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ABSTRACT

Low-Rank Adaptation (LoRA) and its variants have shown impressive results in
reducing the number of trainable parameters and memory requirements of large
transformer networks while maintaining fine-tuning performance. However, the
low-rank nature of the weight update inherently limits the representation power of
the fine-tuned model, potentially compromising performance on complex tasks.
This raises a critical question: when a performance gap between LoRA and stan-
dard fine-tuning is observed, is it due to the reduced number of trainable param-
eters or the rank deficiency? This paper aims to answer this question by intro-
ducing RandLoRA, a parameter-efficient method that performs full-rank updates
using a learned linear combinations of low-rank, non-trainable random matrices.
Our method limits the number of trainable parameters by restricting optimization
to diagonal scaling matrices applied to the fixed random matrices. This allows
us to effectively overcome low-rank limitations while maintaining low parame-
ter count and memory usage during training. Through extensive experimentation
across vision, language, and vision-language benchmarks, we systematically eval-
uate the limitations of LoRA and existing random basis methods. Our findings
reveal that full-rank updates are beneficial across vision and language tasks sepa-
rately, but especially so for vision-language tasks, where RandLoRA significantly
reduces—and sometimes eliminates—the performance gap between standard fine-
tuning and LoRA, demonstrating its efficacy.

1 INTRODUCTION

The emergence of large pre-trained models has significantly enhanced the generalization capabilities
of neural networks, demonstrating remarkable versatility across a broad range of tasks. However,
a higher parameter count also leads to a significant increase in the computational resources re-
quired for fine-tuning on downstream tasks. To mitigate this issue, parameter-efficient fine-tuning
(PEFT) approaches such as low-rank adaptation (LoRA) (Hu et al., 2022), draw inspiration from
the low intrinsic dimensionality of pre-trained models (Li et al., 2018; Aghajanyan et al., 2021) and
characterize the weight update as the product of two low-rank matrices, substantially reducing the
trainable parameter count and memory requirements during training. This formulation allows for an
adjustable number of trainable parameters by modifying the rank of the matrices, providing great
flexibility under various resource constraints.

In spite of the strong performance of LoRAs in parameter-efficient settings, our investigation uncov-
ers an accuracy plateau, where increases in trainable parameters by increased ranks fail to bridge the
accuracy gap with standard fine-tuning. These undesirable scaling properties Kopiczko et al. (2024)
raise questions about the inherent limitations imposed by the low-rank structure of LoRA, partic-
ularly when tackling complex tasks that necessitate larger parameter budgets. This issue would
ideally be addressed by introducing full-rank updates while maintaining the parameter-efficiency.
To this end, we propose RandLoRA, a PEFT method that leverages multiple, linearly-independent
random bases in the form of non-trainable low-rank matrices. By solely learning scaling coefficients
for the linear combination of the random low-rank bases, our method achieves full-rank updates,
while maintaining low memory usage. As a result, RandLoRA strikes a balance between parameter
efficiency and full-rank updates, allowing for more flexible and effective fine-tuning.
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Figure 1: LoRA becomes limited by the rank of its update. We train DinoV2 and CLIP to classify
21 image datasets and LLama3-8B to solve 8 commonsense reasoning tasks.

Through extensive experimentation, we empirically demonstrate the low-rank limitations of LoRA,
particularly on vision-language tasks, and demonstrate how RandLoRA can improve performance
without parameter increases. Figure 1 summarizes our findings across pure vision (DinoV2), vision-
language (CLIP) and commonsense reasoning (LLama3-8B) where increasing LoRA’s parameter
count has highly diminishing returns. We find that RandLoRA outperforms LoRA as the parameter
budget expands, while remaining parameter efficient thanks to its full-rank update strategy. We con-
clude our investigation with an insightful discussion on the distinctive characteristics of RandLoRA
where our analysis reveals that, in contrast to LoRA, RandLoRA yields activation patterns in deeper
layers that closely align with those obtained through full fine-tuning. Furthermore, our examination
of the loss landscape reports that the local minima reached by RandLoRA is often well connected
with the local minima reached by standard fine-tuning, and that it always results in a lower loss
minima than LoRA for an equal parameter count. Additionally, we explore the integration of sparse
random bases, where initial findings highlight that sparse bases preserves the performance of Rand-
LoRA. This suggests promising avenues to further reduce memory and computational requirements
when training large transformer architectures, without compromising model performance.

Our contributions are summarized as:

1. We investigate the interplay between rank and number of trainable parameters when fine-
tuning large pre-trained models, highlighting the limitations of LoRA in improving perfor-
mance when larger ranks are required.

2. We propose RandLoRA, a novel parameter-efficient fine-tuning (PEFT) strategy based on
random basis combinations, enabling full-rank updates without memory overhead over
LoRA.

3. We rigorously assess RandLoRA across diverse pre-trained architectures and tasks, span-
ning pure vision and vision-language image classification to commonsense reasoning,
demonstrating its versatility and effectiveness.

2 RELATED WORK

2.1 LOW RANK ADAPTATION OF LARGE MODELS

Low Rank Adaptation (LoRA) of large language models has revolutionized the fine-tuning
paradigm, enabling memory-constrained adaptation to specialist tasks and democratizing access to
larger models. Initially introduced by (Hu et al., 2022), LoRA leverages the observation that weight
updates during fine-tuning can converge to suitable performances without necessitating full rank
updates. By factorizing weight updates into the product of two low rank matrices, LoRA achieves
a memory-efficient solution for adapting large models. Moreover, once the low rank matrices are
merged into the original weight matrix size, no latency is present during inference. Several improve-
ments have been proposed to build upon LoRA’s success. Weight-decomposed LoRAs (DoRA) (Liu
et al., 2024) proposes to improve convergence by decomposing LoRA updates into magnitude and
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direction components. AdaLoRA (Zhang et al., 2023) and AutoLoRA (Zhang et al., 2024c), utilize
specialized metrics or meta-learning to propose rank-adapted LoRA formulations that dynamically
adjust the rank to suit every layer’s need. Other improvements include initialization strategies for
the low rank matrices using the truncated SVD of the pretrained weights and where the whole de-
composition is finetuned as in Pissa Meng et al. (2024) or where only the singular value matrix is
as in SVFT Lingam et al. (2024) or LoRA-XS Bałazy et al. (2024). Further improvements are pro-
posed in HydraLoRA Tian et al. (2024) where the scaling-up matrix of the low rank decomposition
is split into multiple ones with a routing layer added to select the contribution of each head. This
formulation enhances multi-task learning at the cost of losing the merging capabilities of LoRA in
the pretrained weight at test-time. These advancements collectively enhance the efficiency of LoRA,
solidifying its position as a cornerstone of large language model fine-tuning.

2.2 PARAMETER-EFFICIENT FINE-TUNING (PEFT) THROUGH RANDOM BASES

Recent research has focused on further reducing the trainable parameter count of LoRA, a crucial
aspect for low-shot applications where minimizing trainable parameters can prevent overfitting and
enhance generalization. A promising direction involves utilizing random bases combinations, where
randomly generated matrices are combined using a limited number of trainable parameters to esti-
mate a weight update.

PRANC (Nooralinejad et al., 2023) pioneered the random base strategy by learning a weighted
averaged of random matrices through back-propagation. PRANC’s solution averages multiple full
size weight matrices for each layer, leading to high memory consumption. To address this, the
authors generate random bases on the fly during forward and backward passes using a fixed seed
random number generator, reducing memory usage to that of the largest trained layer in the network
at the cost of training latency.

Building upon PRANC, NOLA (Koohpayegani et al., 2024) introduces an improved algorithm
where random bases are estimated as the product of two low-rank random matrices, each weighed
using a learnable scalar and summed before matrix multiplication. This approach effectively ap-
proximates a rank 1 LoRA with significantly fewer trainable parameters and largely reduces memory
consumption during training over PRANC.

Concurrently, VeRA (Kopiczko et al., 2024) proposed an alternative strategy utilizing a single high-
rank random matrix (typically 256 or 1024), instead of summing multiple rank 1 matrices as in
NoLA. VeRA also employs a scaling strategy of random bases distinct from NoLA, detailed in
section 4, which relates to our approach. Both NOLA and VeRA achieve comparable performance
to LoRA in few-shot fine-tuning scenarios while training substantially fewer parameters.

2.3 ALTERNATIVE STRATEGIES FOR PARAMETER-EFFICIENT FINE-TUNING

We additionally acknowledge here orthogonal directions to weight tuning for parameter-efficient
adaptation of large transformer models, with one direction specifically targeting prompt tuning.
Context Optimization (CoOP) proposes to append learnable representations to learn context sur-
rounding the textual class name embedding of CLIP Radford et al. (2021). These learnable prompts
where later generalized in Conditional Context Optimization (CoCoOP) Zhou et al. (2022) to be in-
stance specific by adding a lightweight meta-network in charge of predicting image-specific context.
More recently, prompt tuning approaches have focused on preserving the initial knowledge in the
foundation model to improve performance. Decoupled Prompt Tuning (DePT) Zhang et al. (2024b)
identifies and isolates shared subspaces during prompt optimization to promote the retention of
shared knowledge and avoid catastrophic forgetting and Prompting with Self-regulating Constraints
(PromptSRC) Khattak et al. (2023) regularize the learned prompt to remain near the initial embed-
dings. Although highly parameter-efficient, prompt tuning algorithms can struggle to generalize past
few-shot settings Han et al. (2024) and LoRA has previously been shown to be a stronger alternative
as the number of shots increases Zanella & Ben Ayed (2024). We suggest here that prompt tuning
should be considered as an orthogonal optimization to parameter-efficient weight-tuning and leave
them out of the comparison with RandLoRA.
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3 MOTIVATIONS

Our literature review reveals that research on improving LoRA is focused on reducing the number
of trainable parameters further, either through adaptable ranks or by using fixed or shared low rank
projection matrices. When looking at moderate to larger parameter budgets however LoRA remains
highly competitive.

We identify that early research has convincingly demonstrated the promise of random basis combi-
nations as a parameter-efficient strategy for large models, particularly in few-shot scenarios. Two
approaches have emerged, each representing a distinct paradigm. VeRA advocates for a unique ran-
dom base with large rank, while NoLA proposes to average a large number of random bases with
small ranks. Both approaches report performance comparable to LoRA in few-shot scenarios while
converging on a significantly reduced number of trainable parameters. However, as we will demon-
strate, this reduction comes at the cost of limited performance when venturing beyond few-shot
learning, limiting the scalability of these algorithms.

Finally, we report that LoRA is predicated on the assumption that low-rank updates suffice for fine-
tuning large models. We aim in this paper to question the universality of this hypothesis, exploring
scenarios where full rank alternatives may be necessary. The fundamental question follows: is
parameter efficiency achieved through low-rank approximation limited by (1) the low-rank nature
of the update or (2) by the low parameter count. Can parameter-efficient full rank updates provide a
more accurate solution ? This paper aims to address these questions, exploring the balance between
parameter efficiency and low-rank fine-tuning of large transformer models, and shedding light on
the limitations of existing approaches.

4 RANDLORA—PARAMETER-EFFICIENT FINE-TUNING WITH FULL RANK

4.1 WEIGHT UPDATES AS A SUM OF LOW-RANK MATRICES

Let W0 ∈ RD×d be a weight matrix of a large pre-trained model. Fine-tuning aims to find an
appropriate ∆W ∈ RD×d, such that the fine-tuned weights W0 + ∆W lead to an adapted model,
tailored to a specific downstream task. Without loss of generality, let us assume d < D. The
motivation behind RandLoRA stems from the singular value decomposition (SVD) of ∆W , i.e.,
∆W = UΣV T, where U ∈ RD×d, Σ ∈ Rd×d, V ∈ Rd×d. This decomposition can be written as
the sum of the product of rank-one matrices, as follows

∆W =

d∑
i=1

uiσiv
T
i , (1)

where ui and vi denote the columns of U and V , respectively. We suggest that in this context, low-
rank updates such as LoRAs can be characterized as an approximation of the few largest singular
values while the rest of the information in ∆W being discarded. To better illustrate this point, let
us denote the rank of LoRA by r and for brevity of exposition, assume d is divisible by r. We
rewrite equation 1 as a sum of the product of rank-r matrices, as follows

∆W =

n∑
j=1

UjΣjV
T
j , (2)

where UjΣjV
T
j =

∑r(j+1)
i=rj uiσiv

T
i and where n = d/r. This formulation reveals how LoRA mod-

els the approximates the first low-rank partition U1Σ1V
T
1 , and implicitly assumes

∑n
j=2 UjΣjV

T
j ≈

0. We however argue that the remaining n − 1 terms can play a crucial role when capturing more
complex task-specific variations that require larger deviations from the pre-trained weight W0.

4.2 PARAMETER-EFFICIENT APPROXIMATION OF LOW-RANK MATRICES

Approximating more terms in the decomposition of ∆W using LoRA’s formulation quickly be-
comes parameter inefficient, culminating to Dd+d2 parameters for a full rank d in place of the orig-
inal Dd parameters of ∆W . To perform full-rank updates while maintaining parameter-efficiency,

4
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we propose instead to approximate each term of ∆W in equation 2 using low-rank random bases
where only scaling coefficients are learned,

∆W =

n∑
j=1

BjΛjAjΓj , (3)

where Bj ∈ RD×r and Aj ∈ Rr×d are non-trainable, random matrices. The two learnable diagonal
scaling matrices, Λj ∈ Rr×r and Γj ∈ Rd×d are unique to each of the n terms and fulfill com-
plementary roles to improve the approximation. We aim for AjΓj transform the input features into
an low-dimensional space (rank-r), Λj to scale the compressed features which are then transformed
back into the desired output space by Bj .1 Since Γj operates on the column space of Aj and is
unique to each Aj , we use a unique shared matrix A ∈ Rr×d across all n terms without loss of
expressivity but reducing memory consumption. With a shared A, we formulate the update as

∆W =

n∑
j=1

BjΛjAΓj . (4)

To achieve a full-rank update, we set n = d/r, leading to d
r (d + r) = d2/r + d learnable param-

eters. Note that unlike LoRA, the number of learnable parameters is inversely proportional to the
rank of the random bases in RandLoRA, as increasing the rank of the bases leads to a reduction in
trainable parameters while maintaining full rank. In summary, RandLoRA trades-off approximation
accuracy for scope, sacrificing a more precise representation of the individual SVD elements of ∆W
to capture a larger portion of its singular value decomposition.

4.3 CONVERGENCE ANALYSIS

In this section, we present a theorem showing that weight updates using RandLoRA is an accurate
approximation of general matrices under certain theoretical conditions.

Theorem 4.1. Let W be a fixed D× d matrix, with D > d and rank(W ) = d. Fix 1 ≤ n ≤ d, such
that d = nr. The matrix W can be factorized using SVD as

W =

n∑
j

UjΣjV
T
j , (5)

where Uj ∈ RD×r, Vj ∈ Rr×d are partitions of the left and right singular vectors, and Σj ∈ Rr×r

contains r singular values. For each 1 ≤ j ≤ n, let Bj denote a random D×r matrix whose entries
are drawn i.i.d from either a Gaussian or uniform distribution, Aj denotes an r × d matrix whose
entries are drawn similarly, Λj is a diagonal r × r matrix and Γj is a diagonal d× d matrix drawn
similarly. Assume

∥UjΣjV
T
j −BjΛjAjΓj∥F ≤ ϵ (6)

for each 1 ≤ j ≤ n for some 0 < ϵ. Then we have that with probability 1 that each BjΛjAjΓj has
full rank and

∥W −
n∑

j=1

BjΛjAjΓj∥F ≤ n · ϵ. (7)

For details on the proof of theorem 4.1 please refer to appendix C.1.

Theorem 4.1 is premised on BjΛjAjΓj being a good approximation for the r-truncated singular
value of ∆W , which is shown to be true empirically in VeRA (Kopiczko et al., 2024) for example.
We show in this case that ∆W can be accurately approximated as

∑n
j=1 BjΛjAjΓj , motivating

RandLoRA’s formulation. In contrast, since the best approximation a rank-r LoRA can achieve
is the r-truncated SVD of W , then by Eckart-Young-Mirsky theorem, the Frobenius norm of the
difference between W and low-rank adaptation BA is lower bounded as follows

1The formulation of our method is similar to that of VeRA (Kopiczko et al., 2024), which will be discussed
in detail in section 6.5.

5
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∥W −BA∥F ≥

∥∥∥∥∥W −
r∑

i=1

uiσiv
T
i

∥∥∥∥∥
F

=

d∑
i=r+1

σ2
i . (8)

We conclude that while LoRA’s rank r approximation is limited by the sum of the last d − r − 1
squared singular values of W , RandLoRA does not present this low bound and is only limited by
how close (ϵ) can BjΛjAjΓj approximate length-r segments of the SVD of W .

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

We conduct a comprehensive comparison with three state-of-the-art approaches: LoRA (Hu et al.,
2022), NoLA (Koohpayegani et al., 2024), and VeRA (Kopiczko et al., 2024). We perform a hyper-
parameter search to identify optimal settings for LoRA, NoLA, VeRA, and RandLoRA to ensure a
fair comparison. More details about the experimental settings can be found in appendix B.

5.2 VISION: DINOV2 AND CLIP’S VISION BACKBONE

We first study fine-tuning vision backbones to perform image classification. We utilize the pretrained
ViT-B/14 DinoV2 (Oquab et al., 2023) and ViT-B/32, ViT-L/14 CLIP (Radford et al., 2021) vision
backbones as a strong self-supervised baselines. We fine-tune on 21 vision datasets (see Table 5 in
Appendix B.1 for details) and evaluate performance on {1, 2, 4, 16}-shot learning tasks, as well
as with 50% and 100% of the training data. We compare with LoRA with rank 32 as a strong
parameter-efficient baseline in addition to VeRA and NoLA. For RandLoRA, we choose the rank
of the random bases denoted as RandLoRA-r to ensure the closest amount trainable parameters to
LoRA. We train the parameter efficient algorithms on the feature extractor and concurrently learn a
linear classifier for DinoV2 or use frozen language embeddings with CLIP.

We observe that although a gap exists between LoRA and standard fine-tuning with CLIP, this gap
is much smaller for DinoV2. In any case we observe that given an equal amount of trainable param-
eters, RandLoRA improves over LoRA’s performance to bridge the gap with standard fine-tuning
(FT). We believe that the success of LoRA for the DinoV2 backbone is explained with the training
objective and discuss this matter further in section 6.1. A table with detailed results can be found
in appendix D.2. By improving over LoRA with an equal amount of trainable parameters, Rand-
LoRA show that LoRA can indeed be limited by its rank and that full-rank updates improve results
to equate fine-tuning performance. We also report that VeRA and NoLA, although very efficient in
few-shot scenarios quickly become limited by the low amount of parameter trained when the amount
of data increases. VeRA in particular struggles to scale which indicates that a strong low-rank update
as in NoLA is preferable to an approximated larger rank one in our image classification scenario.

5.3 VISION-LANGUAGE: CLIP

We extend in this section our experimental setting to fine-tuning CLIP-like transformer architec-
tures on classification datasets where contrary to section 5.2 both the language and vision encoders
of CLIP are trained. We add ImageNet (Krizhevsky et al., 2012) to the dataset pool to scale up to 22
classification datasets. To assess the effectiveness of RandLoRA compared to LoRA on models of
varying sizes, we consider three variants of pre-trained CLIPs from the open-clip repository (Cherti
et al., 2023): ViT-B/32 (151M parameters), ViT-L/14 (428M parameters) and ViT-H/14 (1B pa-
rameters). We scale the rank of the random bases in RandLoRA in the same way as section 5.2
to maintain a number of parameters comparable to a rank 32 LoRA: RandLoRA-{6,8,10} for ViT-
{B/32,L/14,H/14} respectively.

A summary of results is available in Figure 3 with detailed results being available in appendix D.1.
Because fine-tuning vision-language architectures such as CLIP is a harder optimization problem,
we observe the existence of a larger performance gap between full fine-tuning and LoRA than for
pure vision, which we confirm is not bridged by increasing the rank of LoRA (see Figure 1). This
suggests that increasing parameter count is not enough, pointing towards the rank of the update as

6
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Figure 2: Tuning CLIP of DinoV2 vision encoder for image classification. Accuracy averaged over
21 datasets. We additionally report max GPU VRAM usage during training.
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Figure 3: Tuning CLIP’s vision and language encoders for image classification. Accuracy averaged
over 22 datasets. We additionally report max GPU VRAM usage during training.

the possible limit to the performance of LoRA. When running RandLoRA with the same amount
of trainable parameters, we observe that the gap with fine-tuning is bridged. When compared with
NoLA and VeRA we come to the same conclusions as section 5.2 although VeRA is this time much
more competitive for larger data budgets, hinting towards the importance of high ranks for finetun-
ing CLIP-like vision language architectures. We also report that our base sharing strategy allows
RandLoRA to decrease VRAM usage over LoRA which can be relevant for large architectures such
as ViT-H/14.

5.4 COMMONSENSE REASONING

We finally explore fine-tuning large language models for 8 commonsense reasoning tasks, see ap-
pendix B.4 for details. We use open-source pretrained architectures including the 0.5B parameter
variant of Qwen2 (Yang et al., 2024), 3B variant of Phi3 (Abdin et al., 2024), and 8B configuration
of LLama3 (Dubey et al., 2024). To assess data efficiency, we investigate two training scenarios:
utilizing the full 170k training samples and a 15k subset, as introduced by Hu et al. (2023). Our eval-
uation, presented in Table 1, compares the performance of LoRA, VeRA, NoLA, and RandLoRA.
We study varying ranks of LoRA to test rank limits and scale RandLoRA fairly where variants of
RandLoRA end up with the closest amount of trainable parameters to LoRA-{16,32,64} respec-
tively. We do not run LoRA-64 for Qwen2 due to the smaller size of the model. We report that
RandLoRA compares favorably to LoRA, outperforming it in some cases. We observe Phi3’s zero-
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Table 1: Parameter-efficient fine-tuning of Large Language Models (LLMs). Results averaged over 8
commonsense reasoning tasks. RandLoRA is abbreviated as RL. We bold the best accuracy between
parameter-equivalent RandLoRA and LoRA couples.

Network Size ZeroShot NoLA VeRA LoRA-16 RL-10 LoRA-32 RL-6 – –

Qwen2-0.5b 15k 5.2 42.6 48.1 53.2 53.5 52.3 52.9 – –
170k 5.2 47.4 51.8 57.4 57.7 57.3 57.9 – –

RL-40 RL-20 RL-10

Phi3-3b 15k 65.4 80.4 78.6 81.8 81.7 80.3 82.3 81.4 82.4
170k 65.4 82.3 81.4 84.6 84.7 85.0 85.2 84.2 85.0

RL-60 RL-30 RL-15

LLama3-8b 15k 27.0 76.9 77.1 82.7 81.0 83.1 81.3 81.2 82.0
170k 27.0 81.2 81.7 84.4 84.6 85.2 85.6 85.3 85.8

Table 2: Further comparison with related methods on LLama3-8b (experiments on-going). Results
averaged over 8 commonsense reasoning tasks. We bold the best accuracy.

Method Mem. (G) 15k 170k

LoRA-16 39.5 82.7 84.4
DoRA-16
RandLoRA-60 40.0 81.0 84.6

LoRA-32 39.6 83.1 85.2
DoRA-32 85.2
RandLoRA-30 40.1 81.3 85.6

shot model exhibits good commonsense reasoning capabilities, enabling VeRA and NoLA to achieve
good results despite the limited number of trainable parameters. Conversely, Qwen2 and LLama3
require more complex adaptations from their zero-shot weights, posing challenges for VeRA and
NoLA to bridge the performance gap with LoRA. We notice that the 15k training setting can lead
to overfitting for larger LoRA ranks and for RandLoRA, resulting in reduced performance. This
is in spite of added dropout in each adapted layer and early stopping. For the larger 170k training
samples subset, RandLoRA systematically improves over LoRA with the absolute accuracy gains
of RandLoRA over LoRA generally increasing with larger parameter count. This result solidifies
that when finetuning LLMs, LoRA can become limited by the rank of the update as the parameters
budget increases whereas RandLoRA can make use of this extra budget to train more accurate mod-
els. We further propose to compare RandLoRA with DoRA Liu et al. (2024), a recent alternative to
LoRA using a decomposed magnitude/direction strategy built on top of LoRA. Results are presented
in Table 2 where we observe that DoRA performs better for small parameter budgets but RandLoRA
outperforms both LoRA and DoRA for larger ones. We conclude that RandLoRA presents a good
alternative to LoRA and DoRA for fine-tuning LLMs of all sizes, offering competitive performance
and definite advantages for larger parameter budgets.

6 DISCUSSION

6.1 SIMILARITIES WITH FINE-TUNING: ACTIVATIONS

We conduct an evaluation of activation similarities to assess the efficacy of LoRA and RandLoRA in
replicating the activation patterns of a fully fine-tuned model. To this end, we employ the Centered
Kernel Alignment (CKA) (Kornblith et al., 2019) metric to quantify the similarity between activa-
tions produced by each method and those of the fine-tuned model. This experimental design aims
to assess the ability of LoRA and RandLoRA to capture dataset-specific complexities encoded in
activation patterns. Figure 4a presents the CKA scores for successive self-attention and MLP layers
in the CLIP and DinoV2 vision backbones, averaged over 5 datasets where RandLoRA provides
the best improvements. Our results reveal that for the CLIP backbones, LoRA’s CKA decreases in
deeper layers, struggling to maintain alignment with fine-tuned activations. In contrast, RandLoRA
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Figure 4: How close do RandLoRA and LoRA get to standard fine-tuning ? We compare CKA
scores of RandLoRA and LoRA with finetuned activations (top) and the mode connectivity in the
loss landscape of UCF101 (bottom)
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with equal numbers of parameters matches the alignment of LoRA for earlier layers then improves
it for the deeper layers. This phenomenon is however absent for the DinoV2 results where we ob-
serve no significant CKA decrease for LoRA in the latter layers, explaining the almost non-existant
accuracy gap with standard fine-tuning for this pre-trained backbone. This disparity likely stems
from fundamental differences in CLIP and DinoV2’s training objectives. We suggest that DinoV2’s
purely visual objective yields features inherently optimized for classification, necessitating minimal
adjustments in weight space direction and thus the low rank of LoRA suffices. In contrast, CLIP’s
multimodal vision-language objective demands higher ranks to effectively adapt to pure vision tasks.

6.2 SIMILARITIES WITH FINE-TUNING: LOSS LANDSCAPE

We investigate the mode connectivity of models trained using standard fine-tuning, LoRA, and
RandLoRA. To visualize the loss landscape, we construct a 2D plane with LoRA, RandLoRA, and
fine-tuning models positioned at (0,0), (1,0), and (0.5,1), respectively. By solving for the interpo-
lation coefficients α1, α2, α3 at each point (x, y) under the constraint

∑3
i=1 αi = 1, we evaluate

the weight-space interpolated model on a 5% subset of the training set to compute the average loss.
Figure 4b reveals that when fine-tuning CLIP and despite training the same amount of parameters,
RandLoRA produces a deeper minima than LoRA, often presenting a low-loss bridge with the stan-
dard fine-tuning optimum. In the case of DinoV2, all optimums leave in the same low loss basin
with LoRA already being very close to standard fine-tuning which illustrates the small performance
gap between LoRA and standard fine-tuning. These insights further highlight that LoRA’s rank lim-
its for complex tasks. In all cases, RandLoRA with an equal amount of trainable parameters but
full rank updates achieves a deeper minima than LoRA. 3D visualizations for 2 more datasets are
available in appendix A.

6.3 FURTHER STUDIES ON FULL VS LOW RANK FINE-TUNING OF CLIP

A further point of interest we briefly address here is whether RandLoRA performs better than
LoRA on CLIP because it is a better approximation of the truncated SVD of ∆W than LoRA
is or if it is indeed the full rank capabilities that allow for improved generalization. To do

9
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Table 3: Ablation on the rank of the updates.
The same amount of trainable parameters is
used in all methods.

Method Rank Accuracy

LoRA 32 83.74
RandLoRA-a 32 83.62
RandLoRA-b 384 85.32
RandLoRA-6 768 85.98

Table 4: Fine-tuning CLIP or LLama3 using
RandLoRA with sparse random bases.

Model Sparse Accuracy

CLIP-ViT-B/32 no 85.98
CLIP-ViT-B/32 yes 85.43

LLama3-8b no 85.59
LLama3-8b yes 85.42

so, we perform an ablation study of RandLoRA where we create two variants. The first vari-
ant RandLoRA-a restricts the rank of ∆W to r by averaging the matrices before multiplication:
∆W =

(∑N
i=1 BiΛi

)(∑N
i=1 AiΓi

)
. The second variant RandLoRA-b fixes N to rank(∆W )/r/2

so that the update is half rank, and setting the rank of the random bases so that the amount of training
parameters remains the same as RandLoRA-r. All variants thus train the same amount of param-
eters, only the rank of the update changes. We report accuracy results when training on 100% of
the 22 datasets for the ViT-B/32 architecture of CLIP in Table 3. We observe that with an equal
number of trainable parameters, the larger the rank of the update the better the results. These results
comfort our conclusions on the importance of large rank updates, especially when fine-tuning CLIP
architectures.

6.4 SPARSE RANDOM MATRICES

Section 4.3 proves that RandLoRA provides a bounded approximation of W given any random
matrices Bi and Ai drawn from a probability distribution whose defined measure is absolutely con-
tinuous with respect to the Lebesgue measure. Since the memory footprint of RandLoRA is largely
dictated by the memory footprint of the random matrices Bi and Ai, this prompts further questions
about possible sparse random matrices respecting theorem 4.1. We establish a direct link with liter-
ature on random projections which has shown that linearly-independent sparse random matrices can
be constructed to satisfy the Lindenstrauss & Johnson (1984) lemma on distance-preserving embed-
dings. We specifically experiment with the sparse random matrix construction proposed in Bingham
& Mannila (2001), where elements of Bi and Ai are assigned as −1 with probability 1

6 , 0 with
probability 2

3 and 1 with probability 1
6 . We then normalize these matrices to preserve vectors of

unit length. One limitation that could arise from these ternary matrix constructions is the non-zero
probability of drawing collinear vectors when forming the bases, thus not satisfying the full rank
constraint. We compute that in practice, this probability equates to 2 × ( 12 )

d which for d = 768

in ViT-B/32 architectures equates to 10−231, making this event negligible in practice even with a
large number of bases.Table 4 reports early results achieved when using random bases constructed
in this way as part of RandLoRA’s update. Remarkably, this sparse random matrix construction
yields performance comparable or very close to non-sparse matrices, while theoretically reducing
memory requirements by at least two thirds. We further point out that memory savings could stack
up to much more when optimizing the sparse random matrices for integer or 2-bit storage.

6.5 SUMMARY OF DIFFERENCES WITH RELATED RANDOM BASES ALGORITHMS

Preceding research has explored learning linear combinations of random bases for parameter ef-
ficient fine-tuning, with two prominent studies VeRA (Kopiczko et al., 2024) and NoLA (Kooh-
payegani et al., 2024) warranting particular attention. We first note that a key distinction between
our proposed method, RandLoRA, and existing approaches lies in their objectives. Whereas VeRA
and NoLA, focus on approximating a Low-Rank Adaptation (LoRA) of W using a further reduced
amount of parameters, RandLoRA strives to approximate a the full-rank weight update. Specifically,
VeRA employs a similar decomposition, W =

∑N
i=1 UiΣiVi, but only approximates the first block

as B0Λ0A0Γ0, yielding a parameter-efficient yet low-rank update. In contrast, RandLoRA seeks to
approximate all N blocks, effectively providing a full-rank update for W . Where VeRA and NoLA
propose a hyper-parameter efficient method for applications content with a low-rank update, we aim
to address failure cases of LoRA through full rank updates. Moreover, our formulation, as expressed
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in equation equation 4, offers flexibility in trainable parameter selection, spanning from VeRA’s pa-
rameter count for r = rank(W ) to the full parameter count of W for r = 1. This adaptability
enables RandLoRA to generalize better and achieve fine-tuning accuracy comparable to standard
fine-tuning, particularly with the amount of training data increases, as reported in Section 5.

6.6 LIMITATIONS

Despite the efficacy of RandLoRA, we identify three key limitations that would warrant subsequent
investigations. A key limitation of RandLoRA lies in the additional computational overhead incurred
by weight update calculations. This results in notable increases in training time for larger models,
as quantified in Appendix B.5.2. However because RandLoRA’s weight update is valid for any
linearly independent random bases there exists opportunities for optimization. Specifically, future
enhancements would focus on implementing matmul-free matrix combinations as an efficient use
of the ternary sparse random bases. Indeed, an efficient implementation would simplify the matrix
product of B by ΛAΓ to simple aggregations, eliminating floating-point arithmetic Li et al. (2006).
Although CUDA kernels for such operations are currently unavailable Zhu et al. (2024), their future
development would significantly accelerate RandLoRA training and reduce compute.

Another avenue for future exploration lies in investigating the potential existence of non-random,
optimal bases Bi and A that could provide more effective directions in the weight space effectively
reducing ϵ in equation equation 6 and leading to accelerated or improved convergence. The dis-
covery of such bases, potentially through large-scale experimental searches or analytical derivations
from pre-trained models, could significantly enhance the efficiency of RandLoRA. Elucidating the
properties and construction of these optimal bases presents a compelling research direction, war-
ranting further investigation.

Finally, developing hybrid solutions that synergistically combine the strengths of LoRA and Rand-
LoRA could be developped. Specifically, LoRA could be leveraged to accurately estimate the most
critical components of the SVD of W , while RandLoRA would capture the remaining spectral in-
formation in a parameter-efficient manner. However, designing such a hybrid algorithm poses sig-
nificant challenges due to the disparate training objectives. A viable starting point could be to utilize
RandLoRA to complement and refine an existing LoRA-learned representation that has not achieved
satisfactory convergence on a training task. By addressing these limitations, future research can fur-
ther refine RandLoRA and push its potential for efficient full-rank fine-tuning.

7 CONCLUSION

This paper introduces RandLoRA, a method achieving parameter efficiency and low memory cost
while enabling full rank model updates. Our findings underscore the critical importance of full-
rank updates when fine-tuning pre-trained architectures and we observe that our approach surpasses
LoRA’s performance for an equal parameter count, highlighting the value of full-rank updates in
large model fine-tuning. Through extensive experiments across diverse tasks we demonstrated the
efficacy of our method. While RandLoRA incurs additional computational overhead due to random
basis multiplications, memory consumption remains contained and we provide venues for reducing
this compute in practice. As a results, RandLoRA offers a viable alternative to LoRA for fine-tuning
large pre-trained models on consumer-grade hardware. Our results have significant implications
for efficient and effective model adaptation, prompting for future research in scalable and versatile
full-rank fine-tuning techniques.
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