t.)

Check for
Updates

BiMa: Towards Biases Mitigation for Text-Video Retrieval via
Scene Element Guidance

Huy Le Nhat Chung Tung Kieu
huyldal@fpt.com nhatcm3@fpt.com tungkvt@cs.aau.dk
FPT Software AI Center FPT Software AI Center Aalborg University

Hanoi, Vietnam

Anh Nguyen
anh.nguyen@liverpool.ac.uk
University of Liverpool
Liverpool, UK

Abstract

Text-video retrieval (TVR) systems often suffer from visual-linguistic
biases present in datasets, which cause pre-trained vision-language
models to overlook key details. To address this, we propose BiMa,
a novel framework designed to mitigate biases in both visual and
textual representations. Our approach begins by generating scene
elements that characterize each video by identifying relevant enti-
ties/objects and activities. For visual debiasing, we integrate these
scene elements into the video embeddings, enhancing them to em-
phasize fine-grained and salient details. For textual debiasing, we
introduce a mechanism to disentangle text features into content
and bias components, enabling the model to focus on meaningful
content while separately handling biased information. Extensive
experiments and ablation studies across five major TVR bench-
marks (i.e., MSR-VTT, MSVD, LSMDC, ActivityNet, and DiDeMo)
demonstrate the competitive performance of BiMa. Additionally,
the model’s bias mitigation capability is consistently validated by
its strong results on out-of-distribution retrieval tasks. The code is
available at: https://github.com/Fsoft- AIC/BiMa
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« Computing methodologies — Matching; Scene understanding;
« Information systems — Similarity measures.
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Figure 1: Illustration of Visual-Linguistic Bias in TVR. (a) Visual
Bias: For each example, video (left of the 1! row), the associated
visual feature map (right of the 1% row) extracted by pre-trained
CLIP [30] and its corresponding Textual query (2" row). This high-
lights a bias toward visually dominant regions while overlooking
main actors/objects and activities when they occupy smaller regions
in the scene. (b) Textual Bias: For each example, video (1 row) and
their corresponding textual descriptions (2" row) from various an-
notators, capturing emotional responses and personal perspectives.

(MM °25), October 27-31, 2025, Dublin, Ireland. ACM, New York, NY, USA,
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1 Introduction

The task of retrieving videos based on textual queries and vice versa,
known as text-video retrieval (TVR), has rapidly evolved within
multimedia information retrieval due to significant advancements
in large-scale pre-trained Vision-Language Models (VLMs) such
as CLIP [40] and BLIP [29]. Despite remarkable progress, existing
TVR frameworks, including TeachCLIP [47], TextProxy [54], and
NarVid [15], largely ignore the underlying visual-linguistic repre-
sentation biases intrinsic to both the training data and pre-trained
VLMs [33, 43, 44]. Representation biases are systematic deviations
in datasets causing models to overemphasize specific features or
patterns rather than generalizable and task-relevant aspects [36, 44].
Liu et al. [36] demonstrate that models tend to depend excessively
on prominent visual concepts and dataset-specific textual patterns,
resulting in representations that are tuned to the dataset rather
than capturing robust, semantic-rich features. This bias limits the
models’ ability to generalize to diverse, unseen scenarios. More-
over, the precise nature of the biases learned by neural networks
remains largely unclear—some may even contain generalizable and
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transferable patterns that are not immediately apparent to human
observers. Shvetsova et al. [44] also confirm that most video datasets
are heavily focused on visually salient concepts, such as object bias.
Thus, The absence of bias mitigation within the existing learned
TVR frameworks can lead to limitations, resulting in suboptimal
performance when exposed to unseen data. We proceed to further
describe the bias problem in TVR.

Visual-Linguistic Biases. Widely-use TVR datasets such as MSR-
VTT [55], MSVD [3],LSMDC [41], ActivityNet [24], and DiDeMo [12]
often present practical challenges stemming from what we identify
as visual-linguistic biases. These biases arise because each dataset
is typically created with specific objectives that align with partic-
ular research goals, applications, or target users. These biases are
variations in visual and textual representations that can skew pre-
trained models towards focusing on subjective or dataset-specific
features, potentially causing them to overlook essential factual in-
formation. The visual-linguistic bias problem can be partitioned
into two sub-problems: visual bias and textual bias, as follows.

Visual bias primarily arises due to coarse-grained annotations
that often omit critical details such as key actors, objects, or their
interactions. Consequently, visual embeddings produced by pre-
trained encoders frequently emphasize visually dominant areas,
neglecting smaller but semantically crucial components. Figure 1(a)
illustrates this issue, showing how pre-trained CLIP disproportion-
ately focuses on the larger environmental context, marginalizing
important yet smaller elements such as the “man” and “brown dog,”
crucial to understanding the scene.

Textual bias occurs when annotators’ subjective interpretations,
cultural perspectives, emotional states, or language usage differ-
ences produce varying textual descriptions for identical video scenes.
This variability causes models to capture subjective rather than
objective semantic content. As depicted in Figure 1(b), distinct an-
notators produce emotionally and culturally varied descriptions,
demonstrating the need for effective textual bias neutralization.

To address the aforementioned visual-linguistic bias problem, we
propose Bias Mitigation Text-Video Retrieval (BiMa). The BiMa’s
objectives are twofold: (i) neutralize visual-linguistic biases and (ii)
enhance the model’s focus on relevant features. To obtain these
goals, BiMa is equipped with three key modules—(i) Scene Element
Construction, (ii) Visual Scene Debias, and (iii) Textual Content Debias.
The Scene Element Construction module aggregates fine-grained
entities and actions, providing structured semantic guidance. Subse-
quently, the Visual Scene Debias module leverages these elements to
reorient visual attention toward essential components, thus reduc-
ing visual bias. The Textual Content Debias module employs a novel
disentanglement mechanism to separate textual content from bias-
induced variations, ensuring semantic consistency across diverse
annotations. Critically, this mechanism is self-supervised, obviating
the need for expensive additional annotations. Finally, to further
evaluate our proposed bias mitigation framework, out-of-domain
retrieval experiments are leveraged to validate the efficacy and
assess the generalization of models beyond training-specific biases
by evaluating performance across distinctly different datasets or
scenarios, such as training on MSR-VTT and testing on ActivityNet
Captions. In summary, our contributions are:
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o Explicitly identifying and defining visual-linguistic biases
in TVR task, drawing upon recent bias representation find-
ings [36, 44].

Proposing BiMa, a systematic framework for bias mitigation
with three integrated modules: Scene Element Construction,
Visual Scene Debias, and Textual Content Debias.

Achieving state-of-the-art performance and robust general-
ization across multiple TVR benchmarks (MSR-VTT, MSVD,
LSMDC, ActivityNet Captions, DiDeMo), supported by com-
prehensive ablation studies and significant bias reduction in
out-of-domain retrieval settings.

2 Problem Definition

Text-Video Retrieval. Given a text query T = (Tgi), Tgi), ., T](\;[) )
with N; word tokens and a video v@) = (VY), Vgi), e VI(\;;) with
Ny frames. A Text Encoder encodes T into a sequence of Ny + 1
word embeddings () = (tii),tgi), .. "tz(\jt)’tiic)l_s] ([ic)Ls] is
the global textual embedding. A Video Encoder encodes V(%) into a

), where t

sequence of Nf frame embedding v = (VY), vgi), o vl(\;;) We
aim to learn a cross-modality similarity measure that assigns a
high similarity score to V() and T® and a low similarity score
to V() (with j # i) and T®, Equation 1 formally defines the TVR
problem. For brevity, we only focus on the Text-to-Video (T2V).
The Video-to-Text (V2T) can be similarly defined.

max s(VE, TW) = max P(VO|TD) = maxP(vD [t (1)

Here, s(-, -) is a cosine similarity and P(+|-) indicates the conditional
probability.

Visual-Linguistic Biases. When visual bias occurs, the visual
embedding features of a video V() differ from the matching visual
embedding features generated for a corresponding query T, We
define the visual bias as follows.

PO VD) 2 pvDTD) = pvD VD) 2 pv D [tD)  (2)

Equation 2 indicates that the Video Encoder does not provide the
matching visual embedding features. When a pre-trained model is
used as the Video Encoder, the bias can lean towards the pre-trained
features.

When textual bias occurs, the probability of the visual embedding
features given the textual biases Dy is higher than the visual
embedding given the true semantic textual features (i)). We define
the textual bias as follows.

PO RO 4§Dy 5 pv@D i) = p(v®D 1)) £ p(vD 1§D (3)

Equation 3 indicates that the similarity between the visual embed-
ding features and the textual biases is higher than the similarity
between the visual embedding features and the true semantic tex-
tual features.

3 Methodology

Figure 2 shows the the framework overview. comprising of three
main modules: (i) Scene Element Construction, (ii) Visual Scene De-
bias, and (iii) Textual Content Debias. We proceed to introduce these
modules in the following sections.
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Figure 2: Overview of BiMa. The dashed line represents the model flow used exclusively during training, while the solid line indicates usage in

both training and inference.
3.1 Scene Element Construction

Scene Element Construction aims to generate scene elements for
each video and the corresponding embeddings. In our proposed
framework, scene elements play a central role in debiasing across
different modalities. Scene elements consist of scene entities (noun
phrases representing actors or objects) and scene activities (verb
phrases representing behaviors or actions), which are drawn from
a comprehensive scene taxonomy dictionary (detailed implemen-
tation is presented in the Supplementary Material). Formally,
scene elements are represented as a set of nouns and verb phrases
{e,a} that is extracted from large-scale text-video descriptions.

Scene Elements Generation. Given a video V(i>, we leverage
the zero-shot capability of a pre-trained CLIP model with frozen
weights to perform text-video matching to identify the most rele-
vant scene elements. In particular, we use CLIP’s textual encoder

to obtain global textual tokens including a set of N, scene enti-
Na

, i=1°
Simultaneously, we feed V() into CLIP’s visual encoder to ob-

. i) 1 Ne L. i
tiese = {e(’)}izl, and a set of N, scene activities a = {a(’)}

tain frame-level visual feature embeddings v{! ). The embeddings
v(D) are then temporally aggregated through mean pooling to
yield a video-level representation (D) Then, we calculate the sim-
ilarity between () with scene entities dictionary e and scene
activities dictionary a. After that, we select the top-x relevant
scene entities () = (éii),égi), .. .,é,(ci)) and top-x scene activi-
A il)’ ﬁé 1)) )

ties a() = (a . ﬁ,(ci)> with the highest similarity scores as

“scene elements” of V(1)

Scene Elements Aggregation. To enhance the discriminative
features corresponding to V() we combine scene entities and scene
activities into a unified scene element embedding ¢(?). Specifically,
we introduce a balancing coefficient g that adjusts the relative
importance of scene entities &) and scene activities 4(!) for each
video V(9. This coefficient g supports a smooth aggregation of
embeddings by establishing an association between each feature
token and its most relevant counterpart among the other feature
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tokens. The formulation of g is provided in Equation 4.

AN ROIRUN
Jamen) =1-— Zl:mjf?lx[s(al €)= (4)
Here, s(-) indicates the cosine similarity. The coefficient g is then
used to aggregate é() and 4(9) to obtain scene element embeddings
c(D) as follows.

¢ =a®D @ gy s - e ®)

Here, ® indicates the element-wise summation operation.

3.2 Visual Scene Debias

Visual Scene Debias module aims to mitigate visual biases by ex-
plicitly emphasizing fine-grained semantic contents in the visual
representation. Particularly, it leverages scene elements to produce
element-aware visual scene embeddings. Formally, we aim to mit-
igate the problem P(vO VD) £ P(vD (D) (see Equation 2) by
augmenting the visual embedding v(?) with the scene element ¢(!)
to obtain the augmented visual feature () Then, v(1) is employed
as the feature for matching such that P(\Ar(") |V(i)) ~ ]P’(fr(i) |t<i)).
We elaborate on this in the following sections.

Cross-modality Debias via Representation Fusion. Debiasing
visual representations involves generating element-aware visual
scene embeddings that emphasize relevant information at a lower-
dimensional latent space, while capturing interactions between
cross-modal features. More specifically, we aim to align the video
embeddings v(®) and scene element embeddings ¢ to highlight
the relevant information ¥(?) of the video V(!). First, we compute
an attention map between a query qg, a key k¢, and a value v.. Here,
qo represents video embeddings v(?), and both k. and v, represent
scene element embeddings e, Then, element-aware visual scene
features v(9) are computed through a cross-attention layer [50] as
shown in Equation 6.

Qo = Linear(v(i)), ke = Linear(c(i)), Ve = Linear(c(i)),
Qo ;r

d

v = softmax(
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Fine-grained Semantic Learning with Captioning Head. In-
spired by CoCa [59] that leverages captioning for salient semantic
pretraining, we propose to additionally adopt a Captioning Head
Cy(-) parameterized by a stack of M transformer decoders to further
learn cross-modal details within element-aware visual scene em-
beddings ¢(9). In other words, on top of contrastive matching with
textual embeddings, the element-aware visual scene embeddings
are learned via a text-generative decoding process. At each decod-
ing step, Cy(+) is trained to predict the subsequent text token Tl(l)
with the highest log-likelihood. Thus, it learns to auto-regressively
maximize the log-likelihood of predicting the input’s textual to-

(():il)—l' As Cy(+) relies on v,

the embeddings () can be established at a deeper alignment of
cross-modal represent%tion via Equation 6.
Leap = . ~log Co(T\VIT{!) .
I=1

ken Tl(i) based on previous tokens T

Vo). ©)

3.3 Textual Content Debias
Textual Content Debias aims to detach the textual bias from the

description and encourage the model to capture the true semantic
features via a disentanglement process. Formally, we aim to solve
the problem P(vD|tDy £ (v (D) ( Equation 3) by repurposing
the Text Encoder to decompose every textual description T into
a true semantic component () and a textual bias component i@,
Then, () is employed as the textual feature for matching with
the augmented element-aware visual scene features () which
is obtained from the Visual Scene Debias, such that P(V(i) |t(i)) ~
P(¥ () [t()). We elaborate on this in the below sections.

Content-Bias Representation Disentanglement. Motivated by
the disentanglement ability of f-VAE framework [13], we propose
to use Text Encoder to decompose the original textual content T
into two parts in the latent space: a textual content component i@
and the textual bias component i) These two parts are learned
under completely different constraints, thereby separating their
representations. The former is aligned with the element-aware vi-
sual scene features ¥(?) to enable content matching. The latter is
modeled as a stochastic representation following a Gaussian distri-
bution with the mean (mu) and variance (¢2). By doing this, we aim
to handle biases as Gaussian noise. Combining both components
will result in the latent representation z() = 1) 4+ 1) Then, the
obtained latent representation z() is employed to reconstruct the
original textual description T, By reconstructing the two sepa-
rate components, we ensure the complementary property of each
component. In other words, we ensure the combination resulting
in z(!) is meaningful. The reconstruction closely follows the ELBO
formulation from conventional VAE framework [23], which opti-
mizes the variational lower bound on data log-likelihood as shown
in Equation 7.

LAk = =By g, (200 1) [logpe(T(i)lz(i))]

LRec

- . ™
+ Dz, g2 1TD) Ipg (2

Lx1
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Here, py (z(i)) is a prior modeled as N (0,I). The conditional prob-
ability distributions q¢(z(i) |T(i)),p9 (T z(D)) are estimated by
the Text Encoder and Text Decoder networks, respectively. Here,
z(D) plays the role of textual embedding, i.e., 2 = () Next,
D, (-, -) is the Kullback-Leibler (KL) divergence aiming to enforce
the posterior and the prior distribution to be close to each other.
The KL divergence plays as a disentanglement factor to enforce
the disentanglement process of the bias from the original textual
features. Also, it serves as a regularizer that prevents the latent
representation from collapsing to zero. The reconstruction term
LRec in the VAE loss measures the log-likelihood of Text Decoder py
to auto-regressively reconstruct the ground-truth input’s textual
description T as defined in Equation 8.

N

Lrec = ~logpg(T{VTS) 20,
I=1

®)

To capture the unpredictable variations of the textual biases, we
model i) as a probabilistic representation. While these features
are not explicitly matched to visual representations, they act as
distractors for TVR and thus must be modeled to facilitate effec-
tive disentanglement. Following this insight, we model the latent
representation i) as a multivariate Gaussian distribution.

q¢({(i) ITD) ~ N (1, diag(c?)) ©)

To ensure stable training, we apply the reparameterization trick as
formulated in Equation 10.

g (ATD) =+ o e, (10)

where € is an auxiliary noise variables and € ~ N(0,1).

After modeling the latent representation of textual biases as a
distribution g (i) T(), we generate textual bias embedding i@
by sampling K instances from this distribution during the training
process as shown in Equation 11. This process allows for gradient
propagation through the sampled embeddings of bias modeling.

10 = @010y < g (0T (11)
Element-Aware Content Learning by Alignment. Our frame-
work performs disentanglement between content and bias repre-
sentations by explicitly matching the content embeddings with
element-aware visual embeddings, and performing reconstruction
of textual disentanglement. In particular, our model is trained via
contrastive alignment between element-aware visual embeddings
¥() and textual content embeddings i to optimize their cross-
modal similarity (see Equation 12). Meanwhile, the original texts
t() are disentangled as content () and bias t(), and reconstructed
via z() and Lyag. Thus, by the process of elimination, we capture
bias representations () as residual information that is less rele-
vant to element-aware visual embeddings (@), yet are part of the
original information (D),

3.4 Objective Function

To enhance the model’s ability to discern relevant features within
the data, we replace mean pooling with an advanced weighted pool-
ing mechanism termed Weighted Token Interaction (WTI) [34] in
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order to learn the token-level interaction between cross-modal em-
beddings. The token-level matching function is denoted as syt (+).

For contrastive learning, we adopt the InfoNCE loss function [48]
to optimize cross-modal similarity between ¢ and V) of two
sample i and j as shown in Equation 12.

B (i) 2(i
1 exp (s (1, £0) - 7)
LIfNCE:——EIOg ———
w BT I eplwa),HD) 1)

1 exp(swi (VD 1) - 7)
2B i=1 Z?:] exp(swti({'(i)si(j)) . T)

(12)

where 7 is a learnable scaling factor and B is the batch size.

Our process to mitigate visual-linguistic biases exhibits during
both training and inference by our end-to-end architecture. How-
ever, bias modeling is not required during the inference. The overall
objective is defined in Equation 13.

L = LinfoNcE + Acap - Lcap + ARec * LRee + AxL - Lxr  (13)

Here, Acap, Arec, and Agy, are the hyperparameters that control the
trade-off among three loss terms.

4 Experiments

4.1 Experimental Setups.

Datasets. We conduct experiments on five major TVR bench-
marking datasets: MSR-VTT [55], MSVD [3], LSMDC [41], Activ-
ityNet [24] and DiDeMo [12]. These datasets vary in video dura-
tion, research goals, target users, and text annotations, providing a
comprehensive evaluation of different methods. We evaluate the
Text—Video (T2V) performance and provide additional results of
Video—Text (V2T) performance on standard rank-based metrics
i.e. Recall at top {1, 5, 10} (recall at rank 1, 5, 10), Rsum (R@1 + R@5
+ R@10).

Implementation Details. We use CLIP ViT/B-32 as the backbone
for both Video Encoder and Text Encoder. We set N; = 32 and
Ny = 32 as the number of word tokens and video frames for all
datasets except DiDeMo and ActivityNet, where N; and Ny are
set to 64. We train with batch size of 128 for 5 epochs, except for
DiDeMo with 10 epochs and ActivityNet with 20 epochs. We use
the Adam [22] as the optimizer. The learning rate follows the cosine
schedule with a linear warmup strategy [10]. For Equation 4, we
set k = 20. For Equation 13, We set Acap = 0.3, Arec = 0.5, and
AgL = le 4.

4.2 Quantitative Results

Comparison with SOTA. We compare the proposed BiMa with
SOTA methods. Table 1 shows the retrieval results on the MSR-VTT
dataset, where our proposed method attains SOTA on both T2V
and V2T tasks. We achieve 53.5 in the T2V task, outperforming the
runner-up TextProxy [54] by 1.2 and the third best DITS [52] by 1.6
w.rt. R@1. On other metrics, BiMa also significantly outperforms the
runner-up results. In V2T task, we achieve 52.2, outperforming the
runner-up NarVid [15] by 2.2 w.rt. R@1. Table 2 shows the retrieval
results on T2V, where BiMa consistently achieves the best results on
all the metrics on all four datasets MSVD, LSMDC, ActivityNet, and
DiDeMo. It demonstrates that our strategy can work well across
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different domains and different text-video data variations, thus
underscoring the efficacy of BiMa through the “Visual-Linguistic
Bias Mitigation” technique. For example, on MSVD, our approach at
55.7 has outperformed the recent SOTA method NarVid [15] by 2.6
w.r.t R@1. Similarly on ActivityNet, BiMa significantly outperforms
the runner-up TextProxy by 2.4 and w.r.t R@1, achieving SOTA
performance of 55.4.

Generalization to Unseen Domains. Our mitigation of visual-
linguistic biases is geared towards maximizing the quality of cross-
modal semantic representations during training, thereby captur-
ing better underlying patterns that can generalize to unseen data.
Hence, to evaluate BiMa’s debias capability, we evaluate BiMa on
out-of-distribution retrieval settings [4] (denoted as A — B) where
the model is trained on dataset A and benchmarked on dataset
B, which is unseen during training. In Table 3, we compare our
BiMa with recent SOTAs and the baseline CLIP4Clip in three
OOD retrieval benchmarks (MSR-VTT — LSMDC, MSR-VTT —
ActivityNet, and MSR-VTT — DiDeMo) where BiMa significantly
outperforms others on the three benchmarks. These results suggest
that our bias mitigation capability supports model generalization
and transfer to unseen data.

Hyperparameter Sensitivity. In Figure 3, we evaluate hyperpa-
rameters Acap € [0.1,0.5], ARec € [0.3,0.7] and Agg, € [0.0001, 0.0005].
In Figure 3(left), BiMa achieves highest R@1 score when Acap = 0.3
for T2V. As a result, we select Acap = 0.3. In Figure 3(middle),
the best is achieved with Agee = 0.5, so we set ARec = 0.5 as the
default. In Figure 3(right), we show that Axy, is highly sensitive and
leads to a trade-off between T2V and V2T performance when Agy,
change from 0.0001 to 0.0003. Thus, we set Agy, = 0.0001 to balance
between T2V and V2T.

Effect of the Visual Scene Debias. Table 4 shows that scene ele-
ment features can improve performance through (i) Scene Entities
(see Exp #2) or Scene Activities (see Exp #3):—either when only one
type of scene element is fused with video representation, the R@1
score improved by a large margin of 1.4 (only scene entities) and 1.7
(only scene activities) compared to Baseline;—or, through Scene El-
ements Aggregation (see Exp #4), these features can be combined to
enable an improvement over single feature utilization, with R@1 in-
creased to 51.5 from 49.2 / 49.4. Furthermore, through (ii) Captioning
Head (see Exp #5), better alignment between element-aware visual
scene features and textual features can also be achieved, hinting
that visual embeddings are enabled with finer-grained cross-modal
features as R@1 increased from 51.5 to 52.1.

’ —6— Text—Video (T2V) —A— Video—Text (V2T) ‘

54T T 54 — >4 T
53 - 53 — 53 |~ -
z g | 52 >
5 52 g 52 VA\A\ E) 52

5117 1 s1p SN |

sob—L L 110l 1 10 ] sl L 1|
0.1 02 03 04 05 03 04 05 0.6 07 12z 3 4 5

ACap ARec AgL(-107%)

Figure 3: Hyperparameter sensitivity study on MSR-VTT.

Effect of Textual Content Debias. Table 4 shows the effect of the
Textual Content Debias module. From Exp #5 and #7, we observe
that the efficacy of the Text Content Debias and Visual Scene Debias
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Table 1: T2V and V2T performance comparisons on MSR-VTT dataset. The best and second best are bold and underlined. Two-stage methods
are marked with .

PT Methods T2v var
R@17 R@5T R@107 Rsum? R@17 R@57 R@107 Rsum?
ClipBERT [27] CVPR’20 22.0 46.8 59.9 128.7 - - - -
SupportSet [38] ICLR’21 30.1 58.5 69.3 157.9 28.5 58.6 71.6 158.7
v Frozen [1] ICCV’21 32.5 61.5 71.2 165.2 - - - -
TMVM [32] NeurIPS’22 36.2 64.2 75.7 176.1 34.8 63.8 73.7 172.3
RegionLearner [57] AAAT'23 36.3 63.9 72.5 172.7 343 63.5 73.2 171.0
In-Style [43] ICCV’23 36.2 61.8 71.9 169.9 - - - :
CenterCLIP [61] SIGIR’22 44.2 71.6 82.1 197.9 42.8 71.7 82.2 196.7
CLIP4Clip [37] Neurocomputing’22 44.5 71.4 81.6 197.5 42.7 70.9 80.6 194.2
EMCL-Net [17] NeurIPS’22 46.8 73.1 83.1 203.0 46.5 73.5 83.5 203.5
X-Pool [9] CVPR’22 46.9 72.8 82.2 201.9 - - - -
TS2-Net [35] ECCV’22 47.0 74.5 83.8 205.3 45.3 74.1 83.7 203.1
HBI [18] CVPR’23 | 48.6 74.6 83.4 206.6 46.8 74.3 84.3 205.4
DiCoSA [19] [JCAI'23 47.5 74.7 83.8 206.0 46.7 75.2 84.3 206.2
UATVR [7] ICCV’23 47.5 73.9 83.5 204.9 46.9 73.8 83.8 204.5
DiffusionRet [20] ICCV’23 } 49.0 75.2 82.7 206.9 47.7 73.8 84.5 206.0
X PAU [20] NeurIPS’23 48.5 72.7 82.5 203.7 48.3 73.0 83.2 204.5
DGL [58] AAAI'24 45.8 69.3 79.4 194.5 - - - -
EERCF [6] AAAT'24 47.8 74.1 84.1 206.0 44.7 74.2 83.9 202.8
TeachCLIP [47] CVPR’24 46.8 74.3 82.6 203.7 - - - -
DITS [52] NeurIPS’24 51.9 75.7 84.6 212.2 - - - -
TextProxy [54] AAAI'25 523 77.8 85.8 215.9 - - - -
TempMe [42] ICLR’25 46.1 71.8 80.7 198.6 45.6 72.4 81.2 199.2
NarVid [15] CVPR’25 51.0 76.4 85.2 212.6 50.0 754 83.8 209.2
BiMa (ours) 53.5 78.6 86.5 218.6 52.2 77.1 85.3 214.6

Table 2: T2V comparisons on MSVD, LSMDC, ActivityNet, and DiDeMo datasets. The best and second best are bold and underlined.

Methods MSVD LSMDC ActivityNet DiDeMo

R@17 R@57 R@107 Rsum| |R@17 R@57 R@107 Rsuml | R@1T R@TT R@107 Rsum? | R@17 R@57 R@107 Rsum?
C1ipBERT - - - - - - - - 213 490 635 1338 | 204 480  60.8 1292
SupportSet 284 600 729 1613 - - - - 292 616 947 1855 - - - -
Frozen 337 647 763 1747 | 150 308 403  86.1 - - - - 346 650 747 1743
TMVM 367 674 813 1854 | 178 371 459  100.8 - - - - 365 649 754  176.8
RegionLearner | 44.0 749 843 2032 | 171 325 415 911 - - - - 325 608 723 1656
In-Style 448 725 812 1985 | 161 336 397 894 - - - - 321 619 712 1652
CenterCLIP 452 755 843 2050 | 226 410 491 1127 | 405 724 836 1965 | 428 685 792 1905
CLIP4Clip 452 755 843 2050 | 226 410 491 1127 | 405 724 836 1965 | 428 685 792 1905
EMCL-Net 421 713 811 1945 | 239 424 509 1172 | 412 727 836 1975 | 453 742 823 2018
X-Pool 472 774 860 2106 | 252 437 535 1224 - - - - - - - -
TS2-Net - - - - 234 423 509 1166 | 41.0 73.6 845  199.1 | 418 716 820 1954
HBI - - - - - - - - 422 730 846 1998 | 469 749 827 2045
DiCoSa 474 768 860 2102 | 254 436 540 1230 | 421 736 846 2003 | 457 746 835  203.8
UATVR 460 763 851 2074 - - 431 718 823  197.2

DiffusionRet | 46.6 759 841 2066 | 244 431 543 1218 | 458 756 863 2077 | 467 747 827 2041

43.1 74.5 86.0 203.6 - - - -

EERCF 470 775 854  209.9 - - - -
DGL - - - - 214 394 484 1092 | 386 692 816 1894 - - - -

TeachCLIP 474 773 855  210.2 - - - - 422 727 852 2001 | 437 712 811 1960
DITS - - - - 282 473 566 1321 - - - - 501 779 858 21438
TextProxy - - - - - - - - 53.0 809 896 2235 | 506 769 860 2135
TempMe - - - 235 417 518 1170 | 449 752 855 2056 | 480 724 818 2022
NarVid 531 814 888 2233 - - - - - - - - 534 791 863 21838
BiMa (ours) 557 832 912 2301 | 356 565 681 160.2 | 554 834 924 2312 | 560 819 87.8 2257

Table 3: Out-of-distribution performance of T2V models on LSMDC, ActivityNet, and DiDeMo. The best and second-best results are highlighted
in bold and underlined, respectively.

Methods MSR-VTT— LSMDC MSR-VTT — ActivityNet MSR-VTT — DiDeMo
R@17 R@57T R@10T RsumT R@17T R@5T R@10T RsumT R@17 R@57T R@10T RsumT
CLIP4Clip 153 313 40.5 87.1 29.1 58.3 72.1 159.5 31.8 57.0 66.1 154.9
EMCL-Net 16.6 29.3 36.5 82.4 28.7 56.8 70.6 156.1 30.0 56.1 65.8 151.9
DiffusionRet 17.1 32.4 41.0 90.5 315 60.0 73.8 1653 33.2 59.3 68.4 160.9
BiMa (ours) 24.0 45.0 56.8 125.8 35.2 64.8 89.0 189.0 36.7 62.6 71.2 170.5
improves R@1 from 52.1 to 53.5. This suggests that the Textual Content Debias module is complementary with Visual Scene Debias

to improve performance.
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Table 4: T2V ablation studies for network designs on MSR-VTT. Exp
#1 is our baseline which is CLIP4clip with WTI matching.

Exp Visual Scene Debias Textual Content Debias Performance
Scene Element Captioni Content-Bias
aptioning :

Scene Scene Representation R@17 R@5T R@10T

Entities| Activities| ~Head Disentanglement
#1 X X X X 457 730 826
#2 v X X X 49.2 753 83.0
#3 X v X X 494 757 834
#4 v v X X 51.5 76.6  84.8
#5 v v v X 52.1 772  86.0
# | x| x| x| v | 470 758 840
.| v | v | v | v | 535 786 86.5

Effect of Textual Bias Features. To evaluate the impact of bias on
textual representations in retrieval tasks, we conduct a controlled
analysis by fusing content and bias features using a weighted sum:
10 4o E(i), where t(!) denotes the content embedding and i@
the bias embedding. The scalar parameter & modulates the degree
of bias injected into the content representation. By varying a, we
systematically assess how retrieval performance degrades as bias
intensity increases, thereby quantifying the trade-off between pre-
serving semantic fidelity and suppressing bias-induced noise.

Quantitatively, in Figure 4, we illustrate the impact of varying
a on retrieval performance. As « transitions from content-only to
a mix of content and bias features, we observe that introducing
more bias into the content increases noise during retrieval, which
degrades performance. This demonstrates how the presence of bias
disturbs the retrieval process.

As shown in Table 5, we further validate the importance of dis-
entangling content features from bias features in the TVR task.
Specifically, the use of content features () achieves significantly
higher retrieval performance compared to the use of bias features
t(® across all recall metrics. When relying on i@ (content features),
the model attains an R@1 of 53.5%, R@5 of 78.6%, and R@10 of
86.5%. In stark contrast, using i@ (bias features) alone results in
extremely poor performance, with R@1 dropping to 1.3%, R@5 to
10.2%, and R@10 to 18.9%. This substantial gap clearly illustrates
that bias features, when isolated, fail to provide sufficient semantic
grounding for accurate retrieval. Instead, they appear to introduce
noise that misleads the model away from the true video content,
corroborating our earlier hypothesis that biases embedded in the lin-
guistic patterns can harm retrieval accuracy if not properly handled.
Ultimately, our analysis underscores that effective bias mitigation,
e.g. using our proposed strategy, is essential for generalizable TVR.

Qualitatively, in Figure 5, we visualize the content and bias fea-
ture embeddings of 1,000 samples from the MSR-VTT test set using
t-SNE [49]. The results show that our disentanglement process ef-
fectively separates content and bias components within the textual
features. However, we also observe that some bias features remain
partially entangled with the content representation. This highlights
the inherent difficulty in completely disentangling bias information
and suggests a promising direction for future investigation.

Additional ablation studies on Effect of the Number of Scene
Elements, Computational Cost, and Effect of Coefficient g are
included in the Supplementary Material, respectively.
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Table 5: Ablation study between content features t or bias features t
as textual features for T2V task on MSR-VTT.

Methods | R@1T R@57 R@107
using t (content) 53.5 78.6 86.5
using t (bias) 1.3 10.2 18.9

—o— (V2T) —a— (V2T) ‘

R@1

Content features
Bias features

L1
0.00.20.40.60.81.0

a
Figure 5: t-SNE [49] visualiza-

tion between content and bias
embeddings on MSR-VTT test-
set.

4.3 Qualitative Results

Figure 6 qualitatively demonstrates the performance of BiMa on
MSR-VTT testset. We observe that BiMa is able to focus on relevant
scene entities and scene activities, shown by the top three atten-
tion heatmaps per video, highlighting key elements in the scene.
Further, BiMa can focus on small yet important actors and objects

Figure 4: Effect of bias features
on MSR-VTT.

e.g., the “alarm clock” in the 1t example and the “animal” in the 4th
example. Next, BiMa also can focus on behaviors e.g., “throwing”
in the 4™ example. This suggests that BiMa effectively integrates
scene elements, which contributes to its improved retrieval accu-
racy over CLIP4Clip. In contrast, CLIP4Clip is unable to identify
important scene elements and retrieves unrelated results. In sum-
mary, the experimental results highlight the advantage of BiMa
in associating visual content with textual descriptions, showing
its enhanced performance in capturing nuanced visual features
relevant to the query. Additional qualitative results are presented
in the Supplementary Material.

5 Related Work

Text-Video Retrieval. TVR is a cross-modal retrieval task that
aims to match videos with text descriptions [6, 7, 18, 20, 25, 35, 47,
57]. Existing TVR methods typically leverage pre-trained VLMs like
CLIP [40], BLIP [29] and adopt contrastive learning on pairs of sam-
ples to enhance their cross-modal representations across vision and
language domains. Recent advancements, such as Di ffusionRet [20],
introduce multi-stage training mechanisms that use both discrim-
inative and generative models to address challenges in out-of-
domain retrieval tasks. In cases of ambiguous matching, where
videos have multiple valid captions, uncertainty-based frameworks
have emerged to handle this by learning a joint embedding space
with probabilistic distance metrics. For example, UATVR [7] aligns
cross-modal features as a distribution-matching procedure, while
PAU [28] introduces semantic prototypes to capture ambiguous
semantics within an uncertainty-based framework. Although our
work also addresses data ambiguities, we distinguish between “bias”
and “uncertainty” in terms of both definition and objective. We
define “bias” as overlooked features stemming from coarse-grained
data and annotator subjectivity, whereas “uncertainty” refers to the
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Figure 6: TVR qualitative Results. Videos in green boxes are true top-1 videos retrieved from BiMa, and in red boxes are false top-1 videos
retrieved from CLIP4Clip. We also provide attention visualizations and the top 3 relevant scene elements for each video to show where BiMa is

focused on.

diversity within representations due to the variation of annotators.
Our approach focuses on mitigating biases by recalibrating cross-
modal features in the latent space and treating bias components
as noise. In contrast, uncertainty-based methods attempt to model
representation diversity by treating matched visual-linguistic repre-
sentations as stochastic variables, and they do not directly alleviate
visual-linguistic biases.

Bias in Vision-Language Models. Bias in VLMs has become a
growing concern as these models, widely used in real-world ap-
plications, are often pre-trained on large internet-scale datasets.
While this provides VLMs with extensive knowledge, it also makes
them susceptible to inheriting biases present in the underlying
data, such as cultural stereotypes, racial biases, and gender im-
balances [2, 8, 31, 45]. For instance, CLIP and BLIP tend to am-
plify societal biases [53]. Recent literature explicitly categorizes
these biases as representation biases—systematic deviations or
skews within datasets, causing models to disproportionately rely
on certain dataset-specific patterns rather than generalizable, task-
relevant features [36, 44]. These biases typically manifest as con-
cept bias (where models rely heavily on prominent visual con-
cepts), temporal bias (where temporal aspects are inadequately
represented), and textual bias (arising from subjective annotator
interpretations or emotionally charged annotations) [44]. Addition-
ally, recent empirical evaluations reveal that even modern datasets,
designed with significant diversification efforts, still contain in-
trinsic dataset-specific biases, limiting models’ generalizability and
robustness [36]. As VLMs become more prominent, addressing and
mitigating these biases is critical for ensuring ethical and fair Al
applications. For visual bias, existing approaches have relied on
costly solutions such as simulators [26] or crowdsourcing [16, 39]
to annotate visual features. These approaches are not scalable and
lack universal applicability. Recent studies [51, 56] utilize scene fac-
torization to eliminate biases in visual representation by focusing
on relevant scene entities. However, many of these approaches rely
heavily on computationally intensive object detectors, restricting
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their applicability to unseen scenarios. For textual bias, existing
studies address biases in sentence embeddings by introducing train-
ing constraints [14] or directly modifying datasets [60]. Recent
Autoencoder-based methods [5, 11, 21, 46] aim to detach the do-
main bias from textual representations. However, these methods
typically rely on supervised learning using additional bias annota-
tions, limiting their generalizability and scalability. To the best of
our knowledge, BiMa represents a pioneering effort in systemati-
cally addressing these identified visual and textual representation
biases in VLMs through the integration of scene element aggre-
gation, visual attention redirection, and textual disentanglement.
Crucially, our method is self-supervised and does not require ad-
ditional human annotations, effectively addressing the limitations
noted in prior studies [36, 44].

6 Conclusion

Conclusion. In this study, we addressed visual-linguistic bias chal-
lenges in the TVR task, drawing upon recent bias representation
findings [36, 44] to address an unexplored area in the TVR literature.
We proposed BiMa, a novel framework to mitigate biases in both
visual and textual representations. Our proposed framework incor-
porates three modules— Scene Element Construction, Visual Scene
Debias, and Textual Content Debias. Through extensive experiments
and ablation studies across five major TVR benchmark datasets,
we demonstrated the remarkable performance of our approach,
surpassing existing SOTA TVR methods. Additionally, our BiMa
exhibited remarkable performance in handling out-of-distribution
retrieval problems showing the bias mitigation and generalization
capabilities on unseen data variations.

Limitation. Although our taxonomy dictionary is constructed from
diverse sources containing a comprehensive set of scene elements,
some inherent biases may remain unmitigated. Addressing these
challenges remains an avenue for future research.
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