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Abstract

Audio-visual speech recognition (AVSR) is001
a multimodal extension of automatic speech002
recognition (ASR), using video as a comple-003
ment to audio. In AVSR, considerable efforts004
have been directed at datasets for facial features005
such as lip-readings, while they often fall short006
in evaluating the image comprehension capa-007
bilities in broader contexts. In this paper, we008
construct SlideAVSR, an AVSR dataset using009
scientific paper explanation videos. SlideAVSR010
provides a new benchmark where models tran-011
scribe speech utterances with texts on the slides012
on the presentation recordings. As technical ter-013
minologies that are frequent in paper explana-014
tions are notoriously challenging to transcribe015
without reference texts, our SlideAVSR dataset016
spotlights a new aspect of AVSR problems. As017
a simple yet effective baseline, we propose018
DocWhisper, an AVSR model that can refer019
to textual information from slides, and confirm020
its effectiveness on SlideAVSR.021

1 Introduction022

Research on multimodal models capable of han-023

dling multiple types of data, such as language, im-024

ages, videos, and audio simultaneously, has gar-025

nered significant attention. An example is audio-026

visual speech recognition (AVSR), a multimodal027

extension of automatic speech recognition (ASR),028

using video as a complement to audio. Most029

previous studies in AVSR have been conducted030

with the aim of improving accuracy on lip reading031

datasets (Afouras et al., 2018a,b). While models032

built in these studies (Shi et al., 2022; Pan et al.,033

2022; Haliassos et al., 2023) demonstrate high per-034

formance on lip reading data, their applicability to035

other types of videos remains limited.036

In this paper, we aim to evaluate the image com-037

prehension capabilities of AVSR models across a038

broader spectrum of visual contents than facial fea-039

tures. To achieve this, we construct SlideAVSR,040

an AVSR dataset that contains various technical041

terms that are notoriously challenging to transcribe 042

without referring to textual information on slides. 043

Specifically, we collect scientific paper explanation 044

videos from YouTube, apply data refinement proce- 045

dures with several custom filters, and perform data 046

partitioning considering the speakers’ accents. 047

Furthermore, we propose DocWhisper, a sim- 048

ple yet effective AVSR baseline that can efficiently 049

refer to the content of slides using optical char- 050

acter recognition (OCR). In experiments utilizing 051

SlideAVSR, DocWhisper demonstrated a perfor- 052

mance improvement of up to 14.3% compared 053

to Whisper (Radford et al., 2022), which relies 054

solely on audio input. Additionally, to address the 055

long-tail problem in OCR results, we introduce FQ 056

Ranker, which calculates word ranks based on the 057

frequency of word occurrences, and we evaluate its 058

effectiveness integrated with DocWhisper. 059

2 Related Work 060

Compared to the efforts that have been made on 061

lip reading datasets (Chung et al., 2017; Chung 062

and Zisserman, 2017a,b; Afouras et al., 2018a,b; 063

Shillingford et al., 2019), AVSR datasets in other 064

types of videos remain scarce. To our knowledge, 065

VisSpeech (Gabeur et al., 2022) and the audio- 066

visual diarization benchmark in the Ego4D chal- 067

lenge (Jain et al., 2023) are the only AVSR datasets 068

not centered around lip reading. VisSpeech is con- 069

structed from a subset of the instructional video 070

dataset HowTo100M (Miech et al., 2019), where 071

the visual stream and speech audio are semantically 072

related. The audiovisual diarization benchmark in 073

the Ego4D challenge consists of 585 egocentric 074

video clips. It is imperative to build more diverse 075

benchmark datasets to evaluate the image compre- 076

hension capabilities of AVSR models. 077

In the context of extending Whisper to an AVSR 078

model, Peng et al. (2023) employed CLIP (Radford 079

et al., 2021) to transform the input visual stream 080

into word sequences, which were then utilized as 081
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prompts for Whisper. They reported that this ap-082

proach enhances the zero-shot performance on Vis-083

Speech. In this study, we employ OCR to create084

prompts and implement fine-tuning to improve per-085

formance rather than using zero-shot prompting.086

3 SlideAVSR: Dataset Construction087

In this study, we construct SlideAVSR, an AVSR088

dataset based on scientific paper explanation videos089

incorporating various technical terms, making accu-090

rate transcription difficult without referring to the091

slides. Based on JTubeSpeech (Takamichi et al.,092

2021), a framework for building audio corpora093

from YouTube videos, we implement several cus-094

tom filters to target videos, thereby applying high-095

precision data refinement. This section describes096

the construction flow of SlideAVSR. Figure 1 illus-097

trates the flow.098

3.1 Data Collection099

Creating search queries. We first collect videos100

with search queries that are related to top con-101

ferences in the field of artificial intelligence.102

We create queries in the format {Conference}103

{Year} {Form} . The list of target conferences is104

provided in Appendix A. Considering the increased105

prevalence of online conferences since COVID-19,106

we focus on the years 2020 to 2023. The forms107

include “paper”, “workshop”, and “talk”. An ex-108

ample search query is “ACL 2023 paper”.109

Obtaining videos with subtitles. Using the110

search queries, we retrieve video IDs with sub-111

titles and download them.1 To ensure data quality,112

only videos with manual subtitles are considered.113

Additionally, we set the following criteria:114

• Duration between 5 and 20 minutes (videos115

that are too short or too long are less likely to116

be paper explanation videos).117

• Video format: MP4, 720P, H264.118

• Audio format: single-channel, 16bit, 16kHz.119

3.2 Filtering120

We curate several filters to remove videos that are121

not paper explanations or do not include slides.122

ChatGPT filter. We provide the videos’ descrip-123

tion for ChatGPT2 to confirm the following:124

• This video is an explanation of a paper.125

• The description is written in English.126
1https://github.com/yt-dlp/yt-dlp
2https://openai.com/product

Figure 1: Construction flow of SlideAVSR.

We perform three times of generation, and if “Yes” 127

is outputted at least once, we adopt the video; oth- 128

erwise, we discard it. We show the details of the 129

model and prompt in Appendix B. 130

BLIP-2 filter for videos. We capture screenshots 131

at the beginning, end, and three quartile points in 132

the timeline for each video, and then present these 133

screenshots to the vision language model BLIP- 134

2 (Li et al., 2023) to verify the following: 135

• This image is a screenshot, not a photo. 136

• This image is a part of slides. 137

We perform generation for each screenshot, and if 138

“Yes” is outputted at least once, we adopt the video; 139

otherwise, we discard it. We show the details of 140

the model and prompt in Appendix B. 141

Manual filter. We conduct manual checks to re- 142

move inappropriate videos that are not excluded by 143

the automatic filters, including: 144

• Videos rarely showing slides. 145

• Videos unrelated to paper explanations, such 146

as conference openings. 147

3.3 Cleansing 148

We implement audio-subtitle alignment, exclude 149

utterances that do not correspond to slides, and 150

merge short utterances for data cleansing. 151

CTC alignment. Due to the inaccuracy in the 152

timing of subtitles, we implement audio-subtitle 153

alignment and scoring using CTC segmenta- 154

tion (Kürzinger et al., 2020). We set the threshold 155

to -7 and exclude utterances with lower scores. The 156

details of the model are shown in Appendix B. 157

BLIP-2 filter for utterances. We capture screen- 158

shots at the midpoint of each utterance, followed 159

by filtering using BLIP-2. Three generations are 160

conducted for each screenshot, and if “Yes” is out- 161

putted at least once, we adopt the utterance; oth- 162

erwise, we discard it. The employed prompt is 163

identical to the BLIP-2 filter in Section 3.2. 164
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#videos #speakers #utterances #hours
Train 195 172 15,803 29.26
Dev 20 20 1,515 3.08
TestA 15 15 1,034 2.21
TestB 15 13 1,111 1.90
Total 245 220 19,463 36.45

Table 1: Statistics of SlideAVSR.

Merging utterances. Subtitles created by video165

authors occasionally exhibit unnatural segmenta-166

tion, resulting in exceedingly brief spans. Utilizing167

the audio segments obtained through CTC segmen-168

tation, we implement a merging process, combin-169

ing two consecutive utterances into a single entity170

if the end time of the preceding utterance aligns171

with the start time of the subsequent one and their172

cumulative duration does not exceed 15 seconds.173

This procedure significantly enhanced Whisper’s174

ASR performance by approximately 20%.175

3.4 Data Partitioning176

Previous studies (Meyer et al., 2020; Javed et al.,177

2023; DiChristofano et al., 2023) have suggested178

that the performance of ASR systems significantly179

varies depending on the speaker’s accent3. Based180

on the hypothesis that visual information con-181

tributes to the recognition of challenging accents,182

we ask native English speakers to classify the speak-183

ers’ accents in SlideAVSR and perform dataset184

partitioning. We partition the dataset into Train,185

Dev, and TestA, reserving a smaller yet significant186

TestB subset for South Asian English (SAE) ac-187

cents. During partitioning, we have ensured that188

the same speaker did not belong to multiple parti-189

tions. Additionally, videos with machine-generated190

audio were manually excluded by the annotators.191

Through the construction flow, we produced an192

AVSR dataset of around 36 hours from 245 videos.193

We show the statistics of the dataset in Table 1.194

4 Experiments195

4.1 Approaches196

DocWhisper processes the input video stream197

through an OCR module, extracting textual infor-198

mation into word sequences, which are then pro-199

vided to Whisper as prompts for fine-tuning and200

inference. While Peng et al. (2023) employed201

prompts derived from CLIP in zero-shot learn-202

ing, our preliminary experiments did not reveal203

a performance improvement in zero-shot learn-204

3The term “accent” in this paper refers to comprehensive
prosodic information, including accent, intonation, tone, etc.

Figure 2: Frequency distribution of the number of words
in OCR results. While samples with over 500 words are
present, they are omitted for brevity.

ing on SlideAVSR. Given that Whisper’s pre- 205

training (Radford et al., 2022) did not use prompts, 206

we speculate that Whisper loses robustness when it 207

faces diverse prompts. 208

We show the frequency distribution of the num- 209

ber of words in OCR results in Figure 2. The 210

distribution is long-tail, which means that only 211

70% of the samples can be covered even if we 212

include 100 words in the prompts4. To address 213

this issue, we propose FQ Ranker, which calcu- 214

lates word ranks based on the frequency of word 215

occurrences. Given the demonstrated high corre- 216

lation between word frequency and familiarity as 217

shown in previous studies (Coltheart, 1981; Tanaka- 218

Ishii, 2021), increasing the rank of less frequent 219

and more challenging words is expected to enhance 220

the information content of prompts. 221

4.2 Implement Details 222

We used Whisper large-v35 as a base model and 223

Word Error Rate (WER) for evaluation. In the 224

case of DocWhisper, we captured screenshots at 225

the midpoint of each utterance, fed them into the 226

OCR module, and used the recognized text as the 227

prompts to Whisper. We use Google Cloud Vision 228

API6 for OCR. The prompts were presented to the 229

model as word sequences, such as “word 1, word 230

2, ..., word n”. FQ Ranker utilized word frequency 231

counts obtained from the English Wikipedia as of 232

April 2023 and sorted the OCR results in ascending 233

order based on word frequency. We conducted 234

experiments with different maximum word counts 235

for prompts (K ∈ {25, 50, 75, 100}) and with or 236

without FQ Ranker. More implementation details 237

are provided in Appendix C. 238

4Whisper typically assigns a maximum length of 224 to
prompts, making inputs with over 100 words challenging.

5https://huggingface.co/openai/whisper-large-v3
6https://cloud.google.com/vision
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Type Example
Technical term W Hyp: we select quantum adhering 2 and nxt as representative of pos protocols
(41%) D Hyp: we select quantum ethereum 2 and nxt as representative of pos protocols
Inflection W Hyp: manual transcript we call this setting supervised things we have paired data
(28%) D Hyp: manual transcripts we call this setting supervised things we have paired data
Mishearing W Hyp: we can also perform other tasks like normal view synthesis
(24%) D Hyp: we can also perform other tasks like novel view synthesis
Name W Hyp: this is a work done at ibm research with gilmoseci chileo and irina rich
(7%) D Hyp: this is a work done at ibm research with guillermo cecchi and irina rish

Table 2: Error types and examples that are substitution errors in Whisper (W) but correct in DocWhisper (D).

Model Modality Fine-tune Ka TestA TestB

Whisper A
%

0
8.23 11.18

" 8.07 11.25

DocWhisper
A + V " 25

7.35 10.82
+ FQ Ranker 7.42 10.59

DocWhisper
A + V " 50

7.08 10.43
+ FQ Ranker 7.26 10.35

DocWhisper
A + V " 75

7.02 10.04
+ FQ Ranker 7.26 10.29

DocWhisper
A + V " 100

6.91 10.01
+ FQ Ranker 7.04 10.22

aIndicating maximum word counts for prompts.

Table 3: Quantitative evaluation (WER) on SlideAVSR.

4.3 Results239

We show the results of quantitative evaluations for240

Whisper and DocWhisper in Table 3. In both mod-241

els, the scores of the TestB set, consisting of videos242

with SAE accents, were inferior to the scores of the243

TestA set, indicating that Whisper struggles with244

rare accents. With fine-tuning, Whisper demon-245

strated a 1.9% improvement on the TestA set. How-246

ever, no notable improvement was observed for the247

TestB set. Despite the presence of videos with SAE248

accents in the training data, their limited quantity249

was deemed insufficient to address the challenges250

posed by difficult accents.251

Compared to the fine-tuned Whisper, DocWhis-252

per exhibited a maximum improvement of 14.3%253

on TestA and 11% on TestB. We gather that re-254

ferring to textual information on slides can signifi-255

cantly improve speech recognition performance on256

SlideAVSR. We also found that as the maximum257

word count of prompts increased, the performance258

improved, indicating that maximizing information259

content contributes to performance enhancement.260

FQ Ranker improved the scores on TestB when261

the maximum word count of prompts was set to262

25; however, this advantage was reversed when263

the maximum word count exceeded 50. Details264

provided in Section 4.4 indicate that transcriptions265

corrected by DocWhisper do not exclusively con-266

sist of technical terms, which suggests the potential267

for misinterpretation even in words with high famil-268

iarity. We also speculate that sorting words based 269

on word frequency disrupts the ordered contextual 270

information, thus increasing the difficulty of Whis- 271

per’s decoder, which is a language model, to refer 272

to the textual information on the slides. 273

4.4 Analysis of Specific Examples 274

Among Whisper’s errors (deletions, substitutions, 275

and insertions), DocWhisper corrected substitution 276

errors the most. To delve into the details, we col- 277

lected 100 instances that are substitution errors in 278

Whisper but correct in DocWhisper and categorized 279

them into four groups: technical term, inflection, 280

mishearing, and name. While the anticipated large 281

proportion (41%) of technical terms was observed, 282

noteworthy percentages were also found for inflec- 283

tion (28%) and mishearing (24%). Many words 284

with high familiarity could result in lower ranks 285

when sorting based on word frequency, potentially 286

causing a decline in the performance of FQ Ranker. 287

We show the error types and specific examples in 288

Table 2 and more details in Appendix D. 289

5 Conclusion and Future Work 290

We constructed an AVSR dataset, SlideAVSR, by 291

utilizing paper explanation videos. We proposed 292

DocWhisper, which leverages OCR to refer to slide 293

content. We verified the effectiveness of DocWhis- 294

per on SlideAVSR and conducted a detailed analy- 295

sis. Additionally, we introduced FQ Ranker, which 296

calculates word ranks based on word frequency, 297

and evaluated its performance on DocWhisper. 298

In the future, we plan to continually refine OCR- 299

based methods and aim to construct an end-to-end 300

AVSR model that is not dependent on OCR. Fur- 301

thermore, we intend to build a benchmark that 302

allows a comprehensive evaluation of the image 303

comprehension capabilities of AVSR models by in- 304

corporating diverse types of videos, such as sports 305

commentary, gaming commentary, cooking videos, 306

and more. Ultimately, we aim to construct a foun- 307

dation model for AVSR that exhibits high perfor- 308

mance across diverse video inputs. 309
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Limitations310

In comparison to mainstream AVSR datasets,311

SlideAVSR exhibits a notably limited number of312

speakers. This may lead to data imbalance and313

create obstacles to the model’s training process. In314

addition, due to our focused collection of scientific315

paper explanation videos related to artificial intelli-316

gence, imbalances may have emerged in terms of317

speaker nationality, age, and gender.318

In Section 3.4, we attempted to classify speakers’319

accents by collaborating with native English speak-320

ers. However, the task of assigning precise labels to321

every video was impeded by the complexity of dis-322

tinguishing certain speakers’ accents. As a result,323

we selectively picked out videos with South Asian324

English accents, leaving the remainder unlabeled.325

Ideally, each data split should exhibit a comparable326

distribution of accents, but this was unattainable327

due to the aforementioned challenges.328

Ethical Considerations329

In adherence to the terms of use and copyright poli-330

cies governing the YouTube platform, we collected331

data exclusively from publicly available videos. We332

acknowledge the potential presence of sensitive in-333

formation in our dataset, such as personal names334

and portraits. To prioritize privacy and responsible335

data sharing, we plan to release OCR results and336

public video URLs instead of raw video files. Fur-337

thermore, the release of our dataset will be strictly338

limited to research purposes.339
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A The list of target conferences used in data collection 447

We show our target conferences in Table 4. 448

Topic Conference
NLP ACL, NAACL, EMNLP
CV CVPR, ICCV, ECCV
Speech INTERSPEECH, ICASSP
AI AAAI, IJCAI
ML ICLR, ICML, NeurIPS
Data Mining KDD, WSDM, WWW
Database SIGMOD, VLDB, ICDE
IR SIGIR
HCI CHI

Table 4: Target conferences.

B Models and prompts used in data filtering and cleansing 449

We introduce the details of the models and prompts employed in the ChatGPT filter, BLIP-2 filter, and 450

CTC alignment as described in Section 3.2 and 3.3. 451

ChatGPT filter. We used gpt-3.5-turbo. The prompt we used is shown in Table 5.

Here is a description of a YouTube video:
{DESCRIPTION}
Using the description, check whether the video meets the following criteria.
- This video is a presentation video of a research paper.
- The description is written in English.
Attention, you can only answer ’Yes’ or ’No’ and you can only answer one time.

Table 5: Prompt for ChatGPT filter.

452

BLIP-2 filter. We used blip2-flan-t5-xl7. The prompt we used is shown in Table 6.

Question: This image is a screenshot of a video,
check whether the image meets the following criteria.
- It is a screen-sharing, not a photo shoot.
- It is a part of a slide for a research presentation.
Attention, you can only answer ’Yes’ or ’No’ and you can only answer one time.
Answer:

Table 6: Prompt for BLIP-2 filter.

453

CTC alignment. We used kamo-naoyuki_wsj8 and ESPnet implemenations9. 454

7https://huggingface.co/Salesforce/blip2-flan-t5-xl
8https://huggingface.co/espnet/kamo-naoyuki_wsj
9https://github.com/espnet/espnet
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C Implement details455

We fine-tuned both Whisper and DocWhisper using AdamW (Loshchilov and Hutter, 2019) with a learning456

rate of 2e-5, and we linearly warmed up the learning rate over 1,000 steps. The batch size was set to 16.457

Training was conducted for 10 epochs, and the checkpoint with the best performance on the Dev set was458

used for evaluation. Additionally, training was performed with three different seed values, and the average459

was computed. We performed text normalization10 for evaluation. All experiments were conducted on a460

single NVIDIA A100 (40G) GPU.461

D Specific examples462

The corresponding screenshots to Table 2 are shown below, and the parts referred to in the correction are463

circled in red.464

All the variations from the same lexical element, such as plural nouns, conjugated verbs, and third-465

person singular verbs, were classified as inflection. If the label and prediction are not from the same466

lexical element, we classified the error as technical terms, mishearing, and names, respectively.467

https://www.youtube.com/watch?v=eepUV9NJxFs

https://www.youtube.com/watch?v=dvUutyo72R4

10https://github.com/openai/whisper
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https://www.youtube.com/watch?v=0VGKPmomrR8

https://www.youtube.com/watch?v=CQBdQz1bmls

9
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