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Abstract

Large Language Models (LLMs) have demonstrated exceptional perfor-
mance across diverse tasks, yet their training remains highly resource-
intensive and susceptible to critical challenges such as training instability. A
predominant source of this instability stems from gradient and loss spikes,
which disrupt the learning process, often leading to costly interventions
like checkpoint recovery and experiment restarts, further amplifying ineffi-
ciencies. This paper presents a comprehensive investigation into gradient
spikes observed during LLM training, revealing their prevalence across mul-
tiple architectures and datasets. Our analysis shows that these spikes can
be up to 1000× larger than typical gradients, substantially deteriorating
model performance. To address this issue, we propose Spike-Aware Adam
with Momentum Reset (SPAM), a novel optimizer designed to counteract
gradient spikes through momentum reset and spike-aware gradient clip-
ping. Extensive experiments, including both pre-training and fine-tuning,
demonstrate that SPAM consistently surpasses Adam and its variants across
a range of model scales. Additionally, SPAM facilitates memory-efficient
training by enabling sparse momentum, where only a subset of momen-
tum terms are maintained and updated. When operating under memory
constraints, SPAM outperforms state-of-the-art memory-efficient optimizers
such as GaLore and Adam-Mini. Our work underscores the importance
of mitigating gradient spikes in LLM training and introduces an effective
optimization strategy that enhances both training stability and resource
efficiency at scale. Code is submitted.

1 Introduction

Large Language Models (LLMs) have become fundamental in advancing state-of-the-art AI
systems. Scaling LLMs, such as GPT-3 (Brown, 2020) and LLaMA (Touvron et al., 2023),
has showcased unprecedented capabilities. However, training these large-scale models is
fraught with challenges, particularly training instability. A major factor contributing to
this instability is the occurrence of gradient and loss spikes during training, which disrupt
the learning process at unpredictable intervals (Chowdhery et al., 2023; Zhang et al., 2022;
Le Scao et al., 2023).
While architectural innovations have been proposed to mitigate these issues (Nguyen &
Salazar, 2019; Shoeybi et al., 2019; Zeng et al., 2022; Ding et al., 2021; Wang et al., 2024;
Dettmers et al., 2021; Scao et al., 2022; Takase et al., 2023), none can completely prevent the
occurrence of spikes. In practice, the most widely adopted solution is to manually intervene
by restarting training from a previous checkpoint and skipping data affected by the spike
(Chowdhery et al., 2023). This method is resource-intensive, requiring frequent checkpoint
saves, manual monitoring, and repeated experiment runs - all inefficient and undesirable.
Moreover, the sheer scale of LLMs necessitates vast computational resources. For example,
training LLaMA required over 2048 A100-80GB GPUs (Touvron et al., 2023), posing sig-
nificant environmental and financial costs (Rillig et al., 2023; Patterson et al., 2021). These
challenges highlight the need for more efficient training paradigms that reduce resource
consumption without sacrificing performance.
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Figure 1: Perplexity of LLaMA models on C4 trained with various optimizers.

In this paper, we approach the issue from an optimization perspective rather than an archi-
tectural one. We first conduct an in-depth investigation of loss and gradient spikes during
the training of various LLM architectures, spanning models from 60M to 1B parameters.
Our study reveals several key observations:

• Small yet frequent loss bumps: Although catastrophic loss spikes are rare, we observe
frequent small loss bumps that can easily be overlooked without close scrutiny.

• Gradient spikes accompanying loss bumps: These loss bumps, depiste small by their
own, are consistently accompanied by significant gradient spikes, whose magnitudes can
reach up to 1000 × greater than typical gradients. These spikes persist across layers,
architectures, and datasets, even with established techniques applied.

• Harmfulness of gradient spikes: By nullifying the spiked gradients, we observe notable
improvements in training performance, confirming that these spikes have a detrimental
effect. Momentum-based optimizers, like Adam (Kingma, 2014; Loshchilov, 2017), suffer
particularly from the accumulation of these spikes in their momentum terms, as we
demonstrate both empirically and theoritically.

Inspired by these findings, we introduce Spike-Aware Adam with Momentum Reset (SPAM),
an optimizer designed to counteract the negative effects of gradient spikes. SPAM introduces
two key innovations: (1) periodic reset of the first and second moments to eliminate the
harmful accumulation of spiked gradients, and (2) identification and adaptive re-scaling of
spiked gradients to manageable levels, preserving their directional information while miti-
gating their magnitude. We validate SPAM through extensive experiments, demonstrating its
superior performance across various LLM sizes in both pre-training and fine-tuning tasks.
Furthermore, momentum reset enables the development of sparse momentum, where only
a selected subset of momentum terms is computed and stored during training, drastically
reducing memory costs. Our results show that SPAM surpasses leading memory-efficient
optimizers such as GaLore (Zhao et al., 2024) and Adam-Mini (Zhang et al., 2024a) with
good margins, even under memory constraints.
Summary of Contributions:

⋆ Comprehensive analysis of gradient spikes across multiple LLM architectures, revealing
their significant impact on training stability and performance.

⋆ Introduction of SPAM, a novel optimizer with momentum reset and spike-aware clipping
that outperforms existing methods like Adam and Adafactor.

⋆ A memory-efficient version of SPAM that leverages sparse momentum to reduce mem-
ory usage while maintaining superior performance compared to state-of-the-art memory-
efficient optimizers.
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2 Gradient Spikes

In this section, we formally define gradient spikes and then present the intriguing findings
from our investigation into the training loss and gradient dynamics during LLM training.
Gradient spikes refer to a phenomenon that occurs during training where the magnitude of
certain gradients significantly exceeds their historical values. To more precisely identify and
analyze instances of gradient spikes, we introduce the Gradient Spike Score as a measurement
of the deviation of a gradient’s magnitude from its typical behavior over time. By quantifying
this relative change, we can monitor the dynamics of gradients during training.
Definition 2.1 (Gradient Spike Score). Let {g0, g1, . . . , gT −1, gT } be the sequence of
gradient obtained during the training process from time step 0 to T . The Spike Score of the
gradient at the ith step, denoted as GSS(gi), is defined as the ratio of the magnitude of the
gradient at that step to the average magnitude of the gradients across all steps:

GSS(gi) = |gi|
1

T +1
∑T

j=0|gj |

A gradient gi is considered a spiked gradient if its GSS(gi) exceeds a predetermined thresh-
old θ, i.e., GSS(gi) > θ indicating a significant increase from typical fluctuations, often
amounting to increases of two or three orders of magnitude.

2.1 Presence of Gradient Spikes During LLM Training

Building upon the above concepts, we further explore the presence of gradient spikes during
LLM training. Specifically, we monitor the gradients of the entire model over the initial
1, 000 training steps and identify gradient spikes using the condition GSS(gi) > 50. Our
investigation encompasses two widely adopted LLM architectures, LLaMA (Touvron et al.,
2023)1 and Pythia (Biderman et al., 2023), with model sizes varying from 60M to 1B pa-
rameters. Experiments were conducted on two datasets: the well-known C4 dataset (Raffel
et al., 2020) and a cleaner high-quality dataset, SlimPajama (Soboleva et al., 2023). Please
refer to Appendix D for more details. Our key observations can be summarized as follows:
① Loss bumps accompanying gradient spikes occur irregularly during LLM train-
ing. Although we do not observe severe loss spikes that lead to catastrophic divergence
(Takase et al., 2023; Chowdhery et al., 2023), we do observe subtle loss bumps that happen
quite frequently. For instance, Figure 2-top illustrates the training loss of LLaMA-60M,
350M, and 1B models, where several loss bumps can be seen during training, marked with
red circles. We further investigate the model’s gradients at these moments and observe that
gradient spikes coincide with the loss bumps, as demonstrated in Figure 2-bottom. While
gradients remain small for most of the training, they suddenly become extremely large when
loss spikes occur.
② Gradient spikes are widely presented in different layers, across different archi-
tectures, model sizes, and datasets. Overall, we observed many gradient spikes across
all layer types, as detailed in Figure 3-(4) and Appendix A & B, with LayerNorm layers, in
particular, experiencing an exceptionally high frequency of spikes. Figure 2 demonstrates
that models of varying sizes, from 60M to 1B, all exhibit gradient spikes. To verify whether
architecture is the root cause of these spikes, we conducted experiments with Pythia-70M,
which also suffers from numerous gradient anomalies, as shown in Figure 3. Additionally,
we found that gradient spikes occur even when using cleaner, high-quality datasets such as
SlimPajama, although the frequency of spikes is reduced with this cleaner dataset.
③ Advanced spike mitigation approaches cannot completely eliminate gradient
spikes. We also evaluate whether previously proposed techniques for addressing spikes
can eliminate gradient spikes. Specifically, we assess multiple approaches, including Scaled
Initialization (Nguyen & Salazar, 2019; Shoeybi et al., 2019), Embed LN (Dettmers et al.,
2021), Scaled Embed (Takase et al., 2023), and Embed Detach (Zeng et al., 2022). The
results in Figure 4 show that while some approaches perform better than others, they

1We adopt the LLaMa models used in Lialin et al. (2023b); Zhao et al. (2024).
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cannot completely eliminate gradient spikes. More specifically, we find that Scaled Embed
and Embed LN significantly reduce the number of gradient spikes, while the other methods
offer little to no improvement, consistent with the findings reported in Takase et al. (2023).
Our observation of loss bumps likely relates to the edge of stability (EoS) phenomenon
(Cohen et al., 2021), where the sharpness of the network hovers near the stability threshold
for the remainder of training while the loss continues to decrease, albeit non-monotonically.
However, the EoS phenomenon has not been extensively studied at the scale of LLMs.
Moreover, our study reveals that these loss bumps have harmful effects on LLM training,
which were not observed in previous studies.
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Figure 2: Training loss lumps and their corresponding gradient spikes. Gradient
trajectories are collected with LLaMa-60M, 350M, 1B models on C4 datasets. Gradient
spikes are detected using GSS(gi) > 50.

Figure 3: Spike gradients present across different architectures and datasets.
(1) − (3): Plots of 100 randomly selected spike gradients (using GSS(gi) > 50) of LLaMa-
60M and Pythia-70M on C4 and SlimPajama datasets. (4): Number of spiked gradients
every 5 layers during the first 1K steps in LLaMa-60M on C4.
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Figure 4: Advanced spike mitigation approaches can not completely eliminate
gradient spikes. Gradient trajectories are collected with LLaMa-60M on C4. The spike
gradient is detected via GSS(gi) > 50.
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2.2 Effects of Gradient Spikes on LLM Training
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Figure 5: Left: Perplexity of the final model after zeroing out spiked gradients using various
θ, GSS(gi) > θ. Experiments are conducted using LLaMa-60M on C4. Middle and Right:
Impact of spiked Gradients on the first and second Moments. Simulated gradients (gi ∼
N (µ, σ2) are used to visualize the prolonged effects of gradient spikes on the first and second
moments, with a large spike noise introduced at the 30th step.

After identifying the presence of gradient spikes during training, a crucial question arises:
are these gradient spikes detrimental or, perhaps counterintuitively, beneficial to the training
of LLMs? To address this, we conducted a series of experiments as follows. Our findings
confirm that gradient spikes are indeed harmful to LLM training, exerting prolonged negative
effects on both the first and second moments, as discussed below.
Gradient spikes negatively impact LLM training. One direct way to assess the
impact of gradient spikes is by nullifying the spiked gradients during training and observing
the final training performance. We first detect spiked gradients using various thresholds θ
and then set those gradients to zero. Figure 5-Left reports the results of LLaMA-60M on
C4. Surprisingly, zeroing out these spiked gradients leads to improved model performance,
evidenced by a reduction in perplexity. This observation clearly indicates that gradient
spikes hinder effective training, and their removal is beneficial to overall model performance.
Gradient spikes have prolonged detrimental effects on the first and second mo-
ments. Due to the exponential averaging of the momentum mechanism, the influence of a
gradient spike decays slowly over time. To demonstrate this, we conduct a simulation exper-
iment using Adam. In this experiment, we model the gradients as random variables drawn
from a Gaussian distribution with mean µ = 0.1 and variance σ2 = 0.1, i.e., gi ∼ N (µ, σ2).
We sample gradients and track their corresponding moments over 200 steps, introducing
a gradient spike at step 30 with a large magnitude of 10. As shown in Figure 5-Middle
and Right, the spike’s amplification persists, influencing both moments across subsequent
steps. For example, it takes approximately 50 steps for the first moment to recover from the
spike, while the second moment takes significantly longer, with the effect persisting beyond
200 steps. Two key factors plausibly contribute to this difference: (1) the second moment
typically employs a larger exponential decay rate than the first (0.999 vs. 0.9); and (2) the
second moment depends on the squared gradients, making it more sensitive to large spikes.

2.3 Prelinminary Analysis with Theory Implications

We hereby provide a very preliminary analysis to help probe why gradient spikes have a
significant impact on the regret bound of Adam-like algorithms. We strictly follow the setting
and notations used in Alacaoglu et al. (2020). Specifically, referring to Theorem 1 in the
paper, the regret bound consists of two main terms:

R(T ) ≤ D2
√

T

2α(1 − β1)

d∑
i=1

v̂
1/2
T,i + α

√
1 + log T√

(1 − β2)(1 − γ)

d∑
i=1

√√√√ T∑
t=1

g2
t,i,

where γ = β2
1

β2
. Gradient spikes directly affect these terms by increasing the magnitudes of

the gradients gt. In their Lemma 3, it is shown that the norm ∥mt∥2
v̂

−1/2
t

depends on the
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accumulated gradients:

∥mt∥2
v̂

−1/2
t

≤ (1 − β1)2√
(1 − β2)(1 − γ)

d∑
i=1

t∑
j=1

βt−j
1 |gj,i|.

When gradient spikes occur, the values of gj,i become significantly larger for some j and i,
which in turn increases the bound on ∥mt∥2

v̂
−1/2
t

. This enlargement propagates through the

analysis, particularly affecting the accumulation term
∑T

t=1 αt∥mt∥2
v̂

−1/2
t

in their Lemma
4, which is bounded by:

T∑
t=1

αt∥mt∥2
v̂

−1/2
t

≤ (1 − β1)α
√

1 + log T√
(1 − β2)(1 − γ)

d∑
i=1

√√√√ T∑
t=1

g2
t,i.

Here, gradient spikes increase
∑T

t=1 g2
t,i significantly, especially in the coordinates where the

spikes occur, leading to a larger bound.
Finally, in the main regret bound (Equation (9) in the paper), these enlarged terms re-
sult in a looser (larger) overall regret bound due to the presence of gradient spikes. The
increased v̂

1/2
T,i and

∑T
t=1 g2

t,i directly contribute to the regret bound becoming less tight.
This theoretical implication highlights that while adaptive algorithms like AMSGrad ad-
just learning rates based on gradient history, they may perform worse in terms of regret
when large gradient spikes are present due to the increased cumulative squared gradients
and decreased effective learning rate.
It is important to note that our goal is not to claim theoretical innovations, but rather
to quantitatively assess how gradient spikes degrade Adam-like optimization, and that is
only explored in a very limited context. We would like to clarify the limitations of this
analysis: (1) The analysis assumes convexity, which may not apply in non-convex settings
(but is often mitigated by assuming Polyak-Lojasiewicz condition or so). (2) The assumption
∥gt∥∞ ≤ G, where G denotes the maximum allowable gradient bound, may be in conflict
with the presence of gradient spikes if G is not sufficiently large to capture them. (3)
There is a significant dependence on G, and if G is set too high to accommodate spikes,
the constants in the regret bound grow disproportionately, potentially making the bound
meaningless. Nonetheless, we find that our analysis aligns well with our experimental results,
and we leave a more rigorous theoretical exploration for future work.

3 Spike-Aware Adam with with Momentum Reset (SPAM)

In this section, we introduce Spike-Aware Adam with Momentum Reset (SPAM). Unlike
previous solutions that introduce architectural innovations to mitigate the decremental ef-
fects of gradient spikes (Nguyen & Salazar, 2019; Zeng et al., 2022; Dettmers et al., 2021;
Takase et al., 2023), we attempt to address this issue from an optimization perspective.
Concretely, we integrate Momentum Reset and Spike-Aware Clipping into Adam to deal
with gradient spikes. In addition, we introduce a memory-efficient version of SPAM, which
incorporates Sparse Momentum, significantly reducing the memory footprint during LLM
training. Pseudocode of SPAM is in Algorithm 1.
Momentum Reset. To mitigate the detrimental effects of gradient spikes on training
stability, we introduce Momentum Reset. Momentum Reset involves periodically resetting
the accumulated first and second moments used by adaptive optimizers such as Adam.
These optimizers rely on exponential moving averages of past gradients to inform parameter
updates. However, when a gradient spike occurs, it can significantly inflate these moments,
causing the impact of the spike to persist over many subsequent iterations. By resetting the
momentum terms at regular intervals of ∆T training iterations, we can prevent the lingering
influence of anomalously large gradients on the optimizer’s state. This practice ensures that
parameter updates are based on recent, more normal gradients rather than being skewed by
gradient spikes. To mitigate potential instability caused by momentum reset, we perform
N steps (N = 150 by default) of cosine warmup following each reset operation.
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Spike-Aware Clipping. To further mitigate gradient spikes during intervals, we introduce
Spike-Aware Clipping. While our initial experiments indicate that setting spiked gradients
to zero can enhance performance, this approach completely removes the learning signal for
those parameters, including valuable directional information critical to the optimization
process. To address this, SPAM identifies gradients that exceed a predefined threshold θ and
scales them to a manageable value, preserving their directional information while controlling
their magnitude.
Detecting gradient spikes using GSS defined in Definition 2.1 would require knowing and
storing all gradients in advance—a method that is impractical for LLM training due to mem-
ory constraints. We adopt a more memory-efficient, on-the-fly approach by leveraging the
components already calculated by Adam. Formally, we detect gradient spikes by identifying
gradients gi that meet the following condition: G =

{
gi | g2

i

Vi
> θ

}
where Vi is the second

moment of Adam and θ is the threshold used for the approximate GSS = g2
i

Vi
. Note that we

only use GSS defined in Definition 2.1 for the gradient spike analysis in Section 2. For real
training, we employ the above approximation version. Since Vi is essentially the moving
average of g2

i , this method efficiently identifies spikes without incurring additional overhead
or the need to store the entire gradient history. Once detected, these spikes are clipped
by scaling them to a manageable value. Specifically, for each spike gradient, we apply the
operation: gi = sign(gi) ·

√
θVi. This technique is particularly useful when combined with

Momentum Reset. By incorporating these strategies, SPAM effectively mitigates the negative
impact of gradient spikes, improving training stability and performance.
Note that unlike the Update Clipping used in Adafactor (Shazeer & Stern, 2018), which is
applied to the whole weight update matrix when its Root Mean Square is larger than 1,
our spike-aware clipping is directly applied to the spiked gradients gi whose magnitudes are
significantly larger than its √

vi, e.g., > 50×.
Sparse Momentum. Momentum reset paves the way for the development of sparse mo-
mentum, a technique designed to reduce memory usage and computation during the training
of LLMs. In traditional momentum-based optimizers, such as Adam, momentum is updated
and stored for all parameters, which can be memory-intensive for large-scale models. Sparse
momentum offers a more memory-efficient alternative by updating and maintaining only
a dynamically selected subset of moments at each iteration. The percentange of selected
subset is denoted by %d.
Key questions surrounding sparse momentum include how to effectively select parameter
subsets, how to determine the sampling frequency, and whether to retain momentum for
weights that are sampled consecutively . Our empirical analysis shows that random sampling
is the most effective strategy for selecting subsets of parameters. For the other questions,
we find that they align well with the momentum reset strategy. Specifically, setting the
sampling frequency to match the momentum reset frequency, and resetting the momentum
of all weights, even when they are sampled consecutively, yield the most robust results.

Table 1: Comparison with various optimizers on pre-
training various sizes of LLaMA models on C4. Per-
plexity is reported.

Model Size 60M 130M 350M 1B
Adam-mini 34.10 24.85 19.05 16.07
Adam 34.09 24.91 18.77 16.13
Adam+Gradient-Clip-Value 33.65 24.72 18.52 15.77
Adam+Gradient-Clip-Norm 33.33 24.88 18.51 15.22
Adafactor 32.57 23.98 17.74 15.19
SPAM 30.46 23.36 17.42 14.66
Training Tokens 1.1B 2.2B 6.4B 11.6B

Table 2: Perplexity of Applying Ad-
vanced Techniques on LLaMA-60M. Per-
plexity is reported.

Optimizer Perplexity
Adam 34.09
Adam+Embed LN 33.61
Adam+Embed Detach 34.48
Adam+Scaled Embed 33.87
Adam+Scaled Initalization 34.29
SPAM 30.46

4 Experiments

To demonstrate the efficacy of our proposed method, we conduct experiments on both pre-
training and supervised fine-tuning using various sizes of the LLaMA model on C4 dataset.
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Baselines. We adopt several widely-used optimizers as our baselines. Since SPAM is built
upon Adam, Adam serves as our most direct baseline. We also incorporate two common gra-
dient clipping approaches with Adam: (1) Value Clip, which clips all gradients when their
absolute value exceeds a threshold; and (2) Norm Clip, which scales the entire gradient
if the L2 norm of the gradient vector exceeds a certain threshold. Additionally, we com-
pare against another widely-used optimizer, Adafactor (Shazeer & Stern, 2018). In terms
of spike mitigation techniques, we evaluate SPAM against previous approaches, including
Scaled Initialization (Nguyen & Salazar, 2019; Shoeybi et al., 2019), Embed LN (Dettmers
et al., 2021), Scaled Embed (Takase et al., 2023), and Embed Detach (Zeng et al., 2022).
For memory-efficient optimization methods, we include Adam-Mini (Zhang et al., 2024a),
Galore (Zhao et al., 2024), LoRA (Hu et al., 2021), and ReLoRA (Lialin et al., 2023a).
Architecture and hyperparameters. Following (Lialin et al., 2023a; Zhao et al., 2024),
we conduct our experiments using the LLaMA-based architecture with various sizes from
60M to 1B parameters, incorporating RMSNorm (Shazeer, 2020) and SwiGLU activations
(Zhang & Sennrich, 2019). For each model size, we use the same set of hyperparameters
across methods, varying only the learning rate, where we sweep over a set of learning rates
from 1e−4 to 1e−3, incrementing by 2e−4 for each optimizer. All experiments are conducted
using the BF16 format. We set clip threshold as 1 and 1e − 3 for Norm Clip and Value
Clip, respectively, following the setting in Takase et al. (2023). We set hyper-parameters for
Adafactor following the original paper (Shazeer & Stern, 2018) where ϵ1 = 10−30, ϵ2 = 10−3

and d = 1.0. For SPAM, we set reset intervals ∆T = 500, lr warmup step N = 150 and
GSS threshold θ = 5000. Detailed descriptions of our task setups and hyperparameters are
provided in the Appendix D.
4.1 Performance of LLM Pre-training

Standard Pre-training. We report the training curves of various LLaMA models on the
C4 dataset as well as the final perplexity in Figure 1 and Table 1, respectively. Overall,
we observe that SPAM consistently achieves superior performance. As a memory-efficient
approach, Adam-mini performs on par with Adam, consistent with the results reported
in Zhang et al. (2024a). Commonly used gradient clipping techniques such as Value Clip
and Norm Clip improve performance over Adam, with the latter achieving slightly bet-
ter results. Adafactor further outperforms the aforementioned approaches, demonstrating
its effectiveness. SPAM consistently outperforms all baselines across various LLaMA model
sizes, highlighting the benefits of integrating momentum reset and spike-aware clipping tech-
niques. All spike mitigation approaches fall short of SPAM as shown in Table 2. Additionally,
Appendix E shows that SPAM can perform on par with or better than Adam in vision tasks.

Table 3: Comparison with memory-efficient algorithms on pre-training various sizes of LLaMA
models on C4 dataset. Validation perplexity is reported, along with a memory estimate of the total
of parameters, optimizer states based on BF16 format.The results of GaLore, Full-Rank, LoRA and
ReLoRA are obtained from Zhao et al. (2024).

60M 130M 350M 1B
Adam 34.06 (0.36G) 25.08 (0.76G) 18.80 (2.06G) 15.56 (7.80G)
ReLoRA 37.04 (0.36G) 29.37 (0.80G) 29.08 (1.76G) 18.33 (6.17G)
LoRA 34.99 (0.26G) 33.92 (0.54G) 25.58 (1.08G) 19.21 (6.17G)
GaLore 34.88 (0.24G) 25.36 (0.52G) 18.95 (1.22G) 15.64 (4.38G)
SPAM 32.39 (0.24G) 23.98 (0.52G) 18.28 (1.22G) 15.60 (4.38G)
Training Tokens 1.1B 2.2B 6.4B 11.6B

Memory-efficient Pre-training. We evaluate SPAM by specifying d% such that its mem-
ory usage, including both parameters and optimizer states, matches that of Galore. For
Galore, LoRA, and ReLoRA baselines, we set the ranks r = 128, 256, 256, 512 for the 60M,
130M, 350M, and 1B models, respectively, following the setup in Galore (Zhao et al., 2024).
The results in Table 3 show that SPAM consistently outperforms all the baselines by a good
margin, demonstrating its effectiveness as a memory-efficient optimizer.

4.2 Performance of LLM Fine-tuning

In this section, we evaluate the effectiveness of SPAM for supervised fine-tuning. Following
Li et al. (2024), we fine-tune LLaMA2-7B on Commonsense170K (Hu et al., 2023) and test
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on 8 downstream tasks. We do not apply layer-wise weight updates for GaLore and SPAM.
The rank is set to 8 for all low-rank baselines. Correspondingly, the density of SPAM is set
to 0.25% to maintain a comparable memory cost. The results are reported in Table 4. We
observe that SPAM substantially outperforms other memory-efficient methods, exceeding full
fine-tuning by a notable margin.

Table 4: Fine-tuning performance of LLaMa2-7B on various downstream tasks. The “Mem.”
denotes the running GPU memory. The mean and standard deviation of 10 repeated exper-
iments are reported.

Method Mem. BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
Adam (Full FT) 61G 79.7±0.1 79.1±0.1 51.3±0.05 58.5±0.02 74.8±0.2 79.2±0.1 48.2±0.01 36.2±0.2 63.4±0.1
LoRA 26G 75.8±0.4 79.0±0.1 56.3±0.1 59.9±0.04 79.6±0.2 77.6±0.1 46.9±0.1 34.4±0.3 63.7±0.2
GaLore 36G 82.8±0.7 78.4±0.2 55.8±0.4 56.3±0.5 79.0±0.1 75.9±0.4 46.2±0.5 34.2±0.1 63.6±0.4
SPAM (d = 0.25%) 36G 85.0±0.2 78.9±0.2 55.7±0.2 57.8±0.1 78.9±0.2 76.5±0.2 47.3±0.2 35.1±0.3 64.4±0.2
SPAM (d = 100%) 61G 87.1±0.2 79.5±0.1 58.3±0.1 58.1±0.04 83.3±0.2 79.2±0.2 48.6±0.1 40.1±0.2 66.7±0.1

5 Ablation Study

0.90.750.50.250
(1) Sparsity (1-d)

30

35

40

Pe
rp

le
xi

ty

Random
Max_Gradient
Max_Weight

2.5K 1K 500 250 100 50
(2) Interval T

24

25

26

27

None 10K 1K 100 10
(3) Theshold 

24

25

26

27

0 10 50 100 150 200
(4) Warmup Steps N

24

26

28

30

Figure 6: Ablations for sparse subset selection strategy, momentum reset inteval, GSS
threshold and warmup steps. “None” denote that the spike-aware clipping is not applied.

Selection strategy for sparse momentum. Many strategies have been proposed to
select subsets of parameters for sparse training, such as random selection (Liu et al., 2022a),
max weight magnitude (Mocanu et al., 2018), and max gradient magnitude (Evci et al.,
2020). Among these strategies, the most effective approach for sparse momentum training
remains unclear. To investigate this, we conduct experiments with LLaMA-60M on the
C4 dataset. The results are reported in Figure 6-(1). Interestingly, we find that randomly
selecting subsets of parameters performs significantly better than the other two strategies
for our sparse momentum. One plausible explanation for this discrepancy is that random
selection allows for rapid exploration across all model parameters, whereas gradient- or
weight-based strategies might be confined to the same subset of parameters during training.
Momentum reset interval ∆T . To investigate the impact of interval ∆T , we conduct
experiments based on LLaMA-130M and C4 with varying ∆T fromm 50 to 2500. The
warmup steps is set to 150 and the thresthold θ is set to 5000. The results are reported
in Figure 6-(2). We observe a performance improvement as the interval ∆T decreases from
2500 to 500. However, when ∆T is further shortened, performance begins to degrade. This
suggests that while momentum resets can enhance performance, excessively frequent resets
may be detrimental to overall results.
GSS threshold θ. Threshold θ decides which gradient are detected as spikes. To illustrate
the impact of θ on SPAM, we present the results of LLaMA-130M in Figure 6-(3) with varying
θ from 20000 to 10. The warmup steps is set to 150 and the interval ∆T is set to 500. We
observe that performance improves as θ is reduced from extremely large values to smaller
values, such as 1000, indicating that spike gradient clipping and momentum reset techniques
have a mutually reinforcing effect. However, excessively small θ may interfere with the true
gradient, ultimately leading to a degradation in performance.
Warmup steps N . We assess the impact of the warmup procedure following each mo-
mentum reset by presenting the performance of LLaMA-130M with different warmup steps,
ranging from 0 to 200, in Figure 6-(4). The results indicate a significant performance drop
when no warmup is applied (N = 0), compared to when a warmup is used. In addition,
performance reach to optimal when the warmup duration is set to approximately 150 steps.

9
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6 Related Work

Instability of Training Large Language Models. LLMs are well-known for their train-
ing instability (Molybog et al., 2023), often experiencing irregular loss spikes that can lead
to catastrophic divergence (Chowdhery et al., 2023). To address this issue, researchers have
developed various stabilization techniques. While we outline several key approaches, we
acknowledge that this overview may not cover all significant contributions in the field.
One prominent approach involves architectural modifications. Xiong et al. (2020) demon-
strated that using Post-LN in Transformers leads to larger gradients near the output layer,
resulting in training instability, especially with large learning rates. In contrast, Pre-LN
helps maintain well-behaved gradients during initialization, promoting more stable train-
ing. Embed LN, introduced by Dettmers et al. (2021), adds an additional LayerNorm after
the embedding layer to improve stability, though it may cause performance degradation,
as noted by Scao et al. (2022). Embed Detach, proposed by Ding et al. (2021) and further
extended by Zeng et al. (2022) for LLMs, addresses loss spikes by shrinking embedding
gradients. DeepNorm, developed by Wang et al. (2024), enhances stability in deep Trans-
formers by scaling up the residual connection before applying LayerNorm. Additionally,
αReparam (Zhai et al., 2023) re-parameterizes all linear layers using spectral normalization
to prevent attention entropy collapse.
Another set of approaches focuses on improving initialization to mitigate training instability.
Scaled Embed, proposed by Takase et al. (2023), scales up embeddings to stabilize Layer-
Norm gradients. Scaled Initialization (Nguyen & Salazar, 2019) introduces a parameter
initialization strategy using a smaller normal distribution N (0,

√
2/5d/

√
2N) to stabilize

training dynamics. Additionally, Fixup (Zhang et al., 2019; Huang et al., 2020) claims that
proper initialization can entirely eliminate the need for LayerNorm.
Momentum Reset. Momentum reset is not a new approach. It has been used in Gu et al.
(2013); Nesterov (2013) to solve the rippling behavior of Nesterov’s Accelerated Gradient
(NAG) (Nesterov, 1983) in the high-momentum regime, particularly in the context of convex
optimization problems. O’donoghue & Candes (2015) further proposed adaptive reset where
the momentum will be reset when an increase in the function value is observed. Unlike these
earlier work, we leverage momentum reset to mitigate the detrimental effects of gradient
spikes that arise during the training of billion-parameter language models, which present a
large-scale, non-convex optimization challenge.
Memory-Efficient Optimizers. There have been several efforts to reduce Adam’s mem-
ory footprint. SM3 (Anil et al., 2019), a lightweight variant of AdaGrad (Duchi et al., 2011),
selects the learning rate for the i-th parameter by taking the minimum value from a set of
candidates, each associated with the maximum squared gradient under a predetermined
cover. Adafactor (Shazeer & Stern, 2018) and its variant CAME (Luo et al., 2023) utilize
non-negative low-rank factorization over Adam’s second-moment estimate, v. Adam-mini
(Zhang et al., 2024a) partitions the parameters into blocks and assigns a single learning rate
v to each block to reduce memory. Similar approaches were proposed in (Zheng & Kwok,
2019; Ginsburg et al., 2019). Low-precision optimizers are studied in (Dettmers et al., 2021).
Recently, GaLore (Zhao et al., 2024; Zhang et al., 2024b) enables the full-parameter training
of LLMs through low-rank gradient updates.

7 Conclusion
In this paper, we presented a comprehensive study of gradient and loss spikes in LLM train-
ing, demonstrating their detrimental impact on training stability and performance across
a variety of architectures and datasets. To address this issue, we propose Spike-Aware
Adam with Momentum Reset (SPAM), a novel optimizer designed to counteract gradient
spikes through momentum reset and spike-aware gradient clipping. The effectiveness of
SPAM is backed up with extensive experiments across various LLM model sizes, where SPAM
consistently outperformed Adam and other state-of-the-art optimizers by a good margin.
When operating under memory constraints, SPAM motivates the feasibility of sparse momen-
tum training, outperforms state-of-the-art memory-efficient optimizers such as GaLore and
Adam-Mini.
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A Statistics Analysis of Gradient Spikes across Various Types
of Layers

It is important to examine whether gradient spikes exhibit a preference for certain layers.
To do so, we report the number of gradient spikes across various types of layers and the ratio
of gradient spikes to the number of parameters in five types of layers: Embedding Layer,
Attention Layer, FFN Layer, LayerNorm Layer, and LM Head Layer. The experiments were
conducted with LLaMA-60M on the C4 dataset, with gradient spikes detected over 1000
training steps. The detailed statistics are provided in Table 5. We observe the following:
❶ The Embedding Layer exhibits the highest number of gradient spikes, also it has the
largest parameter count. ❷ The LayerNorm Layer, however, experiences an exceptionally
high frequency of spikes, even with the smallest number of parameters.

Table 5: Number and Ratio of Gradient Spikes in each layer style of LLaMA. #Spikes are
collected from 1000 training steps. Experiments are conducted with LLaMA-60M on C4.

Module Name #Total Spikes #Total Params #Total Spikes
#Total Params

Embed 11954001 16384000 0.729
Attention 86302 8388608 0.010
FFN 105415 16908288 0.006
LayerNorm 949302 8704 109.06
LM Head 13893 16384000 0.000848

B Locations of Loss Bumps and Gradient Spikes

To further investigate the correlation between loss bumps and gradient spikes, we present
the locations of gradient spikes associated with the loss bumps in Table 6. The results reveal
two key findings: ❶ Gradient spikes are presented in different layers associated with the loss
bump; ❷ Gradient spikes typically occur before loss bumps, indicating that these gradient
spikes may trigger loss bumps.

Table 6: Location of Spike Gradient at Each Layer for Different Tasks. The spike gradient
is detected via GSS(gi) > 50. The experiments are based on LLaMA-60M and Pythia-70M.

Model Training Step When Training Step When Spike Gradient Occurs in Each Layer
Loss Bump Occurs 0th 5th 10th 15th 20th 25th 30th 35th 40th 45th 50th 55th

LLaMA-60M (C4)
198 202 196 197 197 196 196 197 197 197 197 197

197 205 197 197 198 205 198 198 198
198 278 198 198 201 199

202 199 205

LLaMA-60M (SlimPajama)

207 206 206 206 205 206 206 206 206 206 392 206
328 207 206 207 207 210 207 393 207
394 207 209 209 394

209 328

Pythia-70M (C4)

358 571 573 357 357
578 577 577 571 358

578 577 574
578 576

577
578
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C Pseudocode

Algorithm 1: SPAM
Input: A layer weight matrix w ∈ Rm×n, learning rate α, decay rates β1 = 0.9, β2 = 0.999,

initial parameters w0, randomly initialize mask M with d density for each layer, the
first moment m, the second moment v, threshold θ for GSS, momentum rerest interval
∆T , warmup scale total steps N , small constant ϵ = 1×10−6. T is total training steps.

Output: optimized parameters wT .
while t < T do

Get gt ∈ Rm×n ← −∇W ϕt(wt) ▷Generate Gradients
warmup scale = 1− CosineAnnealing(Mod(t, ∆T ), N)
if Mod (t, ∆T ) = 0 then

M← random.rand(θ.shape) < d ▷ Random initialize the binary mask
m← zeros like(θ[M]) ▷ reset the first moment to zero
v← zeros like(θ[M]) ▷ reset the second moment to zero

Spike M = gt[M] ∗ ∗2 > θ ∗ v ▷ Detect spiked gradients
if sum(Spike M) > 0 then

gt[M][Spike M] = sign(gn[M][Spike M]) ·
√

θ ∗ v[Spike M] ▷ Spike Gradients CLIP
mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t

m̂t = mt

1−βt
1

v̂t = vt

1−βt
2

wt = wt−1 − α ∗ warmup scale ∗ m̂t√
v̂t+ϵ

t=t+1
Return: optimized parameters wT

D Architecture and Hyperparameters

We introduce details of the LLaMA architecture and hyperparameters used for pre-training,
following Lialin et al. (2023a); Zhao et al. (2024). Table 7 shows the most hyperparameters
of LLaMA models across model sizes. We use a max sequence length of 256 for all models,
with a batch size of 512, with a batch size of 131K tokens. For all experiments, we adopt
learning rate warmup of 1000 training steps, and use cosine annealing for the learning rate
schedule, decaying to 10% of the initial learning rate.

Table 7: Configurations of LLaMA models used in this paper. Data amount are specified
in #tokens.

Params Hidden Intermediate Heads Layers Steps Data amount
60M 512 1376 8 8 10K 1.3B
130M 768 2048 12 12 20K 2.6B
350M 1024 2736 16 24 60K 7.8B
1 B 2048 5461 24 32 89K 11.6B

For all methods across each model size (from 60M to 1B), we tune the learning rates from
1e−4 to 1e−3 with an increasing step of 2×10−4 for pre-training tasks, and the best learning
rate is selected based on the validation perplexity. We find that the hyperparameters,
Interval ∆T and warmup step N , are insensitive to model size and remain stable with the
same learning rate across different model sizes. The detailed hyperparameter of SPAM on
pre-training and fine-tuning are reported in Table 8 and Table 9.
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Table 8: Hyperparameters of SPAM for pre-training experiments in this paper.

Hyper-Parameters LLaMA-60M LLaMA-130M LLaMA-350M LLaMA-1B
Standard Pretraining

Learning rate 1e− 3 8e− 4 4e− 4 2e− 4
Interval ∆T 500 500 500 500
Threshold θ 5000 5000 5000 5000

Warmup steps N 150 150 150 150
Memory-Efficient Pretraining

Learning rate 4e− 3 4e− 3 2e− 3 5e− 4
Interval ∆T 500 500 500 1000
Threshold θ 5000 5000 5000 5000

Warmup steps N 150 150 150 300

Table 9: Hyperparameters of SPAM for fine-tuning experiments in this paper.

Hyper-Parameters LLaMA2-7B
Standard Fine-tuning

Learning rate 5e− 5
Interval ∆T 1000
Threshold θ 5000

Warmup steps N 300
Memory-Efficient Fine-tuning

Learning rate 1e− 4
Interval ∆T 250
Threshold θ 5000

Warmup steps N 5

E Vision Tasks

We further evaluate SPAM on vision task. Specifically, we conducted experiments on
ImageNet-1K using ConvNeXt-Tiny (Liu et al., 2022b) and ViT-Tiny (Touvron et al., 2021).
We adopt the default training recipe from the official code of ConvNeXT2 and train all mod-
els for 120 epochs. We set ∆T = 25K, N = 20 and θ = 5000 for SPAM. The results in Table 10
demonstrate that SPAM can achieve on par or better performance than vanilla AdamW.

Table 10: SPAM performs on par or better than AdamW on vision tasks.

Optimizer Model Metric 25% steps 50% steps 75% steps 100% steps
AdamW ConNeXt-T Test Acc (↑) 68.15 74.00 78.83 80.89
SPAM ConNeXt-T Test Acc (↑) 68.36 73.63 78.85 81.04
AdamW ViT-Tiny Test Acc (↑) 48.09 56.93 65.06 69.71
SPAM ViT-Tiny Test Acc (↑) 47.34 56.47 65.57 69.98

2https://github.com/facebookresearch/ConvNeXt
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F More Ablation Study of Subset Selectioin Strategies

Key questions surrounding sparse momentum include how to effectively select parameter
subset and whether to retain momentum for weights that are sampled multiple times. To
answer this questions, we conduct comparative studies based on LLaMA-60M and C4 and
the results are shown in Figure 7. Figure 7-Left shows the performence of three subset
selection strategies where we will reset all moments after each momentum reset and keep
gradients for all unselected parameters. Figure 7-Middle shows the performence of three
subset selection strategies where we will keep the overlapped moments after each momen-
tum reset and keep gradients for all unselected parameters. Figure 7-Right shows the per-
formence of three subset selection strategies where we will reset all the moments after
each momentum reset and drop gradients for all unselected parameters in each updating
step. We observe the following: ❶ Among the three subset selection strategies—Max weight
magnitude-based, Max gradient magnitude-based, and Random selection—the Random se-
lection consistently outperforms the other two approaches. ❷ Comparing Figure 7-Left and
Figure 7-Right, we see that resetting all moments after each momentum reset yields better
performance than preserving overlapping moments.

0.25 0.50 0.75 1.00
Density

30

35

40

Pe
rp

le
xi

ty

Zero Moments Keep Gradient

0.25 0.50 0.75 1.00
Density (d)

35

40

45
Keep Moments Keep Gradient

0.25 0.50 0.75 1.00
Density

30

35

40

Zero Moments Zero Gradient

Weight-Max Random Gradient-Max

Figure 7: Ablations for subset selection strategies. The experiments are conducted with
LLaMA-60M on C4.

G Experiments on Time Series Data

To showcase SPAM’s ability to mitigate gradient spikes across a broader range of appli-
cations, we conducted additional experiments on time-series prediction tasks. In these ex-
periments, we intentionally introduced anomalous data with a 10% probability to simulate
gradient anomalies. Experiments are conducted with 10 repeated runs on Weather time
series data3 using PatchTST (Nie et al., 2023) model. The results are presented in Figure 8
The findings demonstrate that as the severity of anomalous data increases, SPAM’s per-
formance advantage over Adam becomes more pronounced, highlighting its effectiveness in
mitigating the adverse impact of gradient spikes.

H Prolonged Detrimental Effects of Gradient Spikes During
Real Training

We also measure the values of gradient, first moment, and second moment during the training
of LLaMA-60M on the C4 dataset. The results are now presented in Figure 9.
From the figure, we observe that during actual training, gradient spikes also have a significant
and prolonged detrimental impact on moments, especially on the second moment, providing
further evidence to support our claims.

3https://www.bgc-jena.mpg.de/wetter/
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Figure 8: Test Loss during Training Process on Weather Time-series Data.
Anomalous data is generated by adding Gaussian noise to 10% of randomly selected input
values. Specifically, the anomalies data are conducted with X = X +Gaussin(0, Severity∗
Max(X)) where X is the inputs.
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Figure 9: Gradient spikes have prolonged detrimental effects on the first and
second moments. Experiments are conducted on C4 dataset with LLaMA-60M.

I Sensitivity Analysis of Hyperparameter θ on LLM
Architectures

We conducted experiments to evaluate the sensitivity of the gradient spike clipping thresh-
old, θ, across three widely used LLM architectures: LLaMA, Pythia, and OPT. These ex-
periments were performed on pre-training tasks using the C4 dataset. The final perplexity
is reported in Table 11.
The results indicate that the gradient spike clipping threshold is not highly sensitive to the
choice of LLM architecture. SPAM consistently outperforms Adam across a wide range of
θ. Furthermore, the optimal range for θ lies between 1000 and 5000.

Table 11: Sensitivity Analysis of Hyperparameter θ on LLM architectures. Perplexity is
reported.

Architectures θ = 500 θ = 1000 θ = 2500 θ = 5000 θ = 10000 Adam
LLaMA-60M 30.77 30.59 30.57 30.46 30.82 34.09
Pythia-70M 34.4 34.1 34.1 34.2 35.1 38.34
OPT-125M 28.7 28.4 28.5 28.6 29.0 32.20

J GSS VS. Distribution Based Clipping

We conducted an experiment using an outlier detection mechanism based on the assumption
that stochastic gradient distributions follow a Gaussian distribution, as suggested in (Sim-
sekli et al., 2019; Chaudhari & Soatto, 2018; Mandt et al., 2016):

Gbatch ∼ N (G, δ2I),
where Gbatch is the stochastic gradient, G represents the gradient over the entire dataset,
and δ2 is the variance. Since calculating G on-the-fly during training is computationally in-
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feasible, we approximate it using the moving average of Gbatch. The variance δ2 is estimated
online as: δ2 = 1

N

∑N
n=1

(
G

(n)
batch − G(n)

)2
, where N is the total training steps. Gradients

are then evaluated element-wise, and any element G
(n)
batch satisfying: |G(n)

batch − G(n)| > 3δ is
identified as an outlier. Such outlier elements are clipped to satisfy: |G(n)

batch − G(n)| = 3δ.

We conducted experiments using LLaMA-60M and LLaMA-130M to evaluate the perfor-
mance of this Gaussian-based Clipping and compare it with our proposed GSS-based clip-
ping. The results are reported in Table 12. As the table indicates, Gaussian-based clipping
falls short of our GSS-based clipping. One possible explanation is that stochastic gradient
distributions are very complex and Gaussian distribution can not reflect the true distribu-
tion.

Table 12: Comparison between SPAM with spike-aware clipping and Gaussian-based clipping.

Methods LLaMA-60M LLaMA-130M
SPAM w/GSS based clipping 30.46 23.36
SPAM w/ Gaussian based Clipping 30.83 25.93

K GSS based Clipping VS. Nullifying

We conducted experiments on LLaMA-60M and LLaMA-130M to compare the performance
of Spike-Aware Clipping and Nullifying Gradient Spikes. As shown in Table 13 and Table 14,
SPAM with Spike-Aware Clipping outperforms SPAM with Nullifying on both pre-training
and fine-tuning tasks, demonstrating the effectiveness of Spike-Aware Clipping.

Table 13: Comparison between SPAM w/ spike-aware clipping and SPAM w/ nullifying gradient
spikes.

Methods LLaMA-60M LLaMA-130M
SPAM w/ Spike Aware Clipping 30.46 23.36
SPAM w/ Nullifying 30.86 23.62

Table 14: Comparison between SPAM w/ spike-aware clipping and SPAM w/ nullifying gradient
spikes on fine-tuning task. The experiments are based on a pre-trained OPT-1.3B model.

Methods WinoGrande COPA
SPAM w/ Spike Aware Clipping (d=100%) 59.4 79.0
SPAM w/ Spike Aware Clipping (d=0.25%) 58.3 75.0
SPAM w/ Nullifying(d=100%) 58.0 78.0
SPAM w/ Nullifying (d=0.25%) 57.4 75.0

L Training Loss and Number of Spikes For SPAM

We plotted the training loss and the number of gradient spikes for SPAM, with experiments
conducted using the LLaMA-60M and LLaMA-1B models. Gradient spikes were identified
using the condition GSS(gi) >50 . The results, shown in Figure 10, illustrate that SPAM
effectively mitigates both training loss spikes and the occurrence of gradient spikes. This
leads to a more stable and efficient training process.

M Computational Analysis

We measured the running time per iteration for both LLaMA-60M and LLaMA-130M. The
results, presented in Table 15, indicate that SPAM incurs a slightly higher computational
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Figure 10: Training Loss and Number of Spikes for SPAM. The training loss is recorded
from experiments using the LLaMA-1B model. The number of gradient spikes is computed
based on training with the LLaMA-60M model.

overhead compared to Adam, Adam-mini, and Adafactor. This overhead is primarily due
to the gradient spike detection operation and the gradient selection based on sparse masks.
However, we believe that such a small overhead is negligible compared to the overall pre-
training time which can be dozens or hundreds of hours.

Table 15: Running Time per Iteration (second). The runtime is measured by the average
of 100 iterations under one H100 GPU.

Method Time per Iteration (LLaMA-60M) Time per Iteration (LLaMA-130M)
Adam 0.3666 (s) 0.6397 (s)
Adam-mini 0.3614 (s) 0.6472 (s)
Adafactor 0.3778 (s) 0.6565 (s)
GaLore (rank=128) 0.3871 (s) 0.6702 (s)
SPAM(d=100%) 0.3814 (s) 0.6683 (s)
SPAM(d=25%) 0.3799 (s) 0.6658 (s)

N Training Curve of Fine-tuning

We included the training curve for the Fine-tuning task in Figure 11. It is worth noting that
fine-tuning presents distinct dynamics compared to pre-training. In pre-training, the loss
typically decreases consistently over the entire training process, reflecting gradual model
improvement. In contrast, during fine-tuning, the loss often drops sharply in the initial
steps, likely settling into a local basin, and then oscillates around it. Despite this behavior,
the figure demonstrates SPAM achieves consistently lower losses than Adam, highlighting
its efficacy even in this setting.
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Figure 11: Training Loss Curve in Fine-Tuning Tasks. Experiments are based on a
pre-trained LLaMA-7B and Commonsense170K dataset.
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