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Abstract

Autonomous berry harvesting is a challenging problem, espe-
cially with hard-to-reach targets inside the plant. Using soft
continuum arms is a step towards achieving this task without
causing excessive damage to the plant. Visual servoing is a
popular control strategy that relies on visual feedback to close
the control loop in controlling a soft arm. However, robust vi-
sual servoing is challenging as it requires reliable feature ex-
traction from the image, accurate control models and sensors
to perceive the shape of the arm, both of which can be hard to
implement in a soft robot. This work circumvents these chal-
lenges by presenting a deep neural network-based method to
perform smooth and robust 3D positioning tasks on a soft arm
by visual servoing using a camera mounted at the distal end
of the arm. A convolutional neural network is trained to pre-
dict the actuations required to achieve the desired pose in a
structured environment. An integrated approach for estimat-
ing the actuations from the image is proposed. In addition, a
proportional control law is implemented to reduce the error
between the desired and current image as seen by the cam-
era. The model and proportional feedback control make the
described approach robust to several variations such as new
targets, varying lighting conditions, diminution and uniform
load. Furthermore, the model lends itself to be transferred to
a new environment with minimal effort.

Introduction
There is an increasing need for autonomous berry harvesting
robots due to labor shortage and growing population (Sam-
tani et al. 2019). Traditional industrial robot arms have been
difficult to adopt for messy, cluttered, and delicate plants.
Soft continuum arms (SCA) (Hughes et al. 2016) have re-
ceived growing attention due to their superiority in dexter-
ous manipulation and safe interaction with the environment.
Their inherent flexibility with high degrees of freedom en-
dows soft robots with good adaptability but raises challenges
for accurate position control (Uppalapati et al. 2020). The
challenges in SCA control can be attributed mainly to the
difficulties in modeling and sensing (Rus and Tolley 2015)
its deformed shape. Current modeling methods are either
simplistic with a constant curvature assumption that work in
2D plane or valid for SCAs with short lengths (George Thu-
ruthel, Renda, and Iida 2020). On the other hand, exact

methods based on Cosserat rod models (Gazzola et al. 2018)
are computationally intensive. In addition, even with effec-
tive models, there aren’t cost-effective sensors (Shih et al.
2020; Thuruthel et al. 2019) to get the spatial position feed-
back of SCAs.

Recent advances in visual servoing and deep learning in
robots can be effectively used to overcome the limitations
in both sensing and modeling of SCA. Visual servoing us-
ing Neural Networks (NN) in conventional robotic arms has
been well studied but not extensively validated on SCA be-
cause of its complex behavior. Works like (Xu et al. 2019),
(Xu et al. 2021) used a fixed camera (eye-to-hand) to capture
the pose and curvature of the soft-arm to perform image-
based visual servoing. Additional sensor assistance-based
visual servoing was performed in (Wang et al. 2020) in order
to track the camera motion but was limited to 2D space. In
this work, we focus on eye-in-hand image-based visual ser-
voing in a 3D framework where there are berry-like objects,
with a camera at the distal tip of the SCA. We propose the
use of NN for visual servoing in SCA using an integrated
approach to estimate the pose of the soft manipulator, and
control it using visual servoing in a structured environment.
Our framework takes a single RGB image, I, and predicts
the control inputs (actuations) required to reach the specific
pose of the soft arm (current pose). Then the control policy
is implemented using the calculated error between the ge-
ometrical features of the current and target images, as well
as the error between the actuations of the current and target
poses to reach the desired target pose. Fig. 1(f) shows the
overall workflow of the proposed approach.

Methods
Experimental setup and Data collection: The experimen-
tal set up consists of a BR2 (Uppalapati and Krishnan 2021)
SCA mounted to a planar gantry. This gives the system 5
DOF - Bending (b), Rotation (r), SCA rotation (t), and x
and y translation. On the tip of the SCA, a 1200 TVL wire-
less camera (Caddx Firefly, Micro FPV Camera w/ VTX)
and positional sensor (micro sensor 1.8, Patriot SEU, Pol-
hemus) are mounted. See appendix A for more details. The
setup of the soft arm is shown in Fig. 1(c).

The data collection process is automated and the actua-



Figure 1: Experimental setup and workflow: (a) BR2 SCA attached to a rotating servo that can move in X and Y direction in the
gantry along with the targets and the wireless receiver to receive the tip camera image. (b) Four new targets (not seen in training)
along with the targets used for training. (c) BR2 SCA with the camera attached to the tip using a 3D printed casing. (d) SCA
with uniform loads distributed along its length (inset: silicone cast ring weighing 1.4 grams). (e) SCA with the central region
constrained with a rigid 3D printed part. (f) Overall workflow to reach the target image given current image using feedback.

tion inputs to the arm are given in the form of pressures (b,
r), x, y and angle (t). Images of the scene are captured at
discrete configurations throughout the workspace while cor-
responding state data (actuations and sensor readings) is si-
multaneously collected to self-annotate the images. The en-
vironment contains berry-like objects as seen in Fig. 1(b) to
replicate the berry reaching problem.

Network Architecture: Deep convolutional neural net-
works (CNNs) are known to effectively extract features from
images for various computer vision applications, such as im-
age recognition (Krizhevsky, Sutskever, and Hinton 2012),
image segmentation and also have been studied to estimate
the pose of a robot manipulator from images (Bateux et al.
2018). Inspired by this, we use VGG16 (Simonyan and Zis-
serman 2014), to estimate the input actuation values required
to reach a specific pose of the soft manipulator arm using
image inputs. We use a modified VGG16 for our base net-
work, VSBaseNet, where all the convolutional layers from
VGG16 are used and smaller fully connected layers are
added (details in Appendix B). Since we use real-world im-
ages of scenes captured by the tip camera, we perform trans-
fer learning by using previously trained VGG16 weights on
some layers and fine-tune it on our data which effectively
helped the network to learn new features pertaining to our
task. Our proposed integrated approach is implemented and
tested in order to see its effectiveness in various scenarios as
shown in section . The approach directly outputs the actua-
tions given an input image, I . Since we were dealing with a
regression task, the final dense layer consisted of five units
is added to VSBaseNet and we call it VSNet, that outputs
5 floats corresponding to the five input actuations in vector
form [b, r, t, x, y] where b is bending, r is rotation, t is theta,
and x, y are for gantry. Training: For training the VSNet, we
used a total of 7980 images and corresponding state infor-
mation. To regress absolute values of actuations, we use the
mean-squared error (MSE) loss function which computes
the mean of squared errors between the ground truth values
and the predictions.

loss(I) =
1

n

n∑
i=1

(Yi − Ŷi)
2 (1)

Here, Yi corresponds to the ground truth actuations for the
input image. Ŷi are the predicted actuations for the input im-
age. For other details about training, please refer to the Ap-
pendix B. Control Policy: There are two possible sources
for open loop errors in the system, (i) Non repeatability due
to hysteresis could lead to a different end effector position
for the same input actuations, (ii) Inaccuracies in the trained
model to fit the pose to actuations could also lead to large
deviations from the target. To overcome the errors, we inte-
grated the following feedback as shown in the Fig. 1(f):

ARC(k + 1) = ARC(k)− λ(APC(k)−APT ) (2)

where ARC(k), APC(k) and APT are the current actuations
to the soft arm, predicted actuations for the current image
and predicted actuations for the target image at step k. It
must be noted that at the end of each step k the arm is made
to reach a steady state. As the error between the predicted
actuations for the current image and target image reduces to
zero the SCA tip reaches its target position (or the tip cam-
era views the target image). λ is the proportional gain (> 0)
used for efficient convergence. The overall gain λ used is
decoupled to two different gains, λr = 0.6 for the x, y and θ
variable and λs = 0.7 for the b, r variables in order for effi-
cient and smooth convergence. These values are empirically
obtained (see details in appendix C).

Results and Discussion
In this section, we describe the different scenarios used to
validate the proposed approach on the BR2 SCA.
Integrated approach (base case): Thirty (n = 30) random
points in the operating range of the SCA system were col-
lected and their pose (x, y, z, q0, q1, q2, q3) information is
recorded with the Polhemus magnetic sensor. VSNet is used
for reaching the desired target images. For each test, the



Figure 2: Results (a) The target, current images at different iterations (denoted by N) and the final image when the stopping
condition MSEa < .05 was reached and (b) the corresponding MSEa and MSEi over iterations for integrated, new targets
and light intensity (c) Validation set MSE trend for original data trained on VSNet1, and new data retrained on VSNet1 and (d)
The initial, target and the final image when the stopping condition MSEa < 0.01 was reached on new data.

SCA system starts with a random initial configuration. The
loop is terminated either when the error between predicted
actuations of the target and current image (MSEa) is less
than 0.05 or when the number of iterations (N) reaches 15.
The result for one of the test cases is shown in Fig.2(a). From
the MSEa plot in Fig.2(b), it can be observed that the er-
ror was reduced to less than one in four iterations. In the
remaining iterations, the system has smooth transitions to
further reduce the error. The average MSE in actuations, av-
erage MSE in image, and average Euclidean distance error
between the final and target image for all the 30 tests is given
in Table 1. Shown by our experiments, 90% of the data has
less than 2 cm translation error (approximately the diameter
of the SCA) and less than 0.24 rad for the rotation in 80% of
the cases. The only test case with high error occurred as a re-
sult of no features in background in two different parts of the
workspace causing the model to get confused between them.
This can be addressed by having a non-plain background on
all sides of the operating region.
New targets: New targets (as shown in Fig. 1(b)) were in-
serted in the workspace as proof of concept that the arm can
reach even if there are new berries. Six target images (n =
6) were randomly collected, out of which three images con-
tained the new target alone, and remaining three images con-
tained both new and old targets (included during training).
The integrated approach method was used with the stopping
condition of MSEa < 0.05 or when N equals 30. The tar-
get image, current images at different iterations, and the final
image (when the stopping condition of MSEa < 0.05 was
reached) for one of the test cases is shown in Fig.2(a). As
seen in the MSEa plot in Fig. 2(b), the error reduced to
less than 1 in two iterations and converges to the new target
image in 11 iterations. The average MSE in actuations, av-
erage MSE in image, and average Euclidean distance error
between the final and target image for all the six tests are
given in Table 1 along with average translation and rotation
errors.

Robustness to light changes: The robustness of our pro-
posed method against exposure changes that are frequent
in real world scenarios of harvesting was tested. Experi-
ments were conducted with an extra light source in the en-
vironment, thus making the environment brighter. The in-
tegrated approach was used with the stopping condition as
MSEa < 0.05 or N = 30. The results for one case are shown
in Fig. 2(a)-(b). For this case the target image was reached
in six iterations. The errors are reported in Table 1.
Effect of diminution: This experiment is done to see the
performance of our method when there are disturbances
where the arm comes across an obstacle. This is replicated
by restricting the functionality of the SCA by attaching 3D
printed clips to its mid section as shown in Fig. 1(e). These
clips restrict the bending functionality of the SCA in the
sealed section of the arm. The integrated approach method
was used with the stopping condition of MSEa < 0.05 or N
equal to 30. The approach was tested on 16 different random
images. The results of one test case are shown in Fig. 2(a)
and (b). As seen in the Fig. 2(b), the SCA reached the target
image in 12 iterations. The errors for this case are reported
in Table 1.
Uniform load: In a real-world when the arm tries to reach
the berries, it can encounter other frequent disturbances like
wind. We replicated this and evaluated by adding six uni-
form rings of 1.4 grams each on to the SCA equidistantly
along the length as shown in Fig.1(d). The rings were fab-
ricated with silicon and thus owing to flexibility of silicon,
these rings don’t affect the functionality of the SCA at the
added locations. Ten experiments were conducted keeping
the stopping condition as MSEa < 0.05 or when N reaches
30. The integrated method with VSNet1 was used for this
experiment. The results of one of the tests with stopping
condition MSEa < 0.05 is shown in Fig. 2(a) in which
the target was reached accurately in six iterations. The total
added weight is around 25% of the total weight of the SCA.
The errors for this case are reported in Table 1.



Table 1: Results of experiments

Case and
number of
tests (n)

Avg.
act

MSE

Avg.
image
MSE

Avg. pos
error
(cm)

Std pos
error(cm)

Percentage tests
with pos error
<2cm (%)

Avg. rot
error
(rad)

Std rot
error (rad)

Percentage tests
with rot error
<0.24 rad(%)

Base (n=30) 0.055 0.013 1.648 2.046 90 0.233 0.301 80

New targets (n=6) 0.046 0.009 1.111 0.622 80 0.086 0.042 100
Light Intensity (n=10) 0.034 0.009 1.069 0.698 80 0.086 0.041 100
Uniform load (n = 10) 0.033 0.008 1.327 0.512 100 0.098 0.052 100
Diminution (n = 10) 0.049 0.012 1.237 0.557 90 0.077 0.032 100
Adaptability (n=5) 0.045 0.009 1.421 0.554 95 0.125 0.109 80

Adaptability to a new environment: In order to test the
transferability and adaptability of the system to new envi-
ronments, we changed the background of our structured en-
vironment. We added previously unseen images in the back-
ground of our setup and additionally included images on the
ground (bottom of the environment). With the new back-
ground, data was recollected as described in Section IID.
Our model was retrained on the new background data, with
weights initialized as the trained weights from the origi-
nal VSNet1. Five experiments were conducted using the re-
trained model in the new environment, keeping the stopping
condition as MSEa < 0.01. The results of two cases are
shown in Fig. 2 (d), which took 27 and 23 iterations, respec-
tively, to reach the stopping condition. The average number
of iterations to reach the stopping condition for all the tests
was 23. The mean translation error was 1.4212 cm and the
mean rotation error was 0.1252 radians. We also observed
that retraining VSNet took fewer steps and converged faster
than before (converged in 110 epochs as opposed to 150
epochs from before). This can be seen from the validation
set MSE graph in Fig. 2(c). New background data collection
was efficient since it is automated. We performed experi-
ments on the new background with a rigid stopping condi-
tion than before (MSEa < 0.01) and found that our method
is more accurate with a stricter stopping condition (with
trade-off of more iterations). We also tested a few points in
the new background with the previous model (trained on the
original dataset), but it did not converge. This ascertains our
claim that retraining the VSNet with new data was required.
Findings Summary To summarize our findings, our ap-
proach is able to reach the target positions with errors less
than 1.5 cm for more than 80% of tests in all cases. In ad-
dition, unlike the previous work on the control of the BR2

SCA (Satheeshbabu et al. 2020), the image based method
also controls the orientation of the SCA. The rotation er-
rors were less than 0.24 rad for 80% of the data. Further-
more, no abrupt changes in actuations were noticed lead-
ing to smooth convergence of the end effector to the target.
Additionally, we not only control the position of the arm
but also the orientation as compared to (Satheeshbabu et al.
2020). The system worked satisfactorily well in a new en-
vironment, considering the model was not fine-tuned to the
new dataset. We observed that retraining VSNet took fewer
steps and converged faster. Since we have a self-supervised
system, collecting data and retraining on a new background

can be done in a few hours.

Conclusion
To conclude, we demonstrated that visual servoing with
deep learning-based architectures leads to a reliable reach-
control of soft continuum arms, which are otherwise known
to be difficult to control. Our method includes a feedback
controller, on top of our modified VGG16-based image-to-
actuation predicting model, to accommodate for hysteresis
present in the soft-arm as well as the inaccuracies in the ac-
tuation predictions. We demonstrated our method in static
reach problems in structured non-changing environments,
which captures a large operational set for such arms. In these
environments, we showed the robustness of our approach
by replicating various scenarios in berry reaching problem,
ranging from change in environment lighting, new targets
in the environment, restricting the functionality of the arm
to adding uniform load. Additionally, we not only control
the position of the arm but also the orientation as compared
to (Satheeshbabu et al. 2020). We also verified the transfer-
ablility of our neural network model to a new environment
by changing the background images coupled with retrain-
ing. As a result, a huge advantage is that the users can easily
re-purpose our system for various settings without any need
for manual labeling since the data collection for training the
prediction model is automated.

While we limited this investigation to the quasistatic re-
sponse of the SCA, in the future we will explore visual ser-
voing in dynamical environments for which we will lever-
age the recent advances in spatio-temporal neural networks
(Hochreiter and Schmidhuber 1997). Furthermore, our fu-
ture work will investigate visual servoing in cluttered envi-
ronments where the soft arm leverages its flexibility and in-
teraction with the obstacles in reaching desired regions that
is more close to berry-harvesting settings.

Appendix
A. Experimental Setup Details
The experimental setup consists of five connected sys-
tems: Soft Continuum Arm (SCA), gantry, electrical control
board, computers, and magnetic sensor. The SCA (Fig. 1(c))
is made of three Fiber Reinforced Elastomeric Enclosures
(FREE)(Uppalapati and Krishnan 2018) - one bending, two



Figure 3: Workflow of our method to reach the target image given current image. (a) Integrated approach for obtaining a
mapping from image to actuations (Img2Act) (b) Network architecture of VSBaseNet

rotational (one clockwise(CW) and another counterclock-
wise (CCW)) and is referred to as a BR2 (Uppalapati and Kr-
ishnan 2021). It has an individually controllable pneumatic
actuator for each FREE. The gantry (Fig. 1(a)) adds three
degrees of freedom (DOF) to the SCA via an X and Y rail
and a rotational mount (θ) for the SCA. The X and Y rails
are belt driven by stepper motors (NEMA 17) and have an X
travel of 45 cm and a Y of 42 cm with the origin defined by
limit switches. Positioning on the gantry is open loop and
must be periodically reset to reduce error accumulation. A
servo motor (DS3218MG, DSSERVO) joins the SCA to the
gantry and controls θ(±90°). Together the SCA and gantry
provide five DOF: bending, rotation, theta, x and y trans-
lation. Note that rotation is treated as one DOF as the two
rotating FREEs are never actuated simultaneously. The CW
and CCW rotations are distinguished by positive or negative
value.

The electrical control board contains a pressure regula-
tor (ITV0031-2UBL, SMC) for each FREE in the SCA, a
PWM control board (PCA9685, Adafruit) for the servo and
two stepper drivers (Big Easy Driver, SparkFun) to control
the gantry translation. These devices are operated by a Rasp-
berry Pi 4 (8GB) and an Intel NUC (NUC7i7), both running
Ubuntu 18.04 with ROS Melodic. The Raspberry Pi is used
to interface with the electrical control board while the NUC
is used for the computationally intense control loop. The two
computers communicate via ROS multimaster. A magnetic
sensor (micro sensor 1.8, Patriot SEU, Polhemus), attached
to the SCA, provides pose information about the tip of the
SCA relative to a fixed source (TX1, Polhemus) origin that
is placed at the center of gantry base.

B. Details about Method

B.1. Network Architecture: For our base network, VS-
BaseNet, we have used a VGG16-based network. we found
that freezing the first 12 layers of the network and retraining
the remaining layers gave optimal results in terms of loss
and error. In addition to this, we added 2 fully connected
layers (with 64, 32) with ReLU non-linearity. To aid regular-
ization, we added batch normalization layers, dropout layers
after the dense layers and also applied l1 and l2 regularizers
to all the dense layers to decrease over-fitting with 0.0001
and 0.0005 as their respective regularization factors.

The workflow of integrated approach is given in Fig. 3(a).
For this approach, the network used is VSNet which consists
of the base network, VSBaseNet, along with a dense output
layer with sigmoid activation. The network architecture of
VSNet is given in Fig. 3(a), (b).

B.2. Training Dataset: We used electromagnetic tracking
(Patriot SEU, Polhemus) with a short-range source (TX1,
tracking area 2 to 60 cm) to get the ground truth absolute
pose. The sensor has a positional accuracy of less than
1mm. The signal from the sensor provides the real-time
spatial coordinates of the soft arm end in the form of
[x, y, z, quaternion], while [theta, r1, r2, b] come from the
requested actuations.
In our integrated approach, we used image data to predict
the actuations of the soft arm. Using our self-annotated data
collection method, a total of 7980 images corresponding to
different poses were collected. The dataset is divided into
training, validation and testing sets with 4910, 1676, and
2394 images respectively.



Figure 4: Translation error and rotation errors obtained for the test cases of (a) Integrated (30 points), (b) New Targets (6 points),
(c) Change in light intensity (10 points), (d) Diminution of SCA functionality (10 points) (e) Uniform load (n = 10 points), and
(f) Adaptability (n = 5 points).

B.3. Loss Function and Optimization: Our network
takes in a single image (taken at the current arm pose), I , and
outputs the absolute actuation values required to reach that
pose. Since this is a regression problem, the last layer of the
network outputs floats. The output of the network is in the
form of a vector comprising of the 5 actuations (b, r, t, x, y).

We experimented with SGD and Adam optimizer for
training and found that Adam optimizer converged faster and
with less oscillation. We achieved best results using a time
based learning rate scheduler with an initial learning rate of
0.01 and number of epochs as 150. The learning rate at each
epoch was calculated as:

ηn = ηn−1 ∗
1

1 + decay ∗ n
(3)

where ηn−1 is the learning rate of the previous epoch, and n
is the current epoch number. The value of decay is normally
implemented as:

decay =
η0
N

(4)

where η0 is the initial learning rate and N is the total number
of epochs. We trained the model for 150 epochs after which
the model reached saturation. We used a batch size of 128
to help in generalizing the model better. Using a lower or a
higher batch size caused the validation loss to fluctuate.

C. Results
C.1. Estimation of λs and λr: The different actuations
have a disproportionate effect on the SCA tip position. For
example, a small change in x or y position will have a larger
effect on the SCA tip than a similar change of the pressure
in the SCA. The tip position is also dependent on the current
shape of the SCA. Therefore λ, the proportional gain, is de-
coupled to two different gains, λr for the x, y and θ variable
and λs for the b, r variables in order for efficient and smooth
convergence. It is empirically obtained that the number of
iterations required to reach a test image to obtain the actu-
ation error (MSEa) less than 0.1 is faster for values of λr

and λs in the range of [0.5, 0.7] and [0.6, 0.8]. Based on this

test case, the values of λ for all the following validation tests
is set to [λr, λs] = [0.6, 0.7].

C.2. Quantitative Evaluation: Figure 4 shows the trans-
lation and rotation errors for all the test points in each ex-
periment in histograms. Translation error is calculated using
the Euclidean distance between the ground truth (px, py, pz)
position (obtained from the Polhemus magnetic sensor) of
the target image and final image for each test. Rotation error
on the other hand is obtained using Euler’s Axis-angle rep-
resentation where R1, R2 are rotation matrices at the target
and final images respectively. The quaternion pose informa-
tion obtained by the Polhemus sensor is converted to rotation
matrix in order to use the Eq.5.

e(R1, R2) = cos−1
( trace(R1R

T
2 )− 1

2

)
(5)
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