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Abstract

AI-driven discovery can greatly reduce design time and enhance new therapeutics’
effectiveness. Models using simulators explore broad design spaces but risk violat-
ing implicit constraints due to a lack of experimental priors. For example, in a new
analysis across diverse models on the GuacaMol benchmark using supervised clas-
sifiers, over 60% of molecules proposed had a high probability of being mutagenic.
In this work, we introduce Medex, a dataset of priors for design problems extracted
from literature describing compounds used in lab settings. It is constructed with
LLM pipelines for discovering therapeutic entities in relevant paragraphs and sum-
marizing information in concise fair-use facts. Medex consists of 32.3 million
pairs of natural language facts, and appropriate entity representations (i.e. SMILES
or RefSeq IDs). To demonstrate the potential of the data, we train LLM, CLIP, and
LLaVA architectures to reason jointly about text and design targets and evaluate on
tasks from the Therapeutic Data Commons (TDC). Medex is highly effective for
creating models with strong priors: in supervised prediction problems that use our
data for pretraining, our best models with 15M learnable parameters outperform
larger 2B TxGemma on both regression and classification TDC tasks, and perform
comparably to 9B models on average. Models built with Medex can be used as con-
straints while optimizing for novel molecules in GuacaMol, resulting in proposals
that are safer and nearly as effective. We release our dataset on HuggingFace at
huggingface.co/datasets/medexanon/Medex, and will provide expanded versions as
the available literature grows.

1 Introduction

AI-driven scientific discovery within chemistry and biochemistry for therapeutic design has become
one of the most exciting areas of growth for the field, with promising successes in protein folding
[1, 47], antibody and de novo protein design [78, 73], antibiotic discovery [71], and many others. The
success of these computational, data-driven approaches is fueled by the wealth and variety of publicly
accessible large-scale data. Curated repositories like RCSB PDB [6], ClinVar [40], PubChem [34],
UniProt [10], OAS [56], the Therapeutic Data Commons (TDC) [29], among others, have enabled
easy access to data on the structure, function, and biological activity for proteins, small molecules,
genetic variants, and other biological entities of interest.

Although existing datasets contain a wealth of information, they are incomplete. The majority of our
knowledge of chemistry, biology, and medicine remains “locked” in natural-language text found in
publications, patents, and other articles. For example, while TDC distributes small- to moderate-scale
labeled datasets for specific kinds of drug safety information, the ultimate source of ground truth is
found in publications, data sheets, and other human-readable resources.
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Figure 1: Frequency at which candidates are deemed unsuitable by our classifiers in the GuacaMol
drug design benchmark [5]. If we require drug safety confidence of only 60%, more than 80% of
drugs across all methods would be removed. Methods are retrieved from [18].

Because of this relative inaccessibility of knowledge about key drug design factors like safety, stability,
pharmacodynamics, and developability, many drug design benchmarks and algorithms are developed
using in silico simulation that outright ignores these factors [53, 41, 42, 9]. To make this concrete: in
Section 2, we demonstrate that a wide variety of recent works optimizing the GuacaMol benchmark
suite of drug design tasks would have a large fraction of their highest scoring molecules filtered out
by classifiers predicting safety characteristics considered by the TDC.

To address the lack of resources for prior knowledge relevant for therapeutic design, we present Medex.
Medex is a large-scale dataset of medically relevant entities–small molecules, proteins, diseases,
genes, and so on–and facts about these entities distilled from publicly accessible or licensable
literature and other text sources. Our freely available dataset comprises over two million unique
entities paired with information from over 200 million unique passages. For release, our dataset can
be accessed as a large-scale set of succinct facts, along with normalized IDs and DOI sources, about
the entities distilled from the literature.

Medex was created by leveraging recent advances in large language models (LLMs) and multimodal
language modeling [49, 43, 62]. We have created and validated a mixture of supervised and zero-
shot LLM components for discovering therapeutic entities in relevant paragraphs and summarizing
information in concise facts. Ultimately, our pipeline offers a solution for transforming unstructured
data of academic literature into tagged pairs of therapeutically relevant entities (small molecules,
proteins, genes, and so on) linked with text found describing those entities. Medex can then be used
in a variety of downstream multimodal models–for example using contrastive learning techniques–to
build representations of entities and associated facts.

Our key contributions are as follows:

1. We release Medex, a dataset of medical entities, associated text and 32.3M extracted facts. This
data represents a significant step towards enabling machine learning models to leverage the rich
biological, chemical, and medical knowledge contained in scientific literature.

2. We demonstrate the potential for our data to greatly improve supervised and multimodal
learning. Leveraging our data, we train small multimodal models with 15M learnable parameters
that outperform the larger 2B TxGemma model across TDC classification benchmark tasks, and
achieve 33% lower MAE on regression benchmark tasks. Our models perform comparably to the
larger 9B parameter models on average across the TDC tasks. To further highlight the value of
our knowledge extraction alone without access to additional TDC labels, we demonstrate 74%
improved zero-shot performance over baselines.

3. We demonstrate that models built with our data can be used to constrain molecular optimization
algorithms. We optimize four Guacamol benchmark tasks using safety and toxicity constraints,
and demonstrate proposals that are safer and nearly as high scoring as unconstrained solutions.

2 GuacaMol analysis
Many existing approaches for therapeutic candidate optimization are benchmarked primarily in silico:
given a set of design goals expressed as a fitness function (i.e. binding affinity), the goal is to propose
de novo high scoring molecules, often with the fewest number of tests against the fitness function
[18]. Many approaches have been proposed [41, 42, 53, 9], and methods are increasingly able to
produce very high scoring, high precision candidate lists. For example, many of the GuacaMol [5]
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molecular design benchmark tasks can now be optimized in hundreds of evaluations [42]. Results on
GuacaMol would seem to imply that, soon, given an entirely novel design problem, such methods
could be used to propose a small number of candidates for scientists to test iteratively in the lab.

While results are promising and many recent papers showcase the potential of computational ap-
proaches with in vitro and in vivo data, common in silico benchmarks may overestimate their
feasibility. The fitness functions are too narrowly defined, lacking the ability to encode diverse
real-world constraints. For instance, enforcing safety constraints like low liver toxicity or prioritizing
candidates with long half-lives is challenging. These practical constraints are common-sense for lab
evaluations but are missing in benchmarks due to inadequate documentation and computational tools
for estimating these desiderata.

To evaluate the scope of such problems, we filter the top 10% candidate molecules across all
GuacaMol benchmark tasks produced by 10 methods retrieved from a meta-study [18] based on two
properties: (i) low likelihood of mutagenicity and hERG channel blockade, and (ii) high absorption,
distribution, metabolism, and excretion (ADME), a measure of how well a chemical is absorbed
and retained in the body. Given a proposal molecule from a model, each of these properties was
measured via a calibrated supervised classifier [21] trained using data from both Medex and TDC (see
Appendix E for details). For each method, we calculated the proportion of proposals meeting specified
toxicity and ADME thresholds (Figure 1). Across all methods, fewer than 10% of candidates are
viable when requiring non-toxicity or a favorable ADME profile with 95% certainty. No proposals
meet the criteria when requiring both at 95% certainty.

3 Dataset construction

Our objective is to construct a dataset of (entity, text) pairs that are broadly useful for condi-
tioning machine learning models. In our context of biology, chemistry and medicine, entities consist
of small molecules, proteins, genes and variants, and diseases. Figure 2 summarizes our overall
approach and dataset statistics. First, documents are retrieved with help of databases of entities
(Section 3.1). Entity mentions are identified in paragraphs and normalized (Section 3.2). Lastly, facts
about entities are summarized from paragraphs (Section 3.3). Each processed paragraph can result in
the creation of multiple facts about multiple entities. The whole process allows for attribution of facts,
while normalizing entities and combining dispersed information. For example, as seen in Figure 2,
we extract that Levofloxacin is “detectable in blood and brain” and relate that fact to its SMILES.

3.1 Sourcing relevant text

The first clear consideration is to subset the entire accessible academic literature to the papers likely
to contain relevant entities. Simply processing any and all available papers is prohibitively expensive
and liable to result in a very high false positive rate. To avoid this, we take an “entity-first” approach.
We first collect a broad set of entities we are interested in and, for each entity (small molecule, protein,
etc), we find papers that are highly likely to mention or discuss that entity.

Entities to documents. We use existing databases of small molecules, proteins, genes, and other
entities that crucially link to papers mentioning them. For example, PubChem [34] is a repository of
over 100 million compounds linking to over 40 million publications. Querying PubChem for any
particular compound returns a set of PMIDs and DOIs for papers that the database claims mention
that compound. For example, the PubChem page for aspirin contains links to 136,177 publications
at the time of writing. Similar databases exist for other entity types, and we use UniProt [10] for
proteins. In addition, one of the tagging methodologies we leverage and discuss below–most notably
PubTator3 [81]–which tags small molecules, proteins, genes, gene variants, and diseases in papers,
and we include the literature covered by PubTator3 in our set. In total, after joining all sources of
papers, we collected a set of about 43,000,000 papers and abstracts that we consider at this stage to
be candidates for discussing relevant entities.

Documents to paragraphs. After retrieving all papers that were freely or via site license accessible
to us, we processed all PDFs to plain text using GROBID [20]. To separate documents into paragraphs,
we use the GROBID-detected paragraph breaks, resulting in over 400 million total paragraphs.
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Figure 2: Our pipeline for creating pairs of therapeutic entities and natural language facts. Broadly, it
is comprised of paper mining from databases (Section 3.1), entity extraction and normalization from
paragraphs via distilled LLMs (Section 3.2), and fact generation via distilled LLMs (Section 3.3).
Medex contains 32.3M facts about 900K molecules and 327K proteins, found in 11.2M paragraphs.

3.2 Tagging entities in paragraphs

Our goal is to tag each paragraph with its entities. We need models for this since existing databases
only map entities to papers–not paragraphs–providing an incomplete guess of discussed entities in the
paper. The decisions so far mainly affect the final quantity of collected data through paper selection,
while accurate entity tagging of paragraphs remains one of the two key challenges impacting quality
in dataset construction, alongside fact extraction.

In our dataset, we leverage two approaches to tagging. First, we use PubTator31 [81], an off-the-shelf
entity tagger that tags chemicals, genes/proteins, and diseases in text. Second, we will prompt an
LLM with the paragraph and ask it to identify any relevant entities described in the paragraph.

Entity tagging poses a number of challenges to consider. Here we describe three examples:

1. Scale and expense. At more than 400M total paragraphs needing tagging, processing this data
exclusively with the highest fidelity language models is cost prohibitive at an estimated $248,000
dollars with GPT-4.1 API queries.

2. Entity normalization. Different papers may, when discussing the same physical chemical entity,
use different names for that entity in text. For any given entity we identify in a paragraph, we need
to associate that paragraph with a standardized “name” or representation of that entity.

3. Alias resolution. Entities in papers are often referred to by aliases. Common chemical names
are abbreviated (e.g., Levofloxacin becomes LVX), and long IUPAC names are replaced with
placeholders like “Compound A,” resolved in tables only once in the paper. Even the acronyms
or abbreviations are not always sensible in a vacuum–for example, a paper might differentiate
early-onset and late-onset neonatal sepsis throughout simply by EOS and LOS, with the reference
to sepsis being simply implied.

Model distillation. To deal with the cost of tagging, we leverage knowledge distillation. We use
Llama 405B to initially tag 60,000 paragraphs with the small molecules, proteins, genes, and other
entities they contain. We provide the prompts used for this tagging in Appendix A. We then use these
paragraphs to distill into a Llama 3.1 8B model using LoRA [25].

To validate our knowledge distillation process, we use a curated held-out set of 3170 gold paragraphs
with known tags, and evaluate the precision and recall of (1) the full Llama 405B model, (2) our
fine-tuned Llama 8B model, and (3) the foundation Llama 8B model in Table 1. The precision and
recall of the fine-tuned Llama 8B model approaches that of the full Llama 405B model.

Entity normalization and alias resolution. To normalize small molecules, we convert chemical
names in paragraphs to the canonical SMILES string representation of that chemical. We use a combi-
nation of the titles of PubChem compounds, as well as the open source tool OPSIN [52] to normalize
common terminology and IUPAC names. The end result after normalization is that, for each paragraph
tagged with a chemical by either PubTator or our fine-tuned LLM, we will have extracted the SMILES
string representation for the chemical being described if possible. If we are unable to extract a SMILES
string (e.g., because our abbreviation or alias resolution fails), we discard the paragraph. To normalize

1https://www.ncbi.nlm.nih.gov/research/PubTator3/
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genes/proteins, we map names to NCBI Gene IDs using Gnorm2 [82], which lets us e.g., construct
amino acid sequences for gene variants. For acronym and abbreviation resolution, we use Ab3P [70].

Model Precision Recall

Llama 405B 0.922 0.919
Llama 8B FT 0.905 0.878
Llama 8B 0.758 0.820

Table 1: Precision and recall of the Llama models.

At the end of this process, we are left
with 214,000,000 tagged paragraphs, and
619,000,000 aligned (entity, paragraph)
pairs spanning more than 2,000,000 unique en-
tities. For more statistics, see Appendix B.

3.3 Distilling text to facts

After identifying and normalizing entities in paragraphs, we extract concise factual statements about
them using knowledge distillation. We use GPT-4.1 to generate facts from 60,000 paragraphs, which
are used to fine-tune the more efficient Gemma 3 4B model [77]. The provided prompt specifies that
a fact is a universally true, reusable property of the entity, understandable outside the paragraph’s
context. Examples of acceptable facts include an entity’s mechanism of action, target, therapeutic
or functional use, physiological role, or broader properties. The model was instructed to disregard
context-lacking details (e.g., an EC50 value without assay context) and speculative statements. See
Appendix A for the full prompt.

4 Methods and models
Overview. In this section, we introduce model adaptations to allow several common language
modeling architectures to benefit from our fact dataset. Our approaches take inspiration from
multimodal language models such as CLIP [62] and LLaVA [49], that pair images and text. We
make adaptations that allow these models to pair formal representations of therapeutically relevant
structures (i.e., SMILES for molecules) and text they are mentioned in. We also consider an approach
that operates entirely on text. In Section 5.2, we evaluate which of these variants is most effective by
considering which is best at predicting properties of therapeutically relevant tasks from TDC [29].

Our primary method, MedexCLIP (Section 4.1), learns a 128 dimensional space over structures
s ∈ S and fact text w by training two 2-layer MLP adapters on top of frozen structure and text
encoders (Es(·), Ew(·)), and adds a 1-hidden-layer MLP head for supervised tasks. Unless noted
otherwise, “our model” and the main results (Sections 5.2 to 5.5) refer to this variant. Two alternatives
(Section 4.2), investigate other ways to use the facts: MedexLLaVA projects structure embeddings
into an LM’s token space then fine-tunes the LM, and MedexLM is a text-only LM instruction-tuned
on fact-derived prompts. Finally, Section 4.3 introduces a zero-shot classifier that uses MedexCLIP’s
space with prototype matching to isolate the information content of the facts.

Formulation. We define a space of possible therapeutically relevant representations (i.e. molecules
represented as SMILES), S, where each element of S can be mapped to a physical structure. Assume
a fact dataset made of up of pairs of natural language statements and such representations (w, s) ∈ F ,
where s ∈ S and w is a sequence of words. For example, as seen in Figure 2, F could contain the
phrase “detectable in blood and brain” paired with the SMILES for the drug Levofloxacin.

We will also assume a set of datasets corresponding to target tasks T , where each Dt ∈ T contains a
set of inputs and a single output (x1, ..., xk, y), where all x1, ..., xk ∈ S, and y is either binary, if t is
classification, or real valued if t is regression. Our overall goal is to construct a model that maximizes
performance on tasks in T by leveraging information in F and samples in Dt.

4.1 Contrastively Learned Representations with Adapters (MedexCLIP)

The goal of MedexCLIP is to form a joint representation space of therapeutically relevant structures
and text that co-occur with them. Such a representation will make it easy to predict features relevant
to target tasks because the text expresses related properties.

Contrastive Learning. Given an embedding function, Es that maps any element in S to Rn, and
an embedding function Ew that maps any sequence of words to Rm, we will learn to embed these
features in a shared p-dimensional space. We learn using the standard noise-contrastive loss over F :

−
∑

(s,w)∈F

log

(
exp(ϕs(Es(s))

Tϕw(Ew(w))/τ)∑
(s′,w′)∈F,s′ ̸=s exp(ϕs(Es(s))Tϕw(Ew(w′))/τ)

)
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Table 2: Ablation of using various multi-modal model architectures to perform supervised learning
using Medex. While CLIP-style models perform the best, all architectures generally outperform
LLMs fine-tuned with TDC data only (e.g., without Medex)

Task Type Metric Tasks MedexCLIP MedexLLaVA MedexLM TDC LM
Toxicity AUROC ↑ 8 0.837 0.800 0.800 0.773
Toxicity Accuracy ↑ 2 0.807 0.798 0.771 0.750
Pharmacokinetics AUROC ↑ 13 0.830 0.781 0.824 0.781
High-throughput screening AUROC ↑ 4 0.737 0.711 0.718 0.651
Clinical trial outcome AUROC ↑ 3 0.631 0.636 0.656 0.683

Where ϕs : Rn → Rp and ϕw : Rm → Rp are neural networks and τ is a learned temperature
parameter. The objective tries to pull co-occurring facts and structures nearby in the shared space,
while pushing all pairs that do not co-occur apart. Practically, we approximate the normalization
using elements in the batch.

Adapter Heads. The contrastive loss above allows us to learn a feature representation that aligns
well with facts from literature. Finally, given task specific data from T , we reuse ϕs to embed inputs
from all samples in the corresponding datasets. For datasets involving multiple inputs, we embed
each independently and concatenate the representations, using separate heads per input signature
(e.g., 1-mol, 2-mol, mol + protein, ...), each a 1-hidden-layer MLP.

4.2 Additional models

Soft-prompted language models (MedexLLaVA). The goal of MedexLLaVA is to learn to embed
structures in S so that they can be provided to a pretrained language model, L, as input. The language
model can then be further adapted to reason with such structures using task-specific data.

Like previous work [49], we assume a pretrained embedding model for every element of S from a
CLIP model (ϕS described above). Given a language model L, with token embedding in Rl, we will
learn a projection function HS : Rp → Rl with a neural network. In LLaVA, Hs is commonly learned
in an alignment phase using separate data while holding the language model frozen. MedexLLaVA
is learned similarly, where Hs is trained with a synthetically generated alignment dataset Da. To
generate Da, we randomly sample m ∈ S and prompt L to output a string representation of m given
Hs(ϕs(Es(m))). Hs is learned using a cross entropy loss, holding L frozen.

Task Adaptation. Learning HS aligns therapeutic representations with the token embedding space
of L. Given supervised task data in Dt, we map every sample to a prompt, and fine-tune L with an
appropriate loss for each task.

Text-only language models (MedexLM). To evaluate working entirely in text space, we cre-
ate an instruction tuning dataset using Medex. For every fact (w, s) ∈ F , we prompt a lan-
guage model to create a multiple-choice prediction question incorporating the string represen-
tion s. The conjecture tested here is that, while the SMILES strings of various molecules (e.g.,
“C[C@H]1COC2=C3N1C=C(C(=O)C3=CC(=C2N4CCN(CC4)C)F)C(=O)O” for Levofloxacin) are not
human-readable, they may occur naturally during the pretraining of a large language model, and large
language models may therefore be directly adaptable via instruction tuning.

4.3 Zero-Shot Learning

To demonstrate the information content of Medex in isolation, we evaluate performance without any
task–specific fine-tuning. Following prototypical networks [69], we map each binary task in TDC to
two small sets of textual descriptions and classify unseen molecules by measuring their similarity to
the class prototypes.

Prototypes. For each TDC task, we prompt GPT-4.1 to generate ten positive facts (P ) for the
positive class (e.g., “Gabapentin crosses the BBB via...” for BBB Martins) and ten negative facts for
the negative class (e.g., Doxorubicin’s brain uptake is limited by...”). Each fact w is embedded using
the MedexCLIP text encoder ϕw(·). Class prototypes are the averaged embeddings.
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Table 3: Summary of TDC benchmark results, grouped by type. See full results tables in Appendix G.

Task Type Metric Tasks MedexCLIP TxGemma 2B TDC LM
Toxicity AUROC ↑ 8 0.837 0.822 0.801
Toxicity Accuracy ↑ 2 0.807 0.800 0.771
Pharmacokinetics AUROC ↑ 13 0.830 0.805 0.726
High-throughput screening AUROC ↑ 4 0.737 0.728 0.620
Developability AUPRC ↑ 3 0.659 0.676 0.616
Clinical trial outcome AUROC ↑ 3 0.631 0.679 0.661
Protein interaction AUROC ↑ 2 0.857 0.861 0.868
Protein interaction AUPRC ↑ 2 0.712 0.751 0.622

Drug synergy MAE ↓ 6 5.215 9.724 4.983
Drug synergy PCC ↑ 3 0.782 0.707 0.707
Drug-target interaction PCC ↑ 5 0.654 0.525 0.596
Drug-target interaction Spearman↑ 1 0.813 0.399 0.548
Pharmacokinetics Spearman↑ 3 0.472 0.434 0.359
Pharmacokinetics PCC ↑ 2 0.490 0.472 0.658
Pharmacokinetics MAE ↓ 3 3.216 3.612 3.879
Reaction yields PCC ↑ 1 0.921 0.661 0.636
Reaction yields Spearman↑ 1 0.509 0.564 0.434
Toxicity MAE ↓ 1 0.708 0.71 0.746
Developability MAE ↓ 1 3.672 5.301 6.144
Antibody affinity MAE ↓ 1 2.338 1.066 0.968

Inference. Given test molecule s, its embedding is computed using MedexCLIP, v = ϕs(Es(s)).
We compute class assignment probabilities using the inner products between molecule and prototypes:

Pr (y = 1) = σ (⟨v, zpos⟩ − ⟨v, zneg⟩) where zpos =
1

|P |
∑
w∈P

ew, zneg =
1

|N |
∑
w∈N

ew,

where σ(·) is the sigmoid function. No parameters are updated during zero-shot inference, relying on
the alignment learned during contrastive pretraining. Our prompt templates are in Appendix A.

5 Experimental setup and results

Our experimental setup centers on evaluating the extent to which distilling real-world priors from
literature into our models can improve their predictive performance and enable safer and more
effective therapeutic design. To this end, we design a set of evaluations using the diverse datasets
within TDC, and a set of de novo small molecule design tasks incorporating realistic constraints. We
report TDC benchmark performance (Section 5.2), zero-shot results (Section 5.3), Medex’s impact
on predictive performance across various architectures (Section 5.4), and constrained optimization
results (Section 5.5). Models are briefly outlined below, with full details available in Appendix E.

5.1 Models

Structure and text encoder. MedexCLIP and MedexLLaVA require initial embedding represen-
tations of both the entity (e.g., small molecules and proteins), and text inputs (Es and Ew). For
small molecules, we use a T5 [63] style model trained with a masked language modeling objective.
For proteins, we use ProtT5-XL [12]. Vector embeddings for molecules and proteins are produced
by averaging over the sequence dimension of the encoder output. For text embeddings, we use
stella_en_1.5B [89]. Both models are frozen during learning. For networks that project to the joint
embedding space, ϕs and ϕw, we use MLPs.

Using MedexCLIP for supervised learning. We place a 1-hidden-layer MLP on top of the joint
embedding space produced by MedexCLIP. Architectural and training details are in Appendix E.

5.2 TDC Evaluation

We report quantitative results on 35 binary classification tasks and 28 regression tasks from TDC,
spanning absorption, distribution, metabolism, safety, protein-protein interaction, and more. Table 3
presents a breakdown by benchmark category and full results are in Appendix G.

Baselines. TxGemma is the SOTA generalist that combines all TDC tasks via prompt templates
and fine-tunes a Gemma model [77], outperforming many specialists. We compare against their 2B
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Figure 3: Bayesian optimization results on four GuacaMol tasks.

model because it has a similar total parameter count to ours. MedexCLIP only has 15M trainable
parameters2, so we also compare to a Qwen 500M model finetuned on TDC data (TDC LM).

Results. Performance on TDC tasks is summarized in Table 3. On classification tasks, MedexCLIP
achieves an average score of 0.771, outperforming the TxGemma-2B baseline (0.768) and beating out
task-tailored SOTA specialist models on 10/35 tasks. On the regression tasks, MedexCLIP surpasses
TxGemma-2B on 23/28 of them, while improving upon SOTA specialist methods on 12. These
results show that distilling factual priors from literature can close, and often invert, the performance
gap to purely supervised and specialized methods.

5.3 Zero-shot Evaluation Task Zero-shot Gemma 2 2B

AMES 0.687 0.487
BBB Martins 0.755 0.250
Bioavailability 0.596 0.479
DILI 0.837 0.320
PAMPA NCATS 0.729 0.465
Pgp Broccatelli 0.719 0.416
HIA Hou 0.852 0.257
HIV 0.651 0.491
hERG 0.634 0.538

Table 4: Zero-shot classification results
on selected TDC tasks. Gemma 2 2B is
used as a zero-shot baseline. All metrics
are AUROC. Bold: best.

Table 4 compares MedexCLIP using the zero-shot learn-
ing setup described in Section 4.3 to a base 2B-parameter
Gemma model that never received any supervised learning
on TDC tasks. Using only self-supervised learning on
Medex, MedexCLIP has a mean AUROC of 0.718 on 9
design relevant endpoints (mutagenicity, blood brain bar-
rier permeability, hepatoxicity, etc.), which is a 74% rela-
tive improvement over Gemma-2B (0.411). MedexCLIP’s
zero-shot performance is well above random, showing
that the learned joint embeddings meaningfully organize
molecules along textual descriptors.

5.4 Architectural ablations
We evaluated supervised extensions of MedexLLaVA and MedexLM detailed in Appendix E, comparing
to MedexCLIP. Table 2 compares these models trained on small molecule classification tasks sharing
the same 1.5B backbone. While MedexCLIP is consistently best, every model containing distilled
knowledge priors outperform TDC LM, which was finetuned exclusively on TDC. While further
work is required to truly identify the architectures that best leverage Medex, this result underscores
that the knowledge extracted in Medex is valuable independent of the ultimate ML model used.

5.5 De novo design with constraints

Here, we evaluate the utility of Medex in guiding de novo small molecule design towards safer
candidates on the GuacaMol benchmark. Our primary analysis on existing methods in Section 2
highlighted that a significant percentage of proposed molecules are predicted to be unsafe.

In Figure 3, we run Bayesian optimization (BO) on four GuacaMol molecular design tasks [5] with a
feasibility constraint: molecules must be deemed as non-toxic with ≥70% confidence by MedexCLIP
(i.e., non-mutagenic and not hERG-inhibiting). While this constraint can apply to other SOTA drug
design methods, we leverage BO as available software directly supports black-box constraints.

Gray bars represent the best score from standard BO, allowing toxicity. Blue bars show the best score
from the same BO run after removing infeasible molecules. Magenta bars represent the best score
from constrained BO, which to optimizes for both feasibility and high scores. Constrained BO finds
feasible molecules with scores close to those from BO allowing toxicity, even though the scores drop
after filtering infeasible molecules. This result demonstrates that these GuacaMol benchmark tasks
can still be well-optimized without proposing unsafe molecules. All bar plots show the mean over 20
runs and depict standard errors. See Appendix C for additional details.

2Input embeddings Es and Ew are frozen
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6 Related work
Instruction and Fact Datasets for Molecular AI. Instruction-tuning datasets in chemistry and
biomedicine differ in scale, language richness, and entity coverage. SMolInstruct includes 3 million
examples across 14 chemistry tasks, enabling models to outperform SOTA LLMs like GPT-4 in
chemistry benchmarks [87]. Mol-Instructions features 2 million biomolecular prompts on molecules,
proteins, and textual biology, with many derived from ontologies [15]. DrugChat offers 143 thousand
molecule-centric QA pairs for 10,834 compounds, training a GNN-LLM dialogue system [46].
MolOpt-Instructions provides 1.2 million instructions for small molecule optimization, linking a
SMILES and desired property change to an improved analogue [86]. These datasets often use curated
databases like PubChem [34], ChEMBL [88], or UniProt [10] for template-based examples.

Large Language Models for Therapeutics. Tx-LLM used 66 TDC datasets for instruction tuning
of a PaLM-2 model, achieving SOTA on 22 benchmarks and strong performance on 21 additional tasks
without requiring task-specific heads [7]. Expanding this approach, TxGemma finetuned Gemma 2
[72] models (2-27B parameters) that match or surpass Tx-LLM on 64 out of 66 tasks, setting new
SOTA on 45 and introducing an agentic workflow interface [77]. NatureLM integrates sequences
from chemistry, biology, and materials for cross-domain generation, often equaling or outperforming
specialist models in tasks like ADMET prediction [84]. MolT5 uses a text-to-text method to handle
molecules and language as sequence pairs, allowing for “captioning” and prompt-driven design [11].

Graph and Multimodal. Graph and multimodal encoders utilize explicit structure beyond language
models. CLAMP uses contrastive learning to align PubChem BioAssay descriptions with active
compounds, enabling zero-shot activity prediction, limited by brief assay texts [66] and task variety.
The TxGNN knowledge-graph model, pretrained on 17k diseases and 8k drugs, enhances zero-shot
repurposing by 49% and provides rationales via a multi-hop explainer [28]. MolE modifies DeBERTa
[23] for molecular graphs using atom-masking and multitask pretraining, achieving SOTA on the TDC
ADMET suite [55]. GIT-Mol integrates graph, image, and text inputs, boosting property-prediction
accuracy by 5–10% and generation validity by 20% over unimodal baselines [50].

7 Conclusions
In silico optimization approaches for therapeutic design often produce proposals that are unsuitable
for real-world use because they don’t consider sufficiently broad optimization criterion. They miss
prior knowledge of experimental facts that are available in scientific documents. To address this
gap, we introduced Medex, a resource of over 32 million facts of prior knowledge relevant for
therapeutic design, extracted automatically from scientific literature. We also show Medex is suitable
as a pretraining corpus for many model architectures used today. As a result of pretraining on Medex,
our best model, MedexCLIP, is extremely parameter efficient when fine-tuned on TDC data. It
outperforms larger models and has set new state-of-the-art results across multiple TDC tasks. Overall,
our work demonstrates that scientific documents are an untapped resource for AI-driven discovery.

Limitations and future work. Medex is currently designed by reasoning about scientific documents
independently, ignoring the larger context of the literature as a whole. This ignores the provenance
and reproducibility of facts, and reputational notions of trustworthiness associated with venues or
authors. Similarly, we do not carefully differentiate higher and lower certainty facts. In the future, we
plan to leverage the implicit graph structure between facts across documents (e.g., corroboration by
different studies) and the broader scientific literature. We will focus on enriching simple fact content
with semantic links, annotations, and fused results, to provide greater context.

To our knowledge, Medex is among the broadest available resources for experimental prior knowledge.
It can be updated as new literature becomes available, allowing for a resource that grows in both size
and accuracy. It could be used to develop new architectures and pretraining approaches, and provide
training data for therapeutic criteria that have no well-curated datasets.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The stated focus and scope of this work accurately reflects what is discussed in
this paper. All claims stated in this work are supported with empirical results in Section 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of this work are discussed in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not provide any formal theoretical results.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: A detailed explanation of our methods is provided in Section 4 and a de-
tailed explanation of the experimental setup we used to produce all results is provided in
Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We release our dataset at https://huggingface.co/datasets/
medexanon/Medex and include inference code to run benchmarks in supplemental ma-
terials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, as described in Section 4 and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars are reported for the Bayesian optimization results in Section 5.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and adhered to the NeurIPS Code of Ethics in all aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See our discussion of broader societal impacts of this work in Appendix F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not believe that this dataset has high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Alongside the facts, we supply the associated DOIs and / or PubMed / Pub-
MedCentral IDs.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, as described in section Section 3. A description of the data will be
included at https://huggingface.co/datasets/medexanon/Medex.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The work does not involve human participants in any way.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The work does not involve living participants in any way.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use LLM’s to tag entities within articles and extract facts for the detected
entities as described in Section 3.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Table 5: Aggregate statistics for the corpus that Medex samples from for fact extraction.
Subset (passage, entity) pairs Passages Entities Papers
Small Molecules 372,073,000 155,805,821 1,747,091 16,276,103
Genes / Proteins 247,323,198 102,869,272 590,747 11,118,371

Total 619,396,198 214,033,574 2,337,838 18,387,248

A Prompts

The prompt that was used for initial entity extraction from paragraphs using Llama 3.1 405B is shown
in Figure 4 and the prompt used with the distilled model is shown in Figure 5; the prompt used for
extraction of facts is shown in Figure 6; and the zero shot experiment prompt is shown in Figure 7.

Entity extraction. When generating distillation data for entity tagging using Llama 3.1 405B, we
dynamically selected two few-shot examples to accompany each target paragraph. This process began
by embedding the target paragraph, along with a set of “golden” paragraphs (those with known tags),
using text-embedding-3-large. The first example was chosen as the nearest neighbor to the
target paragraph from within the golden paragraphs that contained one or more entities. The second
example was selected as the nearest neighbor to the target paragraph verified to contain no entities.
These two examples were then included in the prompt to the model, alongside the target paragraph
itself, to guide the entity tagging process. After collecting a set of labeled data, we discard the large
prompt with few shot examples and distilled into Llama 3.1 8B using the prompt shown in Figure 5.

Fact extraction. For fact extraction, we provide the model with four static few-shot examples, two
of which contain paragraphs that have relevant facts about entities, and two that do not. One example
of each is shown in Figure 8.

Zero-shot. For generating positive and negative examples in our zero-shot setting, the prompt
(Figure 7) requires task-specific descriptions for the positive and negative classes. These descriptions
are straightforward translations of the task objective. For example, when working with the BBB
Martins dataset (which classifies drugs by their ability to cross the blood-brain barrier), the text for
<TASK POSITIVE DESCRIPTION> is “crosses the blood brain barrier,” and the <TASK NEGATIVE
DESCRIPTION> is “does not” (understood in context as “a compound that does not cross the blood
brain barrier”). Similarly, for AMES, the positive and negative texts are “is mutagenic” and “is not
mutagenic”.

B Dataset Statistics

Our release contains two sub-corpora: facts about small molecules and facts about genes/proteins.
These were produced after (i) document retrieval, (ii) paragraph-level entity tagging, (iii) entity
normalization, and (iv) fact extraction (Section 3). Full counts of unique papers, passages, entities,
and passage-entity pairs (up to step (iii)) are provided in Table 5, broken down by small molecules
and genes/proteins.

To make fact extraction feasible, Medex is generated from a subset of the full corpus. To create
this subset, subsampling was performed independently for small molecules and genes/proteins. For
each entity type, we iteratively looped through the unique entities; in each pass, one paragraph was
randomly selected for an entity from its associated pool and added to our working set. This iterative
selection continued until over 6 million paragraphs were gathered for that specific entity type. This
approach was also intended to mitigate the over-representation of well-studied molecules and proteins.
This process resulted in a working set of approximately 12 million paragraphs (roughly 6 million per
category).

Extraction of facts from the working set yielded approximately 16 million facts across roughly 900K
small molecules and around 16 million facts for 327K protein/gene entities. This resulted in a median
of 2 facts per unique small molecule and 4 facts per unique protein/gene in Medex. In the future, we
plan on providing a release drawing from a significantly larger portion of the corpus.
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C Optimization experiment details

To produce the results shown in Figure 3, we ran Bayesian optimization (BayesOpt) with and without
a toxicity classifier as a hard constraint. In particular, we ran LOLBO [53] as it is a popular SOTA
BO method for computational drug design. For constrained BO, we ran LOLBO with the standard
SCBO [13] method to impose a hard feasibility constraint. In each case, we ran with a budget of
200,000 black box function evaluations and used all of the same default hyperparameters as in the
original LOLBO paper [53].

In this experiment, we defined toxicity as a combination of (a) whether the compound may cause
hERG channel blockade and (b) the compounds potential for mutagenic effects. Classification was
implemented with calibrated [21] KNN classifiers over MedexCLIP embeddings using the TDC
training data for the AMES and hERG Karim tasks. If either classifier reported a likelihood of toxicity
greater than 30% for a given compound, it was considered toxic and rejected.

D Compute resources

In this section, we provide details about all compute resources used to produce results provided in
this work.

Compute specifications. We use GPUs to run all experiments and produce all results provided.
Our internal GPU cluster consists of 2 GPU nodes with 10 NVIDIA RTX A5000s each, and 9 GPU
nodes with 8 NVIDIA RTX A6000s each. We supplemented our nodes with A6000 workers from
runpod.io.

Execution time. For optimization results provided in Figure 3, we utilized roughly 700 total GPU
hours on our internal cluster. We estimate that entity tagging and fact extraction took approximately
5,500 GPU hours. Training TDC LM, MedexCLIP, MedexLLaVA, and MedexLM took a collective
1008 GPU hours. Thus, completing all experiments needed to produce the results provided in this
paper required roughly 7,208 total GPU hours. Preliminary experiments required additional compute.

E Architectures and hyperparameters

Below we provide a detailed account of the architectures and relevant hyperparameters for the models
in this work. All models are optimized using Adam [35], and all MLPs use the GeLU activation [24].
We provide checkpoints for MedexCLIP and code to reproduce the main results in the supplemental
materials.

Molecule Encoder. We use a standard encoder-decoder T5 model [63] with a hidden size of 256,
trained on sequences from PubChem [34] and ZINC20 [31], with a maximum sequence length of
768. SMILES were converted to Kekulé form and were tokenized with a method closely resembling
the SMIRK tokenizer [76].

Protein Encoder. We use the ProtT5-XL model described in [12].

MedexCLIP. For contrastive pretraining, we use two 2-layer MLPs: one for the structure (small
molecule or protein embedding produced by their respective encoder), and one for the text input.
The MLP for small molecules has a hidden dimension of 1536, while the protein MLP has a hidden
dimension of 1024. Each MLP projects into a joint 128-dimensional embedding space. A learnable
temperature parameter τ is initialized to 0.1 and is learned jointly with the MLPs.

TDC LM. TDC LM is a Qwen 2.5 0.5B [61] base model finetuned on the selected tasks from TDC.
For training, we use a batch size of 256, a peak learning rate of 4×10−5, 1024 warm-up steps, and
cosine decay to zero.

MedexLM. MedexLM is identical to TDC LM, but the TDC training dataset was augmented with facts
extracted from Medex that overlap with the tasks in TDC. Training hyperparameters are identical to
those used in TDC LM.
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Table 6: TDC regression benchmarks. Underline: SOTA, bold: best generalist.

Task Metric Specialist SOTA MedexCLIP TxGemma 2B TDC LM

BindingDB Patent PCC 0.588 [39] 0.691 0.422 0.300
BindingDB ic50 Spearman 0.637 [36] 0.813 0.399 0.548
BindingDB kd PCC 0.712 [32] 0.697 0.352 0.450
BindingDB ki PCC 0.840 [80] 0.775 0.661 0.589
Buchwald Hartwig PCC 0.786 [60] 0.921 0.861 0.707
Caco2 Wang MAE 0.285 [27] 0.382 0.476 0.528
Clearance H. AZ Spearman 0.440 [65] 0.467 0.353 0.153
Clearance M. AZ Spearman 0.625 [27] 0.597 0.468 0.387
DAVIS MSE 0.219 [57] 0.541 0.601 0.790
DisGeNET MAE N/A 0.058 0.057 0.081
DrugComb Bliss MAE 4.560 [83] 3.877 4.230 3.715
DrugComb CSS MAE 16.858 [83] 8.296 15.752 7.748
DrugComb HSA MAE 4.453 [83] 3.716 4.231 3.538
DrugComb Loewe MAE 9.184 [83] 7.016 17.342 6.850
DrugComb ZIP MAE 4.027 [83] 3.172 3.950 3.065
GDSC1 PCC 0.860 [48] 0.886 0.876 0.872
GDSC2 PCC 0.860 [48] 0.879 0.824 0.865
Half Life Obach Spearman 0.547 [14] 0.440 0.386 0.051
KIBA MSE 0.154 [57] 0.567 0.588 0.840
LD50 Zhu MAE 0.552 [27] 0.708 0.710 0.746
Lipophilicity A. MAE 0.467 [85] 0.771 0.610 0.871
OncoPolyPharm. PCC 0.730 [59] 0.588 0.473 0.391
PPBR AZ MAE 7.788 [85] 7.808 9.266 9.682
Protein SAbDab MAE N/A 2.338 1.066 3.630
Solubility AqSolDB MAE 0.761 [85] 1.070 0.961 1.085
TAP MAE N/A 3.672 5.301 6.144
USPTO Yields PCC 0.361 [60] 0.548 0.011 0.272
VDss Lombardo Spearman 0.627 [4] 0.509 0.564 0.434

MedexLLaVA. LM architecture and initialization identical to TDC LM. MedexLLaVA replaces
SMILES strings with an additional 2-layer MLP that projects MedexCLIP embeddings into the
token embedding space of TDC LM, injecting the literature-informed small molecule representations
directly into the model. Training hyperparameters are exactly the same as TDC LM. We use a hidden
dimension of 2048 within the MLP.

Supervised heads. For downstream prediction tasks we feed the final hidden layer of the ap-
propriate MedexCLIP MLP into a single-hidden-layer MLP (hidden dimension of 512). For tasks
that have a textual input (i.e. cell line information in DrugComb tasks), we embed the text using
MedexCLIP and concatenate it along with the structure embedding(s) as input to the supervised head.
We use the relevant supervised heads to do the filtering shown in Figure 1.

F Broader impacts

Opportunities. Medex efficiently synthesizes experimentally-validated information from biomed-
ical literature into short, self-contained facts. This enables small multimodal models (i.e. 15M
trainable parameters in our case), to compete with or surpass 2B or 9B parameter models—lowering
the computational barrier for academic groups working on ML aided therapeutic design. By improv-
ing the predictive performance of models (Section 5.2), and the efficiency and safety of in-silico
design (Section 5.5), Medex has the potential to accelerate therapeutic discovery and design.

Potential Risks. In its current form, Medex inherits the biases present in biomedical literature: over
representation of well studied proteins, small molecules, and associated diseases / disorders; bias
towards positive results inherent in publishing; and so on. Further, extracted facts are not weighted by
provenance or experimental quality—rather, each excerpt we extract data from is treated as a source
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Table 7: TDC classification benchmarks. Underline: SOTA, bold: best generalist.

Task Metric Specialist SOTA MedexCLIP TxGemma 2B TDC LM

AMES AUROC 0.871 [74] 0.802 0.796 0.759
BBB Martins AUROC 0.915 [16] 0.881 0.864 0.758
Bioavailability Ma AUROC 0.748 [3] 0.661 0.715 0.572
CYP1A2 Veith AUPRC 0.900 [58] 0.930 0.910 0.903
CYP2C19 Veith AUROC 0.890 [58] 0.888 0.905 0.868
CYP2C9 S.C.M AUPRC 0.441 [74] 0.430 0.457 0.426
CYP2C9 Veith AUPRC 0.839 [26] 0.778 0.801 0.749
CYP2D6 S.C.M AUPRC 0.736 [26] 0.720 0.605 0.615
CYP2D6 Veith AUPRC 0.739 [26] 0.648 0.637 0.594
CYP3A4 S.C.M AUROC 0.662 [30] 0.730 0.669 0.593
CYP3A4 Veith AUPRC 0.904 [26] 0.842 0.844 0.791
Carcinogens L. Accuracy 0.770 [38] 0.857 0.821 0.822
ClinTox AUROC 0.948 [45] 0.789 0.810 0.677
DILI AUROC 0.925 [74] 0.934 0.875 0.718
HIA Hou AUROC 0.988 [27] 0.986 0.937 0.901
HIV AUROC 0.851 [44] 0.806 0.737 0.744
HuRI AUPRC 0.724 [64] 0.712 0.751 0.622
MHC1 IEDB AUROC 0.986 [19] 0.861 0.910 0.887
MHC2 IEDB AUROC 0.940 [54] 0.852 0.812 0.849
PAMPA NCATS AUROC 0.900 [68] 0.769 0.642 0.654
Pgp Broccatelli AUROC 0.935 [74] 0.896 0.900 0.896
SARSCoV2 3CLPro AUROC 0.800 [22] 0.711 0.733 0.561
SARSCoV2 Vitro AUROC 0.640 [51] 0.556 0.650 0.367
SAbDab Chen AUPRC 0.510 [8] 0.659 0.676 0.616
Skin Reaction AUROC 0.840 [2] 0.649 0.671 0.529
Tox21 AUROC 0.961 [67] 0.880 0.881 0.870
ToxCast AUROC 0.777 [45] 0.880 0.784 0.880
Butkiewicz AUROC 0.840 [75] 0.874 0.791 0.809
hERG AUROC 0.874 [3] 0.885 0.876 0.878
hERG Karim Accuracy 0.770 [33] 0.757 0.778 0.720
herg central AUROC 0.860 [37] 0.877 0.880 0.870
phase1 AUROC 0.576 [17] 0.579 0.642 0.612
phase2 AUROC 0.645 [17] 0.618 0.665 0.659
phase3 AUROC 0.723 [17] 0.696 0.731 0.712
Weber AUROC 0.870 [79] 0.582 0.730 0.538

of truth—meaning downstream models may inherit any spurious findings or incorrect assertions
within the initial corpus. Finally, Medex has the potential to be coupled with generative models to
assist in the development of dual use or illicit substances.

G Full Results

Tables 6 and 7 report per-task numbers for all 63 Therapeutic Data Commons (TDC) benchmarks. For
completeness, they include an LLM trained exclusively on TDC, confirming that the improvements
are not merely architectural but stem from pretraining on Medex. We highlight a few takeaways:

Parameter-efficient performance. MedexCLIP (15M trainable parameters on top of frozen en-
coders) matches or exceeds the much larger TxGemma-2B on 23/28 regression tasks, reducing the
average MAE by 33%, and raising mean performance on classification from 0.768 to 0.771.

Broad coverage. Performance gains are not confined to toxicity; they extend to pharmacokinetics,
reaction yields, protein interaction, drug synergy, and more. This breadth confirms that literature-
distilled priors encode a wide array of high quality information, benefiting the diverse tasks within
TDC.
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Zero-shot capabilities. Without any TDC fine-tuning, the same MedexCLIP encoder attains a
mean AUROC of 0.718 across nine safety and ADME related assays, a 74% relative lift over a
2B-parameter Gemma baseline (Table 4)—evidence that the learned joint space already organizes
molecules along meaningful, text-derived axes.
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Task: Analyze the given paragraph to identify:
1. Specific, uniquely structured small molecules and their used alternative identifiers
2. Specific, uniquely structured biologics and their used alternative identifiers
3. Classes of small molecules or biologics when statements that hold true for the entire class are
made

Definitions and Examples:
1. Small molecules: Low molecular weight compounds with defined chemical structures (generally <= 900
daltons), things you would find on PubChem
- Examples:
- Individual molecules: aspirin, Leukotriene A4, 1,1,1-trifluoromethyl-6,9,12,15-eicosatetraen-2-
one, prednisolone
- Class extraction (when statement applies to whole class): NSAIDs, benzodiazepines, statins

2. Biologics: Large, complex molecules with defined sequences or structures (generally > 900 daltons),
things you would find on UniProt
- Examples:
- Individual macromolecules: insulin
- Proteins / peptides / large enzymes, antibodies: IL-6, TNF-alpha, rabbit anti-5-HT antibody,
MAPK, Drosomycin
- Class extraction (when statement applies to whole class): gonadotrophins, Karyopherins

Instructions:
1. Before tagging any entity, verify:
- For specific molecules or biologics:
- Is this a specific, named molecule/biologic rather than a class?
- Would this molecule/biologic have a defined chemical structure or sequence?
- If multiple similar molecules/biologics are mentioned, can each one be distinguished?

- For classes:
- Does the statement apply to the entire class?
- Is meaningful information provided about the class as a whole?
- Is the class specific enough to have shared mechanisms or properties?
- Is the class not too broad or general to be useful?

- Only proceed with tagging if the relevant answers are "yes".

2. For entities that pass the verification:
- Identify the entity as a small molecule or biologic
- List each entity only once, including all alternative identifiers
- Extract entities in their singular form
- For genes encoding proteins, annotate the protein rather than the gene
- If several entities are mentioned together (i.e. "ERK1/2"), tag them as separate entities (ERK1,
ERK2)
- When listing the name and alternative identifiers, use the least ambiguous one as the name, and
list all others as alternatives in order of increasing ambiguity

3. For each paragraph, assign one or more of the following category tags if relevant information is
present:

- Structure/Properties: Information about molecular structure or physical/chemical properties
- Chemistry: Details about chemical reactions or interactions
- Pharmacology: Information on drug action, effects, or mechanisms
- Synthesis/Formulation: Methods of production or preparation
- Safety/Regulation: Information on toxicity, side effects, or regulatory status
If none of these categories apply, tag as "None".

4. Output format:
- {"categories":["cat1"],"molecules":[{"name":"name","alternatives":["alt1", "alt2"],"is_class":
false}],"biologics":[{"name":"name","alternatives":[],"is_class":true}]}

Review the provided examples to understand the expected output format:
<fewshot examples>

Figure 4: Prompt used to extract entities from text using Llama 405B. Appendix A provides an
overview of the few-shot prompting strategy.

Analyze the given paragraph to identify and categorize small molecules and macromolecules/biologics (
or classes thereof), including their synonyms.

Output format:
{"categories":["cat1"],"molecules":[{"name":"name","alternatives":["alt1","alt2"],"is_class":false
}],"biologics":[{"name":"name","alternatives":[],"is_class":true}]}

Figure 5: Prompt used with distilled models for entity tagging.
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You are an expert biomedical information-extraction assistant.

------------------------ TASK ------------------------
Given:
1. paragraph - a single paragraph from a PubMed article
2. target_entities - a JSON list of molecules, proteins or genes I care about.

Return one-line JSON with a single key "facts", whose value is
a list of fact objects:

{
"facts": [
{
"entity": "<entity>",
"fact": "<self-contained fact>",

},
...

]
}

---------------- WHAT COUNTS AS A FACT ---------------
A fact is a generally true, reusable property of the entity that
remains meaningful outside the paragraph.

Allowed (non-exhaustive):
- Identity or classification
- Mechanism of action / target binding
- Therapeutic or functional use
- Physiological / pathophysiological role
- Broad pharmacological / chemical property

NOT allowed (discard):
- Experimental specifics without context (e.g., "EC50 = 2.6 nM"
with no assay, cell type, etc.).

- Study design, cohort sizes, p-values.
- Pure rank orders ("better than X") with no property named.
- Speculative language ("may", "might").
- Facts about entities not in target_entities.

------------------ REQUIRED CONTENT ------------------
If the paragraph provides quantitative values (percent uptake,
concentrations, EC50, etc.) that define the property, you must
embed those numbers (with units and key conditions, e.g., time-point
or tissue) directly in the "fact" string. Supply just enough experimental
context (assay, cell type, time) so the statement is interpretable on its own.

-------------------- OUTPUT RULES --------------------
1. JSON output, no extra keys, no Markdown.
2. Preserve exact spelling of each entity from target_entities.
3. Remove duplicate facts (case-insensitive exact match).
4. If no valid facts, output {"facts":[]}.
5. If a target entity is provided, but cannot be found in the the paragraph, ignore that entity.
6. If there are no facts for a target entity, ignore that entity.

-------------------- EXAMPLES ------------------------
<fewshot examples>
------------------- PROMPT END -----------------------
Begin.

Figure 6: Prompt used to extract facts from text using GPT 4.1. See Appendix A for a description of
the few-shot examples.

Generate 10 diverse, short, 1-2 sentence facts each describing a unique compound that <TASK POSITIVE
DESCRIPTION>, and 10 facts each describing a unique compound that <TASK NEGATIVE DESCRIPTION>.
Present them as a JSON dictionary, with keys "text_pos" and "text_neg", both with lists of strings.
The diversity should lie in the different reasons for falling in text_pos and text_neg, i.e. we want
to represent diverse failure and success cases.

Figure 7: Prompt used to generate positive and negative facts used in zero-shot experiments. See
Appendix A for a discussion of the task-specific descriptions.
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Example 1:
{
"paragraph": "We selected a pair of closely related analogues of which one compound, CBK006377 (
referred to as CBK77; N-[6-ethoxy-1,3-benzothiazol-2-yl]-5-nitrofuran-2-carboxamide), displayed
profound UPS impairment and cellular toxicity, while the second compound, CBK085907 (referred to as
CBK07; N-(4-methoxy-1,3-benzothiazol-2-yl)-5-nitrofuran-2-carboxamide), lacked these activities.

The EC50 of CBK77 was determined as 4.3 microM (6 h treatment, 95% C.I 3.8-5.0 microM) with no
detectable inhibition for CBK07 in the tested concentration range. It should, however, be mentioned
that CBK07 is not completely inert as we observed modest UPS impairment and toxicity at high

concentrations (>50 microM) over longer incubations (24 h). The uptake of CBK77 and CBK07 in cells
was comparable, excluding that the strongly reduced activity of CBK07 could be attributed to a loss
of cell permeability. Together these data show that CBK77 blocks degradation of a reporter

substrate of the UPS and induces cell death.",
"target_entities": [
"CBK006377",
"N-(4-methoxy-1,3-benzothiazol-2-yl)-5-nitrofuran-2-carboxamide"

]
}
{
"facts": [
{
"entity": "CBK006377",
"fact": "CBK006377 impairs the ubiquitin proteasome system and induces cell death, showing an
EC50 of 4.3 uM (6 h treatment, 95 % CI 3.8 5.0 uM) for blocking degradation of a UPS reporter
substrate.",

},
{
"entity": "N-(4-methoxy-1,3-benzothiazol-2-yl)-5-nitrofuran-2-carboxamide",
"fact": "N-(4-methoxy-1,3-benzothiazol-2-yl)-5-nitrofuran-2-carboxamide shows no detectable
ubiquitin proteasome system inhibition within the tested concentration range up to 50 uM (6 h),
but produces modest UPS impairment and cellular toxicity at concentrations >50 uM after 24 h.",

},
{
"entity": "N-(4-methoxy-1,3-benzothiazol-2-yl)-5-nitrofuran-2-carboxamide",
"fact": "Despite its low UPS-inhibitory activity, the cellular uptake of N-(4-methoxy-1,3-
benzothiazol-2-yl)-5-nitrofuran-2-carboxamide is comparable to that of CBK006377, indicating
that reduced efficacy is not caused by poor cell permeability.",

}
]

}

Example 2:
{
"paragraph": "OBJECTIVE: To study the chemical constituents of Ligularia macrophylla. METHODS:
Isolation and purification were carried out on repeated silica gel column chromatography. The
structures of the compounds were identified by physico-chemical properties and spectral analyses.
RESULTS: Eight compounds were isolated and identified as kaempferol (1), 2,4’-dihydroxy-5-
methoxychalcone (2), 5-hydroxy-3,4’, 7-trimethoxyflavone (3), isobutyl ester terephthalic acid (4),
4-hydroxybenzaldehyde (5), mono (2-ethylhexyl) terephthalate (6), lupeol (7), beta-sitosterol (8).
CONCLUSION: Compounds 1 - 7 are isolated from this plant for the first time.",

"target_entities": [
"kaempferol",
"2,4’-dihydroxy-5-methoxychalcone",
"5-hydroxy-3,4’,7-trimethoxyflavone",
"isobutyl ester terephthalic acid",
"4-hydroxybenzaldehyde",
"mono (2-ethylhexyl) terephthalate",
"lupeol",
"beta-sitosterol"

]
}
{
"facts": []

}

Figure 8: Two of the static few-shot examples provided while generating distillation data for fact
generation (see Figure 6 for the full prompt).
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