processes
1: Define:
2: p(X0), p(Y0) Processes initial distribution
3: p(τ,m | Ht) Event-value distribution priors
4: ∆t Sampling interval
5: U Number of particles
6: nu Number of inducing points for particle u
7: π(Xk, Yk | X0:k−1, Y0:k−1, Zk, {τ,m}0:nu) Proposal distribution
8: for u = 1 to U do
9: Sample Xu

0 ∼ p(X0), Y u
0 ∼ p(Y0)

10: (mu
0 , τ

u
0) ∼ p(τ,m | H0), nu = 0

11: end for
12: for k = 1 to K do
13: for u = 1 to U do
14: if k∆t > τu

nu
then ▷ Check if a new event-value pair is needed

15: Sample new (τu,mu) ∼ p(τ,m | Ht)
16: Update particle with new {{τ,m}u

0:nu
, τu,mu} and increment nu

17: end if
18: Sample (Xu

k , Y u
k) ∼ π(Xk, Yk | Xu

0:k−1, Y
u
0:k−1, Zk, {τ,m}u

0:nu
)

19: Compute importance weight:

w
u
k =

p(Zk | Xu
k) × p(Y u

k | Xu
k) × p(Xu

k | {τ,m}u
0:nu

)

πk(Xu
k , Y u

k | Xu
0:k−1, Y

u
0:k−1, Zk, {τ,m}u

0:nu
)

20: end for
21: Normalize weights: ŵu

k =
wu

k∑
u wu

k

22: Resample particles using ŵu
k (Each particle encompasses both processes, Xu

0:k and Y u
0:k , as well as the set of event-value pairs

{τ,m}u
0:nu

)
23: end for

In the M-step, we maximize the expectation of the complete log-likelihood with respect to the model
parameters. Using the particle filters from the E-step, we estimate the parameters of the event-time
and mark model by maximizing the posterior. For the inducing points, we apply a MAP proce-
dure, updating the parameters of the proposed distribution for each waiting period, so the number of
parameters evolves as the model adapts to the dynamics. Observation process parameters can be up-
dated in parallel. The M-step is computed numerically using a stochastic gradient ascent algorithm.
Further details are provided in the Appendix A.6.

We defined the training and inference procedures for a single trial, but the model can be applied
to multiple trials. Parameters can be shared across trials, while each trial retains its own inducing
points and Xt and Yt trajectories.

3 RESULTS

In this section, we evaluate our framework on simulated and real datasets. We first consider a
one-dimensional chirp time series, then reconstruct a Lorenz system trajectory projected into a mul-
tidimensional observation space. We compare our approach to recent models for continuous latent
dynamics. Finally, we apply the method to neural recordings. We decode rat hippocampal place-cell
activity during navigation on a W-shaped maze and then apply our model to infer the underlying
low-dimensional manifold of monkey neural activity in M1 and PMd during a center-out reach task.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.1 CHIRP SIGNAL

Figure 2: Chirp Signal Reconstruction Using MIP-
CSDE: (A) Simulated chirp signal with additive Gaus-
sian noise. (B) Mean of Xt inference derived using the
SMC. (C) Inferred inducing points at the last iteration of
EM. (D) Yt trajectory generated through Cascade SDE.
The generated Yt reasonably matches the ground truth
signal.

For the first example, we use MIP-CSDE to re-
construct a chirp time series signal. The chirp
consists of a single harmonic, with frequency
changing linearly or nonlinearly over time. We
consider it a good benchmark to assess whether
our model can adjust inducing points timing
and values to capture the dynamics. We gen-
erated 500 samples at 20 Hz, adding Gaussian
noise (variance 0.1) to each sample of it. The
frequency decreases linearly from 0.2 to 0.1 Hz
over 25 seconds. Xt and Yt are 1-dimensional
processes (σx = 10−1, σy = 10−4), with wait-
ing times following a Gamma(2,1) prior (mean
2, SD 1.41) and values with a Normal(0,1)
prior.

To fit the model, we ran the SMC inference al-
gorithm (Table 1) with 1000 particles over 12
EM iterations, to update inducing point param-
eters while reconstructing the signal. Smaller
particle numbers were tested, and ∼1000 parti-
cles provided robust inference. The mean num-
ber of inducing points increased from 13 at first
iteration of SMC to 36 at the end, and their in-
tensity, initially uniform, adapted per iteration
to capture the temporal in dynamics.

Figure 2 shows the modeling results. The inferred signal in Figure 2B represents the bridge SE,
where corresponding inducing points are shown in Figure 2C. Using these points, we can generate
trajectories (Figure 2D) of process, which is close to the simulated chirp signal.

3.2 LORENZ SYSTEM TRAJECTORY RECONSTRUCTION

We applied our framework to simulated data generated by the Lorenz attractor system (Lorenz,
1963), a classic example of chaotic dynamics. This benchmark is ideal for assessing whether latent
variable models can recover complex attractor geometry from noisy, high-dimensional observations.

The three-dimensional Lorenz trajectories were projected into a 10-dimensional observation space
using a random Gaussian matrix (W in Equation 5). The projected signal was sampled at 10 Hz
for 500 points, with correlated Gaussian noise added to generate Z. Xt and Yt dimensions are set
to 3, and inference was performed using our SMC–EM procedure with 20,000 particles and 25 EM
iterations (noise variance for the state processes are set σd

x = 1 and σd
y = 10−3 for d = 1, 2, 3). The

model simultaneously learned W , Lorenz trajectories, and the timing and values of inducing points.
We checked the likelihood growth and parameter updates, which indicated stable convergence.

Figure 1B shows the observed data (Z) and inferred manifold. The inferred trajectory closely
matches the simulated one. Inducing points concentrate during lobe transitions, demonstrating adap-
tive allocation to rapidly changing dynamics.

3.3 COMPARATIVE ANALYSIS ON SIMULATED DATASETS

To evaluate the performance of MIP-CSDE, we benchmark it against several continuous-time base-
lines in terms of both predictive accuracy and computational efficiency. The baselines include mod-
els of increasing flexibility: a Linear SDE, a Gaussian Process SDE (GP-SDE) (Duncker et al., 2019),
and the Gaussian Process Switching Linear Dynamical System (GP-SLDS) (Hu et al., 2024). To en-
sure a robust comparison, all baseline models were fitted using the highly efficient SING inference
framework (Hu et al., 2025).

We report performance using the MSE in the observation space. This choice of metric is necessitated
by a key property of the baseline models, where their latent spaces are only identified up to an

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison with baseline continuous-time models. For simulated data (Chirp, Lorenz),
we report MSE. (Results are reported as mean ± standard error across 5 trials.)

Dataset MIP-CSDE Linear SDE GP-SDE GP-SLDS
Chirp Signal 0.30± 0.02 0.48± 0.05 0.39± 0.06 0.36± 0.02
Lorenz System 0.18± 0.01 0.28± 0.04 0.25± 0.03 0.21± 0.03

arbitrary affine transformation. This implies that a direct comparison between their inferred latent
trajectories and the ground truth is not meaningful without a post-hoc alignment procedure. The
reconsructed latent along with realigned version is presented in appendix A.8.

The quantitative results in Table 1 indicate that MIP-CSDE attains the lowest error on the Lorenz
system (MSE 0.18 ± 0.01), while performing comparably to GP-SDE on the chirp signal (MSE
0.30±0.02 vs. 0.29±0.06). On the Lorenz benchmark, our implementation required approximately
290 s, compared with 12 s for Linear SDE, 38 s for GP-SDE, and 252 s for GP-SLDS. We also
observed higher memory usage for GP-SLDS on longer sequences, which is consistent with the
scaling behavior of GP-based kernels. For MIP-CSDE, runtime scales approximately linearly with
the number of particles increasing particles improves accuracy at additional computational cost,
reflecting an explicit accuracy-compute trade-off. Although implementation details and hardware
choices affect absolute timings, the observed trends are consistent with the computational analysis
presented in Section 2.2.2. As expected, measured runtimes scale approximately linearly with both
particle count and sequence length (Appendix A.9). Overall, these results support MIP-CSDE
as a more accurate and computationally competitive approach for recovering latent dynamics and
manifolds in continuous time.

3.4 RAT HIPPOCAMPUS: DECODING SPATIAL TRAJECTORIES FROM CA1 SPIKING

Figure 3: MIP-CSDE Place Cell Decoder: (A) Raster
plot of 62 cells. (B) Inferred mean velocity in horizontal
and vertical axes. (C) Decoded mean position vs. true
trajectory. The model achieves high decoding accuracy
and robustness compared to others.

We applied MIP-CSDE to hippocampal CA1
place cells’ recording from a rat navigating a
W-shaped maze Joo and Frank (2018). Decod-
ing trajectories from place cells’ activity is a
longstanding benchmark task for SSMs. Prior
work has used more flexible decoders, includ-
ing Gaussian mixtures and neural models, to
improve robustness Yousefi et al. (2019); Karls-
son and Frank (2008); Brown et al. (1998). The
dataset in this example contained spiking activ-
ity of 62 place cells sampled at every 33 ms.

Xt and Yt dimensions are set at 2, with Xt rep-
resents a proxy of the rat velocity of rat and
Yt position. The cell spiking activity is char-
acterized using a Poisson point-process model,
where the firing rate λi of cell i is estimated
non-parametrically using kernel-based intensity
functions Yousefi et al. (2019). Given the rate
function and cell spiking activity, the likelihood
of Yt is defined by

p(Yt | zit) ∝ p(zit | λi,t)

= (∆t λi,t)
zi
t exp(−λi,t∆t)

(10)

with ∆t = 33 ms. The full likelihood given
62 cell activities is defined by the product of
their corresponding likelihood across cells. We
used 80% of the trajectory to estimate and build
the cell rate models and decoded the remainder.
Decoding was performed with 10,000 particles, initialized at the rats starting location with zero

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

velocity. Inducing-point priors were Gamma(8, 2) for waiting times and N
([

0
0

]
, 0.5 I2×2

)
for

values.

Figure 3 shows the raster plot and mean of decoded trajectory, which closely follows the rats actual
path traversing left, middle, right arms. Inducing points were sparse on straight arms but concen-
trated in the central corridor and corners, consistent with pauses, turns (Appendix Figure 7). De-
coding accuracy was 6.1 ± 0.4 cm (2D MSE), outperforming state-of-the-art decoders such as SSM
(17.2 cm) and Gaussian Mixture SSM (14 cm). The results and almost real-time processing speed (2
msec per time interval) suggest MIP-CSDE can be deployed as a fast and accurate decoder model.

3.5 MANIFOLD DIFFRENTIOTION DURING MONKEY REACHING TASK

Dim 1

D
im

 2

Figure 4: Inferred Neural Manifolds During Prepa-
ration and Reach Phases. The inferred manifolds in
the preparation and reach phases show similar trajec-
tories, with the reach phase an elongated replica of the
preparatory phase. This pattern is expected, as the reach
phase usually takes longer to complete.

We applied our framework to the Neural La-
tents Benchmark (NLB) MC_Maze dataset (Pei
et al., 2021), which contains high-resolution
electrophysiological recordings from macaque
dorsal premotor (PMd) and primary motor
(M1) cortices during a center-out reaching
task (Churchland et al., 2012a). Previous anal-
yses of this dataset have shown that neural
activity in M1 and PMd during such stereo-
typed, planned movements can be predicted
from the population state at movement onset.
The dataset includes recordings from 182 neu-
rons sampled at 1 ms resolution, along with be-
havioral covariates such as hand position, veloc-
ity, and cursor location.

Our aim was to infer an unsupervised manifold
representation of neural activity and to examine
whether the inferred dynamics during the preparation phase correlate with those in the reach phase.
We hypothesized that the manifold representation in the preparatory phase would be a scaled version
of that in the acquisition phase, and potentially differ across reach targets.

We assumed a two-dimensional latent space, with each neurons spiking activity modeled as a
Bernoulli process, where the spiking probability depended on a linear combination of the latent
state at the same moment. We ran MIP-CSDE with 10,000 particles and 30 EM steps. Figure 4
shows the inferred manifolds for two example trials. Within each trial, the trajectories during the
reach and preparation phases were similar, but they differed across trials. These results are consistent
with previous findings.

We also observed a higher rate of inducing points during the preparatory phase, similar to what we
found in our rat hippocampus model, where the rate increased during more complex movements.
This suggests more intricate neural dynamics during these periods. A critical advantage of MIP-
CSDE is that it does not impose priors on the kernel or dynamics; the only prior assumption concerns
the latent dimensionality. We will address how this limitation can be further refined in the Discussion
section.

4 DISCUSSION

We developed the training and inference pipeline for a discretized version of our framework and
applied it to simulated and neural datasets. The first example introduced the core concept of the
model, showing its ability to draw proper inducing points that robustly captures temporal dynamics
present in the data. The second example used high-dimensional simulated data with nonlinear and
complex underlying dynamics, and highlights model capability to properly scale as the dimension
of observations or latent states grow. In the third example, we showed that the model can be uti-
lized as a robust and accurate dynamical decoder. In the fourth case, the model inference of latent
processes aligns with the preparatory phase of motor task, despite there is no prior knowledge on
how the neural activities encode movement. We also compared our model on simulated data against
models such as Latent ODEs, SING, and DiGP. Our model demonstrates comparable or even better

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

prediction accuracy, while being computationally efficient and achieving similar runtime. These
collective results underscoring our proposed model usefulness in tasks like manifold discovery and
neural decoding. Besides, these results corroborate with the universal approximation of the model
as discussed in Section 2.

It is worth to mention that with other models such as DKF or GPs (Krishnan et al., 2015b) (Casale
et al., 2018) , we can infer the latent processes or reconstruct the data; however, they require large
datasets, rely on strong priors on kernel or covariate choices, and involve more complex training
and inference steps. Our model does not require a pre-defined kernel or extensive dataset and more
importantly maintains a simple and interpretable structure. This is especially valuable in fields like
neuroscience, where understanding the relationship between latent dynamics and observed data is
crucial (Churchland et al., 2012b). Furthermore, our model offers dual interpretability, one where
we can analyze the latent trajectories and their connection to other covariates, or we can examine
the timing and values of the inducing points that shape the manifold.

We used a discretized representation of the model to derive its training and inference. However,
extending to a continuous formulation similar to neural ODEs (Chen et al., 2018) could improve
inference robustness and will reduce numerical errors in generating states trajectory. Noise variance
in both the Xt and Yt processes strongly influences the models behavior. High variance in the
drift complicates inducing points inference, while the variance in Xt controls the flexibility of the
interpolation paths, from nearly linear to highly flexible. In current development of the model, we
adjust their values by checking different values for both; however, tuning these parameters can be
explored as part of the model training. Training and inference in the model are performed using a
custom SMC algorithm. While SMC in general can accommodate different observation types such
as the point process observation model we used in neural data example, there might be more efficient
algorithms for specific cases, such as the observation model defined in Equation (2). When event-
value pairs are known, the model reduces to a linear state-space system, allowing use of the Kalman
filter, which provides faster and more robust estimation. This motivates a hybrid approach, which
we can use SMC for the event-value inference and the Kalman filter for state estimation, which will
be explored in further development of this framework. Currently, we assume independence between
marks and waiting times, and no dependence on past events. This simplifies the model inference and
training but may reduce its ability to adjust inducing points to capture changes in data happening at
different temporal scales. For example, fast transition in the latent state may require shorter waiting
times and larger marks. As a result, exploring alternative distributions for mark and waiting time
including those that are time or history dependent, may be necessary to improve model performance.

In our framework, the dimensionality of the latent manifold is set as a model hyperparameter. To
determine an appropriate value, one can either evaluate performance across a range of candidate
dimensions or adopt an automatic relevance determination (ARD) ? strategy. In the latter approach,
priors are placed on the observation model linking latent processes to observations, allowing the
effective dimensionality to be learned through shrinkage.

5 CONCLUSION

Here, we introduce a cascade SDE framework to infer the underlying latent structure and manifold
present in high-dimensional time series using a sparse set of inducing points, adaptively placed in
both time and value space. The model achieves a high level of expressive power, while its computa-
tional cost grows only linearly in both data dimensions and time. The comparative analyses indicate
that it achieves reconstruction accuracy on par with or superior to state-of-the-art models. These
results suggest that the model holds promise as an unsupervised dimensionality reduction tool and
can be robustly applied as a dynamical neural decoder or adaptive feature extractor across a range
of neuroscience applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

C. Andrieu, A. Doucet, and R. Holenstein. Particle markov chain monte carlo methods. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 72(269):269–342, 2010.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877, 2017.

G. Bondanelli, T. Deneux, B. Bathellier, and S. Ostojic. Network dynamics underlying off responses
in the auditory cortex. Elife, 10:e53151, 2021.

E. N. Brown and R. E. Kass. Estimating a state-space model from point process observations.
Unpublished Manuscript, 2018.

E. N. Brown, L. M. Frank, D. Tang, M. C. Quirk, and M. A. Wilson. A statistical paradigm for
neural spike train decoding applied to position prediction from ensemble firing patterns of rat
hippocampal place cells. Journal of Neuroscience, 18(18):7411–7425, 1998.

F. P. Casale, A. V. Dalca, L. Saglietti, J. Listgarten, and N. Fusi. Gaussian process prior variational
autoencoders. 31, 2018.

H. Chang, Q. Zhang, Y. Wang, Z. Qin, L. Zhao, and H. Wang. Unlocking the power of lstm for long
term time series forecasting. Proceedings of the AAAI Conference on Artificial Intelligence, 38
(4):4292–4300, 2024.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differential equations.
31, 2018.

M. M. Churchland, J. P. Cunningham, M. T. Kaufman, J. D. Foster, P. Nuyujukian, S. I. Ryu, and
K. V. Shenoy. Neural population dynamics during reaching. Nature, 2012a.

M. M. Churchland, J. P. Cunningham, M. T. Kaufman, S. I. Ryu, and K. V. Shenoy. Neural popula-
tion dynamics during reaching. Nature, 487(7405):51–56, 2012b.

J. P. Cunningham and B. M. Yu. Dimensionality reduction for large-scale neural recordings. Nature
neuroscience, 17(11):1500–1509, 2014.

D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes: volume I: elemen-
tary theory and methods. Springer Science & Business Media, 2006.

A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in Practice. Springer,
New York, 2001.

L. Duncker, G. Bohner, J. Boussard, and M. Sahani. Learning interpretable continuous-time models
of latent stochastic dynamical systems. In International conference on machine learning, pages
1726–1734. PMLR, 2019.

S. Eleftheriadis, T. Nicholson, M. Deisenroth, and J. Hensman. Identification of gaussian process
state space models. Advances in neural information processing systems, 30, 2017.

E. Fox, E. Sudderth, M. Jordan, and A. Willsky. Nonparametric bayesian learning of switching linear
dynamical systems. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in
Neural Information Processing Systems, volume 21. Curran Associates, Inc., 2008.

Z. Ghahramani and G. E. Hinton. Variational learning for switching state-space models. Neural
Computation, 12(4):831–864, 2000. doi: 10.1162/089976600300015619.

L. Girin, S. Leglaive, X. Bie, J. Diard, T. Hueber, and X. Alameda-Pineda. Dynamical variational
autoencoders: A comprehensive review. arXiv preprint arXiv:2008.12595, 2020.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 249–256. PMLR, 2010.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

J. Gonzalez-Castillo, I. S. Fernandez, K. C. Lam, D. A. Handwerker, F. Pereira, and P. A. Ban-
dettini. Manifold learning for fmri time-varying functional connectivity. Frontiers in Human
Neuroscience, 17:1134012, 2023.

A. Gosztolai, R. L. Peach, A. Arnaudon, M. Barahona, and P. Vandergheynst. Interpretable statistical
representations of neural population dynamics and geometry. arXiv preprint, 2023.

A. Hu, D. Zoltowski, A. Nair, D. Anderson, L. Duncker, and S. Linderman. Modeling latent neu-
ral dynamics with gaussian process switching linear dynamical systems. Advances in Neural
Information Processing Systems, 37:33805–33835, 2024.

A. Hu, H. Smith, and S. Linderman. Sing: Sde inference via natural gradients. arXiv preprint
arXiv:2506.17796, 2025.

M. Jacobsen. Point Process Theory and Applications: Marked Point and Piecewise Deterministic
Processes. Birkhäuser, Boston, 2006.

H. R. Joo and L. M. Frank. The hippocampal sharp wave–ripple in memory retrieval for immediate
use and consolidation. Nature Reviews Neuroscience, 19(12):744–757, 2018.

M. P. Karlsson and L. M. Frank. Network dynamics underlying the formation of sparse, informative
representations in the hippocampus. Journal of Neuroscience, 28(52):14271–14281, 2008. doi:
10.1523/JNEUROSCI.4261-08.2008.

G. Kitagawa and W. Gersch. Linear gaussian state space modeling. In Smoothness priors analysis
of time series, pages 55–65. Springer, 1996.

R. G. Krishnan, U. Shalit, and D. Sontag. Deep kalman filters, 2015a.

R. G. Krishnan, U. Shalit, and D. Sontag. Deep kalman filters. arXiv preprint arXiv:1511.05121,
2015b.

E. N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2):130–141,
1963.

L. McInnes, J. Healy, and J. Melville. Umap: Uniform manifold approximation and projection for
dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

B. Oksendal. Stochastic differential equations: an introduction with applications. Springer Science
& Business Media, 2013.

F. Pei, J. Ye, D. M. Zoltowski, A. Wu, R. H. Chowdhury, H. Sohn, J. E. ODoherty, K. V. Shenoy,
M. T. Kaufman, M. Churchland, M. Jazayeri, L. E. Miller, J. Pillow, I. M. Park, E. L. Dyer,
and C. Pandarinath. Neural latents benchmark 21: Evaluating latent variable models of neural
population activity. In Advances in Neural Information Processing Systems., 2021.

J. Pitman and M. Yor. Brownian bridge and related stochastic processes. Probability Surveys, 1:
1–61, 1999.

L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition.
Proceedings of the IEEE, 77(2):257–286, 2002.

S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and T. Januschowski. Deep state
space models for time series forecasting. Advances in neural information processing systems, 31,
2018.

Y. Rubanova, R. T. Chen, and D. K. Duvenaud. Latent ordinary differential equations for irregularly-
sampled time series. Advances in neural information processing systems, 32, 2019.

S. Särkkä and L. Svensson. Bayesian filtering and smoothing, volume 17. Cambridge university
press, 2023.

M. Seeger. Gaussian processes for machine learning. International journal of neural systems, 14
(02):69–106, 2004.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

C. E. Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–21,
1949.

D. Sussillo, R. Jozefowicz, L. Abbott, and C. Pandarinath. Lfads-latent factor analysis via dynamical
systems. arXiv preprint arXiv:1608.06315, 2016.

G. E. Uhlenbeck and L. S. Ornstein. On the theory of the brownian motion. Physical Review, 36(5):
823–841, 1930.

L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

J. Wang, A. Hertzmann, and D. J. Fleet. Gaussian process dynamical models. Advances in neural
information processing systems, 18, 2005.

N. Whiteley, A. Gray, and P. Rubin-Delanchy. Statistical exploration of the manifold hypothesis,
2024.

A. Yousefi, A. K. Gillespie, J. A. Guidera, M. Karlsson, L. M. Frank, and U. T. Eden. Efficient
decoding of multi-dimensional signals from population spiking activity using a gaussian mixture
particle filter. IEEE Transactions on Biomedical Engineering, 66(12):3486–3498, 2019.

B. M. Yu, J. P. Cunningham, G. Santhanam, S. Ryu, K. V. Shenoy, and M. Sahani. Gaussian-process
factor analysis for low-dimensional single-trial analysis of neural population activity. Advances
in neural information processing systems, 21, 2008.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 NONPARAMETRIC AND NON-MARKOVIAN PROPERTIES

In our model, the Xt exhibits dynamics similar to that of samples from a GP with specific covari-
ance structures, for example, an Ornstein-Uhlenbeck process corresponding to an exponential kernel
(Uhlenbeck and Ornstein, 1930). Within the model, the number of inducing points is not fixed in
advance and it adapts dynamically to the complexity of the observed dynamics. The nonparametric
and GP-like nature of our model makes it a alternative choice for machine learning and probabilistic
applications. In our proposed model, the trajectory of Xt process is dependent to both past and fu-
ture event-value pairs; thus it does not satisfy the Markovian property. This might complicate both
training and inference within our framework. In section 2.1 , we reformulated the inducing point
distribution using a renewal marked point process, which lets us to define Xt and Yt process with
a Markovian property. In section 2.3, we leverage this reformulation of SDEs for the inference and
training of the model.

A.2 CONVERGENCE OF SPACING BETWEEN ADJACENT SAMPLES

Let X1, X2, . . . , XN be i.i.d. random variables uniformly distributed on [0, T], and let X(1) ≤
X(2) ≤ · · · ≤ X(N) denote their order statistics. Define the adjacent spacings di = X(i+1) −X(i)

for i = 1, . . . , N − 1.

From properties of uniform order statistics, the expected value of the i-th order statistic is E[X(i)] =
iT

N+1 . It follows that

E[di] = E[X(i+1) −X(i)] =
T

N + 1
(11)

which satisfies E[di] → T
N as N → ∞.

Moreover, the variance of di satisfies Var(di) = O(N−2). By Chebyshevs inequality,

P (|di − E[di]| ≥ ϵ) ≤ Var(di)

ϵ2
= O

(
1

N2

)
(12)

which vanishes as N → ∞. Therefore, di → T
N in probability.

Furthermore, classical results on uniform spacings imply that the maximum spacing maxi di satis-
fies

max
1≤i≤N−1

di =
T

N
+O

(
N−1/2

)
(13)

with high probability, confirming that all gaps become uniformly close to T
N as N → ∞.

A.3 VARIATIONAL INFERENCE FOR MODEL TRAINING

To complement the EM approach, we also develop a variational inference (VI) algorithm for training
our model. As in Section 2.1, we begin with the discrete-time representation of the renewal process,
which breaks the non-Markovian dependence of Xt by ensuring that the next inducing point and
its mark are known at any time t. This property makes recursive inference feasible, but instead of
relying on exact latent sampling as in the E-step of EM, we approximate the intractable posterior
using a variational family.

Specifically, we introduce the following structured mean-field approximation:

qϕ
(
X0:K , Y0:K , {τi,mi}Li=1

)
= qX(X0:K ;ϕX) qY (Y0:K ;ϕY) qτ,m({τi,mi}Li=1;ϕτ,m), (14)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where ϕ = {ϕX , ϕY , ϕτ,m} are variational parameters. This factorization decouples states and
inducing points while retaining the renewal structure. In practice, we amortize these distributions
using neural networks that map observed data into variational parameters.

The training objective is the evidence lower bound (ELBO):

L(θ, ϕ) = Eqϕ

[
log pθ(Z0:K , X0:K , Y0:K , {τi,mi}Li=1)− log qϕ(X0:K , Y0:K , {τi,mi}Li=1)

]
, (15)

where θ denotes the generative model parameters. Maximizing L(θ, ϕ) yields both approximate
posterior inference (via qϕ) and maximum likelihood estimation of θ.

We employ stochastic gradient variational Bayes (SGVB) with the reparameterization trick to obtain
low-variance gradient estimates. In this formulation, sampling of event–value pairs is embedded
directly into the variational distribution qτ,m, which is parameterized by waiting-time and mark
distributions. These distributions can be chosen flexibly, e.g., Gamma and Gaussian, or replaced
with neural flows for greater expressivity.

Algorithm 2 Variational Inference for Inducing Point and State Estimation

1: Initialize: model parameters θ, variational parameters ϕ
2: for each training iteration do
3: Sample latent variables from qϕ:

X0:K , Y0:K , {τi,mi}Li=1 ∼ qϕ

4: Compute stochastic ELBO estimate:

L̂ = log pθ(Z0:K , X0:K , Y0:K , {τi,mi}Li=1)− log qϕ(X0:K , Y0:K , {τi,mi}Li=1)

5: Update (θ, ϕ) via gradient ascent on L̂
6: end for

Unlike EM, where process noise parameters are typically fixed, VI allows them to be included in
the variational family and learned directly. In practice, however, we sometimes constrain these
parameters to preserve stability of the underlying SDEs.

Finally, while the description above applies to a single observed trajectory, the variational framework
naturally extends to multiple trials. Each trial maintains its own approximate posterior over inducing
points and latent trajectories, while global parameters θ are shared across trials. This amortized
formulation enables scalable training across large experimental datasets.

A.4 DISCRETE REPRESENTATION OF HIERARCHICAL SDE

We focus on a discrete-time formulation of the model. To construct the discrete process, we assume
that Xt and Yt are sampled at regular intervals of ∆t. The discrete representation of xd

t is defined
as:

xd
k+1 = xd

k +
md

i+1 − xd
k

ti+1 − k∆t
∆t+

√
(ti+1 − k∆t)(k∆t− ti)

ti+1 − ti
∆t · wd

k,

wd
k ∼ N (0, σd2

x)

(16)

where wd
k is a Gaussian noise term. Similarly, the discrete-time evolution of ydt is:

ydk+1 = ydk + xd
k ∆t+

√
∆t · νdk , νdk ∼ N (0, σd2

y) (17)

where νdk is Gaussian noise. The discrete observation process is given by:

Zk = WYk + ξk, ξk ∼ N (0, R) (18)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where Yk =

y1k
...

yDk

, W ∈ RM×D is a projection matrix, and ξk is observation noise.

To ensure accuracy, ∆t must be much smaller than the minimum inter-event time, i.e., ∆t ≪
min(τi), so that no two inducing points fall within the same discrete time bin. This constraint can
be satisfied by analyzing the posterior distribution of waiting times and adjusting ∆t accordingly.
In essence, we require an orderly event process—allowing at most one event per bin—which can be
enforced by carefully selecting the bin size ∆t.

When using the waiting time representation, at time k, we already know when the next inducing
point (e.g., event 213) will occur and what its value will be. From a Markovian perspective, we
can assume that the entire process is determined at time k. This assumption simplifies the inference
procedure presented in Algorithm ??.

A.5 DETAILED VERSION OF THE SMC ALGORITHM

Here, we provide a more detailed description of the SMC algorithm introduced in the main text for
inference in our model. This is presented in Algorithm 2.

A.6 TRAINING STEP: M-STEP

For the M-step, we assume that the SMC algorithm has been run and that we have obtained Du
K for

u = 1, . . . , U . The full likelihood of the process is defined as:

P (Z1:K , X0:K , Y0:K , τ1:nu , m⃗1:nu ;ω, ω0) = P (X0, Y0)

K∏
k=1

p(Zk | Yk,W,R)p(Yk | Xk−1, Yk−1, σy)

× p(Xk | Xk−1, τ1:ns
, σy, m⃗1:ns

)

nu∏
n=1

p(τn)p(m⃗n)p(ω
n
0)

(19)

Here, ω represents the model parameters {W,R, σy, σx}, and ω0 is the set of hyperparameters defin-
ing the priors, as detailed in Appendix A.1. The term p(ωn

0) appears for each evnt-mark pair because
the prior is applied individually to each waiting time and mark.

In the M-step, we compute the expectation of the full log-likelihood with respect to the posterior
distribution over the latent processes and variables in the model. The latent processes are denoted
by X and Y , while ti and mi represent another set of latent variables. The Q-function, with respect
to which the expectation is taken, is defined as:

Q = Ep(X0:K ,Y0:K ,τ1:nu ,m⃗1:nu |Z1:K ,ω) [logP (Z1:K , X0:K , Y0:K , τ1:nu , m⃗1:nu ;ω)]

=

U∑
u=1

logP (Xu
0 , Y

u
0) +

U∑
u=1

K∑
k=1

log p(Zk | Y u
k ,W,R) +

U∑
u=1

K∑
k=1

log p(Y u
k | Xu

k−1, Y
u
k−1, σx)

+

U∑
u=1

K∑
k=1

log p(Xu
k | Xu

k−1, τ
u
1:ns

, σy, m⃗
u
1:ns

;ns = min
n

τun > k)

+

U∑
u=1

nu∑
n=1

log p(τun) +

U∑
u=1

nu∑
n=1

log p(m⃗u
n) +

nu∑
n=1

log p(ωn
0) (20)

For the observation model defined in Equation 5, the estimation of parameters W and R corresponds
to a multivariate linear regression fit to samples of the X trajectory. Thus, W and R can be estimated
in closed form, similar to the approach used in linear regression. The waiting time distribution

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 3 SMC Algorithm For Inferring Inducing Points and State Estimation
1: Set Algorithm Hyperparameters:
2: Set number of particles U
3: Define initial distributions p(x0) and p(y0)
4: Define proposal density πk(xk, yk | x0:k−1, y0:k−1, zk, τ0:nu ,m0:nu)
5: Set hyperparameters α0, λ0 For τ distribution
6: Set hyperparameters µ0, ξ0 For m distribution
7: Initialization:
8: for u = 1 to U do
9: Sample xu

0 ∼ p(x0), yu
0 ∼ p(y0)

10: Set mu
0 = 0⃗, τu

0 = 0, nu = 0
11: Set initial weight wu

k = 1
U

12: Initialize particle Du
0 = {xu

0 , y
u
0 , τ

u
0 ,m

u
0 , nu}

13: end for
14: Inference:
15: for k = 1 to K do
16: 1. Time & Mark Sampling:
17: for u = 1 to U do
18: if k ·∆t > τu

max(nu) then
19: Sample τu

new ∼ Γ(τ ;α0, λ0)
20: Sample mu

new ∼ N (m;µ0, ξ0)
21: Update Du

k = {xu
0:k−1, y

u
0:k−1, τ

u
0:nu

,mu
0:nu

, τu
new,m

u
new, nu + 1}

22: end if
23: end for
24: 2. Sampling:
25: for u = 1 to U do
26: Sample (xu

k , y
u
k) ∼ πk(xk, yk | xu

0:k−1, y
u
0:k−1, zk, τ

u
0:nu

,mu
0:nu

)
27: Compute importance weight:

wu
k = wu

k−1 ·
p(zk | yu

k) · p(yu
k | xu

k−1) · p(xu
k | τu

0:nu
,mu

0:nu
)

πk(xu
k , y

u
k | xu

0:k−1, y
u
0:k−1, zk, τ

u
0:nu

,mu
0:nu

)

28: end for
29: 3. Normalization:
30: for u = 1 to U do

ŵu
k =

wu
k∑U

v=1 w
v
k

31: end for
32: 4. Resampling:
33: Resample U particles Du

k = {xu
0:k, y

u
0:k, τ

u
0:nu

,mu
0:nu

, nu} from {Du
k}Uu=1 with probabilities ŵu

k

34: for u = 1 to U do
35: Reset weight: wu

k = 1
U

36: end for
37: end for

parameters, i.e., the shape and scale, and the mark distribution parameters, i.e., mean and covariance,
are estimated via MAP using optimization routines.

Given the model formulation, we require running 2nu (maximum number of inducing points gener-
ated by the SMC algorithm): one per waiting time and one per mark. Although both σy and σx can
be learned, we typically fix σy to ensure meaningful propagation from Y to X . If σy is too large,
changes in Z are mostly captured by shifting Y , which limits the propagation of observed data in-
formation to X and the inducing points. On the other hand, σx can be optimized, and a closed-form
solution for its estimation can be derived. Similar to the waiting time and mark parameters, we can
use optimization techniques for its estimation.

In Equation 19, we assume shared σy and σx across latent dimensions, in practice, these can vary
per dimension.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.7 GAMMA DISTRIBUTION FOR WAITING TIMES AND PRIOR SELECTION FOR INDUCING
POINTS

To complete the Bayesian framework, we define priors for the model parameters. For the mark
distribution parameters, we assume:

µi | Σi ∼ N(µ0, λΣi), Σi ∼ Inverse-Wishart(ν,Ψ) (21)

where µ0, λ, ν, and Ψ are hyperparameters. For the Gamma distribution parameters α and λ govern-
ing the waiting times τi, we consider the following prior options based on domain-specific knowl-
edge, though their specific forms remain to be fully specified in this study:

• For α:

– α ∼ Gamma(a0, b0) =
b
a0
0

Γ(a0)
αa0−1e−b0α,

– α ∼ Exp(λ0) = λ0e
−λ0α,

– α ∼ Lognormal(µ0, σ
2
0) =

1

α
√

2πσ2
0

exp
(
− (logα−µ0)

2

2σ2
0

)
,

• For λ:

– λ ∼ Gamma(c0, d0) =
d
c0
0

Γ(c0)
λc0−1e−d0λ,

– λ ∼ InvGamma(γ0, δ0) =
δ
γ0
0

Γ(γ0)
λ−(γ0+1)e−δ0/λ,

where a0, b0, λ0, µ0, σ
2
0 , c0, d0, γ0, δ0 are hyperparameters.

In our model, the waiting times τi and the marks m⃗i associated with each event are generated
according to specific probabilistic distributions:

• Waiting Times τi:
The waiting times between events are assumed to follow a Gamma distribution parameter-
ized by a shape parameter α and a rate parameter λ. The probability density function for τi
is given by:

p(τi) = Gamma(τi;α, λ) (22)
where the Gamma distribution is defined as:

Gamma(τi;α, λ) =
λα

Γ(α)
τα−1
i e−λτi , τi > 0 (23)

and Γ(α) denotes the Gamma function evaluated at α.

Motivation for using the Gamma distribution:
Consider N i.i.d. samples U1, . . . , UN ∼ Uniform(0, T), and denote their order statistics
by U(1) ≤ · · · ≤ U(N). Define the gaps between consecutive order statistics as

∆0 = U(1), ∆i = U(i+1) − U(i) for i = 1, . . . , N − 1, ∆N = T − U(N) (14)

As N → ∞, it is well-known that each gap satisfies ∆i
p−→ T/N , and the rescaled gaps

N∆i converge in distribution to an exponential random variable, that is,

N∆i
d−→ Exp(1) (15)

Moreover, the normalized gaps (∆0/T, . . . ,∆N/T) jointly follow a Dirichlet(1, . . . , 1)
distribution. Marginally, each normalized gap ∆i/T follows a Beta(1, N) distribution. As
N becomes large, the Beta(1, N) distribution approximates a Gamma(1, 1/N) distribution,
because

N · (∆i/T)
d−→ Exp(1) (16)

which suggests that
∆i ≈ Gamma(1, T/N) (17)

Thus, in the large-sample limit, the gaps between ordered uniform samples behave approx-
imately like scaled exponential random variables.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

To simulate ordered points efficiently for a finite number M of samples, we propose sam-
pling M independent gaps

∆i ∼ Gamma(1, T/M) (18)
and constructing ordered points via the cumulative sums

U(i) =

i−1∑
j=0

∆j , i = 1, . . . ,M (19)

This motivates our use of Gamma-distributed waiting times τi in the model, capturing the
natural variability in the timing of events.

• Marks m⃗i:
The marks, representing additional information associated with each event, are modeled
as drawn from a multivariate normal (Gaussian) distribution. Each mark vector m⃗i has an
associated mean vector µi and covariance matrix Σi, with the distribution:

p(m⃗i) = N (m⃗i;µi,Σi) (24)
explicitly given by:

N (m⃗i;µi,Σi) =
1

(2π)d/2|Σi|1/2
exp

(
−1

2
(m⃗i − µi)

⊤Σ−1
i (m⃗i − µi)

)
(25)

where d is the dimensionality of the mark vector.

This modeling choice allows flexible and realistic characterization of the temporal dynamics τi and
the event-related features m⃗i within the system under study.

A.8 COMPARISON OF LATENT TRAJECTORIES

In this section, we provide additional analyses of the latent trajectories inferred by the compared
models. As discussed in the main text, the latent spaces of baseline continuous-time models (e.g.,
Linear SDE, GP-SDE, GP-SLDS) are identifiable only up to an arbitrary affine transformation. To
enable meaningful comparisons, we apply a Procrustes-based alignment procedure between the in-
ferred latent trajectories and the ground-truth latent dynamics.

Representative examples are shown in Figure 5, where we compare raw latent trajectories (top pan-
els) with their aligned counterparts (bottom panels) across baseline models. This visualization high-
lights the necessity of alignment for baseline approaches, as their raw latents are not directly com-
parable to the true dynamics.

The generative structure of MIP-CSDE naturally constrains its latent space, yielding trajectories
that are more directly interpretable without alignment. Nonetheless, for fairness, all quantitative
performance metrics reported in the main text are computed in the observation space.

A.9 RUNTIME SCALABILITY EXPERIMENTS

This appendix examines the empirical runtime scaling of the SMC–EM procedure used in our exper-
iments. We vary two primary factors that drive computational cost: the number of particles P in the
SMC layer and the sequence length K (number of time bins). For each setting, we run the Lorenz
benchmark ten times with independent random seeds and report wall-clock time averaged over runs.
Following common practice for GPU timing, we insert explicit CUDA synchronizations around the
timed region and use a high-resolution host timer; we discard a short warm-up to avoid one-time
kernel compilation and cache effects. All experiments use the same model configuration and batch
size as in the main results to isolate the effect of P and K.

Figure 6 summarizes the measurements. Panel (A) varies P at fixed K, plotting seconds per 1,000
time bins on a log scale. Panel (B) varies K at fixed P = 20,000, reporting seconds per 20,000 parti-
cles. In both regimes, ordinary least squares fits (orange) achieve R2 ≥ 0.995 against the measured
times (blue), consistent with the expected O(P) and O(K) complexity under our implementation.
Absolute times depend on hardware, kernel fusion, and memory bandwidth, but the trends align with
the cost analysis in Section 2.2.2. We note that memory usage grows linearly in P and modestly in
K due to buffering of particle states; for large P , gradient checkpointing and mixed precision can
reduce footprint without materially affecting the observed scaling.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A

B

C

D

E

F

Figure 5: Reconstruction of the Lorenz Trajectory Using Baseline Models. Panels (A–B): Linear SDE;
(C–D): GP-SDE; (E–F): GP-SLDS. For each model, the top panel shows the raw reconstructed latent trajectory,
and the bottom panel shows the trajectory after Procrustes alignment to the ground truth.

A B

Figure 6: Runtime of the SMC–EM Algorithm With Varying Numbers of Particles on the Lorenz Bench-
mark. (A) Runtime vs. particle count P , shown on a log scale (seconds per 1k bins).(B) Runtime vs. sequence
length K (seconds per 20k particles). Results are averaged over 10 runs. In both cases, measured runtime (blue)
closely follow linear fits (orange, R2 ≥ 0.995), confirming the expected O(P · N) complexity discussed in
Section 2.2.2. Experiments were run on an NVIDIA T4 GPU (16 GB) using PyTorch + CUDA.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 7: Decoding of Rat Movement Trajectory Inside a W-Maze. (A) Decoding results using MIP-CSDE
closely follow the rat’s movement. A small rightward shift appears due to the training session, during which
the rat mostly moved toward the right side of the maze. The decoded trajectory remains inside the maze. (B)
Timing of inducing points overlaid on the decoded trajectory. A higher number of inducing points occurs toward
the ends of the arms, where the rat spends more time and movement patterns are less clear. Increased intensity
of inducing points is also observed in the middle arm and corners of the maze, suggesting that reconstructing
movement in these regions from observed spikes is more complex. Although not explicitly probed here, this
may reflect aspects of the rat’s decision-making and cognitive processing at these key locations

Figure 8: Decoding of Lorenz Trajectory Using MIP-CSDE. Here, the projection matrix from the latent
process to observations and the additive noise covariance in the simulated data are known. The plot shows one
inferred trajectory (Y), and dots indicate a sample set of inducing points. The decoded trajectory is aligned
with the generated trajectory.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

A B

C D

Figure 9: Raster Plots of Monkey PDM and M1 Neurons Along with Hand Position During the Reach
Task. (A, B) Raster plots of 182 neurons from M1 and PMd, showing activity before target onset, the go cue,
and target acquisition across two task trials. (C, D) Corresponding monkey hand positions during the same
trials.

21

	Introduction
	Materials & Methods
	Cascade SDE Framework
	Model Properties
	Universal Approximation Property
	Computational Cost

	Model Training and Inference

	Results
	Chirp Signal
	Lorenz System Trajectory Reconstruction
	Comparative Analysis on Simulated Datasets
	Rat Hippocampus: Decoding Spatial Trajectories from CA1 Spiking
	MANIFOLD DIFFRENTIOTION DURING MONKEY REACHING TASK

	Discussion
	Conclusion
	Appendix
	Nonparametric and Non-Markovian Properties
	Convergence of Spacing Between Adjacent Samples
	Variational Inference for Model Training
	Discrete Representation of Hierarchical SDE
	Detailed Version of the SMC Algorithm
	Training Step: M-step
	Gamma Distribution for Waiting Times and Prior Selection for Inducing Points
	Comparison of Latent Trajectories
	Runtime Scalability Experiments

