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Abstract

Recently, there has been a renewed interest in returning to the Moon, with many1

planned missions targeting the south pole. This region is of high scientific and2

commercial interest, mostly due to the presence of water-ice and other volatiles3

which could enable our sustainable presence on the Moon and beyond. In order4

to plan safe and effective crewed and robotic missions, access to high-resolution5

(<0.5 m) surface imagery is critical. However, the overwhelming majority (99.7%)6

of existing images over the south pole have spatial resolutions >1 m. In order to7

obtain better images, the only currently available way is to launch a new satellite8

mission to the Moon with better equipment to gather more precise data. In this work9

we develop an alternative that can be used directly on previously gathered data and10

therefore saving a lot of resources. It consist of a single image super-resolution (SR)11

approach based on generative adversarial networks that is able to super-resolve12

existing images from 1 m to 0.5 m resolution, unlocking a large catalogue of images13

(∼50,000) for a more accurate mission planning in the region of interest for the14

upcoming missions. We show that our enhanced images reveal previously unseen15

hazards such as small craters and boulders, allowing safer traverse planning. Our16

approach also includes uncertainty estimation, which allows mission planners to17

understand the reliability of the super-resolved images.18

1 Introduction19

The Moon has been receiving increasing interest in recent years. Many upcoming missions have been20

planned, for example in the frame of NASA’s Artemis program which aims to put humans back on21

the Moon within this decade (Smith et al., 2020). A major goal is to achieve a permanent presence on22

the Moon, and for many of these missions the south pole is the main target. This region is of high23

scientific and commercial interest because it is expected to host water-ice and other resources which24

could enable our sustainable presence.25

High-resolution (HR) satellite imagery is essential for planning such missions. For example, when26

planning human and rover traverses, mission planners need imagery with a resolution of ∼0.5m/px or27

better to detect relevant features at the rover-/astronaut-scale, such as craters and boulders (Robinson28

et al., 2010). This allows small hazards to be identified in advance, ensuring safe and efficient traverses.29

Over the past 12 years NASA’s Lunar Reconnaissance Orbiter (LRO) mission has been capturing30

state-of-the-art images of the lunar surface using its Narrow Angle Camera (NAC) (Robinson et al.,31

2010), and their spatial resolutions typically vary in the range 0.5-2 m. However, at the south pole32

the overwhelming majority of these images have resolutions >1m. This is due to the inherent low33

lighting conditions. Over the south pole, most images (99.7%) are captured using what is known34

as “summed mode” operation of the NAC, which sums two adjacent pixels to improve SNR at the35
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Figure 1: Using ANUBIS to super-resolve real LRO NAC imagery (Lat: -64.51, Long: 299.6). (a) A
real 1 m/px summed mode image, (b) after LSRRes (our work), (c) after LSRGAN (our work) , (d) a
coinciding real 0.5 m/px regular mode image (ground truth). The uncertainty map displayed next
to the enhanced image shows our confidence in the super-resolved image (yellow: high uncertainty,
purple: low uncertainty).

expense of reducing resolution by a factor of 2 (Humm et al., 2015). Unfortunately, this limits their36

usefulness for mission planning.37

In this work we introduce ANUBIS (Adversarial Network for Uncertainty-Based Image Super-38

resolution). ANUBIS uses a deep ensemble of GANs to super-resolve these images, increasing39

their resolution by a factor of 2 (from 1 m to 0.5 m), providing enhanced data products for mission40

planners. We show that these images enable safer traverse planning, and by using an ensemble we are41

also able to output uncertainty estimates, which is essential for their safety-critical application.42

2 Methodology43

The main goal of this work is to learn to super-resolve existing summed-mode NAC images over the44

south pole from ∼1m/px to ∼ 0.5m/px. We note that a small number of “regular mode” images over45

the south pole are taken without the summing operation which have ∼0.5m/px resolution. These46

images are not common (∼ 0.0028%), but there are enough examples with high SNR to construct a47

labelled training dataset. An example regular mode image is shown in Figure 1 (d).48

Specifically, we generate a training, validation, and testing data starting from 121 (52,224×5,064 px)49

regular mode NAC images of the south pole. The selected images have a resolution of 0.5 ± 0.0550

m/px and similar illumination conditions to the summed mode polar images. We divide the images51

into 128× 128 patches, resulting in 220,000 HR patches. To approximate the NAC summed mode,52

we apply a local 2 × 2 mean and round to the next integer value to obtain their low-resolution53

(LR) ∼1m/px counterparts. This operation represents a best effort approach to approximate the real54

summing performed on the spacecraft. We split this dataset into a training, validation and test dataset55

using a 80:10:10 split.56

Two separate single image SR approaches are designed. The first uses a residual network (LSRRes)57

which takes a LR image and outputs a HR image, trained with an L2 loss function. The second builds58

on the first, training LSRRes with an additional adversarial loss (LSRGAN), and is shown in Figure 2.59

The goal of this approach is to ensure the output image is as realistic as possible via the interaction of60

the generator (LSRRes) and discriminator network.61

A major concern when using single image SR is the potential for generating artifacts (or “hallucina-62

tions”), which are generally related to the ill-posedness of the inverse problem. This is of key concern63

in our application, as mission planners will use our images in safety-critical applications. Thus to64

increase the reliability of our images we also explore uncertainty estimation. Specifically, we train65

an ensemble of 24 LSRGANs with different weight initialisations, allowing us to output multiple66

realisations of the same super-resolved image. Each realisation differs slightly due to ill-posedness of67

the problem. The pixel-wise standard deviation of these images is used to generate an uncertainty68
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Figure 2: The ANUBIS LSRGAN architecture, consisting of a residual generator and a fully-
convolutional discriminator. Colors indicate different block types.

Method MAE↓ PSNR↑ SSIM↑
LR 0.0042 44.81 0.9745
Bilinear 0.0037 45.89 0.979
Bicubic 0.0032 47.26 0.984
LSRGAN (ours) 0.0034 47.23 0.983
LSRRes (ours) 0.0027 49.13 0.989

Table 1: Performance of SR methods on our test set. Best scores in bold. The LSRRes/LSRGAN
metrics are computed using only a single randomly selected ensemble member.

map, which provides an estimate of the reliability of our SR process. The same uncertainty workflow69

is carried out for the LSRRes-only approach too. All training details are described in Appendix A.70

3 Results and discussion71

An example real 1 m/px summed mode image over the south pole is shown in Figure 1 (a), and the72

result after applying LSRRes and LSRGAN (using a single randomly selected ensemble member) is73

shown in (b) and (c). A real 0.5 m/px regular mode image is also available over this region, and is74

shown in (d). We find that both LSRRes and LSRGAN are able to significantly enhance the resolution75

of the LR image, revealing small craters and other surface features which are present in the HR image76

and difficult to see in the LR image. When evaluating more images, we find that LSRGAN tends77

to output images with higher perceptual quality than LSRRes. Specifically, LSRGAN adds more78

small scale features such as craters and boulders to the image compared to LSRRes, resulting in a79

frequency spectrum which is more comparable to ground truth HR images.80

We evaluate the quantitative performance of our methods on our test set of images, shown in Table 1.81

As metrics, we consider the mean absolute error (MAE), peak signal to noise ratio (PSNR), and82

structural similarity index measurement (SSIM). We also compare our methods to two baseline83

approaches (bilinear and bicubic interpolation). Under these metrics, we find that LSRRes gives84

the highest performance. However, given the improved perceptual quality of the LSRGAN images85

observed above, these metrics may not be the best suited for this task.86

We also show the uncertainty maps generated by our ensembles of LSRRes/LSRGANs for the super-87

resolved images in Figure 1. These maps are most uncertain around crater rims, which is believable88

as they represent high-frequency features in the image which are likely difficult to reconstruct.89
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Figure 3: Validating ANUBIS with traverse planning. (a) Low-resolution (input), (b) Super-resolution
+ Uncertainty map (our work), (c) High-resolution (Ground truth).

4 Validation with traverse planning90

Finally, we show the value of our super-resolved images on a downstream task, here: traverse91

planning. We set up a hypothetical problem, where a rover must plan a safe traverse from its starting92

position to a goal, given an image and the locations shown in Figure 3. Given an image, we detect93

obstacles based on the image gradients and then use an A* path planning algorithm to plan a safe94

traverse around them. During path planning using our super-resolved images, we also add obstacles95

derived from our uncertainty map (using the same obstacle detection process, i.e., high uncertainty96

pixels are considered as obstacles). Figure 3 shows the resulting traverses when using a LR summed97

mode image, its super-resolved version using LSRGAN, and a ground truth regular mode HR image.98

We find that for this location the LSRGAN paths more closely match the HR image paths than the99

LR image paths, i.e. allowing for a safer and more efficient traverse.100

5 Limitations and future work101

There are multiple limitations and future directions of our work. Firstly, we restricted ourselves to102

only learning a mapping from 1 m/px to 0.5 m/px, whereas in reality NAC images of the south pole103

span a range of resolutions >1 m/px. In future work, we aim to develop a workflow which is able to104

learn a mapping from any input resolution to any output resolution, within reason, allowing more105

NAC images to be super-resolved. Secondly, there are many other uncertainty estimation techniques106

which could be tested. For example, GANs with random input vectors (Abid et al., 2021), normalising107

flows (Lugmayr et al., 2020), dropout or other Bayesian inference approaches could be more effective.108

Finally, we assume that our downsampling operator can be approximated by a simple summation and109

rounding. However, in reality NAC images are subject to a lossy compression before downlink to110

Earth (Robinson et al., 2010), and therefore this degradation process is not modelled; we intend to111

include this in future work.112

6 Conclusions and broader impact113

We have investigated methods for super-resolving lunar imagery over the south pole by a factor114

of 2 (from 1 m/px to 0.5 m/px) and shown that they can improve image quality and help achieve115

downstream tasks such as traverse planning. Furthermore we provided uncertainty estimates for116

each super-resolved image, which is essential for safety-critical applications. Our approach provides117

higher resolution images over the south pole of the Moon, where they are not currently available,118

allowing mission planners to plan safer and more effective missions.119

This work could have a positive impact on the planning and execution of future lunar exploration120

missions, specifically by reducing their risk and maximizing their efficacy. The uncertainty maps121

that are delivered along with the improved images greatly increase the reliability of ANUBIS for122

safety-critical applications. Upcoming robotic and crewed missions, such as NASA’s VIPER or other123

Artemis missions, are a few of many possible beneficiaries of our work.124

4



References125

Abid, M. A., Hedhli, I., and Gagné, C. (2021). A generative model for hallucinating diverse versions126

of super resolution images. arXiv preprint arXiv:2102.06624.127

Humm, D., Tschimmel, M., Brylow, S., Mahanti, P., Tran, T., Braden, S., Wiseman, S., Danton, J.,128

Eliason, E., and Robinson, M. (2015). Flight calibration of the lroc narrow angle camera. Space129

Science Reviews, 200.130

Lugmayr, A., Danelljan, M., Van Gool, L., and Timofte, R. (2020). Srflow: Learning the super-131

resolution space with normalizing flow. In European Conference on Computer Vision, pages132

715–732. Springer.133

Robinson, M., Brylow, S., Tschimmel, M., Humm, D., Lawrence, S., Thomas, P., Denevi, B.,134

Bowman-Cisneros, E., Zerr, J., Ravine, M., et al. (2010). Lunar reconnaissance orbiter camera135

(lroc) instrument overview. Space science reviews, 150(1-4):81–124.136

Smith, M., Craig, D., Herrmann, N., Mahoney, E., Krezel, J., McIntyre, N., and Goodliff, K. (2020).137

The artemis program: An overview of nasa’s activities to return humans to the moon. In 2020138

IEEE Aerospace Conference, pages 1–10. IEEE.139

A Training details140

Our LSRRes network uses a convolutional residual architecture with 6 layers, and ReLU activation141

functions (Generator section in Fig. 2). The discriminator in our LSRGAN uses a convolutional142

architecture with 6 layers, and ReLU activation functions. All approaches were trained using the143

Adam optimizer, a learning rate of 0.0002 and a batch size of 256. The inputs and outputs of the144

networks are normalised before training. Training takes approximately 3 hours on a single NVIDIA145

Tesla A100 GPU.146

To create the deep ensemble of GANs used to generate the SR image distribution, the same architecture147

was trained 24 different times using random weight initialization.148
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