
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEEP NEURAL NETWORKS WITHOUT NORMALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Normalization layers are ubiquitous in modern neural networks and have long been
considered essential. In this work, we demonstrate that we can achieve strong
performance without them, using a remarkably simple technique. We introduce
Dynamic Tanh (DyT), an element-wise operation: DyT(x) = tanh(αx), as a
drop-in replacement to normalization layers (e.g., layer normalization). DyT
is directly inspired by the simple observation that normalization layers produce
tanh-like, S-shaped curves for their input-output mappings. With DyT, networks
without normalization layers could match or exceed the performance of their
normalization counterparts, while keeping all other training hyperparameters intact.
Experiments across diverse settings validate this, ranging from recognition to
generation, ConvNets to LLMs, and supervised to self-supervised learning. Our
findings challenge the conventional understanding that normalization layers are
indispensable, and provide new insights into their workings.

1 INTRODUCTION

Over the past decade, normalization layers have solified their positions as one of the most fundamental
components of modern neural networks. It all traces back to Batch Normalization (Ioffe & Szegedy,
2015), which enabled drastically faster and better convergence on visual recognition models, and then
quickly gained momentum. Since then, many variants for different network architectures or domains
have been proposed (Ba et al., 2016; Ulyanov et al., 2016; Wu & He, 2018; Zhang & Sennrich, 2019).
Today, virtually all modern networks use normalization layers, with Layer Normalization (LN) (Ba
et al., 2016) being one of the most popular, particularly in Transformers (Vaswani et al., 2017).

The widespread adoption of normalization layers is largely driven by their empirical benefits in
optimization (Santurkar et al., 2018; Bjorck et al., 2018). In addition to achieving lower final loss, they
help accelerate and stabilize convergence. As neural networks become wider and deeper, this necessity
becomes ever more critical (Brock et al., 2021a; Brody et al., 2023). Consequently, normalization
layers are widely regarded as crucial, if not indispensable, for the effective training of deep neural
networks. This belief is subtly evidenced by the fact that, in recent years, novel architectures often
seek to replace self-attention or convolution layers, but mostly keep the normalization layers in place.

In this paper, we challenge this belief by introducing a simple alternative to normalization for deep
networks. Our approach begins with the observation that layer normalization layers map their inputs
to outputs with tanh-like, S-shaped curves, dynamically scaling them and then squashing the extreme
values. Inspired by this insight, we propose an element-wise operation termed Dynamic Tanh (DyT),
defined as: DyT(x) = tanh(αx), where α is a learnable parameter. This operation aims to emulate
the behavior of layer normalization by learning an appropriate scaling factor through α and squashing
extreme values via the bounded tanh function. Notably, unlike normalization layers, it achieves both
effects without the need to compute activation statistics.

By replacing normalization layers with DyT in architectures such as language and vision Trans-
formers (Vaswani et al., 2017; Dosovitskiy et al., 2020), our empirical studies demonstrate that DyT
can maintain training stability and achieve high final performance, across a wide range of settings.
Employing DyT is straightforward for any existing architectures, and does not require additional
hyperparameter tuning for training. DyT challenges the notion that normalization layers are indis-
pensable for deep neural networks, and provides new insights into the properties of normalization
layers, complementing existing theoretical understanding on normalization.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 METHOD

2.1 WHAT DO NORMALIZATION LAYERS DO?

We first empirically study the behaviors of normalization layers in trained networks. For this analysis,
we take a trained Vision Transformer model (ViT-B) (Dosovitskiy et al., 2020) on ImageNet-1K
(Deng et al., 2009), and a trained wav2vec 2.0 Large model (Baevski et al., 2020) on LibriSpeech
(Panayotov et al., 2015). Both models use Layer Normalization (LN).

For both trained networks, we sample a mini-batch of input data and do a standard forward pass
through the network. We then measure the input and output for the norm layers, i.e., tensors
immediately before and after the normalization operation, excluding the learnable scaling and shifting
transformations inside these layers. Since normalization preserves the dimensions of the input tensor,
we can establish a one-to-one correspondence between the input and output tensor elements, allowing
for a direct visualization of their relationship.

For both models, in earlier norm layers (the first 30%-40% layers), we find this input-output relation-
ship to be mostly linear, resembling a straight line in an x-y plot. For deeper layers where we make
more intriguing observations, the plots for four layers are shown in Figure 1 below.

Figure 1: Output vs. input of selected layer normalization (LN) layers in ViT and wav2vec 2.0
models. We sample a mini-batch of data points, and plot input / output values of four LN layers in
each model. The outputs are before the scaling and shifting transforms in LN. The S-shaped curves
highly resemble that of a tanh function. This motivates us to propose Dynamic Tanh (DyT) as a
replacement, with a learnable coefficient α to account for different scales on the x axis.

A striking first observation is that these curves’ shapes highly resemble full or partial S-shaped
curves represented by a tanh function. One might expect LN layers linearly transforms the input
tensor, as subtracting means and dividing by stds are linear operations. In fact, LN normalizes in
a per-token manner, only linearly transforming each token’s activations. As tokens have different
mean and variance values, the linearity does not hold collectively on all activations of the input tensor.
Nonetheless, at first sight, it is still surprising to us that the actual non-linear transformation is highly
similar to a scaled tanh-function.

For such an S-shaped curve, we note that the central part, represented by points with x values close
to zero, is still mostly in a linear shape. Most points (∼99%) fall in this linear range. However, there
are still many points that clearly fall out of this range, which are considered to have “extreme” values,
e.g. those with x larger than 100 or smaller than -100. For these values, norm layers’ main effect is to
squash them into less extreme values, more in line with the majority of points. This is the part where
norm layers could not approximated by a simple affine transformation layer. We hypothesize this
squashing effect on extreme values is what makes norm layers important and indispensable.

How does an LN layer performs a linear transformation for each token, but also squashes the extreme
values in such a non-linear fashion? To understand this, we visualize the points grouped by tokens and
channels respectively. This is plotted in Figure 2, by taking the third subplot for ViT from Figure 1,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: Output vs. input of an LN layer, with tensor elements colored by different channel
and token dimensions. An input tensor has the shape (samples, channels, tokens), and we visualize
its elements by coloring the same tokens (left) and channels (right) as the same colors. Left: for the
same token (same color), the points from different channels form a straight line (there are dotted
lines as examples), as normalization per token is a linear operation across channels. Interestingly,
when plotted collectively they form a non-linear tanh-shaped curve. Right: each channel has input
at different ranges of x axis, forming a part of the collective tanh-shaped curve. Certain channels
(orange, blue) tend to have more extreme x values that are squashed by LN.

but with a sampled subset of points for more clarity. When we select the channels to plot, we make
sure to include the channels with extreme values.

In the left of Figure 2, we visualize each token’s activations using one color. We observe that all
points from any single token does form a straight line. However, since each token has a different
mean and variance, the slopes are different. Tokens with smaller input x ranges tend to have smaller
variance, and the norm layer will divide their activations using a smaller std, and hence produces
a larger slope in the straight line. Collectively, they form an S-shaped curve that resembles a tanh
function. In the right plot, we color each channel’s activations using the same color. We find that
different channel tend to have drastically different input ranges, with only a few channels (e.g., blue,
orange) exhibiting large extreme values. These are the channels that get transformed the most by the
norm layer, from its squashing effect.

2.2 DYNAMIC TANH (DYT) LAYERS

Inspired by the similarity between the shapes of normalization layers and a scaled tanh function, we
propose Dynamic Tanh (DyT) as an alternative to norm layers. Given an input tensor x, a DyT layer
is defined as follows:

DyT(x) = γ ∗ tanh(αx) + β (1)

α is a learnable scalar parameter that allows scaling the input dynamically based on its range,
accounting for varying x scales in Figure 1. γ and β are learnable, per-channel vector parameters,
the same as those used in all normalization layers—they allow the output to scale back to any scales.
They sometimes could be considered a separate affine layer; for our purposes, we consider them to be
part of the DyT layer, just like how normalization layers also include them.

DyT is not a new type of normalization layer, as it operates on each input element from a tensor
independently during a forward pass, without computing statistics or other types of aggregations. It
does, however, preserve the effect of norm layers in squashing the extreme values in a non-linear
fashion, while almost linearly transforming the very central parts of the input.

Integrating DyT layers into an existing architecture is straightforward: one DyT layer replaces every
normalization layer (e.g., LN). Though DyT may look like or be considered an activation function,
this study only uses it to replace normalization layers, without altering any parts of the activation
functions in the original architectures, like GELU or ReLU. All other parts of networks also remain
intact. We also observe there is no need to tune the training hyperparameters designed for the original
architectures, for DyT to perform well.

We find initializing αs to 1 to be sufficient in almost all cases, except training large LLMs. We always
simply initialize γ to an all-one vector, and β to an all-zero vector following normalization layers.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

However, when training very wide models in a under-training regime (e.g., in training LLMs), a
smaller initial value for α (e.g., 0.2) could be more helpful. In an over-training regime, where models
are trained for many epochs, initializing α differently from 1 only affects convergence speed without
much impact on final performance. We provide detailed analysis on α initialization in Section 4.2.

3 EXPERIMENTS

We conduct experiments across four different modalities: image, language, audio, and DNA sequences,
to demonstrate the effectiveness of DyT-based normalization-free networks. In each experiment,
we replace the normalization layers in the original architectures with DyT layers, and then train
and evaluate both versions of the models. One of our objectives is to showcase that DyT-based
models could obtain comparable performance without significant changes to the training recipe and
hyperparameters. Therefore, in all experiments, we use the same hyperparameters that were used for
the normalized models. The only exception is the language models, where we add a learnable scalar
parameter after the word embedding layer and adjust the initial value of α in all DyT layers. However,
we still keep all other hyperparameters the same. For instructions on reproducing our experiments,
please refer to Appendix A.

Supervised image classification. We first evaluate the performance of DyT with a standard image
classification task. We train three different types of models: Vision Transformer (ViT) (Dosovitskiy
et al., 2020), ConvNeXt (Liu et al., 2022), and MLP-Mixer (Tolstikhin et al., 2021), in various sizes
using the ImageNet-1K dataset (Deng et al., 2009). These models were chosen for their popularity and
distinct operations: attention (ViT), convolution (ConvNeXt), and pure MLP operations (MLP-Mixer).
Additionally, they apply normalization layers in different locations: ViT and MLP-Mixer place layer
normalization at the beginning of each residual block, while ConvNeXt places layer normalization
between the convolution layers. The evaluation results are presented in table 1.

Table 1: Supervised image classification accuracy with ImageNet-1K. The DyT models use
identical hyperparameters as their LN counterparts. DyT achieves comparable or better performance
than LN across all model architectures and sizes.

Model LN DyT ∆

ViT-Base 82.3% 82.6% +0.3%
ViT-Large 82.6% 82.8% +0.2%
ConvNeXt-Base 83.8% 83.9% +0.1%
ConvNeXt-Large 84.3% 84.4% +0.1%
MLP-Mixer-Base 78.6% 78.4% -0.2%

The results demonstrate that the performance is consistently comparable between LN and DyT. This
suggests that DyT can effectively replace normalization layers, regardless of the primary operations
and the locations where normalization layers are applied.

Self-supervised visual representation learning. We next evaluate the performance of DyT in self-
supervised learning paradigms. We use two self-supervised visual representation learning methods:
MAE (He et al., 2022), an autoencoder method, and DINO (Caron et al., 2021), a joint embedding
method. These two methods are chosen due to their own challenges. MAE includes both an encoder
and a decoder with different dimensionality. It presents significant challenges for joint training both
without normalization. For joint embedding methods like DINO, the encoder-only architecture often
faces stability issues during training, and normalization usually helps stabilize it. Thus, evaluating
DyT with these methods is crucial to demonstrating the effectiveness of DyT.

We use standard ImageNet-1K evaluation methods from both papers. The networks are first pretrained
on the ImageNet-1K dataset (Deng et al., 2009). The performance of the pretrained encoders is then
evaluated by attaching a classification layer, either through fine-tuning (updating both encoder and
classification layer weights via gradient descent) or linear probing (freezing the encoder weights and
updating only the classification layer). The results are summarized in Table 2 .

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 2: Self-supervised visual representation learning results with ImageNet-1K. All models are
pretrained on the ImageNet-1K training set without using any labels. The pretrained encoders are
then evaluated through either fine-tuning or linear-probing. LN and DyT experiments use identical
hyperparameters for each model. The table shows that DyT achieves comparable performance to LN.

Model LN DyT ∆

MAE ViT-Base (fine-tuning) 83.6% 83.6% 0.0%
MAE ViT-Large (fine-tuning) 85.9% 85.9% 0.0%
DINO ViT-Base/16 (linear-probing) 78.2% 78.1% -0.1%
DINO ViT-Base/8 (linear-probing) 80.1% 80.1% 0.0%

The results demonstrate that the performance of DyT is consistently comparable to LN in self-
supervised learning tasks. This suggests that the effectiveness of DyT is not influenced by the change
of the learning paradigms.

Diffusion models. We further evaluate the effectiveness of DyT layer on vision tasks using diffusion
models. Two different sizes DiT models (Peebles & Xie, 2023) are pretrained with ImageNet-1K
(Deng et al., 2009). Notably, DiT uses a unique training recipe compared to other models evaluated
in this paper. It uses a constant learning rate throughout the training and no weight decay. This setup
tests the capability of DyT without common practices such as learning rate warmup and decay. For
evaluation, the final Fréchet Inception Distance (FID) scores, computed on 50,000 images with 250
DDPM sampling steps, are reported in Table 3.

Table 3: Diffusion model generation FID results (lower is better) with ImageNet-1K. The LN
and DyT models use identical training hyperparameters. DyT achieves improved performance with
LN for diffusion models with different sizes.

Model LN DyT ∆

DiT-B/4 (FID) 68.7 68.4 -0.3
DiT-L/2 (FID) 18.2 18.0 -0.2

The results indicate that the performance of DyT is comparable to LN. This suggests that DyT is
effective for diffusion models and does not require learning rate warmup and decay, provided that its
LN counterparts do not need these either.

Language modeling. To evaluate the effectiveness of DyT in language modalities, we test it on
language modeling tasks. Specifically, two LLaMA (Touvron et al., 2023a;b) models are trained
to compare the performance of DyT with normalization layers. Unlike the original Transformer
(Vaswani et al., 2017), LLaMA uses a non-standard normalization layer—root mean square layer
normalization (RMSNorm) (Zhang & Sennrich, 2019), along with other architectural improvements
(Chowdhery et al., 2023). RMSNorm differs from LN in that it does not perform mean centering.
Pretraining is conducted on the Pile (Gao et al., 2020) dataset with 300B tokens for the 1.4B model
and 500B tokens for the 7B model, following the recipe from (Brown et al., 2020). In addition to
measuring pre-training loss, evaluation is performed on 15 zero-shot tasks using lm-harness (Gao
et al., 2023). Table 4 shows the comparison. The results suggest that DyT can perform comparably to
normalization layers like RMSNorm for language modeling. As we stated at the beginning of the
section, we have to make some changes to the network and adjust the initialization value of α, Please
refer to 4.2 for a more detailed explanation of the modification.

Table 4: Language modeling zero-shot results with 15 lm-harness tasks. All models are
pretrained with 500B tokens from the Pile dataset. We report the average accuracy (higher is better)
on 15 zero-shot tasks from lm-harness, and the pre-training loss (lower is better). DyT achieves
comparable performance to RMSNorm.

Accuracy / Loss RMSNorm DyT ∆

LLaMA-1.4B 45.1% / 2.06 45.0% / 2.14 -0.1%
LLaMA-7B 49.3% / 1.92 49.3% / 1.87 0.0%

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Audio waveform pretraining. We further evaluate the effectiveness of DyT by pretraining the
wav2vec 2.0 (Baevski et al., 2020) model, a standard speech representation learning model, on the
LibriSpeech (Panayotov et al., 2015) dataset. We adopted two setups of the wav2vec 2.0 architecture:
pre-norm and post-norm, which place the normalization layer at the beginning or the end of the
blocks, respectively. After pretraining for 200 epochs, we report the evaluation loss in Table 5. The
results show that DyT performs on par with LN for audio waveform pretraining tasks.

Table 5: Audio waveform pretraining validation loss (lower is better) on LibriSpeech. The
models are pretrained with LibriSpeech dataset, and the validation losses at epoch 200 are reported.
The LN and DyT experiments use identical hyperparameters. The table shows that DyT achieves
comparable performance to LN for wav2vec 2.0 models with different normalization layer positions.

Model LN DyT ∆

wav2vec 2.0 Base (Pre-Norm) 2.14 2.15 +0.01
wav2vec 2.0 Base (Post-Norm) 2.19 2.15 -0.04

DNA sequence pretraining. For experiments on DNA Sequences, we pretrain HyenaDNA (Nguyen
et al., 2024) model with human reference genome (GRCh38, 2013), and test the downstream task
performance with GenomicBenchmarks (Grešová et al., 2023). The results is presented in Table 6.
These results illustrate that DyT can maintain or slightly enhance performance compared to LN.

Table 6: GenomicBenchmarks results with pretrained HyenaDNA model. The HyenaDNA model
is first pretrained with the human reference genome. Evaluation is performed by fine-tuning the
pretrained encoder with each data from the genomic benchmarks. The LN and DyT experiments
for each model use identical hyperparameters. The table shows that DyT achieves comparable
performance to LN for different downstream tasks.

Task LN DyT ∆

Mouse Enhancers 85.1% 85.1% 0.0%
Coding vs Intergenomic 91.3% 91.4% +0.1%
Human vs Worm 85.9% 85.9% 0.0%
Human Enhancers Cohn 74.2% 74.4% +0.2%
Human Enhancers Ensembl 89.2% 89.2% 0.0%
Human Regulatory 93.8% 93.7% -0.1%
Human Non-tata Promoters 96.6% 96.5% -0.1%
Human OCR Ensembl 80.9% 80.9% 0.0%

4 ANALYSIS

4.1 UNDERSTANDING THE ROLE OF α

Correlation between final α and 1/std of activation. We conducted further analysis on the role of
α for pretrained networks. The investigation reveals that α adapts to learn the inverse of the standard
deviation of the input activations. Figure 3 illustrates this relationship, demonstrating that the values
of α across different DyT layers correlate with the inverse of the standard deviation of the layer inputs
for two different models. This indicates that α could help manage larger activations by scaling them
down, effectively preventing saturation.

Increasing activation std with depth. Moreover, we observe that deeper layers tend to have larger
standard deviations in their input activations. Such an increasing standard deviation with depth is
potentially an important feature of deep residual networks, as pointed out by Brock et al. (2021a).
This could also explain why the static hyperbolic tangent function does not perform as well as DyT,
as it cannot adapt to the changing activation distributions across layers.

Dynamic adaptation of α during training. We also observe that the learned value of α closely
tracks the standard deviation of activations throughout training. As shown in Figure 4, the inverse of
α fluctuates in response to changes in activation standard deviation, further supporting the dynamic
role of α in maintaining stable and effective training.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

1/
st

d 
of

 a
ct

iv
at

io
n Vision Transformer

ConvNeXt

Figure 3: The final α values and the 1/std of the
activation are correlated. We plot the α values
of two pretrained models, ViT and ConvNeXt,
with the inverse of the standard deviation of the
input activation. The graph shows that the learned
α are mostly correlated with inverse of standard
deviation of the activation.

0 100 200 300
Epoch

0.00

0.25

0.50

0.75

1.00

1/
st

d 
or

 

Layer 5 1/std
Layer 5 
Layer 20 1/std
Layer 20 

Figure 4: The learned α and the 1/std of input
activation during training We pick two DyT
layers from the ViT-Base model and record the
inverse of standard deviation of the input and the
learned α at end of each epoch. It shows that α
values and the standard deviation of the activation
change together during training.

4.2 INITIALIZATION OF α

For the initialization of the learnable scalar α, we find that setting it to 1 works well in most cases.
While adjusting the initial value of α can lead to faster early convergence, this advantage typically
does not carry over to the later stages of training. However, in LLMs, the proper initialization of α
proves to be important, as early improvements tend to influence the final performance. We suspect
this difference arises because language modeling often operates in an underfitting regime, unlike
other tasks where overfitting is a dominant issue.

Learnable scaling after input embeddings. In our implementation of LLaMA (Touvron et al.,
2023a;b) models with DyT, we introduce a learnable scaling scalar immediately after the word
embedding layers, initialized to

√
dwidth, where dwidth represents the model’s hidden dimension.

Without this scaling scalar, training struggled to progress meaningfully in the early stages. The
underlying issue could be traced to the small magnitude of activations at the start of training (around
0.02), and it is mainly caused by the small magnitude outputs of the word embedding layers at
initialization. By adding a learnable scalar, we mitigated the problem, allowing the model to converge
more quickly. This approach is similar to the original Transformer architecture (Vaswani et al., 2017),
which uses a fixed scaling parameter

√
dwidth at the start.

Notably, this issue primarily exists in models with embeddings as inputs. In contrast, models that start
with linear or convolutional layers typically produce outputs from the first layers with significantly
larger magnitudes than the initialization value of , without the scaling issue. We verified this using a
ViT model with discrete token embedding as the input as well.

Optimal initial value of α for LLMs. After adding the scaling for the word embedding layers,
we conduct a series ablation studies on the optimal values of α for a different configurations of the
LLaMA models. In all the ablation studies, we train the networks for 10,000 steps and compare the
losses at that point. For each configuration we experiment with 6 different possible initial values of α:
2.0, 1.0, 0.5, 0.2, 0.1, 0.05.

Table 7: Optimal initial value of α vs. the depth and width of the LLaMA model. We train each
model configuration with 6 different initial values of α : 2.0, 1.0, 0.5, 0.2, 0.1, 0.05. Each training
ran 10, 000 steps, and we report the initial value that produce the lowest loss.

Width / Depth 8 16 24 32 40

1024 1.0 1.0 1.0 1.0 1.0
2048 0.5 0.5 0.5 0.5 0.5
3072 0.2 0.2 0.2 0.2 0.2
4096 0.2 0.1 0.1 0.1 0.2
5120 0.1 0.1 0.1 0.1 0.1

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 7 presents the results showing the influences of model depth and width on the optimal initial
value of α. It shows a clear trend: the depth of the models does not influence the choice of the optimal
α, while the width of the models has a significant impact on the optimal initial value of α.

Figure 5: Optimal initial value of α vs.
model width. As the model becomes wider,
the optimal initial value of α decreases.

After establishing that the width of the network is the
dominant factor in choosing the optimal α initializa-
tion value, we conducted two further ablation studies
on the attention head dimension and the length of
input sequences. We discover that the head dimen-
sion and the length of the input sequences have no
clear evidence of influencing the choice of the opti-
mal α initialization value. We list the results in the
Appendix B.1 for completeness.

To obtain more practical guidance on the optimal α
initialization value, we carefully searched for the op-
timal α using a shallow model (8 layers) with model
widths ranging from 512 to 8192. We plot the opti-
mal values in Figure 5, which shows a clear trend that,
the wider the network, the smaller the initialization
value of α should be.

4.3 THE IMPORTANCE OF SQUASHING AND α

To further understand the importance of the squashing effect and the learnable parameter α in DyT, we
conduct a number of experiments to assess the model’s performance without α and without functions
that provide a squashing effect. We used a standard ViT-Tiny model and replaced its normalization
layers with four different functions: identity, tanh, hardtanh, and sigmoid. For each function, we
conducted two sets of experiments: one with the learnable parameter α and one without it. The result
is listed in Table 8.

Table 8: ViT-Tiny image classification results on ImageNet-1K We replace the layer normalization
layers with each function listed in the table. The results show that both the squashing effect and the
learnable parameter α are essential for training effective models.

Model / Function identity tanh hardtanh sigmoid

without α Diverge 69.2% 68.7% 66.3%
with α Diverge 73.5% 71.7% 70.2%

The results indicate that the squashing effect is a key factor in stabilizing training. When using the
identity function, the model’s training was unstable and diverged. In contrast, functions that provide
a squashing effect, such as tanh, hardtanh, and sigmoid, enabled stable training without divergence.

Moreover, the choice of squashing function significantly impacts performance. Sigmoid, for example,
yielded the lowest accuracy, likely due to its tendency to center mean activations around 0.5 rather
than 0. Similarly, hardtanh performed worse than tanh, suggesting that the optimal squashing effect
lies within a specific range. These findings underscore the critical role of the squashing effect in
stabilizing training, and highlight the importance of learnable parameter α to control this effect.

5 RELATED WORK

Normalization Layers. Normalization techniques are fundamental in deep learning, starting with
Local Response Normalization (Lyu & Simoncelli, 2008; Jarrett et al., 2009) in models like AlexNet
(Krizhevsky et al., 2012). Batch normalization (Ioffe & Szegedy, 2015) popularized normalization by
enhancing convergence and generalization through mini-batch activation normalization. It leads to
various methods targeting different data dimensions—channel (Ba et al., 2016; Zhang & Sennrich,
2019), spatial/temporal (Ulyanov et al., 2016), or both (Ba et al., 2016; Wu & He, 2018). In
transformer models (Vaswani et al., 2017; Dosovitskiy et al., 2020), layer normalization(Ba et al.,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2016) has become the primary normalization strategy. Recently, rms normalization (Zhang &
Sennrich, 2019), used in models like T5 (Raffel et al., 2020) and LLaMA (Touvron et al., 2023a),
enhances layer normalization by omitting mean centering, highlighting the ongoing evolution of
normalization techniques in deep learning.

Benefits of Normalization. Early research on benefits of normalization predominantly centered on
Batch Norm, elucidating its capacity to enhance model training and performance through various
mechanisms. These advantages include propagating informative activation patterns into deeper layers,
which maintains gradient flow during training (Daneshmand et al., 2020; Balduzzi et al., 2017).
Normalization also reduces dependency on initialization schemes, making networks less sensitive to
initial weights (De & Smith, 2020; Shao et al., 2020; Zhang et al., 2019). It accelerates convergence
by moderating outlier eigenvalues that can impede learning (Karakida et al., 2019; Bjorck et al., 2018).
Additionally, normalization effectively auto-tunes learning rates, similar to adaptive optimizers (Arora
et al., 2018; Tanaka & Kunin, 2021), and smooths the loss landscape for more stable optimization
(Santurkar et al., 2018; Yong et al., 2020). These properties collectively enhance training robustness
and efficiency across architectures and applications.

With transformer models’ advent (Vaswani et al., 2017), research shifted focus to LayerNorm (Ba et al.,
2016). LayerNorm operates across features of a single sample, unlike Batch Norm’s batch dimension,
making it well-suited for sequential data and enhancing transformer performance in natural language
tasks (Xiong et al., 2020; Nguyen & Salazar, 2019). LayerNorm stabilizes transformer training by
mitigating internal covariate shift, facilitating faster convergence and improved generalization (Xu
et al., 2019). It also alleviates vanishing and exploding gradients in deep networks (Nguyen & Salazar,
2019). Furthermore, LayerNorm’s per-sample normalization statistics enable effective learning of
complex distributions, making it valuable for modeling long-range dependencies (Xiong et al., 2020).

Normalization-free networks. The research on Normalization-free networks challenges the belief
that normalization layers are indispensable for the effective training of deep neural networks. This
domain seeks to match the performance of traditional models while using normalization, thereby
streamlining architectures and addressing issues inherent to normalization layers (Brock et al., 2021a).

A pioneering study by Brock et al. (Brock et al., 2021a;b) highlighted the potential of training
high-performance ResNet models without normalization (Smith et al., 2023). They introduced a
meticulously crafted initialization scheme (De & Smith, 2020), coupled with weight normalization
techniques (Huang et al., 2017; Qiao et al., 2019), and a novel training methodology that incorporates
very strong data augmentation (Cubuk et al., 2020), intensive regularization (Srivastava et al., 2014;
Huang et al., 2016), and adaptive gradient clipping (Brock et al., 2021b). This approach not only
achieved high accuracy but also demonstrated superior generalization on out-of-distribution data.

Another line of research focuses on modifying transformer blocks to reduce dependency on normaliza-
tion and skip connection (He et al., 2023; He & Hofmann, 2023). These studies explore the feasibility
of omitting normalization from certain parts of transformer blocks, although they acknowledge the
necessity of retaining layer normalization in either the encoder or decoder to maintain functional
models. Other research has been exploring alternative strategies, such as novel initialization methods,
to facilitate normalization-free training. Approaches like FixUp (Zhang et al., 2019), ReZero (Xiong
et al., 2020), and SkipInit (De & Smith, 2020) focus on adjusting weight initialization to support
training without normalization. However, these methods were not shown to work across various
modern networks, most notably large Transformers.

6 CONCLUSION

In this work, we introduced Dynamic Tanh (DyT), a simple alternative to traditional normalization
layers in deep neural networks. DyT dynamically adjusts the input activations via a learnable scaling
factor α and squashing the extreme values through a tanh function, effectively capturing the behavior
of normalization while simplifying the architecture. Through experiments across a wide range
of modalities, including image, audio, language, and genomics, our results demonstrate that DyT
not only matches the performance of traditional normalization techniques but also ensures training
stability without the need for extensive hyperparameter tuning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical analysis of auto rate-tuning by batch
normalization. arXiv preprint arXiv:1812.03981, 2018.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
for self-supervised learning of speech representations. Advances in neural information processing
systems, 33:12449–12460, 2020.

David Balduzzi, Marcus Frean, Lennox Leary, JP Lewis, Kurt Wan-Duo Ma, and Brian McWilliams.
The shattered gradients problem: If resnets are the answer, then what is the question? In
International Conference on Machine Learning, pp. 342–350. PMLR, 2017.

Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Understanding batch normaliza-
tion. Advances in neural information processing systems, 31, 2018.

Andrew Brock, Soham De, and Samuel L Smith. Characterizing signal propagation to close the
performance gap in unnormalized resnets. arXiv preprint arXiv:2101.08692, 2021a.

Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-scale
image recognition without normalization. In International Conference on Machine Learning, pp.
1059–1071. PMLR, 2021b.

Shaked Brody, Uri Alon, and Eran Yahav. On the expressivity role of layernorm in transformers’
attention. arXiv preprint arXiv:2305.02582, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 702–703, 2020.

Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hofmann, and Aurelien Lucchi. Batch
normalization provably avoids ranks collapse for randomly initialised deep networks. Advances in
Neural Information Processing Systems, 33:18387–18398, 2020.

Soham De and Sam Smith. Batch normalization biases residual blocks towards the identity function
in deep networks. Advances in Neural Information Processing Systems, 33:19964–19975, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile: An 800gb
dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

Ensembl GRCh38. p13 (genome reference consortium human build 38), insdc assembly, 2013.

Katarína Grešová, Vlastimil Martinek, David Čechák, Petr Šimeček, and Panagiotis Alexiou. Ge-
nomic benchmarks: a collection of datasets for genomic sequence classification. BMC Genomic
Data, 24(1):25, 2023.

Bobby He and Thomas Hofmann. Simplifying transformer blocks. arXiv preprint arXiv:2311.01906,
2023.

Bobby He, James Martens, Guodong Zhang, Aleksandar Botev, Andrew Brock, Samuel L Smith, and
Yee Whye Teh. Deep transformers without shortcuts: Modifying self-attention for faithful signal
propagation. arXiv preprint arXiv:2302.10322, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pp. 646–661. Springer, 2016.

Lei Huang, Xianglong Liu, Yang Liu, Bo Lang, and Dacheng Tao. Centered weight normalization in
accelerating training of deep neural networks. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 2803–2811, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun. What is the best
multi-stage architecture for object recognition? In 2009 IEEE 12th international conference on
computer vision, pp. 2146–2153. IEEE, 2009.

Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. The normalization method for alleviating
pathological sharpness in wide neural networks. Advances in neural information processing
systems, 32, 2019.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

Siwei Lyu and Eero P Simoncelli. Nonlinear image representation using divisive normalization. In
2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE, 2008.

Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes,
Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. Hyenadna: Long-range
genomic sequence modeling at single nucleotide resolution. Advances in neural information
processing systems, 36, 2024.

Toan Q Nguyen and Julian Salazar. Transformers without tears: Improving the normalization of
self-attention. arXiv preprint arXiv:1910.05895, 2019.

11

https://zenodo.org/records/10256836


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
based on public domain audio books. In 2015 IEEE international conference on acoustics, speech
and signal processing (ICASSP), pp. 5206–5210. IEEE, 2015.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Micro-batch training with
batch-channel normalization and weight standardization. arXiv preprint arXiv:1903.10520, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch normal-
ization help optimization? Advances in neural information processing systems, 31, 2018.

Jie Shao, Kai Hu, Changhu Wang, Xiangyang Xue, and Bhiksha Raj. Is normalization indispensable
for training deep neural network? Advances in Neural Information Processing Systems, 33:
13434–13444, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Samuel L Smith, Andrew Brock, Leonard Berrada, and Soham De. Convnets match vision transform-
ers at scale. arXiv preprint arXiv:2310.16764, 2023.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Foundation Model Stack. Fms fsdp - (pre)training fms with fsdp, 2024. URL https://github.
com/foundation-model-stack/fms-fsdp.

Hidenori Tanaka and Daniel Kunin. Noether’s learning dynamics: Role of symmetry breaking in
neural networks. Advances in Neural Information Processing Systems, 34:25646–25660, 2021.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural information processing systems, 34:24261–
24272, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pp. 10347–10357. PMLR, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

12

https://github.com/foundation-model-stack/fms-fsdp
https://github.com/foundation-model-stack/fms-fsdp


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pp. 10524–10533. PMLR, 2020.

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Understanding and
improving layer normalization. Advances in neural information processing systems, 32, 2019.

Hongwei Yong, Jianqiang Huang, Xiansheng Hua, and Lei Zhang. Gradient centralization: A new
optimization technique for deep neural networks. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16, pp. 635–652. Springer,
2020.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural
Information Processing Systems, 32, 2019.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without
normalization. arXiv preprint arXiv:1901.09321, 2019.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION DETAILS

A.1 SUPERVISED IMAGE CLASSIFICATION

For all supervised image classification experiments, we employed a standardized recipe, detailed in
Table 9, for each model listed. This recipe is primarily adapted from the one used by ConvNeXt (Liu
et al., 2022), as it demonstrates superior performance compared to the original recipes utilized in
DeiT (Touvron et al., 2021) and MLP-Mixer (Tolstikhin et al., 2021).

Table 9: Supervised Image Classification Training Recipe with ImageNet-1K

ViT-B ConvNeXt-B ConvNeXt-L Mixer-B

Epochs 300 300 300 300
Warmup Epochs 20 20 20 20

Optimizer AdamW AdamW AdamW AdamW
Batch Size 4096 4096 4096 4096
LR 4.10−3 4.10−3 4.10−3 4.10−3

LR Decay cosine cosine cosine cosine
Weight Decay 0.05 0.05 0.05 0.05
Betas (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)

Global Pool ✓ ✓ ✓ ✓
LayerScale ✗ ✓ ✓ ✗

Label Smoothing 0.1 0.1 0.1 0.1
Stoch. Depth 0.1 0.5 0.5 0.1
Gradient Clip. ✗ ✗ ✗ 1.0

RRC ✓ ✓ ✓ ✓
H. Flip ✓ ✓ ✓ ✓
Rand Augment 9/0.5 9/0.5 9/0.5 9/0.5
Mixup Alpha 0.8 0.8 0.8 0.8
Cutmix Alpha 1.0 1.0 1.0 1.0
Erasing Prob. 0.25 0.25 0.25 0.25
ColorJitter ✗ ✗ ✗ ✗

Test Crop Ratio 0.875 0.875 0.875 0.875

A.2 LANGUAGE MODELING

For language modeling, we followed the recipe from (Brown et al., 2020) when training on the
Pile (Gao et al., 2020). We used the PyTorch code base FMS FSDP (Stack, 2024) and conducted
experiments on GPUs. The default initial LR is 3.10−3, and weight decay 0.1. We used batch size
256, so there is about 1M tokens per step. For evaluation, we choose 15 zero-shot commonsense
reasoning tasks from lm-harness (Gao et al., 2023), which are: anli_r1, anli_r2, anli_r3,
arc_challenge, arc_easy, boolq, hellaswag, openbookqa, piqa, record, rte,
truthfulqa_mc1, truthfulqa_mc2, wic, winogrande. The selection is closely following
LLaMA (Touvron et al., 2023a) and we simply take the average across all the metrics following
common practice.

A.3 OTHER TASKS

For all other tasks, MAE (He et al., 2022), DINO (Caron et al., 2021), DiT (Peebles & Xie, 2023),
Wav2Vec 2.0 (Baevski et al., 2020), and HyenaDNA (Nguyen et al., 2024). We directly use the
publicly released code from the authors without performing any hyperparameter tuning, using the
original hyperparameters provided. The only modification we made was replacing the normalization
with an layer. Following this adjustment, we executed the models according to the authors’ instruc-
tions. For completeness, we list all the hyperparameters used by the original authors for each model
below.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

MAE For pretraining, we used a total batch size of 4096 with a base learning rate of 1.5e-4 and
a weight decay of 0.05. Training was conducted over 800 epochs with 40 warmup epochs, using a
mask ratio of 0.75. For fine-tuning, we used a batch size of 16 over 50 epochs with a base learning
rate of 1e-3. The same setup was applied for both ViT-base and ViT-large.

DINO For pretraining, we used a total batch size of 1024 with a base learning rate of 7.5e-4 and a
weight decay of 0.04. Training was conducted over 400 epochs with 10 warmup epochs. For learning
probing, we used a batch size of 1024 with a base learning rate of 0.001 over 100 epochs.

DiT For pretraining, we used a batch size of 256 with a learning rate of 0.1 and no weight decay.
Training was conducted over 1400 epochs without any warmup epochs. For evaluation, we used 250
sampling steps with an image size of 256.

wav2vec 2.0 We used a batch size of 64 with a learning rate of 0.001 and a weight decay of 0.01.
Training was conducted over 200 epochs with 32000 warmup steps.

HyenaDNA For pretraining, we used a batch size of 1024 and a sequence length of 600 with a
learning rate of 1e-3 and a weight decay of 0.2. For evaluation, we used the Genomic Benchmarks
(Grešová et al., 2023) with a maximum length of 500.

B OTHER ABLATION STUDIES

B.1 ABLATIONS FOR OPTIMAL INITIAL VALUE OF α

We conducted further ablations on the influences of head dimensions and sequence length to the
optimal initial value of α. Since we have already established that the model depth doesn’t have
noticeable effect to the choice of optimal initial value of α, so all the following ablation is conducted
with a shallow network (8 layers).

Table 10: Optimal initial value of α vs. the head dimension and the sequence length. We train
each model configuration with 6 different initial values of α: 2.0, 1.0, 0.5, 0.2, 0.1, 0.05. Each
training ran 10, 000 steps, and we report the initial value that produce the lowest loss.

Head Dim Seq Length / Width 512 1024 1536 2048 2560 3072 3584 4096

32 4096 1.0 1.0 0.5 0.5 0.2 0.2 0.2 0.1
64 4096 1.0 1.0 0.5 0.5 0.2 0.2 0.2 0.1
128 4096 1.0 1.0 0.5 0.5 0.2 0.2 0.2 0.2

128 1024 1.0 1.0 0.5 0.5 0.2 0.2 0.2 0.1
128 2048 1.0 1.0 0.5 0.5 0.2 0.2 0.2 0.1
128 4096 1.0 1.0 0.5 0.5 0.2 0.2 0.2 0.2

From table 10, we could clearly see that the head dimension and sequence length also have negligible
effect on the optimal choice of initial value of α.

B.2 REPLACING BATCH NORMALIZATION WITH DYT

Building on our previous experiments demonstrating DyT as an effective replacement for layer
normalization, we explored its applicability to batch normalization (BN) in classic CNN architectures
like ResNet-50 (He et al., 2016) and VGG16 (Simonyan & Zisserman, 2014). Additionally, we
examined the effects of substituting layer normalization with batch normalization and DyT in the
ViT-Base model. All models were trained from scratch on the ImageNet-1K dataset under identical
conditions to isolate the impact of the normalization methods.

Our results showed that replacing batch normalization with DyT in ResNet-50 led to a decrease
in accuracy, while substituting batch normalization with layer normalization caused the training
to diverge. In VGG16, a small performance drop occurred with DyT, and a larger drop with layer
normalization. Conversely, in ViT-Base, replacing layer normalization with batch normalization

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 11: Image classification results with BN, LN and DyT We replace the BN layers with LN or
DyT for both ResNet-50 and VGG16 models. And we replace the LN layers with BN or DyT layers
for the ViT model.

Model BN LN DyT

ResNet-50 76.1% Diverge 74.1%
VGG16 73.3% 70.2% 72.1%
ViT-Base Diverge 82.3% 82.6%

resulted in divergence. These findings suggest that DyT can partially substitute for batch normalization
in certain CNNs but doesn’t fully replicate its stabilization and performance benefits. The divergence
highlights the critical role of batch-dependent normalization in CNNs, which isn’t addressed by
layer normalization or DyT. Since batch normalization computes statistics for each channel, it
lacks the squashing effect characteristic of layer normalization. This indicates that despite both are
normalization layers, batch normalization and layer normalization behave differently, and DyT aligns
more closely with layer normalization.

16


