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ABSTRACT

Graph Neural Networks (GNNs) demonstrate superior performance in various
graph learning tasks, yet their wider real-world application is hindered by the com-
putational overhead when applied to large-scale graphs. To address this issue, the
Graph Lottery Ticket (GLT) hypothesis assumes that GNN with random initializa-
tion harbors a pair of core subgraph and sparse subnetwork, which can yield com-
parable performance and higher efficiency to that of the original dense network
and complete graph. Despite that GLT offers a new paradigm for GNN training
and inference, existing GLT algorithms heavily rely on trial-and-error pruning rate
tuning and scheduling, and adhere to an irreversible pruning paradigm that lacks
elasticity. Worse still, current methods suffer scalability issues when applied to
deep GNNs, as they maintain the same topology structure across all layers. These
challenges hinder the integration of GLT into deeper and larger-scale GNN con-
texts. To bridge this critical gap, this paper introduces an Adaptive, Dynamic,
and Automated framework for identifying Graph Lottery Tickets (AdaGLT). Our
proposed method derives its key advantages and addresses the above limitations
through the following three aspects: 1) tailoring layer-adaptive sparse structures
for various datasets and GNNs, thus enabling it to facilitate deeper GNNs; 2) in-
tegrating the pruning and training processes, thereby achieving a dynamic work-
flow encompassing both pruning and restoration; 3) automatically capturing graph
lottery tickets across diverse sparsity levels, obviating the necessity for exten-
sive pruning parameter tuning. More importantly, we rigorously provide theoret-
ical proofs to guarantee AdaGLT to mitigate over-smoothing and obtain improved
sparse structures in deep GNN scenarios. Extensive experiments demonstrate that
AdaGLT outperforms state-of-the-art competitors across multiple datasets of vari-
ous scales and types, particularly in scenarios involving deep GNNs.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as the prevailing model for graph representation
learning tasks (Kipf & Welling, 2017b; Veličković et al., 2018; Hamilton et al., 2017; Zhang &
Chen, 2019; Liang et al., 2023; Gao et al., 2023; Cheng et al., 2021; Duan et al., 2024; Zhang et al.,
2024). The success of GNNs is primarily attributed to their message passing scheme, where each
node updates its features by aggregating information of its neighbors (Corso et al., 2020; Xie et al.,
2020). Nevertheless, with the remarkable growth in graph sizes (from millions to billions of nodes)
over the past few years, GNNs have experienced substantial computational overheads during both
model training and inference (Xu et al., 2019; You et al., 2020).

To address this inefficiency, current research in this area mainly follows two distinct lines of investi-
gation – one focuses on simplifying the graph structure, while the other concentrates on compressing
the GNN model. In the first line of study, previous literature has explored the utilization of sampling
(Chen et al., 2018; Eden et al., 2018; Calandriello et al., 2018) and sparsification (Voudigari et al.,
2016; Zheng et al., 2020; Li et al., 2020b) to reduce the computational overhead of GNNs. Com-
pared to efforts in simplifying the graph structure, research on pruning or compressing GNNs (Tailor
et al., 2020) has been relatively limited, mainly due to the inherent lower parameterization of GNNs
compared to other fields such as computer vision (Wen et al., 2016; He et al., 2017).
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Figure 1: The performance of (Left) UGS and (Right)
TGLT on the Cora dataset for GCN pruning at 2-8 lay-
ers, under graph sparsity levels of 0%, 15%, and 30%.
See the definition of sg in Eq. G.

Interestingly, a burgeoning subfield, inspired
by the Lottery Ticket Hypothesis (Frankle &
Carbin, 2018), is exploring the potential of
jointly and iteratively pruning weights and ad-
jacency matrices within GNNs. These pruned
subnetworks and subgraphs, which can match
the original baseline performance, are termed
Graph Lottery Tickets (GLT) (Chen et al.,
2021b; Hui et al., 2023). Specifically, UGS
(Chen et al., 2021b) jointly prunes the weights
and adjacency matrix and rewinds the weight at
the regular iterations. TGLT (Hui et al., 2023)
extends this concept and designs a new aux-
iliary loss function to guide the edges prun-
ing for identifying GLT, to name just a few.
Despite their remarkable performance, training
GLT models is extremely challenging. Issues
are arising in various aspects including predefined sparsity, network depth, and element pruning,
potentially leading to the collapse of the entire model:

• Inferior scalability in the context of deep GNNs. Recent endeavors on GNN deepening (Li
et al., 2019; 2020a; 2021), have already attested to the potential of deep GNNs. However, the
off-the-shelf GLT algorithms demonstrate considerable sensitivity to model depth. As shown in
Fig. 1, UGS and TGLT exhibit a significant performance decline when applied to deeper GCNs.
For example, there is a performance degradation exceeding 10% from 6 → 8 GNN layers. This
constrains the model’s potential in the pursuit of ever-deeper GNNs.

• Loss of elasticity in pruning process. The majority of GLT methods prune weights and edges in
an irreversible fashion, thereby rendering the pruned weights or edges irretrievable. Nevertheless,
recent investigations (He et al., 2018; Mocanu et al., 2018; Evci et al., 2020) suggest that the
significance of both edges and weights might dynamically evolve during the training process. As
a result, the pruning methodologies previously employed in GLT exhibit a lack of elasticity.

• Inflexibility of fixed pruning rates. Prior GLT algorithms necessitate predetermined pruning
ratios (e.g. 5% for graph and 20% for weight). Nonetheless, employing a fixed pruning configura-
tion across all GNN layers lacks flexibility and resilience. Worse still, the trial-and-error selection
process for these pre-defined parameters could introduce additional computational overhead.
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Figure 2: The overall workflow of our proposed
AdaGLT compared with previous methods.

In this paper, aiming to jointly overcome these cru-
cial, intractable, and inherent hurdles, we propose
an Adaptive, Dynamic and Automatic framework for
identifying Graph Lottery Tickets, termed AdaGLT.
Fig. 2 left demonstrates the overall workflow of
AdaGLT. In contrast to previous GLT methods (see
Fig. 2 right) which prune a fixed rate of weights
or edges after certain epochs of pretraining, our
method seamlessly performs sparsification and train-
ing within one epoch, thereby obtaining winning
tickets at continuous sparsity levels. Our proposed
algorithm is equipped with the following promising
features, with strong experimental validation:

Adaptive layer sparsification. Recent studies have
suggested that shallower layers, owing to their lower
node similarity, should be assigned a more con-
servative pruning rate. As the network depth in-
creases, the pruning rate should be correspondingly
adjusted upwards to effectively alleviate issues like
over-smoothing (Wang et al., 2023a). Classic GLT
algorithms lack an effective adaptive mechanism,
leading to suboptimal performance when applied to
deep GNNs. AdaGLT is capable of learning layer-
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specific thresholds for GNN at different layers, enabling the model to acquire layer-adaptive sparse
structures at each layer.

Dynamic restoration. In contrast to prior deterministic approaches (Chen et al., 2021b; Harn
et al., 2022), AdaGLT can seamlessly integrate the pruning and training process, enabling a dynamic
restoration of possibly mistakenly pruned edges or weights during subsequent training phases.

Automated pruning scheduling. AdaGLT eliminates the need for manually predefined pruning
ratios. The sparsity of the graph and network grows progressively with the pruning threshold being
automatically adjusted during the training process to discover the optimal sparse graph and network
structure that best fits the downstream task. This ingredient is completely free of human labor of
trial-and-error on pre-selected sparsity choices.

Empirical Evidence. AdaGLT has been empirically validated across diverse GNN architectures and
tasks. The experimental results show that AdaGLT consistently surpasses UGS/TGLT across various
graph/network sparsity configurations on all benchmark datasets (Cora, Citeseer, PubMed, and Open
Graph Benchmark(OGB)). AdaGLT attains 23%-84% graph sparsity and 87%-99% weight sparsity,
maintaining performance without compromise, exhibiting enhancements of 13%-30% in graph spar-
sity and 5%-10% in weight sparsity. In deep GNN scenarios, AdaGLT achieves a remarkable increase
of up to 40% in graph sparsity and 80% in weight sparsity. This substantial demonstration under-
scores the immense potential of a fully automated GLT in real-world applications.

2 PRELIMINARY & RELATED WORK

Notations. We consider an undirected graph G = {V, E} where V and E are the sets of nodes and
edges of G respectively. We use X ∈ RN×F to denote the features matrix of G, where N = |V|
denotes the number of nodes on the graph. We use xi = X[i, ·] to represent the F -dimensional
feature vector corresponding to node vi ∈ V . An adjacency matrix A ∈ RN×N is employed to
represent the connectivity between nodes, where A[i, j] = 1 if (vi, vj) ∈ E else A[i, j] = 0.

Graph Neural Networks (GNNs). GNNs mainly fall into spectral and spatial two categories. The
spectral GNN is derived from spectral graph theory (Chung & Graham, 1997; McSherry, 2001;
Defferrard et al., 2016; Levie et al., 2018), which leverages the eigenvalues and eigenvectors of the
graph Laplacian matrix to encode and process graph information. Spatial GNN (Kipf & Welling,
2017a; Velickovic et al., 2017; Xu et al., 2019) excels in its flexibility and efficiency by aggregating
neighborhood information. Among those, Graph Convolutional Networks (GCN) (Kipf & Welling,
2017a) can be deemed as the most popular model. Without sacrificing generality, we consider a GCN
with two convolutional layers for node classification, whose formulation and objective function can
be defined as follows:

Z = Softmax
(
Âσ(ÂXΘ(0))Θ(1)

)
, L (G,Θ) = −

∑
vi∈Vl

yilog (zi) , (1)

where Z denotes the model prediction, Θ = (Θ(0),Θ(1)) denotes the weights, σ (·) denote the
activation function, Â = D̂− 1

2 (A + I)D̂
1
2 is the symmetric normalized adjacency matrix and D̂

is the degree mtrix of A + I. We minimize the cross-entropy loss L (G,Θ) over all labelled nodes
Vl ⊂ V , where yi and zi represents the label and prediction of node vi, respectively.

Graph Sparsification & Lottery Tickets (GLT). The Lottery Ticket Hypothesis (LTH) posits that a
sparse and effective subnetwork can be extracted from a dense network through an iterative pruning
approach (Frankle & Carbin, 2018; Frankle et al., 2019; Zhang et al., 2021). Initially observed within
dense networks, LTH has garnered significant attention across diverse domains, including generative
models (Chen et al., 2021c;a), speech recognition (Ding et al., 2021), large language models (Chen
et al., 2020; Prasanna et al., 2020). Chen et al. (2021b) borrowed the concept from LTH and firstly
unified simplifying the graph strcuture with compressing the GNN model in the GLT research line.
Specifically, GLT is defined as a pair of core subgraphs and sparse sub-network, which can be jointly
identified from the full graph and the original GNN model. Recent extensions of the GLT theory
(You et al., 2022; Wang et al., 2023b) and new algorithms (Harn et al., 2022; Rahman & Azad, 2022;
Liu et al., 2023; Wang et al., 2023c) have made GLT shine in the field of graph pruning research
line. However, these algorithms lack sufficient flexibility in terms of sparsity, network depth, and
element pruning, resulting in a lack of robustness in practical deployments.
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Figure 3: The framework of AdaGLT, in which we firstly allocate trainable threshold vectors to guide the
weights and adjacency matrices pruning in different layers. (a) illustrates the weight pruning through row-wise
thresholds. (b) showcases layer-adaptive pruning of the adjacency matrix. (c) elucidates how the gradient
estimator renders the training process differentiable and enables the dynamic restoration of weights and edges.

3 METHODOLOGY

In this section, we proceed to provide an overarching depiction of the operational mechanics of
AdaGLT, wherein adaptive, dynamic, and automated joint sparsification is executed for searching
a GLT (Fig. 3). Taking a macro look, we undertake fine-grained weight sparsification, involving
the creation of a binary mask through row-wise thresholding (Fig. 3 (a)). For the adjacency ma-
trix, the edge explainer guides pruning by learning a soft mask (Fig. 3 (b)). Given the inherent
non-differentiability of the binary mask during backpropagation, we employ a gradient estimator to
simulate its gradients (Fig. 3 (c)). In the following parts, we will delve into the technical details of
AdaGLT, focusing on its three core features and enhancement beyond mainstream GLT approaches.

3.1 AUTOMATED WEIGHT SPARSIFICATION

Existing GLT methods iteratively eliminate elements by choosing those with minimal magnitudes,
and their lack of flexibility stems from the necessity of hyperparameter tuning. To rectify this draw-
back, AdaGLT dispenses with manually defined pruning rates and autonomously schedule the prun-
ing process through the employment of trainable threshold vectors1 (Liu et al., 2020; 2022; Zhou
et al., 2021). Concretely, we allocate a set of trainable threshold vectors {t(0)θ , t

(1)
θ , · · · , t(L−1)

θ } to
align with the weight set {Θ(0),Θ(1), · · · ,Θ(L−1)} across L-layers GNN for sparsification. Within
each layer, we calculate the binary mask mθ via the magnitude comparison for weight pruning:

mθ,ij =

{
1, if |Θij | ≥ tθ,i
0, otherwise

(2)

where Θij and mθ,ij is the element in the i-th row and j-th column of Θ and mθ, respectively; tθ,i
is the i-th element of the threshold vector tθ.

Gradient Estimator. However, it is not feasible to optimize these learnable thresholds using tra-
ditional gradient descent methods. The hard binary mask mθ is derived through a comparison
operation that prevents gradient backpropagation, rendering the thresholds untrainable. With this
objective in mind, we calculate a soft differentiable mask using the tempered sigmoid function (Liu
et al., 2022). Subsequently, we convert it into a hard binary mask as follows:

m̃θ,ij = Sigmoid (τ · (|Θij | − tθ,i)) , mθ,ij = 1[m̃θ,ij > 0.5], (3)

where 1[m̃θ,ij > 0.5] denotes an binary indicator that evaluates to 1 when m̃θ,ij > 0.5, and 0
otherwise. In order to approximate the hard mask, we leverage a temperature parameter τ , wherein

1We discuss threshold scalar & matrix and compare their performances in Sec. 4.5 and Appendix B.
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the Sigmoid function closely emulates the behavior of a step function when the temperature is
elevated adequately. With the gradient Straight Through Estimator (STE)2 (Bengio et al., 2013;
Tian et al., 2021; Yang et al., 2023), we can compute the gradients of tθ as follows:

∂C

∂tθ,i
= −

∑
p

∑
q

∂C

∂m̃θ,pq
δpi

τ exp (τ(tθ,p −Θpq))

(1 + exp (τ(tθ,p −Θpq)))
2 , (4)

where C denotes the gradient of the cost in the context of back-propagation and δpi evaluates to
1 when i = p, and 0 otherwise. Now that the calculation of pruning masks is differentiable, we
proceed to calculate the pruned weights as follows:

Θ̃(l) = m
(l)
θ ⊙Θ(l), l = {0, 1, · · · , L− 1}, (5)

where ⊙ denotes the element-wise multiplication and Θ̃(l) denotes the pruned weight at layer l.
Upon obtaining the masked weights, they are employed in the subsequent convolutional opera-
tions. During the backward propagation phase, gradients facilitated by STE concurrently update
the weights of each layer and their corresponding threshold vectors. Our weight sparsification pro-
cess not only guides the weight updates towards enhanced performance but also aids in refining the
threshold vectors to effectively unveil an optimal sparse structure within the network.

3.2 LAYER-ADAPTIVE ADJACENCY MATRIX PRUNING

Due to the discrete nature of adjacency matrix, we relax edge elements from binary variables to
continuous variables and subsequently apply the same pruning strategy as weight pruning.

Edge Explainer. Conventional GLT methods often employ a trainable mask with its shape identical
to that of the adjacency matrix, which may result in a quadratic increase in parameters with the size
of the graph data (Sui et al., 2021). A promising and natural idea is to transform edge elements into a
representation of importance scores, i.e., relaxing edge elements from binary variables to continuous
ones. With this in mind, we introduce the concept of edge explainer (Luo et al., 2020; Sui et al.,
2022) into GNN pruning for the first time, ensuring interpretability during the pruning process while
reducing unimportant edges. Specifically, we calculate the edge score according to the node features
and node centrality as follows:

sij = 1(i,j)∈E
exp (gΨ(xi,xj))/ω∑

vw∈N (vi)
exp (gΨ(xi,xw))/ω

, gΨ(xi,xj) = (WQxi)
T (WKxj), (6)

where sij is the edge score between vi and vj , gΨ is the edge explainer parameterized with Ψ =
{WQ,WK}, N (vi) denotes the 1-hop neighbors of vi, and ω represents a temperature coefficient
to control the importance scores. Once the weighted graph topology has been obtained, we proceed
with the execution of layer-wise pruning. To achieve this objective, a trainable threshold vector is
allocated for each layer’s adjacency matrix, denoted collectively as {t(0)A , t

(1)
A , · · · , t(L−1)

A } ∈ RN ,
mirroring the analogous allocation of threshold vectors for weights across each layer.

Layer-adaptive Pruning. Going beyond element pruning like weight sparsification, edge pruning
seeks to obtain an optimal graph substructure with increasing sparsity across layers (especially in
deep GNN circumstances). Consequently, we compute the pruning mask for each layer’s adjacency
matrix in an iterative manner:

m
(l)
A,ij = 1[sij < t

(l)
A,i]

l−1∏
k=0

m
(k)
A,ij , l = {0, 1, · · · , L− 1}, (7)

where m
(l)
A ∈ RN×N denotes the graph mask at layer l. The product term

∏l−1
k=0 m

(k)
A,ij ensures

that edges pruned in earlier layers are also retained as pruned in the l-th layer, thus compelling the
searched graph substructure to exhibit progressively escalating sparsity across layers. Similarly, we
utilize a gradient estimation approach akin to that delineated in Eq. 3 and 4 to address the non-
differentiability inherent in binary pruning masks. Ultimately, we attain distinct and layer-wise
sparse graph topological structures, denoted as Ã(l) = m

(l)
A ⊙A and l = {0, 1, · · · , L− 1}.

3.3 A UNIFIED AND DYNAMIC OPTIMIZATION

Sparse Regularization. In pursuit of achieving the desired levels of sparsity for both weights and
adjacency matrices, we seek to obtain threshold vectors with higher values. To this end, it becomes

2We discuss alternative estimators and compare their performance in Appendix K.
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necessary to impose sparsity-inducing constraints on tθ and tA to penalize smaller threshold values.
Specifically, for any given threshold vector t ∈ RN , its associated penalty term is given by R(t) =
η
∑N

i=1 exp (−ti) and η is the regularization coefficient. We unify the sparsity penalties for the
threshold vectors of weights and adjacency matrices as Ls =

1
L

∑L−1
l=0 (R(t(l)θ ) +R(t(l)A )).

Objective function. The original fully-connected layers and the underlying graph topology have
now been replaced with finely-grained masked weights and progressively sparse adjacency matrices.
We can proceed to directly train a jointly sparsed GNN using the backpropagation algorithm. In our
approach, the network weights Θ, edge explainer Ψ, as well as the weight threshold vector tθ and
adjacency threshold vector tA are concurrently trained in an end-to-end way:

LAdaGLT(Θ,Ψ, tθ, tA) = L ({mA ⊙A,X},mθ ⊙Θ) + Ls, (8)

m∗
A,m

∗
θ = g

(
argmin
Θ,Ψ,tθ,tA

LAdaGLT(Θ,Ψ, tθ, tA)

)
, (9)

where L(·) denotes the cross-entropy loss, and g(·) represents inferring the optimal masks using
parameters that minimize the loss. To facilitate reading, we show the algorithm in Algo. 1.

Dynamic Pruning and Restoration. From Sec. 3.1 to 3.3, we systematacially haved elaborated on
how AdaGLT helps to find adaptive and automated wining tickets. The adaptiveness and automa-
tion of the GLT algorithms, are at present obscured by one cloud (dynamic sparsification). In this
part, we will explain how a pruned element can be restored through gradient updates. Specifically,
considering a layer’s adjacency matrix or weight (unified as Q ∈ RN×M ), with its threshold vector
denoted as t ∈ RN , the resulting pruning mask is represented as m ∈ RN×M . At the n-th epoch,
if the value at Qij (i.e. edge score or weight value) satisfies Qij < ti, then mij = 0. Although
this element is pruned in this epoch, during the gradient backpropagation process, it can still be
dynamically revived by the gradient, subject to the following conditions:

|Qij | − ti > α

(
∂C

∂Qij
− ∂C

∂ti

)
= α

∑
p

∑
q

∂C

∂Qpq
(δjq + 1)δpi

τ exp (τ(tp −Qpq))

(1 + exp (τ(tp −Qpq)))
2 , (10)

where α denotes the learning rate. It can be observed that the restoration of an element depends on
the joint update of Qij and ti. During the collaborative optimization between element values and
thresholds, the optimal sparse structure for both the graph and weights is dynamically obtained.

3.4 MODEL SUMMARY & THEORETICAL DICUSSIONS

After introducing the model details, we further offer a theoretical guarantee for our layer-adaptive
sparsification grounded in the well-established Graph Neural Tangent Kernel (GNTK) theory, which
is pertinent to deep GNNs (Huang et al., 2021). The GNTK can be formally defined as:

Kt(X,X) =

L∑
l=1

∇θh
(l)
t (X)∇θh

(l)
t (X)T ∈ RN×N , (11)

where h(l) denotes the embedding representation at layer l. It is widely recognized that the GNTK
plays a central role in optimizing infinitely-wide GNNs, as documented in various studies (Jacot
et al., 2018; Huang et al., 2021). Specifically, a positive minimum eigenvalue is indicative of the
successful training of the corresponding GNN through gradient descent. Conversely, the inability to
achieve a minimal training error suggests the presence of a zero or negative minimum eigenvalue.
The propagation of GNTK with respect to graph convolution can be expressed as follows. With a
more compact expression when the tangent kernel is bacterized, we have k(l) = G(l)k(l−1), where
k ∈ RN2

and G(l) ∈ RN2×N2

is the operation matrix for GNTK propagation. By looking at k(l)

with l tends to infinity, we scrutinize the efficacy of layer-adaptive sparsification in mitigating the
prevalent issue of over-smoothing.

Theorem 1. Denote smallest singluar value of G(l) by σ
(l)
0 . Suppose that operation matrix G(l)

has the same singlular vectors, and σ
(l)
0 satifies σ

(l)
0 = 1 − αl, where 0 < α < 1. Then,

the smallest eigenvalue of GNTK is greater than zero as the depth of GNN tends to infinity, i.e.,
liml→∞ λ0(K

(l)) > 0.

Theorem 1 states that as the depth tends to be infinity, the GNTK can still have a positive smallest
eigenvalue, which implies that the corresponding GNN can be trained successfully. This result is op-
posite to the case without graph sparsification (Huang et al., 2021), demonstrating the effectiveness
of layer-wise sparsification. We have provided detailed proofs in Appendix E.
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4 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following research questions: RQ1:
How effective is our proposed AdaGLT algorithm in searching graph lottery tickets? RQ2: What is
the scalability of AdaGLT on deeper GNNs? RQ3: Can AdaGLT scale up to large-scale datasets?

4.1 EXPERIMENTAL SETUPS

Datasets. To comprehensively evaluate AdaGLT across diverse datasets and tasks, we opt for Cora,
Citeseer, and PubMed (Kipf & Welling, 2017b) for node classification. For larger graphs, we choose
Ogbn-Arxiv/Proteins/Products (Hu et al., 2020) for node classification and Ogbl-Collab for link
prediction. Detailed dataset statistics can be found in Appendix F.

Backbones & Parameter Settings. We conduct comparative analyses between AdaGLT and con-
ventional GLT (Chen et al., 2021b) and TGLT (Hui et al., 2023) in all available scenarios. For
Cora, Citeseer, and PubMed, we employ GCN (Kipf & Welling, 2017b), GIN (Xu et al., 2019), and
GAT (Veličković et al., 2018) as backbones. For Ogbn-Arxiv/Proteins and Ogbl-Collab, we em-
ploy DeeperGCN (Li et al., 2020a) as the backbone, while for Ogbn-Products, we opt for Cluster-
GCN (Chiang et al., 2019). More experimental details are specified in Appendix G.

4.2 CAN AdaGLT FIND GRAPH LOTTERY TICKETS? (RQ1)

To answer RQ1, we conduct a comparative analysis between AdaGLT and existing methodologies,
including UGS, TGLT, and random pruning, on the node classification tasks. The results on Cite-
seer and PubMed are presented in Fig. 4, and those on Cora are displayed in Fig. 9. From the
experimental results, we can make the following observations (Obs):

Obs 1. AdaGLT consistently outperforms TGLT, UGS, and random pruning. Across Cora, Cite-
seer, and PubMed datasets, AdaGLT successfully identifies graph lottery tickets with graph sparsity
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Figure 4: Results of node classification over Citeseer/PubMed with GCN/GIN/GAT backbones. Black dash
lines represent the baseline performance. Marker , • and ⋆ indicates the last GLT that reaches higher accuracy
than the original model in the sparsification process of UGS, TGLT, and AdaGLT, respectively. ∆ quantifies the
percentage by which our AdaGLT method outperforms the state-of-the-art GLT methods.
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Table 1: The performance comparison between TGLT and AdaGLT in discovering GLTs on GAT backbone
across various graph sparsity settings (10% → 60%) and GNN layer configurations (4 → 16 layers). Cells
highlighted in red and blue correspond to winning tickets found by TGLT and AdaGLT, respectively.

Graph
Sparsity

Method Cora Citeseer PubMed

4 8 12 16 4 8 12 16 4 8 12 16

0% Baseline 78.20 78.08 76.12 75.53 69.82 67.50 67.40 67.56 78.10 76.82 76.30 76.81

10%
TGLT[2023] 78.79 79.39 66.32 60.59 70.11 67.79 60.90 61.88 78.62 77.02 76.79 61.22

AdaGLT 79.82 78.77 77.24 74.28 69.88 67.67 68.11 67.99 78.43 78.19 77.76 75.29

20%
TGLT[2023] 73.70 78.80 40.79 36.77 69.86 56.88 58.10 53.33 78.30 69.88 68.49 59.27

AdaGLT 78.64 78.22 76.88 75.60 70.03 68.30 67.24 68.03 78.44 78.23 76.80 73.03

30%
TGLT[2023] 70.84 76.22 44.83 42.88 66.21 55.45 53.42 47.99 75.07 65.98 59.42 58.60

AdaGLT 78.39 78.48 76.70 72.75 69.91 67.39 67.88 67.90 79.24 77.11 74.99 70.47

40%
TGLT[2023] 72.60 72.41 41.88 39.77 60.82 47.80 50.88 49.21 68.80 69.72 60.77 55.42

AdaGLT 77.33 74.91 74.30 69.98 69.83 67.50 67.58 65.33 78.33 76.88 74.39 71.26

50%
TGLT[2023] 72.17 72.91 40.07 45.80 61.31 48.77 51.62 45.90 65.24 68.74 63.22 60.33

AdaGLT 77.11 75.07 73.18 72.60 69.97 64.10 65.31 64.88 77.42 76.90 75.30 74.95

60%
TGLT[2023] 70.60 66.50 37.74 37.26 52.37 54.40 50.85 47.25 62.98 66.07 63.66 60.79

AdaGLT 70.97 75.00 72.29 71.88 68.13 64.98 64.34 60.97 75.82 73.23 69.47 69.01

from 23% to 84% and weight sparsity from 87% to 99%, all while sustaining performance. Notably,
AdaGLT can find winning tickets on GCN for Citeseer, whose graph and weight sparsity separately
reach 44% and 95%, significantly surpassing TGLT’s 26% and 23%.

Obs 2. AdaGLT shows particular efficacy in uncovering sparse graphs. While weight pruning has
been well developed, attaining GLTs with sufficient graph sparsity remains challenging (Wang et al.,
2022). PubMed is often considered more robust against graph pruning, whereas the smaller-sized
Cora and Citeseer are deemed more sensitive (Chen et al., 2021b; Wang et al., 2023b). It is worth
noting that AdaGLT outperforms TGLT in terms of graph sparsity, achieving improvements of 26%
and 18% on Citeseer and Cora, respectively. Particularly remarkable is our method’s ability to prune
80% of edges when applied to GAT on Citeseer without any performance deterioration.

Obs 3. The GNN backbone intricately affects graph sparsity attainment. While AdaGLT
consistently identifies GLTs with weight sparsity over 90%, its performance with graph sparsity
relies more on the specific GNN structure. Concretely, in GAT, GLTs are found with graph sparsity
over 65%, whereas those in GIN do not exceed 55%. We attribute this to GAT’s attention-based
aggregation, which adapts during the edge pruning process. However, as for GIN, its aggregation of
outputs from all layers amplifies the information loss caused by edge pruning.

4.3 CAN AdaGLT HANDLE DEEPER GNNS? (RQ2)

Tab. 1 and Tab. 6 to 10 present a comparison between TGLT and AdaGLT on GCN/ResGCN/GAT
backbones, with the number of GNN layers increasing from 4 to 16, graph sparsity from 10% to
60%, and weight sparsity from 10% to 90%. Our findings and insights are summarized below:

Obs 4. The increase in the number of GNN layers poses challenges for identifying GLTs. In
Tab. 1, both TGLT and AdaGLT exhibit a reduction in the number of lottery tickets as # of layers
increases. Under 4-layer settings, the sparsity of the uncovered tickets is roughly similar to that on
2-layer GNNs. However, on 16-layer GNNs, both methods fail to identify extremely sparse GLTs.

Obs 5. AdaGLT excels at discovering GLTs in deep GNNs. In Tab. 6 to 10, in comparison to the
excellent performance observed in 2-layer GNNs, TGLT suffers setbacks in identifying GLTs. Even
on the GCN backbone where it performs at its best, TGLT can barely identify tickets with graph
sparsity of 20% and weight sparsity of 50%. In contrast, AdaGLT can identify GLTs with graph and
weight sparsity exceeding 40% and 70% on Citeseer and PubMed across all settings.

4.4 CAN AdaGLT SCALE UP TO LARGE-SCALE DATASET? (RQ3)

Fig. 5 and Fig. 10 to 13 illustrate the performance of AdaGLT on DeeperGCN across depths ranging
from 4→ 28 layers, evaluated on Ogbn-Arxiv/Proteins and Ogbl-Collab. We can list observations:

Obs 6. AdaGLT is capable of learning layer-wise sparse graph structures. As depicted in Fig. 6,
the GLTs discovered by AdaGLT exhibit a progressively sparser graph topology across layers, with
their graph sparsity increasing from 16% to as high as 70% across layers.
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Figure 5: The performance of AdaGLT compared with UGS, TGLT and
random pruning on 12-layer DeeperGCN with Ogbn-Arxiv/Proteins and
Ogbl-Collab. Black dashed lines represent the baseline performance.

Figure 6: The percentage of re-
maining edges at each layer of
a 12-layer DeeperGCN after ap-
plying AdaGLT.

Obs 7. AdaGLT can scale up to large graphs. As depicted in Fig. 5 and Fig. 10 to 13, AdaGLT
consistently outperforms TGLT and UGS. In line with the findings from Obs 6, with the increase in
the number of GNN layers, TGLT and UGS struggle to find high graph sparsity graph lottery tickets.
In contrast, AdaGLT exhibits greater robustness to the number of layers, surpassing TGLT by 21%,
7%, and 11% in graph sparsity with the 28-layer setting, respectively.

4.5 ABLATION STUDY

Effects of Threshold Level. In our comparison across different threshold levels on Cora, Citeseer,
and PubMed, as depicted in Fig. 7 and 8, we have made several noteworthy observations. First,
on small graphs like Cora, the threshold matrix consistently outperforms the threshold scalar/vector
(with GLTs of over 40% graph sparsity and 99% weight sparsity). This superiority can be attributed
to its ability to adjust the threshold element-wisely; Second, when applied to larger graphs like
Citeseer and PubMed, the threshold vector exhibits better performance, especially in sparsifying
the graph. We believe this is because the threshold vector strikes a balance between precision and
parameter efficiency. Unlike the threshold scalar, it does not uniformly apply a single threshold
across the entire matrix. Additionally, it avoids introducing excessive parameters like the threshold
matrix during training. In summary, we adopt the threshold vector for all experiments.

Graph Sparsity Weight Sparsity
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 (
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Figure 7: Ablation study on different threshold levels (i.e.
threshold scalar, vector, and matrix) with GCN on Cora dataset.
Black dash lines represent the baseline performance.

Settings Graph Sparsity
Dataset Estimator 20% 30% 40% 50% 60%

Cora
+GCN

STE 80.6 79.8 80.0 78.7 74.5

LTE 80.6 80.1 79.2 78.9 74.4

SR-STE 80.4 78.8 78.3 77.7 74.4

Citeseer
+GIN

STE 69.7 69.6 68.6 68.4 67.2

LTE 69.8 69.4 68.5 68.2 67.0

SR-STE 69.5 69.4 68.0 67.8 66.7

Table 2: Ablation study on different gra-
dient estimators over different datasets and
backbones. Cells highlighted in blue repre-
sent the performance of found GLTs.

Effects of Gradient Estimator. To assess the sensitivity of AdaGLT to various gradient estimators,
we compared STE with two other popular gradient estimators: Long-Tailed Estimator (LTE) (Xu
& Cheung, 2019; Liu et al., 2020) and SR-STE (Zhou et al., 2021). As depicted in Tab. 2, the
performance of different estimators is generally similar, demonstrating that AdaGLT is insensitive to
the choice of estimators. More details can be found in Appendix K.

5 CONCLUSION

In this paper, we propose an adaptive, dynamic and automatic framework for identifying graph
lottery tickets (AdaGLT) that unifies graph and weight sparsification in a dynamic and automated
workflow and is capable of winning layer-adaptive tickets. We provide theoretical substantiation
for this layer-adaptive sparsification paradigm in the context of deep GNNs. To verify the effective-
ness of AdaGLT, we conduct extensive experiments and ablations across different graph benchmarks,
various backbones and depth settings of GNNs. Our experiments consistently demonstrate its su-
periority over existing GLT methods. These findings shed light on automating the process of graph
lottery ticket discovery and expanding the generality of such tickets.
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A NOTATIONS

Table 3: The notations that are commonly used in Methodology (Sec. 3).

Notation Definition

G = {V, E} Input graph
A Input adjacency matrix
X Input features

Θ Θ =
{
Θ(0),Θ(1), · · · ,Θ(L−1)

}
represent the weight matrices of GNN

tθ tθ =
{
t
(0)
θ , t

(1)
θ , · · · , t(L−1)

θ

}
represent threshold vectors for weight sparsification

tA tA =
{
t
(0)
A , t

(1)
A , · · · , t(L−1)

A

}
represent threshold vectors for graph sparsification

mθ m
(l)
θ =

{
m

(0)
θ ,m

(1)
θ , · · · ,m(L−1)

θ

}
represent the weight pruning masks

mA m
(l)
A =

{
m

(0)
A ,m

(1)
A , · · · ,m(L−1)

A

}
represent the graph pruning masks

sij Edge score between vi and vj
Ψ Ψ = {WK ,WV }denotes parameters of edge explainer

H(l) Embedding representation after l-th GNN embedding layer
Θ̃(l) Sparsified weight matrix at l-th GNN layer
Ã(l) Sparsified adjacency marix at l-th GNN layer

B DETAILS ON THRESHOLD LEVEL

In addition to the threshold vector, we can also employ a threshold scalar or threshold matrix to
learn adaptive thresholds for each weight matrix or adjacency matrix (Liu et al., 2020). Specifically,
considering a layer’s adjacency matrix or weight (unified as Q ∈ RN×M ), we define its threshold
scalar and threshold matrix as t and T ∈ RN×M , respectively. The calculation of the binary pruning
mask is as follows:

mij =

{
1[|Qij | > t], for threshold scalar
1[|Qij | > Tij ], for threshold matrix

(12)

where m denotes the resulting binary pruning mask. We conduct comparative experiments on Cora,
Citeseer, and Pubmed datasets to assess the reliability and effectiveness of thresholds at various
levels.
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Figure 8: Ablation study on different threshold levels (i.e. threshold scalar, vector, and matrix) with GCN on
Citeseer/PubMed dataset. Black dash lines represent the baseline performance.
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C ALGORITHM FRAMEWORK OF AdaGLT

In this section, we conclude the overall algorithm framework of AdaGLT in Algo. 1. During each
epoch, we first compute the edge scores with the edge explainer (Eq. 3.2) and calculate the pruning
masks for weight and adjacency matrix in a layer-wise manner (Eq. 2 & 7). After that, we forward
the network with sparsed weights and graphs and updates parameter through gradient estimators.
It is important to note that, unlike conventional network training, our objective is not to attain the
optimal network parameters but rather to achieve the optimal sparse structure (i.e. m∗

A,m
∗
θ). We

draw the optimal sparse structure from pruning masks with sparsity levels within the desired range
and with the best performance on the validation set.

Algorithm 1: Algorithm workflow of AdaGLT
Input : G = (A,X), GNN model f(G,Θ0), GNN’s initialization Θ0, threshold vectors tθ

and tA, step size η, target graph sparsity sg and weight sparsity sθ, sparsity interval
width ϵ

Output: GLT f ({mA ⊙A,X},mθ ⊙Θ)
1 for iteration i← 1 to N do
2 Compute edge scores sij = 1(i,j)∈E

exp (gΨ(xi,xj))/ω∑
vw∈N(vi)

exp (gΨ(xi,xw))/ω (Eq. 3.2)

3 for layer l← 1 to L; ▷ Dynamic & Automated Pruning
4 do
5 m

(l)
θ,ij ← 1[|Θij | − tθ,i] (Eq. 2)

6 m
(l)
A,ij = 1[sij < t

(l)
A,i]

∏l−1
k=0 m

(k)
A,ij(Eq. 7) ; ▷ Layer-adaptive

7 end
8 Forward f(·,mθ ⊙Θ) with G = {mA ⊙A,X} to compute the loss LAdaGLT in Eq. 3.3.
9 Backpropagate to update Θi+1 ← η∇ΘiLAdaGLT, Ψi+1 ← η∇ΨiLAdaGLT

10 Update tθ and tA with STE according to Eq. 2. ; ▷ Dynamic restoration
11 Compute current graph and weight sparsity cg and cθ.
12 if |cg − sg| ≤ ϵ and |cθ − sθ| ≤ ϵ then
13 Update the optimal mask m∗

A,m
∗
θ ←mA,mθ (if with higher validation score)

14 end
15 Rewind GNN’s weights to Θ0.
16 Retrain the model with fixed m∗

A and m∗
θ .

D COMPLEXITY ANALYSIS

Following Chen et al. (2021b), we exhibit the complexity of AdaGLT. The inference time com-
plexity of UGS is defined as O

(
L× ||mA

⊙
A||0 ×D + L× ||mθ||0×

∣∣V∣∣×F 2
)
, where L is

the number of layers, ||mA

⊙
A||0 is the number of remaining edges in sparse graph, D is

the dimension of feature and |V| is the number of nodes. The inference time complexity of
AdaGLT can be defined as O

(
L×

∑
l

∣∣∣∣∣∣m(l)
A

⊙
A
∣∣∣∣∣∣
0
×D + E × F + L× ||mθ||0×

∣∣∣V∣∣∣×F 2
)

,

where
∑

l

∣∣∣∣∣∣m(l)
A

⊙
A
∣∣∣∣∣∣
0

represents the remaining edges across all layers and E × F denotes the
complexity of calculating edge scores according to Eq. 3.2. It is worth mentioning that we solely
compute edge scores and their similarities for edges eij where (i, j) ∈ E , thus avoiding the O(N2)
complexity associated with all-pair similarity computations.

E PROOF OF THEOREM 1

Proof of Theorem 1. We first study the propagation of GNTK with respect to graph convolution.
The expression of graph convolution is governed as follows:

h(l)(u) =
1

|N (u)|+ 1

∑
v∈N (u)∪u

h(l−1)(v), (13)
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where u, v denote the node index of the graph, andN (u)∪u is the union of node u and its neighbors.
Equation (13) reveals the node feature aggregation operation among its neighborhood according to a
GCN variant (Hamilton et al., 2017). Based on the definition of NTK (11), we recursively formulate
the propagation of GNTK in the infinite-width limit. As information propagation in a GCN is built
on aggregation (13), the corresponding formulas of GNTK are expressed as follows,

K(l)(u, u′) =
1

|N (u)|+ 1

1

|N (u′)|+ 1

∑
v∈N (u)∪u

∑
v′∈N (u′)∪u′

K(l−1)(v, v′)

In order to facilitate calculation, we rewrite the above equation in the format of a matrix,

k(l) = G(l)k(l−1)

where k(l) ∈ Rn2×1, is the result of GNTK being vectorized. Thus, the matrix operation G(l) ∈
Rn2×n2

.

Now we consider the impact of graph sparsification on the operation matrix G(l). Different from
what has been studied in (Huang et al., 2021) the operation matrix G(l) is irreducible and aperiodic,
with a stationary distribution vector. Here we consider the graph sparsification technique. In this
case, the operation matrix is no longer a transition matrix that corresponds to a Markov process.

To study the limit behavior of the smallest eigenvalue of the GNTK, we make an SVD decomposition
of the operation matrix in each layer as follows:

G(l) = U(l)Σ(l)V(l)⊤

where U(l) and V(l) are both orthogonal matrix. Because the operation matrix G(l) is a symmetric
matrix, we know that U(l) = V(l). Based on our assumption that that operation matrix G(l), for
every layer, has the same singular vectors, which means that:

U(l) = U(l−1) = · · · = U(1)

Then we can obtain the expression for GNTK at the final layer:

k(l) = UΣ(l)V⊤UΣ(l−1)V⊤ · · ·UΣ(1)V⊤k(0)

= UΣ(l)Σ(l−1) · · ·Σ(1)V⊤k(0)

Then we know that the smallest singular value of k(l) is determined by the product’s smallest singu-
lar value. According to our assumption on the smallest singular value with respect to layer number,
i.e. σ(l)

0 = 1− αl, we obtain that:
l∏

i=1

σ
(l)
0 =

l∏
i=1

(1− βl).

We would like to calculate the limit value as the depth of GNN tends to be infinity:

lim
l→∞

l∏
i=1

σ
(l)
0 = QPochhammer[β]

which is a Quantum Pochhammer Symbol, and marked as QPochhammer. According to the prop-
erty of Quantum Pochhammer Symbol, when 0 < β < 1, we have that QPochhammer[β] > 0. As
a result, we claim that the smallest eigenvalue of GNTK is greater than zero as depth tends to be
infinity:

lim
l→∞

λ0(K
(l)) > 0

which completes the proof.

F DATASET DESCRIPTION

We conclude the dataset statistics in Tab. 4 .
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Table 4: Graph datasets statistics.

Dataset Task Type Graphs Nodes Edges Ave. Degree Features Classes Metric

Cora Node Classification 1 2,708 5,429 3.88 1,433 7 Accuracy
Citeseer Node Classification 1 3,327 4,732 1.10 3,703 6 Accuracy
PubMed Node Classification 1 19,717 44,338 8.00 500 3 Accuracy

Ogbn-ArXiv Node Classification 1 169,343 1,166,243 13.77 128 40 Accuracy
Ogbn-Proteins Node Classification 1 132,534 39,561,252 597.00 8 2 ROC-AUC
Ogbn-Products Node Classification 1 2,449,029 61,859,140 50.52 100 47 Accuracy

Ogbl-Collab Link Prediction 1 235,868 1,285,465 10.90 128 2 Hits@50

G DETAILS ON EXPERIMENT CONFIGURATIONS

Metrics. Accuracy represents the ratio of correctly predicted outcomes to the total predictions
made. The ROC-AUC (Receiver Operating Characteristic-Area Under the Curve) value quantifies
the probability that a randomly selected positive example will have a higher rank than a randomly
selected negative example. Hit@50 denotes the proportion of correctly predicted edges among the
top 50 candidate edges.

Sparsity Ratio. We define the graph sparsity ratio sg and weight sparsity ratio sθ in a single graph
as follows:

sg =
1

L

L−1∑
l=0

1−

∣∣∣∣∣∣m(l)
A

∣∣∣∣∣∣
0

||A||0

 , sθ =
1

L

L−1∑
l=0

1−

∣∣∣∣∣∣m(l)
θ

∣∣∣∣∣∣
0

||Θ(l)||0

 , (14)

where || · ||0 represents the L0 norm counting the number of non-zero elements. In other words, sg
represents the percentage of pruned edges out of all edges in the entire L layers, while sθ signifies
the percentage of pruned elements out of all elements in the complete set of weights.

Train-val-test Splitting of Datasets. For node classification in small- and medium-scale datasets,
following the semi-supervised settings (Chen et al., 2021b), we utilized 140 labeled data points
(Cora), 120 (Citeseer), and 60 (PubMed) for training, with 500 nodes allocated for validation and
1000 nodes for testing. In the context of deep GNNs, we take the full-supervised settings (Rong
et al., 2019), which set 1000 nodes for testing, 500 nodes for validation and the others for training.
The data splits for Ogbn-ArXiv, Ogbn-Proteins, Ogbn-Products, and Ogbl-Collab were provided by
the benchmark (Hu et al., 2020). Specifically, for Ogbn-ArXiv, we train on papers published until
2017, validate on papers from 2018 and test on those published since 2019. For Ogbn-Proteins,
protein nodes were segregated into training, validation, and test sets based on their species of origin.
For Ogbn-Products, we sort the products according to their sales ranking and use the top 8% for
training, next top 2% for validation, and the rest for testing. For Ogbl-Collab, we employed collab-
orations until 2017 as training edges, those in 2018 as validation edges, and those in 2019 as test
edges.

Backbone settings. For node classification and link prediction tasks on small- and medium-scale
graphs, we employ 2-layer GCN/GIN/GAT backbones within the framework of standard-depth
GNNs. In the context of deeper GNNs, we utilize 4/8/12/16-layer GCN/ResGCN/GAT backbones.
For large-scale graphs including Ogbn-Arxiv/Proteins and Ogbl-Collab, we adopt DeeperGCN (Li
et al., 2020a) of 4/12/20/28 layers. We choose 4/8-layer Cluster-GCN for Ogbn-Products.

For comparison with state-of-the-art GLT methods, we choose UGS (Chen et al., 2021b) and
TGLT (Hui et al., 2023), which are the most efficient GLT methods to our best knowledge. For
UGS, we directly adopt the source code provided by the authors and stick to their original parameter
settings. For TGLT, we carefully reproduced their model from the description in the paper.

Hyperparamters. We conclude the detailed hyperparameter settings in Tab. 5.

H ADDITIOANL EXPERIMENTS TO ANSWER RQ1

Fig. 9 showcases the results of AdaGLT on Cora dataset with the GCN/GIN/GAT backbone.
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Table 5: Detailed hyper-parameter configurations. ηg and ηθ denotes the coefficient attached to R(tA) and
R(tθ), respectively.

Dataset Model Epochs (train/retain) Optimizer learning rate Weight Decay ηg ηθ ω

Cora
GCN 400/300 Adam 0.01 8e-5 5e-5 0.001

3GIN 400/300 Adam 0.002 8e-5 2e-6 0.002
GAT 400/300 Adam 0.001 8e-5 0 0.001

Citeseer
GCN 400/300 Adam 0.01 5e-4 9e-5 0.002

2GIN 400/300 Adam 0.002 5e-4 2e-6 0.002
GAT 400/300 Adam 0.001 5e-4 0 0.001

PubMed
GCN 500/400 Adam 0.01 5e-4 5e-5 0.001

3GIN 300/300 Adam 0.002 5e-4 2e-6 0.002
GAT 500/400 Adam 0.001 5e-4 0 0.001

Ogbn-Arxiv
DeeperGCN

800/600 Adam 0.01 0 1e-8 1e-12
3Ogbn-Proteins 200/150 Adam 0.01 0 7e-8 3e-13

Ogbl-Collab 800/500 Adam 0.01 0 1e-8 1e-12

Ogbn-Product Cluster-GCN 50/50 Adam 0.001 0 1e-8 5e-12 2
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Figure 9: Results of node classification over Cora with GCN/GIN/GAT backbones. Black dash lines represent
the baseline performance. Marker , • and ⋆ indicates the last GLT that reaches higher accuracy than the
original model in the sparsification process of UGS, TGLT and AdaGLT, respectively.
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I ADDITIOANL EXPERIMENTS TO ANSWER RQ2

We provide detailed experimental results of the performance comparison between TGLT and
AdaGLT on deep GAT/GCN/ResGCN (4→ 16 layers) in Tab. 6 to 10.

Table 6: The performance comparison between TGLT and AdaGLT in discovering GLTs on GAT backbone
across various weight sparsity settings (10% → 90%) and GNN layer configurations (4 → 16 layers). Cells
highlighted in red and blue correspond to winning tickets found by TGLT and AdaGLT, respectively.

Weight
Sparsity

Method Cora Citeseer PubMed

4 8 12 16 4 8 12 16 4 8 12 16

0% Baseline 78.20 78.08 76.12 75.53 69.82 67.50 67.40 67.56 78.10 76.82 76.30 76.81

10%
TGLT 78.79 79.39 73.52 71.49 70.11 67.79 68.10 67.08 78.64 77.91 77.09 76.92

AdaGLT 79.12 78.27 76.84 75.98 69.90 68.67 68.11 67.99 78.43 78.19 77.76 77.09

30%
TGLT 78.25 78.80 73.28 70.66 69.94 66.34 63.52 63.90 78.35 76.93 76.49 73.66

AdaGLT 79.07 78.65 77.58 76.90 69.73 68.06 68.64 68.70 78.24 77.89 77.10 77.11

50%
TGLT 78.21 76.42 70.19 72.00 69.86 67.73 64.49 60.70 78.13 74.36 72.97 70.28

AdaGLT 78.14 78.29 76.89 75.00 69.93 67.74 67.44 67.63 78.14 76.98 76.08 76.23

70%
TGLT 73.74 73.65 70.56 70.88 67.26 63.40 60.77 62.89 74.48 69.08 68.71 65.58

AdaGLT 78.89 78.14 72.70 70.85 69.88 67.07 67.63 66.92 79.04 77.41 73.19 72.43

90%
TGLT 70.10 67.71 62.28 63.56 64.22 63.19 55.46 54.76 66.80 67.72 59.71 60.02

AdaGLT 75.83 76.41 69.90 63.18 64.83 64.50 62.68 60.13 76.03 72.28 69.58 67.46

Table 7: The performance comparison between TGLT and AdaGLT in discovering GLTs on GCN backbone
across various graph sparsity settings (10% → 60%) and GNN layer configurations (4 → 16 layers).

Graph
Sparsity

Method Cora Citeseer PubMed

4 8 12 16 4 8 12 16 4 8 12 16

0% Baseline 83.95 83.65 84.80 83.60 75.10 74.20 73.80 74.00 88.10 84.40 85.60 83.10

10%
TGLT 78.09 78.74 76.08 75.09 69.90 67.83 67.62 66.88 78.32 76.92 85.79 78.22

AdaGLT 84.25 84.87 84.82 81.28 75.58 74.80 76.21 74.19 89.55 85.60 85.92 84.01

20%
TGLT 84.02 79.05 78.9 77.15 67.06 68.04 66.30 66.93 83.30 85.07 81.44 71.27

AdaGLT 85.55 79.15 78.68 76.45 75.23 72.20 69.40 68.23 88.14 84.77 85.92 77.68

30%
TGLT 79.55 71.06 70.50 66.55 66.15 63.21 59.60 58.62 85.87 82.22 79.70 73.18

AdaGLT 81.76 77.75 75.30 69.15 75.45 70.70 70.21 60.40 89.14 85.59 85.73 75.01

40%
TGLT 73.15 70.04 70.88 67.37 64.55 61.50 51.38 43.40 78.41 72.98 73.44 70.62

AdaGLT 82.25 75.82 70.00 66.13 74.15 71.60 69.00 54.31 88.33 84.57 80.61 76.18

50%
TGLT 67.75 68.15 62.92 58.65 58.84 54.17 30.72 37.40 72.16 70.18 68.24 66.79

AdaGLT 77.65 71.97 67.82 60.27 73.46 70.20 70.71 52.23 81.17 83.64 75.15 73.29

60%
TGLT 60.65 45.89 38.69 43.25 51.07 23.81 16.50 14.30 66.18 65.16 64.04 54.88

AdaGLT 75.17 71.45 64.49 53.25 73.55 70.40 65.44 57.87 78.92 75.43 70.48 67.44

Table 8: The performance comparison between TGLT and AdaGLT in discovering GLTs on GCN backbone
across various weight sparsity settings (10% → 90%) and GNN layer configurations (4 → 16 layers).

Weight
Sparsity

Method Cora Citeseer PubMed

4 8 12 16 4 8 12 16 4 8 12 16

0% Baseline 83.95 83.65 84.80 83.60 75.10 74.20 73.80 74.00 88.10 84.40 85.60 83.10

10%
TGLT 80.35 80.85 82.43 81.85 71.45 71.59 72.80 75.00 88.73 86.42 83.77 80.32

AdaGLT 85.55 85.27 85.30 82.75 76.55 75.20 76.31 74.39 88.23 85.07 85.72 84.79

30%
TGLT 81.35 81.67 83.69 83.68 70.46 72.00 72.11 74.23 88.29 82.09 85.78 82.94

AdaGLT 85.34 85.65 84.68 81.35 76.35 74.91 75.82 74.88 89.21 85.22 85.88 83.71

50%
TGLT 78.94 78.97 80.03 81.65 68.95 72.20 71.22 73.39 86.07 84.57 82.22 79.50

AdaGLT 85.75 84.53 83.90 81.15 76.65 75.00 76.32 74.00 88.63 85.67 86.48 83.11

70%
TGLT 77.45 75.85 79.08 76.84 65.72 68.17 67.80 66.91 78.21 78.92 76.40 76.23

AdaGLT 84.83 84.15 80.80 78.25 75.53 74.20 75.68 73.10 88.92 86.04 86.39 84.15

90%
TGLT 75.35 70.95 70.51 67.26 64.55 62.08 53.20 58.61 76.40 76.11 72.27 70.09

AdaGLT 85.43 83.55 81.70 78.55 76.23 74.50 70.58 64.50 89.38 84.67 85.34 82.86
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Table 9: The performance comparison between TGLT and AdaGLT in discovering GLTs on ResGCN backbone
across various graph sparsity settings (10% → 60%) and GNN layer configurations (4 → 16 layers).

Graph
Sparsity

Method Cora Citeseer PubMed

4 8 12 16 4 8 12 16 4 8 12 16

0% Baseline 84.40 84.15 84.25 82.00 75.20 74.40 74.15 73.45 87.30 85.50 84.40 87.20

10%
TGLT 80.20 79.15 79.54 80.25 73.21 72.25 73.29 69.88 87.49 85.91 84.69 86.74

AdaGLT 85.42 84.47 81.45 82.75 75.40 76.27 75.11 75.35 88.21 86.68 84.96 87.81

20%
TGLT 79.70 77.85 76.75 76.95 69.50 67.75 71.17 63.23 87.05 82.66 80.47 82.65

AdaGLT 85.32 82.15 79.55 81.94 74.60 74.25 72.70 72.23 87.18 85.81 84.66 86.98

30%
TGLT 73.40 72.25 72.23 69.28 64.51 61.75 64.60 61.05 85.82 77.26 80.06 79.82

AdaGLT 82.39 82.15 79.25 82.65 74.31 74.85 72.11 73.15 87.67 85.37 84.86 87.14

40%
TGLT 72.60 71.45 71.35 68.15 68.92 70.95 61.72 57.15 80.62 78.39 78.50 77.49

AdaGLT 80.83 78.35 78.45 77.88 74.13 71.65 73.10 74.20 87.48 85.92 85.01 86.88

50%
TGLT 72.90 73.35 74.95 64.77 60.31 66.55 61.32 63.55 75.87 75.14 72.32 69.56

AdaGLT 79.11 76.55 75.25 75.75 70.40 74.47 72.26 71.85 83.90 85.86 84.68 86.25

60%
TGLT 62.90 70.15 65.45 69.26 59.80 66.35 66.35 63.26 68.03 70.64 66.29 68.05

AdaGLT 75.10 73.55 72.75 74.15 71.90 73.06 71.13 71.37 83.81 82.19 82.12 83.61

Table 10: The performance comparison between TGLT and AdaGLT in discovering GLTs on ResGCN back-
bone across various weight sparsity settings (10% → 90%) and GNN layer configurations (4 → 16 layers).
Cells highlighted in red and blue correspond to winning tickets found by TGLT and AdaGLT, respectively.

Weight
Sparsity

Method Cora Citeseer PubMed

4 8 12 16 4 8 12 16 4 8 12 16

0% Baseline 84.40 84.15 84.25 82.00 75.20 74.40 74.15 73.45 87.30 85.50 84.40 87.20

10%
TGLT 79.79 81.45 82.54 80.16 71.00 72.87 75.70 72.88 86.89 85.55 84.52 86.95

AdaGLT 87.71 86.47 84.64 82.61 75.58 76.25 74.31 74.25 88.04 86.45 85.67 87.44

30%
TGLT 79.40 80.85 83.05 80.57 69.76 72.35 73.40 71.03 86.08 85.69 84.72 86.14

AdaGLT 86.00 86.16 83.55 81.22 74.43 75.20 74.14 74.03 87.56 85.89 85.10 88.04

50%
TGLT 79.23 79.12 79.83 80.25 69.21 70.45 73.30 70.44 83.18 80.58 82.30 84.30

AdaGLT 85.98 85.08 84.15 82.03 75.31 73.35 73.50 73.04 88.23 85.69 84.98 87.68

70%
TGLT 77.60 77.85 76.75 76.99 70.52 68.80 71.79 65.21 83.12 80.81 79.58 80.20

AdaGLT 85.20 84.14 83.77 80.82 73.53 73.75 73.00 72.25 87.12 85.74 84.76 87.03

90%
TGLT 72.60 71.14 72.28 69.97 68.92 58.76 64.38 59.33 80.33 78.12 78.60 74.75

AdaGLT 84.73 83.85 82.66 79.98 73.08 73.85 74.44 73.71 87.78 85.34 84.66 86.94

J ADDITIOANL EXPERIMENTS TO ANSWER RQ3

Fig. 10 to 13 comprehensively illustrate the performance comparison of AdaGLT with TGLT, UGS,
and random pruning on DeeperGCN at 4, 12, 20, and 28 layers, across Ogbn-Arxiv, Ogbn-Proteins,
and Ogbl-Collab datasets. Fig. 14 illustrates the sparsity distribution of GLTs uncovered by AdaGLT
under different settings and datasets.

Tab. 11 demonstrate the performance of AdaGLT on Ogbn-Products with 4- and 8-layer Cluster-
GCN. It can be observed that (1) AdaGLT can scale up to large graphs like Ogbn-Products and
effectively find GLTs, while UGS completely fails. (2) Discovering winning tickets within shallow
GNNs is more feasible. Under 30% graph sparsity, AdaGLT successfully identifies winning tick-
ets at a 4-layer GCN, while struggling to achieve baseline performance on an 8-layer GCN. This
observation aligns with our findings in Sec. 4.3.

Table 11: The performance of AdaGLT on Ogbn-Products with 4- and 8-layer Cluster-GCN. We report the
mean accuracy ± stdev of 3 runs.

Layer 4 (Baseline=79.23±0.47) 8 (Baseline=78.82±0.73)

Graph Sparsity 10% 30% 50% 10% 30% 50%

UGS 78.44±0.58 74.67±0.62 73.05±1.02 76.30±0.79 72.13±1.25 71.32±1.14

AdaGLT 80.35±0.51 79.67±0.86 76.46±0.69 80.22±0.78 78.13±1.12 74.62±0.90
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Figure 10: The performance comparison on Ogbn-Arxiv/Ogbn-Proteins/Ogbl-Collab datasets with 4-layer
DeeperGCN. Black dash lines represent the baseline performance.
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Figure 11: The performance comparison on Ogbn-Arxiv/Ogbn-Proteins/Ogbl-Collab datasets with 12-layer
DeeperGCN. Black dash lines represent the baseline performance.
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Figure 12: The performance comparison on Ogbn-Arxiv/Ogbn-Proteins/Ogbl-Collab datasets with 20-layer
DeeperGCN. Black dash lines represent the baseline performance.
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Figure 13: The performance comparison on Ogbn-Arxiv/Ogbn-Proteins/Ogbl-Collab datasets with 28-layer
DeeperGCN. Black dash lines represent the baseline performance.

(a) Arxiv/12 (b) Arxiv/20

(c) Collab/12 (d) Collab/20

Figure 14: (a) denotes the percentage of remaining edges at each layer of a 12-layer DeeperGCN on Ogbn-
Arxiv after applying AdaGLT. (b) denotes that under 20-layer settings with Ogbn-Arxiv. (c)/(d) illustrates that
under 12/20-layer settings with Ogbl-Collab.
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Figure 15: In this figure, ⊙ denotes element-wise multiplication and ⊗ indicates matrix multiplication. (a)
demonstrates the forward and backward processes of simultaneous sparsification without gradient estimators.
The backpropagation process is blocked due to the binarization operation. (b) depicts the weight and its as-
sociated threshold vector updates using straight-through/long-tailed estimator, and g(·) denotes the long-tail
transformation (Xu & Cheung, 2019). (c) elucidates the weight and its associated threshold vector updates
using SR-STE.

K ABLATION STUDY ON GRADIENT ESTIMATORS

We have employed the straight-through estimator (STE) to enable differentiable binary pruning
mask calculations. However, there exist alternative gradient estimators. To assess the sensitivity
of AdaGLT to different gradient estimators, we have also incorporated the LTE (Long-tailed estima-
tor) (Xu & Cheung, 2019; Liu et al., 2020) and SR-STE (Zhou et al., 2021). Fig. 15 (a) illustrates the
blocked backpropagation process when joint sparsification is introduced into the graph convolution,
while (b) details how STE and LTE update weights and threshold vectors. In the forward stage, Θ̃ is
obtained by the row-wise thresholding with threshold vector tθ. And in the backward stage, the gra-
dient w.r.t. Θ̃ will be applied to Θ directly. Fig. 15 (c) demonstrates how SR-STE updates weights
and threshold vectors. Different from STE, Θ and tθ in this case are updated not only through ∂L

∂Θ̃
but also guided by mθ ⊙Θ, leading to a more stable sparsification process (Zhou et al., 2021).

We conducted a comprehensive comparison of various gradient estimators applied to AdaGLT.
Tab. 12 presents the extreme graph sparsity achieved by each gradient estimator, which corresponds
to the most sparse graph lottery ticket found. Tab. 13 displays the extreme weight sparsity obtained
by each gradient estimator. It is evident that STE and LTE demonstrate consistent performance
across various datasets and GNN models. However, it is noteworthy that SR-STE tends to exhibit
suboptimal performance, particularly on GCN and GIN. On GIN, SR-STE achieved a maximum
graph sparsity decrease of merely 6.8% and a weight sparsity decrease of 7.3%. This can be at-
tributed to the fact that SR-STE was introduced to prevent the dynamic sparsifying procedure from
ineffectively alternating the pruned network architecture (Zhou et al., 2021). Paradoxically, this
hinders AdaGLT from exploring a wider range of sparse structures.

Table 12: The extreme graph sparsity at which AdaGLT is able to find GLTs with different gradient estimators
on different datasets and backbones.

Estimators Dataset + Model
Cora
+GCN

Cora
+GIN

Cora
+GAT

Citeseer
+GCN

Citeseer
+GIN

Citeseer
+GAT

STE 27.6 22.7 74.1 45.7 42.0 84.2
LTE 28.9 21.2 71.8 47.2 44.0 85.9

SR-STE 22.7 15.9 72.8 43.8 37.9 83.3
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Table 13: The extreme weight sparsity at which AdaGLT is able to find GLTs with different gradient estimators
on different datasets and backbones.

Estimators Dataset + Model
Cora
+GCN

Cora
+GIN

Cora
+GAT

Citeseer
+GCN

Citeseer
+GIN

Citeseer
+GAT

STE 96.7 87.0 98.7 96.7 96.2 98.9
LTE 97.4 87.2 98.3 97.2 95.4 98.7

SR-STE 95.8 79.9 96.8 93.4 93.9 97.1

Table 14: Ablation study on Citeseer with GCN backbone of 2 → 8 layers and 20% ∼ 60% graph sparsity,
evaluating the edge explainer (EE) and layer-adaptive pruning (LP). “w/o EE” signifies the replacement of the
edge explainer with a trainable mask, and “w/o LP” indicates the maintenance of the same sparsity across all
layers. The underlined number denotes the highest performance under certain graph sparsity across all AdaGLT
variants.

Layer 2 4 6 8

Sparsity 20% 40% 60% 20% 40% 60% 20% 40% 60% 20% 40% 60%

AdaGLT 71.32 70.66 66.23 75.23 74.36 72.93 74.49 71.46 71.12 71.33 69.27 69.42
AdaGLT w/o EE 68.69 54.16 48.05 52.60 45.77 42.28 53.17 47.10 40.85 52.91 40.66 40.66
AdaGLT w/o LP 71.47 71.15 65.90 75.50 71.46 65.99 69.74 67.10 62.83 67.05 60.79 55.63

Table 15: Ablation study on Citeseer with GAT backbone of 2 → 8 layers and 40% ∼ 80% graph sparsity,
evaluating the edge explainer (EE) and layer-adaptive pruning (LP).

Layer 2 4 6 8

Sparsity 40% 60% 80% 40% 60% 80% 40% 60% 80% 40% 60% 80%

AdaGLT 70.12 70.05 70.09 69.83 68.13 66.47 68.46 66.12 66.43 67.50 64.98 63.29
AdaGLT w/o EE 67.44 61.46 57.15 62.48 57.90 53.48 54.91 45.12 45.12 43.10 43.10 43.10
AdaGLT w/o LP 70.13 70.23 70.06 68.72 66.45 66.30 65.94 64.17 64.08 62.33 60.74 56.58

L ADDITIONAL ABLATION EXPERIMENTS

To validate the effectiveness of the individual components, we conduct additional ablation experi-
ments in this section, focusing on two pivotal components of AdaGLT: the edge explainer and layer-
adaptive pruning. Specifically, we aim to address the following two questions:

1. What is the impact on performance when our proposed edge explainer is substituted with a train-
able mask employed in Chen et al. (2021b)?

2. How does performance vary when maintaining the same sparsity level for each layer compared
to increasing sparsity as the number of layers grows?

We chose Citeseer + GCN/GAT (for small graphs) and Ogbn-Arxiv + DeeperGCN (for large graphs)
for ablation study. Our experimental results are shown in Tab. 14 to 16. We list two straightforward
observations:

Obs.1. Substituting the edge explainer resulted in a significant performance decline. Specifically, in
deeper GNNs, such as 6- and 8-layer GCN/GAT, replacing the edge explainer with a trainable mask
rendered the network unable to identify any winning tickets.

Obs.2. Layer-adaptive pruning significantly aids in discovering winning tickets in deeper GNNs.
We observe that in 2- and 4-layer GCNs, AdaGLT without layer-adaptive pruning occasionally out-
performs original AdaGLT. However, in deep scenarios, the elimination of layer-adaptive pruning
results in a sharp performance decline (8.48%↓ under 40% sparsity and 13.79%↓ under 60% sparsity
in an 8-layer GCN).
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Table 16: Ablation study on Ogbn-Arxiv with DeeperGCN backbone of 4 → 28 layers and 60% graph sparsity,
evaluating the edge explainer (EE) and layer-adaptive pruning (LP).

Layer 4 12 20 28

AdaGLT 70.13 70.08 71.34 69.79
AdaGLT w/o EE 60.34 52.60 47.44 42.40
AdaGLT w/o LP 68.74 63.89 60.33 58.05

25


	Introduction
	Preliminary & Related Work
	Methodology
	Automated Weight Sparsification
	Layer-adaptive Adjacency matrix Pruning
	A Unified and Dynamic Optimization
	Model Summary & Theoretical Dicussions

	Experiments
	Experimental Setups
	Can AdaGLT find Graph Lottery Tickets? (RQ1)
	Can AdaGLT handle deeper GNNs? (RQ2)
	Can AdaGLT scale up to large-scale dataset? (RQ3)
	Ablation Study

	Conclusion
	Acknowledgement
	Notations
	Details On Threshold Level
	Algorithm Framework of AdaGLT
	Complexity Analysis
	Proof of Theorem 1
	Dataset Description
	Details On Experiment Configurations
	Additioanl Experiments to Answer RQ1
	Additioanl Experiments to Answer RQ2
	Additioanl Experiments to Answer RQ3
	Ablation Study on Gradient Estimators
	Additional Ablation Experiments

