
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GISTIFY! CODEBASE-LEVEL UNDERSTANDING
VIA RUNTIME EXECUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

As coding agents are increasingly deployed in large codebases, the need to au-
tomatically design challenging, codebase-level evaluation is central. We pro-
pose GISTIFY, a task where a coding LLM must create a single, minimal, self-
contained file that can reproduce a specific functionality of a codebase. The cod-
ing LLM is given full access to a codebase along with a specific entrypoint (e.g.,
a python command), and the generated file must replicate the output of the same
command ran under the full codebase, while containing only the essential compo-
nents necessary to execute the provided command. Success on GISTIFY requires
both structural understanding of the codebase, accurate modeling of its execution
flow as well as the ability to produce potentially large code patches. Our findings
show that current state-of-the-art models struggle to reliably solve GISTIFY tasks,
especially ones with long executions traces.

1 INTRODUCTION

Large language models (LLMs) are increasingly being used in code-related tasks, powering appli-
cations in debugging (Yuan et al., 2025) and agentic code generation (Yang et al., 2024; Liang et al.,
2025). Thus, the ability to handle isolated snippets and reasoning across entire codebases, includ-
ing complex file and module relationships, is becoming increasingly essential. Yet, the evaluation
toolkit for assessing such capabilities has lagged behind. Recent evidence shows that widely-adopted
repository-level benchmarks such as SWE-bench (Jimenez et al., 2024) and RepoBench (Liu et al.,
2023b) still do not require full reasoning over the whole execution and could be solved through
heuristic shortcuts or retrieval of localized patches (Aleithan et al., 2024; Liang et al., 2025). More-
over, because many of these datasets rely on GitHub issues or pull requests for construction, they
are not easily generalizable to arbitrary repositories. At the same time, coding agents are increas-
ingly deployed in large, real-world codebases, highlighting the need for automatically constructed,
broadly applicable, and more challenging repository-level evaluation.

To fill this gap, we introduce the GISTIFY task, which is deliberately inspired by a common prac-
tice of how developers navigate and understand unfamiliar repositories. Rather than reading files
in isolation, they start from a concrete execution point such as test command or entry script often
mentioned in READMEs. Then, they iteratively reason over the runtime behavior such as identi-
fying dependencies, following control paths to uncover the codebase’s structure and functionality.
GISTIFY formalizes this practice by requiring an (agentic) coding model to extract the gist of a given
command, i.e. to generate a single, self-contained, minimal, and executable gistified file that faith-
fully reproduces the runtime behavior of a given command as when using the original full codebase
(Figure 1). In addition to serving as a challenging coding task, such gistified repositories might give
human coders a better understanding of a specific functionality of a given codebase, or even a way
to export the single functionality of interest without inheriting heavy dependencies.

To perform well in GISTIFY, an agent should generate a single gistified file that satisfies four key
requirements: it should be self-contained, including all necessary components from the codebase
so that it can be executed independently; it should ensure execution fidelity, producing the same
outputs as the original codebase under the given command; it should satisfy minimality, retaining
only the essential code required for execution without redundant or extraneous lines; and it should
guarantee faithful preservation, avoiding hallucinated or fabricated code and relying solely on con-
tent from the original codebase. To assess model performance, we introduce evaluation metrics that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

from requests.compact import Morsel
from adapters import HTTPAdapter

class TestMorsel:
 morsel = Morsel()

...

def test_cookie():
 s = TestMorsel()
 s.mount(HTTPAdapter(0, 0))

test_requests.py

from http.cookies import Morsel
...

compact.py

def _basic_auth(username):
 ...

auth.py

from auth import _basic_auth

class BaseAdapter:
def auth(self):
 _basic_auth(self.name)

class HTTPAdapter(BaseAdapter):
 def __init__(self):
 ...
 self.auth()

adapters.py

Codebase

pytest test_requests.py::test_cookieCommand

from http.cookies import Morsel

def _basic_auth(username):
 ...

class BaseAdapter:
 ...

class HTTPAdapter(BaseAdapter):
 ...

class TestMorsel:
 morsel = Morsel()
 ...

def test_cookie():
 s = TestMorsel()
 s.mount("http://", HTTPAdapter(0, 0))

gistified_file.py

Gistify

Figure 1: The GISTIFY task: given a codebase and a command of entrypoint, the goal is to generate
a minimal, self-contained gistified code file that faithfully reproduces the original runtime behavior
using code from the given codebase.

align with these requirements, providing a systematic way to measure codebase-level understand-
ing. GISTIFY requires agents to follow the execution path through the codebase without bypassing
modules, i.e., understanding how relevant objects are modified along the way, and identifying which
classes or functions can be simplified or removed. Since even moderately sized codebases exceed
the context window of current LLMs, success also requires effective search capabilities.

The advantages that GISTIFY brings are multiple: first, it provides direct insight into the ability
of models to reason at the codebase level with an understanding of runtime execution, rather than
on isolated code snippets. Second, it is lightweight and broadly applicable: it requires only the
repository and a test suite (or any other collection of entrypoints with a well-defined expected output)
and does not require issue logs or pull requests. This allows automatic construction of challenging
tasks for arbitrary repositories, including private ones. Finally, gistified files themselves are valuable
outputs: by compressing a specific feature of a large codebase into a minimal file, they can be applied
to various downstream tasks, including automated debugging or error localization.

We conduct experiments across a variety of frameworks (mini-SWE-agent, SWE-agent, and Copi-
lot) and models (GPT-5-mini, GPT-5, Claude-3.7-Sonnet, and Claude-Sonnet-4) and uncover several
interesting findings. First, even widely used, high-performing frameworks and models struggle to
create a successful gistified file, especially when execution traces are long and have high coverage
on the repositories. Second, faithfully reproducing the test function in the generated file is a strong
indicator of gistified performance, as it serves as the starting step for reasoning about execution
traces. Third, enabling execution tools yields small but consistent performance gains, and addition-
ally providing global code context and runtime information further boosts performance. Finally,
agentic models benefit from dynamically deciding what to read and refine their reasoning through
multi-step trajectories, outperforming static approaches.

2 RELATED WORKS

2.1 CODEBASE-LEVEL UNDERSTANDING BENCHMARK

Previous work has introduced a variety of benchmarks to evaluate LLMs on codebase-level code
understanding1. These generally fall into three categories: question answering, code synthesis,
and mapping natural language specifications to the entire codebase. Several benchmarks introduce
codebase-level question-answering (Strich et al., 2024; Li et al., 2024b; Sahu et al., 2024; Chen et al.,
2025; Hu et al., 2024; Fu et al., 2025). In these settings, the model must correctly answer questions
that require an understanding of the codebase. The questions are drawn from various sources, in-
cluding real-world GitHub issues and queries resembling those asked of tools like Copilot. Another
line of work evaluates whether models can synthesize code by leveraging information distributed

1See Appendix A.1 for related works regarding “Methods for Codebase-level Understanding”

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

across multiple files in the codebase (Zhang et al., 2023; Liu et al., 2023b; Ding et al., 2023; Li
et al., 2024a; Yu et al., 2024). These benchmarks include tasks such as retrieval-augmented comple-
tion, cross-file refactoring, and more specialized settings such as sketch-based coding or codebase
evolution. Moreover, there is a line of benchmark that maps natural language specifications to entire
code repositories, leveraging hierarchical or multi-stage representations to capture inter-file relation-
ships and maintain consistency across a codebase (Tang et al., 2023; Zan et al., 2024; Ni et al., 2025).
Our work tackles a more complex setting, where models must reason over full execution traces and
examine multiple files, making the task challenging, and even widely used agentic models struggle
alongside static ones.

2.2 RUNTIME EXECUTION

Various works have introduced benchmarks to evaluate LLMs’ ability to reason over code execution
at runtime (Gu et al., 2024; Chen et al., 2024; Xie et al., 2025; Beger & Dutta, 2025; Hu et al., 2025).
These benchmarks typically test whether models can predict execution traces or intermediate states
such as variable values, control flow, or data dependencies—given code and inputs, or alternatively,
infer inputs from code and outputs. Some benchmarks further extend this paradigm by leveraging
execution traces to construct new problems through program composition, thereby varying complex-
ity in a principled way. Beyond evaluation, execution traces have also been incorporated into training
pipelines to strengthen models’ runtime reasoning abilities (Liu et al., 2023a; Ding et al., 2024). By
augmenting pre-training and fine-tuning with execution states, paths, and coverage signals, these
methods help models capture program dynamics and generalize to execution-aware tasks. At infer-
ence time, several frameworks leverage runtime feedback to iteratively guide models in debugging
or completing partial programs, thereby improving performance on execution-driven tasks (Zhong
et al., 2024; Xue et al., 2024). In this work, we extend prior approaches by going beyond reasoning
over execution traces to also reformulate programs; the model not only tracks execution but also
identifies how to compress and organize code into a concise, coherent file. We further show that
this capability serves as a useful tool at inference time, helping models better structure and complete
execution-driven tasks.

3 GISTIFY

3.1 TASK DEFINITION

As shown in Figure 1, when given a codebase and a command as input, the coding agent must
generate a single gistified file that reproduces the runtime behavior of the original codebase under
the given command. Specifically, the gistified file must satisfy the following requirements.

Self-Contained: All necessary components from the given codebase must be included so that the
gistified file can be executed standalone, i.e. without relying on the codebase. The model must iden-
tify all relevant modules and dependencies, demonstrating understanding of inter-file relationships.

Execution Fidelity: Executing the gistified file must replicate the original codebase’s runtime be-
havior, ensuring the model captures the dynamic execution, not just static code patterns.

Minimalism: Only the code essential to reproducing the runtime behavior should be preserved,
with unused functions and objects pruned. This requires fine-grained understanding of the code to
identify which lines are actually executed and essential for the task.

Grounded Preservation: No hallucinated code may be introduced. All content must be derived
directly from the original codebase. This ensures the task evaluates the model’s understanding of
the codebase, rather than its ability to generate arbitrary code that happens to satisfy the command.

3.2 EVALUATION PROTOCOL

There are two inputs to a GISTIFY task: i) a docker image containing the target codebase, for
consistent evaluation; ii) an entrypoint, such as a pytest command on one of the tests in the codebase.
Test cases are existing entrypoints one can easily leverage, but broadly, any command that the user
would want to use to run a functionality of the existing codebase is allowed.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

All models are prompted to generate a gistified file for the entrypoint. We can programmatically
verify whether the expected behavior is preserved when the ground-truth test is run within this setup.
Here, we focus on comparing outputs of test commands. Once the model generates the gistified file,
to ensure that execution for evaluation is based on the original test, we integrate the test code from
the original codebase to the gistified file and execute it. This ensures that the model does not cheat
by modifying the test.

3.3 METRICS

Once a gistified file is generated, we evaluate it using the given execution command. The evaluation
considers three dimensions, aligned with the task requirements, to provide a comprehensive measure
of a model’s ability to reason over an entire codebase and understand its execution behavior. See
Appendix B.1 for more details.

Execution Fidelity is a binary metric where 1 means the gistified file runs successfully and produces
the same output as the original codebase when executed under the given command; otherwise, it is
0. Failures include cases where the file is not runnable or yields different outputs. The comparison
checks for tests pass/fail consistency and stdout/stderr matching.

Formally, let c denote the given command, C a given codebase, and G a gistified file. Define
runs(c, C) as an indicator of whether c executes without crashing when running over C, and out(c, C)
returns the set of outputs and error traces from running c with C. Then, execution fidelity is defined
as

1
[
runs(c,G) ∧ out(c,G) = out(c, C)

]
, (1)

where 1[·] is the indicator function.

Line Execution Rate measures minimality by calculating the fraction of lines in the gistified file that
are actually executed under the given command. A 100% execution rate means all lines are essential,
indicating a focused and concise file. This metric is only computed for files that run successfully,
since the execution trace is required to determine which lines are run.

Formally, letLexec(G) be a list of executable lines (i.e., no comments) in G. Then, the Line Execution
rate is defined as

1

|Lexec(G)|
∑

ℓ∈Lexec(G)

1[ℓ is executed]. (2)

Line Existence Rate measures the proportion of code in the gistified file that is directly preserved
from the original codebase. Specifically, lines of code are grouped into blocks (classes, functions,
or top-level units), and matches are computed block by block while respecting the code hierarchy.
This helps avoiding false matches from common lines appearing in unrelated parts of the codebase.
To ensure robustness, we normalize across common variations such as indentation, multi-line state-
ments, and imports. A 100% existence rate indicates full fidelity to the original codebase without
hallucination.

Formally, let BG and BC be the sets of blocks in the gistified file and the original codebase, respec-
tively. For a block b, let L(b) represent its set of lines. Then, the existence rate is defined as

1∑
b∈BG

|L(b)|
∑
b∈BG

∑
ℓ∈L(b)

1{ℓ ∈ LC(b)} , (3)

where 1{ℓ ∈ LC(b)} = 0, if no matching block exists in BC .

4 EXPERIMENTS

4.1 SETTING

We conduct experiments using three widely adopted open-sourced frameworks. SWE-Agent (Yang
et al., 2024) and GitHub Copilot (Microsoft, 2025) provide a rich scaffolding to LLM-based agents,
enabling them autonomously perform software engineering tasks. This includes a set of tools for

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Average Performance over three agentic frameworks with four models. We evaluated over
25 tests over 5 repositories. Execution Fidelity is shown as w/o exec, and w execution tools. Line
Existence and Execution are averaged across the two settings for clarity.

Framework Model Execution Fidelity Line Existence Line Execution
(wo exec / w. exec)

mini-SWE-agent

GPT-5-mini 17.1 / 24.0 44.9 61.2
GPT-5 51.0 / 54.0 56.8 83.1
Claude-3.7 38.7 / 43.3 66.0 69.2
Claude-4 54.0 / 55.3 67.0 75.7

SWE-agent

GPT-5-mini 30.9 / 45.3 47.9 74.8
GPT-5 30.7 / 46.0 48.3 81.7
Claude-3.7 40.7 / 46.0 66.8 69.9
Claude-4 56.7 / 57.3 66.3 72.9

Copilot

GPT-5-mini 58.0 / 55.3 62.4 77.8
GPT-5 58.7 / 60.7 66.9 81.4
Claude-3.7 43.3 / 56.0 63.0 74.4
Claude-4 58.7 / 61.3 69.6 80.3

creating and editing code files, navigating repositories, and executing tests. These frameworks also
offer the LLM controllable cache management, and LLMs follow the standard tool-calling format.
We also experiment with Mini-SWE-Agent (Yang et al., 2024), a lightweight framework where
LLMs only have access to a bash terminal to solve the task. Commands are parsed from the agent
output and executed directly. As the task objective is for the model to use reasoning over the exe-
cution flow rather than ability of tool usage, for the agentic models, we exclude the execution tools
(“python”, “pytest”) in the default setting where execution is disabled. For all three frameworks,
unless specified otherwise, hyperparameters and configurations (e.g. system prompts, cache man-
agement, tools) are kept to the default values. Please see Appendix

Our evaluation spans four leading LLM variants: GPT-5 (OpenAI, 2025a), GPT-5-mini (OpenAI,
2025b), Claude-3.7-Sonnet (Anthropic, 2025a), and Claude-Sonnet-4 (Anthropic, 2025b), offering
different cost / performance tradeoffs. For ease or reading, we will refer to the last two models as
Claude-3.7 and Claude-4. We use a 128K token limit for all models. All experiments ran are capped
at 50 steps, after which whatever is generated at this moment in the gistifed file is submitted for
evaluation.

On the data side, we experiment over with widely used GitHub repositories which are present in
SWE-Bench (requests, pylint, flask, scikit-learn, seaborn). We also explore an
additional repository, debug-gym (Yuan et al., 2025)2. This library is relatively new and impor-
tantly does not overlap with SWE-Bench. We extract and filter test sets for each repository. Namely,
we remove tests whose execution is dependent on the test’s file location. For the main experiment,
we evaluate over 25 tests for each of the 5 repositories. More details regarding the evaluation setup
and prompt can be found in the Appendix C.

4.2 RESULTS

We begin by giving an overview of the main results presented in Table 1. We report results for our
main evaluation protocol, where the model does not have access to execution tools (e.g. “python”
and “pytest” commands), as well as the alternative. Examples of gistified files are in Appendix D.1.

Claude-4 shows the most robust performance. Across all frameworks and configurations. Claude-
4 consistently provides the best performance, reaching a 54-60% average solve rate. Moreover, the
model shows the highest values of Line Existence, meaning that it was the most successful model
at faithfully extracting code from the original codebase. We note however that GPT-5 produces the
most concise outputs, with Line Execution rate markedly higher than other models.

2We provide link to all the GitHub repositories used in this work in Table 4.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Average error rates (%) of different failure reasons when running SWE-agent across models.
Error cases are categorized into four groups. The numbers in parentheses indicate the number of
errors for each category.

Models Import Error File Creation Failure Missing Test Function Pytest Runtime Error

GPT-5-mini 2.1 (2) 11.3 (11) 76.3 (72) 10.3 (10)
GPT-5 5.2 (4) 10.4 (8) 77.9 (60) 6.5 (5)

Claude-Sonnet-3.7 20.0 (10) 20.0 (10) 2.0 (1) 58.0 (29)
Claude-Sonnet-4 32.5 (13) 10.0 (4) 7.5 (3) 50.0 (20)

Frontier models (GPT-5 / Claude-4) are strong bash users. When looking at performance on
mini-swe-agent, where the models only have access to a bash terminal to solve the task, both models
perform relatively well, solving over half of the tasks. Importantly, this is not the case for smaller
and previous-generation models.

Execution tools are not a silver bullet. Overall, when comparing performance with and without
execution in Table 1, we note that in most cases we observe only a small performance gain. We
expected that current coding LLMs could better leverage execution tools: indeed, using tools specif-
ically for runtime execution analysis, such as a debugger, could significantly help solving a gistify
task. However, we are not seeing this behavior emerge, even from frontier models. We observed a
sharp decrease in performance for the GPT-5 model when evaluated on SWE-Agent without execu-
tion tools. We performed a visual inspection and noticed formatting issues when rewriting the input
test function. A detailled discussion can be found in Appendix D.2.

Small(er) models perform well with scaffolding. We note that GPT-5-mini’s performance varies
significantly across different evaluation settings, from 17% in a bash-only setup to 58% when pro-
vided with a large inventory of tools from the Copilot framework (see Appendix D.3 for a full list).
We note that this performance increase is also reflected in the quality of the generated gist, where
we see a notable increase in line existence and line execution.

4.3 ERROR ANALYSIS OVER EXECUTION FAILURE

We proceed with an analysis of the underlying failure causes, in order to understand which aspect
of the GISTIFY task different models struggle with. Table 2 shows that each model tends to fail for
different reasons. See Appendix D.4 for detailed examples of each error case.

Import Error occurs when the model incorrectly imports the original codebase (e.g., import
requests) instead of inlining the required modules into the gistified file. We note that this error
occurs even as coding LLMs are explicitly prompted not to import the specific packages in question.
Perhaps surprisingly, the best performing model, Claude-4, commits this seemingly innocuous error
the most out of all four models.

File Creation Failure errors arise when the model fails to generate the gistified file. This can happen
in two ways: the model exceeds the maximum step limit, or the model terminates the task without
any file being generated.

Missing Test Function errors occur when the generated gistified file does not contain the function
implementation for the test specified in the given command, or implements the test in a different
structure. This can happen when the model strips out the content of the test and executes it outside
of the pytest wrapper, under e.g. if name == main :. Claude models tend to avoid this
mistake, while this is the main source of error for GPT-5 models, specifically under the SWE-agent
framework. Importantly, we observe that this error does not happen at random, but rather alongside
other execution errors; we attempted to add the missing test function, and it in most cases the test
fails to run, i.e. it results in a runtime error. This aligns with the analysis in the next section,
showing a strong correlation between the task’s success and the fidelity between the original and the
generated tests.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Analysis of the effect of different strategies and tools (global information, execution) on
the GISTIFY task. We evaluate SWE-Agent with Claude 4 using 50 test instances from the pylint
codebase. Max Steps Reached (%) indicates the percentage of runs that terminated because the
maximum step limit was reached.

Ablation Type Execution Fidelity Line Existence Line Execution
Max Steps

Reached (%)

Base GISTIFY 42.0 65.0 58.3 14.6

Prompted Strategies
Tracing 48.0 75.4 62.8 0.0
Reading 50.0 77.6 62.6 3.9

Global Info (Tool)
RepoGraph 52.0 76.1 60.1 6.0

Tracing 56.0 75.1 65.1 0.0

Execution (Tool)
Bash 52.0 73.1 64.2 16.0

Edit And Execute 56.0 74.3 64.2 10.0

Pytest Runtime Error occurs when the execution of the generated file fails, either due to a runtime
error or because the gistified output does not match the output from the original codebase. The
results indicate this is the most common cause of error for the best performing model, Claude-4.

4.4 IMPORTANCE OF FAITHFULLY PRESERVING THE TEST FUNCTION

We observe that models frequently modify the test function, despite being provided with explicit
instructions to copy without modification, except for unavoidable adjustments (e.g., removing im-
ports). Again, to ensure consistent evaluation, we replace the test function in the gistified file with
the original version before evaluation.

To measure such modifications, we define the Test F1 Score as the line-level overlap between the
test code of the original file and the gistified version. High Test F1 Score indicates that the model
has successfully identified and copied the correct test function to the gistified file. We observe
a strong correlation between Test F1 Score and execution fidelity (correlation=0.76, p=0.01); test
instances with higher F1 scores are substantially more likely to produce a successful gistified file.
We hypothesize that this arises because in the GISTIFY task, models often reason backwards from
the test file, thereby if the model fails from identifying or copying the test function, the subsequent
reasoning process is highly likely to fail.

To better understand the impact of the first step—searching, viewing, and copying the test func-
tion—we conduct an ablation study where we remove potential failure at this stage. Specifically, we
explicitly provide the correct test function body and signature in the prompt, so the model no longer
needs to locate or copy it. This isolates the effect of errors in identifying the test function. In this set-
ting, we observe that Test F1 Score improves highly from the base GISTIFY 68.4 to 85.3, along with
execution fidelity (from 42.0% to 60.0%). This suggests that accurately handling the test function is
a critical first step to do the GISTIFY task successfully. Detailed results are in Appendix D.5.

5 ANALYSIS

In this section, we analyze how different strategies and tools affect performance on the GISTIFY
task, identify factors that contribute to its difficulty, and experiment with the use of a static coding
LLM to gain a deeper understanding of the task. For all experiments, we evaluate 50 test instances
drawn from the pylint codebase, a setting where the model generally exhibited modest performance.
We use SWE-Agent paired with Claude-Sonnet-4.

5.1 EFFECT OF VARIOUS STRATEGIES AND TOOLS

In this section, we analyze how different strategies and sources of information affect model perfor-
mance. We begin with the simplest approach, modifying the prompt to guide the model (Prompt-
Based Guidance), and then move to more explicit approaches that rely on additional tools: providing
global context (Global Information via Tools) or feedback from code execution (Execution-Based

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Tools). Detailed descriptions of prompts and tools, along with examples, are provided in the Ap-
pendix E.1.

Prompt-Based Guidance We first begin with the simplest approach: modifying the prompt to
provide explicit task guidance. We experiment over two settings. In the former, we prompt the
model to perform step-by-step reasoning, by first predicting the execution traces and then going
over them, adding relevant code snippets along the way (tracing). In the latter, a similar approach is
used, with explicit instructions on how to recursively determine the execution traces: starting from
the test, identify the relevant components and read the files where they are defined, and repeat until
the end (reading). As shown in Table 3, we observe that adding such strategies tends to enhance
overall metrics, giving both better execution fidelity and more faithful code extractions, as measured
by line existence.

Global Information via Tools Building on the above observation, we next assess the effect of
explicitly providing global context through external tools, rather than predicting it. We examine
two tools: (1) RepoGraph (Ouyang et al., 2024), which constructs a graph of the codebase where
each node represents a line of code and edges capture connections between lines, enabling graph-
based search over the entire codebase; and (2) a Tracing tool that exposes gold execution traces
obtained from running the given test command. Results in Table 3 show that both tools improve
performance, with the Tracing tool yielding the largest gains. This finding suggests that access to
the global context, especially the gold tracing information, substantially strengthens the model’s
ability to perform runtime reasoning, as it can easily identify which file to look at.

Execution-Based Tools In Section 4.2, we saw that enabling execution tools resulted in small but
consistent gains overall. In this section, we examine whether having unrestricted access to a bash
terminal is really necessary to observe these gains, or whether simply having access to execution logs
of the generated file is enough. For this experiment we compare Bash access with a simple method
that executes and prints the output of the gistified file whenever it is edited (Edit And Execute). No
other execution tools are available to the agent, including runtime information about the ground truth
test. The results are surprising: having access to fewer tools actually increases performance. Indeed,
we note that when give access to a full set of bash commands, the coding LLM tends to explore more
tools, increasing the overall trajectory length, and potentially reaching the maximum step limit.

5.2 TESTS WITH HIGH COVERAGE ARE HARDER TO GISTIFY

In this section, we investigate what properties makes a given test hard to GISTIFY. We hypothesize
that tests generating a longer and more complex execution trace would entail a harder task for the
coding LLM. To this end, we investigate how two axes to measure a runtime execution’s difficulty
affect performance: the length of trace, as measured by the number of function calls executed, and
the number of unique files touched by the tracing procedure. While these metrics correlate with
one another, they will differ when, for example, a function is looped over many times or when the
location of the relevant functions is in a single file versus across multiple files.

For this experiment, we use again the same configuration as prior analysis, namely Claude-4 with 50
tests sampled from the pylint codebase. In Figure 2a, we see a clear correlation between the difficulty
of a given GISTIFY task, and how complex the execution traces are, according to both metrics
considered. We leverage this insight to create a GISTIFY-hard subset, where we select the 30 most
difficult examples according to each. We end up with 57 unique datapoints (30 from pylint, 28 from
sklearn, 6 from seaborn). On this subset, performance drops to 21%, as compared to 43%, the
baseline weighted performance average following the same distribution over repositories. Overall,
this selection criteria offers a promising direction for designing challenging evaluation scenarios
with GISTIFY.

5.3 STATIC CODING LLM

In this section, we experiment over how models perform in a static setup, where they have no access
to tools and cannot iterate on the generated solution. As such static coding LLMs do not have
tools, they cannot search or view files dynamically. Thereby, to measure a possible upper bound for
non-agentic approaches, we provide as input all files that were accessed during the original program

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

[0.0, 0.2]
[0.2, 0.4]

[0.4, 0.6]
[0.6, 0.8]

[0.8, 1.0]

Binned Test Quantiles according to difficulty metric

20

40

60

80

100

Ex
ec

ut
io

n
Fid

el
ity

 (%
)

Performance according to Exec. Trace Difficulty
Trace Length
Number of Files Covered

(a) Difficulty of the Gistify task is measured as a func-
tion of the execution trace difficulty of the underlying
test.

Execution
Fidelity

Line
Existence

Line
Execution

0

20

40

60

80

Sc
or

es

static coding LLM
mini-SWE-Agent

SWE-Agent
Copilot

(b) Performance of a static coding LLM and vari-
ous agentic coding LLMs (mini-SWE-Agent, SWE-
Agnet, Copilot).

execution (gold files). Also, as they cannot iterate over multiple steps, they have to output everything
at once and are therefore restricted by the context window of the LLM. Since solving the GISTIFY
task involves touching multiple files, we observe in many cases that the inputs exceed the model’s
maximum sequence length. Thus, we sample a subset of test examples where the combined content
fits within the 128K token limit of the LLM. As shown in Figure 2b, agentic models outperform static
ones even when the latter receive all relevant files. This suggests that selecting files dynamically
over multiple iterations is more effective than providing everything at once, which can overwhelm
the model3. However, interestingly, the static coding LLM setup achieves the highest Line Existence
score. This is likely because the model can copy lines directly from input, yet it performs worse on
Line Execution and Execution Fidelity, suggesting that models do not have a good understanding of
the codebase, often copying lines that are incomplete or incorrect.

6 DISCUSSION AND CONCLUSION

In this paper, we introduced the GISTIFY task in which a coding LLM extracts a specific funtionality
of a codebase into a single, self-contained file. Beyond serving as a standalone evaluation task that
is easily applicable to arbitrary repositories with a test suite, the gistified file itself also opens sev-
eral promising directions for research and practical applications. Large codebases often overwhelm
automated agents due to their complex dependencies, and they especially struggle when tasked with
fixing bugs that span multiple files (Ganhotra, 2025). In such scenarios, a gistified file would greatly
reduce this challenge, and enable a more efficient reasoning about the codebase without navigating
through unrelated code. In other words, this file could be leveraged in other downstream tasks such
as code refactoring or debugging, or even as a way to extract and share a minimal implementation of
a specific codebase functionality. Lastly, a current limitation of the results presented is the reliance
on an existing test suite for a given repository. We believe that the GISTIFY task can be extended
to arbitrary entrypoints, although issues stemming from non-deterministic execution will need to be
carefully addressed. We defer a proper exploration of this to future work.

In summary, with coding LLMs increasingly being deployed in real-world software development,
the need for automatically constructing evaluation setups that require codebase-level understanding
of arbitrary repositories is growing. Through extensive experiments across a range of models and
frameworks, we found that state-of-the-art LLMs still face challenges on the GISTIFY task, espe-
cially when faced with long, complex execution traces. Our analysis shows that incorporating global
code context or execution-aware tools improves performance, and agentic coding LLM tend to han-
dle the task more effectively by reasoning about which files to inspect using various tools. Beyond
serving as a benchmark, the gistified files themselves are valuable artifacts. They distill the essential
functionality of complex systems into a compact, executable form, making them easier to inspect
and understand. Such files could support a range of practical applications, including debugging,
refactoring, and code review, which we leave this for future work.

3See Appendix E.3 for detailed statistics on the usage of various tools.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

aider. Ai pair programming in your terminal. 2025. URL https://github.com/Aider-AI/
aider?tab=readme-ov-file.

Reem Aleithan, Haoran Xue, Mohammad Mahdi Mohajer, Elijah Nnorom, Gias Uddin, and Song
Wang. Swe-bench+: Enhanced coding benchmark for llms. arXiv preprint arXiv:2410.06992,
2024.

Anthropic. Claude sonnet 3.7. https://www.anthropic.com/news/
claude-3-7-sonnet, 2025a. Hybrid reasoning model; accessed: 2025-09-25.

Anthropic. Claude sonnet 4. https://www.anthropic.com/claude/sonnet, 2025b.
Improved version over Sonnet 3.7; accessed: 2025-09-25.

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Vageesh D C, Arun Iyer, Suresh Parthasarathy,
Sriram Rajamani, Balasubramanyan Ashok, and Shashank Shet. Codeplan: Repository-level
coding using llms and planning. Proceedings of the ACM on Software Engineering, 1(FSE):
675–698, 2024.

Claas Beger and Saikat Dutta. Coconut: Structural code understanding does not fall out of a tree. In
2025 IEEE/ACM International Workshop on Large Language Models for Code (LLM4Code), pp.
128–136. IEEE, 2025.

Jialiang Chen, Kaifa Zhao, Jie Liu, Chao Peng, Jierui Liu, Hang Zhu, Pengfei Gao, Ping Yang, and
Shuiguang Deng. Coreqa: uncovering potentials of language models in code repository question
answering. arXiv preprint arXiv:2501.03447, 2025.

Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li, and Xin Xia. Reasoning runtime behavior
of a program with llm: How far are we? arXiv preprint arXiv:2403.16437, 2024.

cursor. cursor. 2025. URL https://cursor.com/.

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Krishna
Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, et al. Crosscodeeval: A diverse
and multilingual benchmark for cross-file code completion. Advances in Neural Information
Processing Systems, 36:46701–46723, 2023.

Yangruibo Ding, Benjamin Steenhoek, Kexin Pei, Gail Kaiser, Wei Le, and Baishakhi Ray. Traced:
Execution-aware pre-training for source code. In Proceedings of the 46th IEEE/ACM Interna-
tional Conference on Software Engineering, pp. 1–12, 2024.

Lingyue Fu, Hao Guan, Bolun Zhang, Haowei Yuan, Yaoming Zhu, Jun Xu, Zongyu Wang, Lin Qiu,
Xunliang Cai, Xuezhi Cao, et al. Corecodebench: A configurable multi-scenario repository-level
benchmark. arXiv preprint arXiv:2507.05281, 2025.

Jatin Ganhotra. Do swe-agents solve multi-file issues like humans? a deep dive into swe-bench ver-
ified, January 2025. URL https://jatinganhotra.dev/blog/swe-agents/2025/
01/05/swe-bench-mutliple-files/. Blog post.

Dhruv Gautam, Spandan Garg, Jinu Jang, Neel Sundaresan, and Roshanak Zilouchian Moghaddam.
Refactorbench: Evaluating stateful reasoning in language agents through code. arXiv preprint
arXiv:2503.07832, 2025.

Alex Gu, Baptiste Roziere, Hugh James Leather, Armando Solar-Lezama, Gabriel Synnaeve, and
Sida Wang. CRUXEval: A benchmark for code reasoning, understanding and execution. In
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scar-
lett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 16568–16621. PMLR,
21–27 Jul 2024.

Ruida Hu, Chao Peng, Jingyi Ren, Bo Jiang, Xiangxin Meng, Qinyun Wu, Pengfei Gao, Xinchen
Wang, and Cuiyun Gao. Coderepoqa: A large-scale benchmark for software engineering question
answering. arXiv preprint arXiv:2412.14764, 2024.

10

https://github.com/Aider-AI/aider?tab=readme-ov-file
https://github.com/Aider-AI/aider?tab=readme-ov-file
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/claude/sonnet
https://cursor.com/
https://jatinganhotra.dev/blog/swe-agents/2025/01/05/swe-bench-mutliple-files/
https://jatinganhotra.dev/blog/swe-agents/2025/01/05/swe-bench-mutliple-files/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wenhao Hu, Jinhao Duan, Chunchen Wei, Li Zhang, Yue Zhang, and Kaidi Xu. Dynacode: A
dynamic complexity-aware code benchmark for evaluating large language models in code gener-
ation. arXiv preprint arXiv:2503.10452, 2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024.

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. Evocodebench: An evolving code gen-
eration benchmark aligned with real-world code repositories. arXiv preprint arXiv:2404.00599,
2024a.

Linyi Li, Shijie Geng, Zhenwen Li, Yibo He, Hao Yu, Ziyue Hua, Guanghan Ning, Siwei Wang,
Tao Xie, and Hongxia Yang. Infibench: Evaluating the question-answering capabilities of code
large language models. Advances in Neural Information Processing Systems, 37:128668–128698,
2024b.

Shanchao Liang, Spandan Garg, and Roshanak Zilouchian Moghaddam. The swe-bench illusion:
When state-of-the-art llms remember instead of reason. arXiv preprint arXiv:2506.12286, 2025.

Chenxiao Liu, Shuai Lu, Weizhu Chen, Daxin Jiang, Alexey Svyatkovskiy, Shengyu Fu, Neel Sun-
daresan, and Nan Duan. Code execution with pre-trained language models. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational
Linguistics: ACL 2023, pp. 4984–4999, Toronto, Canada, July 2023a. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.findings-acl.308. URL https://aclanthology.
org/2023.findings-acl.308/.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. arXiv preprint arXiv:2306.03091, 2023b.

Xiangyan Liu, Bo Lan, Zhiyuan Hu, Yang Liu, Zhicheng Zhang, Fei Wang, Michael Shieh, and
Wenmeng Zhou. Codexgraph: Bridging large language models and code repositories via code
graph databases. arXiv preprint arXiv:2408.03910, 2024.

Qinyu Luo, Yining Ye, Shihao Liang, Zhong Zhang, Yujia Qin, Yaxi Lu, Yesai Wu, Xin Cong,
Yankai Lin, Yingli Zhang, et al. Repoagent: An llm-powered open-source framework for
repository-level code documentation generation. arXiv preprint arXiv:2402.16667, 2024.

Microsoft. Github copilot in vs code. 2025. URL https://code.visualstudio.com/
docs/copilot/overview.

Ziyi Ni, Huacan Wang, Shuo Zhang, Shuo Lu, Ziyang He, Wang You, Zhenheng Tang, Yuntao Du,
Bill Sun, Hongzhang Liu, et al. Gittaskbench: A benchmark for code agents solving real-world
tasks through code repository leveraging. arXiv preprint arXiv:2508.18993, 2025.

OpenAI. Gpt-5 technical overview. https://platform.openai.com/docs, 2025a. Ac-
cessed: 2025-09-25.

OpenAI. Gpt-5 mini. https://platform.openai.com/docs/models/gpt-5-mini,
2025b. Compact variant of GPT-5; accessed: 2025-09-25.

Siru Ouyang, Wenhao Yu, Kaixin Ma, Zilin Xiao, Zhihan Zhang, Mengzhao Jia, Jiawei Han, Hong-
ming Zhang, and Dong Yu. Repograph: Enhancing ai software engineering with repository-level
code graph. arXiv preprint arXiv:2410.14684, 2024.

Surya Prakash Sahu, Madhurima Mandal, Shikhar Bharadwaj, Aditya Kanade, Petros Maniatis, and
Shirish Shevade. Codequeries: A dataset of semantic queries over code. In Proceedings of the
17th Innovations in Software Engineering Conference, pp. 1–11, 2024.

11

https://aclanthology.org/2023.findings-acl.308/
https://aclanthology.org/2023.findings-acl.308/
https://code.visualstudio.com/docs/copilot/overview
https://code.visualstudio.com/docs/copilot/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/models/gpt-5-mini

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Disha Shrivastava, Denis Kocetkov, Harm De Vries, Dzmitry Bahdanau, and Torsten Scholak. Re-
pofusion: Training code models to understand your repository. arXiv preprint arXiv:2306.10998,
2023.

Jan Strich, Florian Schneider, Irina Nikishina, and Chris Biemann. On improving repository-level
code QA for large language models. In Xiyan Fu and Eve Fleisig (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research
Workshop), pp. 209–244, Bangkok, Thailand, August 2024. Association for Computational Lin-
guistics. ISBN 979-8-89176-097-4. doi: 10.18653/v1/2024.acl-srw.28.

Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan
Hu, Kaikai An, Ruijun Huang, et al. Ml-bench: Evaluating large language models and agents for
machine learning tasks on repository-level code. arXiv preprint arXiv:2311.09835, 2023.

Huacan Wang, Ziyi Ni, Shuo Zhang, Shuo Lu, Sen Hu, Ziyang He, Chen Hu, Jiaye Lin, Yifu Guo,
Yuntao Du, et al. Repomaster: Autonomous exploration and understanding of github repositories
for complex task solving. arXiv preprint arXiv:2505.21577, 2025.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024.

Danning Xie, Mingwei Zheng, Xuwei Liu, Jiannan Wang, Chengpeng Wang, Lin Tan, and Xiangyu
Zhang. Core: Benchmarking llms code reasoning capabilities through static analysis tasks. arXiv
preprint arXiv:2507.05269, 2025.

Zhipeng Xue, Zhipeng Gao, Shaohua Wang, Xing Hu, Xin Xia, and Shanping Li. Selfpico: Self-
guided partial code execution with llms. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 1389–1401, 2024.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R Narasimhan,
and Ofir Press. SWE-agent: Agent-computer interfaces enable automated software engineering.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianx-
iang Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative
pre-trained models. In Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering, pp. 1–12, 2024.

Xingdi Yuan, Morgane M Moss, Charbel El Feghali, Chinmay Singh, Darya Moldavskaya, Drew
MacPhee, Lucas Caccia, Matheus Pereira, Minseon Kim, Alessandro Sordoni, et al. debug-gym:
A text-based environment for interactive debugging. arXiv preprint arXiv:2503.21557, 2025.

Daoguang Zan, Ailun Yu, Wei Liu, Dong Chen, Bo Shen, Wei Li, Yafen Yao, Yongshun Gong,
Xiaolin Chen, Bei Guan, et al. Codes: Natural language to code repository via multi-layer sketch.
arXiv preprint arXiv:2403.16443, 2024.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. arXiv preprint arXiv:2303.12570, 2023.

Li Zhong, Zilong Wang, and Jingbo Shang. Debug like a human: A large language model debugger
via verifying runtime execution step-by-step. arXiv preprint arXiv:2402.16906, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A RELATED WORKS

A.1 METHODS FOR CODEBASE-LEVEL UNDERSTANDING

Recent work on autonomous agents for codebase-level code understanding has focused on improv-
ing code navigation, reasoning, and generation through structured representations and planning.
Approaches leverage structural information of code for function-call graphs, module-dependency
graphs, and hierarchical code structures to provide models with core components of reposito-
ries (Wang et al., 2025; Liu et al., 2024). Another line of work integrate multi-step reasoning and
state update policies to enable more effective planning over complex tasks (Bairi et al., 2024; Gau-
tam et al., 2025). Additional methods combine various agents with multiple tools to streamline
codebase-level exploration and task solving (Luo et al., 2024; Zhang et al., 2023; Shrivastava et al.,
2023; Wang et al., 2024; Yang et al., 2024; Tang et al., 2023; aider, 2025; Microsoft, 2025; cursor,
2025).

B GISTIFY

B.1 METRICS

Execution Fidelity Execution fidelity measures whether the generated gistified file reproduces the
same functional behavior as the original codebase under the given command. This includes produc-
ing the same number of test passes or failures, as well as consistent outputs and error handling. If
the file’s behavior matches the original codebase, it is assigned 100%; otherwise it receives 0%.

Line Execution Rate The line execution rate measures the proportion of lines in the gistified file
that are actually executed when running it under the given command. We first analyze the gistified
file to identify which lines are executable (e.g., imports, function or class definitions) versus not-
executable (e.g., comments). Using a tracing function, we then determine which of the executable
lines are touched during execution. The line execution rate is computed as the fraction of executable
lines that are executed. A rate of 100% indicates that the gistified file is concise and contains
primarily necessary lines that are executed, while 0% indicates that non of the executable lines were
touched. When calculating line execution rate, we exclude the tests where the self-containment is
0% as the goal of line execution rate is to evaluate the model’s ability to construct concise, executable
file, not to penalize failures in generating runnable code.

We classify each line of code into three categories: executable, potentially executable, and non-
executable. Executable lines include imports and functional code that can be directly run. Potentially
executable lines are those that may or may not be executed during a run, such as the except block of a
try-except statement or placeholders for classes and function definitions. Non-executable lines, such
as comments, are those that have no effect on execution. To calculate the line execution rate, we first
classify each line in the gistified file and then consider only the executable lines. Non-executable
lines are ignored since their presence or absence does not affect execution outcomes, and potentially
executable lines are excluded because they are often ambiguous (e.g., placeholders) and cannot be
reliably judged as necessary or removable.

Line Existence Rate The line existence rate measures the proportion of lines in the gistified file
that are directly preserved from the original codebase. We first parse both the gistified file and the
original codebase into blocks, where each block corresponds to a class or function. Within classes,
functions are nested under their parent class, forming a hierarchy. Lines outside of any block (e.g.,
top-level statements) are treated as standalone units.

For each block in the gistified file, we locate the corresponding block in the original codebase using
its name and hierarchical position. If a matching block exists, we compare the two line by line to
determine which lines are preserved; whether the lines in the gistified block appear in the corre-
sponding original block. If no match is found, all lines in that block are treated as non-existent.
For lines outside any block, existence is determined by direct comparison with top-level lines in the
original codebase.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Preprocess

Require: Gistified file G, original repository R, module name M , execution information E
for lines in G

1: Preprocessing: Line Classification
2: for all lines ℓ in G do
3: assign type[ℓ] ∈ {comment,control flow,definition,executable,import,blank}
4: end for

Figure 3: Details of Line Execution and Line Existence (Part 1): Preprocessing

Details of Line Execution

Require: Preprocessed gistified file G, original repository R, module name M , execution
information E for lines in G

Ensure: Line execution rate rexec

1: Line Execution Rate
2: S ← {ℓ ∈ G | type[ℓ] ∈ {executable,import}}
3: Sexec ← {ℓ ∈ S | ℓ is marked as executed in E}
4: rexec ← |Sexec|

|S|

Figure 4: Details of Line Execution and Line Existence (Part 2): Line Execution

An existence rate of 100% indicates perfect preservation of the original code without hallucinated
content.

Normalization for Line-wise Code Matching Figure 3, 4, and 5 show the detailed procedure
to compute the line existence rate and line execution rate for a gistified file. The process begins
by classifying every line of the gistified file into one of the categories: comment, control flow,
definition, executable, import, or blank (Figure 3). This classification forms the basis for later
filtering and comparison steps.

When calculating the line execution rate, we consider only lines classified as executable or import,
because these are the lines whose execution status can be directly observed in the execution infor-
mation (Figure 4). We deliberately exclude control-flow and definition lines from this rate: although
they are crucial for the gistified file to behave like the original repository, whether such lines “exe-
cute” or not is often input- or parameter-dependent and therefore not reliably captured by a simple
per-line execution count. The validity of control-flow and definition structures will be instead be
indirectly assessed through our execution fidelity metric, which measures whether the gistified file
and the original repository exhibit consistent overall execution behavior. In this way, the line exe-
cution rate focuses on directly measurable execution coverage, while execution fidelity provides a
higher-level signal about behavioral correctness.

When calculating the line existence rate, both the gistified file and the original repository are parsed
into nested structural blocks such as functions or classes. Any lines that are not contained within a
structural block are treated separately as top-level lines (line 1-4 in Figure 5). For all cases, when
calculating the line existence rate, we do not consider comments or blanks. The algorithm then
examines each structural block in the gistified file and attempts to find the matching block from the
original repository. If no matching block is found, all lines in the block are considered missing (line
12-19 in Figure 5). Otherwise (line 20-40 in Figure 5), each line undergoes a series of normalization
steps such as fixing whitespace, indents, removing trailing comments, etc. The normalized line is
then evaluated according to its type. Based on the comparison, each line in the block is marked as
either existing or not. Once all lines have been processed, the line existence rate is computed by

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Details of Line Existence

Require: Preprocessed gistified file G, original repository R, module name M , execution information E for lines in G
Ensure: Line existence rate rexist

1: Structural Block Parsing
2: parse G and R into nested structural blocks (e.g., functions and classes)
3: BG ← set of blocks in G
4: Ltop ← lines in G not contained in any structural block

5: Initialization
6: for all lines ℓ in G do
7: exists[ℓ]← undefined
8: end for

9: Block-Level Existence Analysis
10: for all blocks b ∈ BG do
11: orig← best-matching block for b in R
12: if orig does not exist then
13: for all lines ℓ ∈ b do
14: if type[ℓ] /∈ {comment, blank} then
15: exists[ℓ]← false
16: end if
17: end for
18: continue to next block
19: end if
20: for all lines ℓ ∈ b do
21: if type[ℓ] ∈ {comment, blank} then
22: continue
23: end if
24: normalize ℓ: fix spacing, remove trailing comments, remove module prefixes, and split compound (“;”) statements
25: if type[ℓ] = control flow then
26: if ℓ is an if or elif statement then
27: set exists[ℓ] by comparing the conditional expression with corresponding if/elif statements in orig
28: else if ℓ is an else statement then
29: exists[ℓ]← true for else-body matches
30: end if
31: else if type[ℓ] = definition then
32: verify existence of corresponding decorators (if any) in orig
33: verify existence of each argument in the definition separately in orig
34: assign exists[ℓ] based on these matches
35: else if type[ℓ] = import then
36: decompose into individual imports and set exists[ℓ] by per-import matching
37: else
38: compare against lines in orig and assign exists[ℓ] accordingly
39: end if
40: end for
41: end for

42: Line Existence Rate
43: Lvalid ← {ℓ ∈ G | type[ℓ] /∈ {comment, blank}}
44: Lexist ← {ℓ ∈ Lvalid | exists[ℓ] = true}
45: rexist ←

|Lexist|
|Lvalid|

Figure 5: Details of Line Execution and Line Existence (Part 3): Line Existence

Table 4: Details of the GitHub repositories used as the test set.

Repository URL License

flask https://github.com/pallets/flask BSD 3-Clause
requests https://github.com/psf/requests Apache-2.0
pylint https://github.com/pylint-dev/pylint GPL 2.0

scikit-learn https://github.com/scikit-learn/scikit-learn BSD 3-Clause
seaborn https://github.com/mwaskom/seaborn BSD 3-Clause

debug-gym https://github.com/microsoft/debug-gym MIT

how many lines are marked as existing in the original repository over all lines except for comments
or blanks (line 43-45 in Figure 5).

15

https://github.com/pallets/flask
https://github.com/psf/requests
https://github.com/pylint-dev/pylint
https://github.com/scikit-learn/scikit-learn
https://github.com/mwaskom/seaborn
https://github.com/microsoft/debug-gym

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL SETTING

C.1 FRAMEWORK

We evaluate experiments with three agentic frameworks: mini-SWE-Agent (Yang et al., 2024),
SWE-Agent (Yang et al., 2024), and Copilot (Microsoft, 2025). Unless otherwise noted, all ex-
periments are run in the default GISTIFY setup, where the model is restricted from executing any
commands (e.g., python, pytest). SWE-Agent and Copilot Agent enable LLMs to interact with
a codebase through a suite of tools, including bash commands. These tools support capabilities such
as viewing, searching, editing, and creating files or directories. In addition, Copilot Agent extends
this functionality with browser integration, explicit reasoning, and API usage. mini-SWE-agent is
a simplified variant of SWE-Agent that only supports bash commands. Despite its minimal design,
it achieves strong performance on the SWE-Bench Verified benchmark (Jimenez et al., 2023). For
both mini-SWE-Agent and SWE-Agent, we set the maximum number of steps to 50 and run them
in the same Docker environment, using the current version of the repositories.

C.2 EXPERIMENTAL TEST SET CONSTRUCTION

Table 4 summarizes the repositories used in our evaluation. For each repository, we begin by ex-
tracting all available test cases, including parameterized ones. For experimental test runs, we group
tests4 that share the same base structure but differ only in parameterization, treating them as a single
test. During evaluation, however, we execute all parameterized instances and measure how many
are passed, thereby assessing execution fidelity. Finally, we filter out environment-dependent tests,
such as those requiring relative file paths or fixed module locations. In the main experiments, we
used 25 test instances for each of the six codebases, and the analysis was conducted using 50 test
instances from the pylint codebase.

C.3 PROMPT FOR GISTIFY

Figure 6 shows the prompt used in the main experiments.

C.4 PROVIDING SPECIFIC PARAMETERS TO COMMANDS TENDS TO MAKE MODELS
GENERATE PARAMETER-SPECIFIC GISTIFIED FILES

We observe that when specific command-line parameters are provided, models often adapt the gen-
erated gistified file to those parameters rather than producing a fully general solution. Examples of
this parameter-specific behavior are shown in Figures 7 and 8. Accordingly, in our experiments, we
group test cases based on the parameters provided to the command.

C.5 ADDITIONAL HYPERPARAMETERS

All experiments were executed with the same base set of hyperparameters. For framework specific
hyperparameters (e.g. cache management, system prompts, tools), we use the default configuration
made available by each framework, except for vscode-copilot-chat, where we have listed the tools
used in the experiments can be found in 5.

All the models used in the were configured with a maximum context window length of 128K. We
used a default temperature of 1 and performed a single run for each configuration.

D RESULTS

D.1 EXAMPLE OF GISTIFIED FILE

Figure 9 and Figure 10 show two gistified files on the same test case with different models; each
model succeed or fail in generating a gistified file with execution fidelity of 100% and 0%, re-

4We adopt this grouping design as we observe that models often overfit to specific values when parameters
are provided. See Appendix C.4 for more details.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Prompt for GISTIFY

I’ve uploaded a python code repository in the directory {working dir}.
There is an original test invocation (the command that reproduces behavior we want to
preserve): problem statement Your job: create a single file named ‘concise.py’ saved at
{working dir} that is **self-contained**, **minimal**, and **executable**, and when
used in place of the original test run reproduces the same runtime behavior and outputs.
Follow the instructions below when creating the file.

OUTPUT
- Produce one file only: ‘{working dir}/concise.py’.
- The assistant must return only the contents of ‘concise.py’ (no extra files, no analysis, no
commentary).

HIGH-LEVEL RULES for creating ‘concise.py’
1. Inline internal dependencies
* Copy into ‘concise.py’ every function, class, or top-level code from the files inside
{working dir} that is executed when running {problem statement}.
* Do not use ‘import’ statements for modules defined in {working dir}.
2. Remove unexecuted lines
* When copying lines in ‘concise.py’, keep only the lines that is actually executed when
running {problem statement}.
* Delete unused functions, classes, variables, if-else, imports, and unreachable branches.
* Ensure the file remains syntactically correct and minimal after removal.
3. Preserve original source lines
* Do not rewrite or reformat lines unless necessary to keep the files valid.
* Do not arbitrary generate new lines that do not exist in the original {working dir} files.
* You may adjust indentation, remove empty ‘else’‘ blocks, or adapt ‘try-except’ structures
only when required to preserve correctness.
4. Keep external imports
* Leave imports to external libraries, frameworks, or standard runtime libraries unchanged.
* Only remove or inline dependencies that come from {working dir}.
5. No shortcuts or cheating
* Do not stub, fake, or monkey-patch external modules.
* Do not reimplement or newly add third-party libraries.
* Do not hard-code outputs
* Do not replace test logic with simplified equivalents
6. Preserve test behavior
* The test function much remain unchanged, except for import adjustments needed to
reference inlined code.
* The output, exceptions, or exit codes must match the original run of {problem statement}.
7. Do not execute the code
* Do not run or simulate the program (e.g., with ‘pytest’, ‘python’, or any other tools)

Figure 6: Base Prompt Template for GISTIFY Task.

spectively. In the successful case (Figure 9), the generated file handles both parameters correctly,
achieving a 100% line existence rate, a 65.5% execution rate, and a test F1 score of 100. In contrast,
the failed case (Figure 10) cannot execute due to a missing import pytest statement. More-
over, the hallucinated test function yields a test F1 score of 0, and the file shows a much lower line
existence rate of 28%.

D.2 ERROR ANALYSIS OVER EXECUTION FAILURE

We categorize errors into four types:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

@pytest.mark.parametrize(
"value, expected",
(

("application/xml", ("application/xml", {})),
(

"application/json ; charset=utf-8",
("application/json", {"charset": "utf-8"}),

),
("text/plain", ("text/plain", {})),
...

)
def test__parse_content_type_header(value, expected):

assert _parse_content_type_header(value) == expected

(a) Original Test Case

def test__parse_content_type_header():
"""Test for the _parse_content_type_header function with application/
json and charset=utf-8"""
value = "application/json ; charset=utf-8"
expected = ("application/json", {"charset": "utf-8"})
assert _parse_content_type_header(value) == expected

(b) Gistified File

Figure 7: Example of a model generating a parameter-specific gistified file when given a command
that includes a parameter.

Import Error Figure 11 shows an example of Import Error. This occurs when the model incor-
rectly imports the original repository (e.g., import requests) instead of inlining the required
modules into the gistified file.

File Creation Failure This error arises when the model fails to generate the gistified file. This
can happen in two ways: (1) the model exceeds the maximum step limit or (2) the model completes
within the time limit but still fails to generate the new file using the tool.

Missing Test Function This occurs when the generated gistified file does not contain the modules
for specified test in the given command. It typically arises when the model fails to locate or copy
the modules necessary for the test into the gistified file. Conceptually, this corresponds to a 0%
line existence rate for the test function. Since the presence of the modules for the given test case is
essential for validation, we classify this as an error.

We also observe an interesting behavior of GPT-5 where it tends to insert name ==
" main " even though it is not provided in the original codebase and even though it is explic-
itly mentioned that we will test on the provided command and expect the same output. They often
remove the test function but move the lines in the test function under the " main " guard (e.g.,
Figure 20). We hypothesize that this may be because they are more familiar with codebases follow-
ing this pattern. We also observe cases where the model attempts to “cheat” the task by injecting a
mock, in-memory version of the original codebase package to satisfy import dependencies, rather
than copying the necessary code inline (e.g., Figure 22).

Pytest Runtime Error

This error refers to failures that occur during pytest execution, such as syntax errors or fixture-
related issues (e.g., Figure 12). Although the absence of test functions is also one of pytest failures,
we explicitly separate those cases by first verifying the presence of the required test functions and
running pytest only when they exist.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

@pytest.mark.parametrize(
"url, expected",
(

("http://192.168.0.1:5000/", True),
...
("http://google.com:5000/v1.0/", False),

),
)
def test_should_bypass_proxies_no_proxy(url, expected, monkeypatch):

"""Tests for function should_bypass_proxies to check if proxy
can be bypassed or not using the ’no_proxy’ argument
"""
no_proxy = "192.168.0.0/24,127.0.0.1,localhost.localdomain,172.16.1.1
"
Test ’no_proxy’ argument
assert should_bypass_proxies(url, no_proxy=no_proxy) == expected

(a) Original Test Case

def test_should_bypass_proxies_no_proxy(url, expected, monkeypatch):
"""Tests for function should_bypass_proxies to check if proxy
can be bypassed or not using the ’no_proxy’ argument
"""
no_proxy = "192.168.0.0/24,127.0.0.1,localhost.localdomain,172.16.1.1
"
Test ’no_proxy’ argument
assert should_bypass_proxies(url, no_proxy=no_proxy) == expected

(b) Gistified File

Figure 8: Example of a model generating a parameter-specific gistified file when given a command
that includes a parameter.

D.3 TOOLS AVAILABLE IN GITHUB COPILOT

Table 5 shows the list of available tools in Github Copilot.

D.4 CHANGE TEST

even high performing models and frameworks (especially GPT-5 and GPT-5-mini) seems to modify
test codes even though explicitly mentioned not to. We observed three common modification: (1)
removing the test function but move the lines in the test function under the " main " guard (e.g.,
Figure 20), (2) adding the " main " guard even though unnecessary (e.g., Figure 21), and (3)
mocking a minimal in-memory package to bypass missing dependencies and force the test to run
(e.g., Figure 22).

D.5 ADDITIONAL METRICS

Table 6 shows the result of additional evaluation metrics, including the Average Pytest Pass Rate,
which is defined as the average test pass rate over cases with at least one successful run, and the
Test F1 Score, which quantifies the line-wise F1 existence between the test functions in the original
codebase and those in the gistified fie.

GPT-5 shows a notably higher Average Pytest Pass Rate, indicating that among the ones they suc-
cessfully generate, they tend to pass all pytest. For the Test F1 Score, Claude-4 shows the highest
performance, aliging with the trend discussed in Section 4.4.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Licensed under the GPL: https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
For details: https://github.com/pylint-dev/pylint/blob/main/LICENSE
Copyright (c) https://github.com/pylint-dev/pylint/blob/main/CONTRIBUTORS.txt

from __future__ import annotations

import os
from collections.abc import Sequence
from typing import Any

import pytest

def discover_package_path(modulepath: str, source_roots: Sequence[str]) -> str:
"""Discover package path from one its modules and source roots."""
dirname = os.path.realpath(os.path.expanduser(modulepath))
if not os.path.isdir(dirname):

dirname = os.path.dirname(dirname)

Look for a source root that contains the module directory
for source_root in source_roots:

source_root = os.path.realpath(os.path.expanduser(source_root))
if os.path.commonpath([source_root, dirname]) in [dirname, source_root]:

return source_root

Fall back to legacy discovery by looking for __init__.py upwards as
it’s the only way given that source root was not found or was not provided
while True:

if not os.path.exists(os.path.join(dirname, "__init__.py")):
return dirname

old_dirname = dirname
dirname = os.path.dirname(dirname)
if old_dirname == dirname:

return os.getcwd()

@pytest.mark.parametrize(
"py_mod_base_name",
("__init__", "impl"),
ids=("explicit-namespace", "implicit-namespace"),

)
def test_discover_package_path_source_root_as_parent(

py_mod_base_name: str,
tmp_path: Any,

) -> None:
"""Test discover_package_path when source root is a parent of the module."""
Create this temporary structure:
/tmp_path/
project/
my-package/
__init__.py
project_dir = tmp_path / "project"
package_dir = project_dir / "mypackage"
package_dir.mkdir(parents=True)
(package_dir / f"{py_mod_base_name}.py").touch()

Test with project_dir as source root (parent of package)
result = discover_package_path(str(package_dir), [str(project_dir)])
assert result == str(project_dir)

Figure 9: Example of a successful gistified file: the code correctly handles all parameters, achieving
100% line–existence rate, a test F1 score of 100, and an execution rate of 65.5%.

E ANALYSIS

E.1 EFFECT OF VARIOUS STRATEGIES AND TOOLS

Prompt-Based Guidance We experiment with two variants of the prompt, Reading and Tracing,
where, on top of the base prompt (Figure 6), we add specific instructions of How to Operate
to encourage reasoning using a particular strategy. The addition prompt detail of Reading is in
Figure 14, and for Tracing is in Figure 15.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

import os
import sys
from contextlib import contextmanager
from pathlib import Path

def discover_package_path(path, _search_paths):
"""
Minimal version: accept a filesystem path (string or Path) and return a Path
to that directory. This matches the usage in the specific test where a
path to the tests data directory is passed.
"""
if isinstance(path, Path):

p = path
else:

p = Path(path)
if p.exists() and p.is_dir():

return p
raise ValueError("Cannot determine package path")

@contextmanager
def augmented_sys_path(paths):

"""
Minimal context manager: set sys.path to the parent directories of the
provided paths (in order), restoring the original sys.path on exit.
"""
original = list(sys.path)
try:

new = []
for p in paths:

pth = Path(p)
Ensure we use the parent directory (the "source root" in the test)
parent = pth.parent
new.append(str(parent))

sys.path[:] = new
yield

finally:
sys.path[:] = original

@pytest.mark.parametrize(
"py_mod_base_name",
("__init__"),
ids=("explicit-namespace"),

)
def test_discover_package_path_source_root_as_parent():

This test’s behavior is preserved: it uses discover_package_path on the
tests data directory and ensures augmented_sys_path sets sys.path to its
parent (the project/tests directory).
TEST_DATA_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "tests", "data"))
PROJECT_ROOT_DIR = os.path.abspath(os.path.join(TEST_DATA_DIR, ".."))
with augmented_sys_path([discover_package_path(TEST_DATA_DIR, [])]):

assert sys.path == [PROJECT_ROOT_DIR]

Figure 10: Example of failed gistified file: the code fails to import pytest. The model hallucinates
the function test discover package path source root as parent(), resulting in a
test F1 score of 0 and a low line–existence rate of 28.0%

Global Information via Tools We experiment with two tools that provide global information:
RepoGraph and Tracing. Details of the information provided to the model about each tool are
shown in Figure 16.

RepoGraph (Ouyang et al., 2024) is a plug-in module designed to help LLMs leverage the codebase-
level structure. It parses code at the line level, extracts relationships, and constructs a graph where
each node represents a line of code and each edge encodes dependencies between code definitions
and their references. Thereby, when given a specific module, it returns the relationship with other
modules as represented within the constructed graph.

Tracing is a tool that uses the tracer provided from the sys module to execute a command and track
which components of the codebase are accessed. When the model uses the tool with a specific com-
mand, the tool provides the model with the files and functions touched when running the command,
in the order in which they are encountered.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

@click.option("--all-methods", is_flag=True, help="Show HEAD and OPTIONS
methods.")

@with_appcontext
def routes_command(sort, all_methods):

"""Show all registered routes with endpoints and methods."""
from flask import current_app

rules = list(current_app.url_map.iter_rules())

if not rules:
click.echo("No routes were registered.")
return

Figure 11: Example of an Import Error: the gistified file imports from the original repository (e.g.,
from flask import current app).

T = t.TypeVar("T")

class ConfigAttribute(t.Generic[T]):
"""Makes an attribute forward to the config"""

def __init__(
self, name: str, get_converter: t.Callable[[t.Any], T] | None =

None
) -> None:

self.__name__ = name
self.get_converter = get_converter

(a) Original Test Case

class ConfigAttribute:
def __init__(

self, name: str, get_converter: t.Callable[[t.Any], T] | None =
None
) -> None:

self.__name__ = name
self.get_converter = get_converter

(b) Gistified File

Figure 12: Example of an Pytest Runtime Error: gistified file fails with error message E
TypeError: type ’ConfigAttribute’ is not subscriptable

Execution-Based Tools We experiment with two execution-based tools: the Bash tool and the
Edit and Execute tool.

The Bash tool is a basic utility that allows the model to invoke any necessary Bash commands. In
contrast, the Edit and Execute tool is designed specifically for working with the gistified file: it
enables the model to create or modify the gistified file and optionally execute it to verify changes.

The primary difference between the two tools is their scope of execution. The Bash tool can run
commands on both the original codebase and the gistified file, whereas the Edit and Execute tool is
restricted to executing only the gistified file.

We include an example of the behavior observed when adding the execution tool in Figure 17.
Common patterns we observe are: (1) the model first runs the provided command to identify which
files are accessed and to gather execution feedback; (2) after creating a file, it iteratively executes
it to verify that the generated gistified file behaves as expected; and (3) it repeatedly compares the
outputs of the gistified file and the original codebase under the given command. We also observe
that, due to this iterative checking process, enabling the execution tool often leads the model to
terminate because it reaches the maximum step limit.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Tool Description
copilot getNotebookSummary Returns the list of Notebook cells with id, types, line ranges, language, execution info,

and output mime types. Useful for getting cell IDs, execution order, and outputs.
edit notebook file Edit an existing Notebook file in the workspace. Supports inserting, deleting, or edit-

ing cells while preserving whitespace and indentation.
apply patch Edit text files using a special diff/patch format. Do not use for Jupyter notebooks.
semantic search Run a natural language search for relevant code or documentation comments in the

workspace.
create directory Create a new directory structure in the workspace (like mkdir -p).
create file Create a new file with specified content. Automatically creates directories if they do

not exist.
file search Search for files in the workspace by glob pattern (e.g., **/*.js). Returns matching

paths only.
test search For a source file, find the corresponding test file, and vice versa.
grep search Fast text or regex search in the workspace. Useful for exact string or regex queries.
run notebook cell Run a code cell in a notebook file and return the output. Avoid running Markdown

cells.
read notebook cell output Retrieve the latest output for a notebook cell, even if not run in the current session.
get search view results Returns results from the search view.
github repo Search a GitHub repository for relevant code snippets. Use only for external repos,

not local workspaces.
insert edit into file Insert or edit code in an existing file using minimal hints, avoiding duplication of

unchanged code.
install extension Install an extension in VS Code. Used only during workspace creation.
list dir List the contents of a directory (folders and files).
create new jupyter notebook Generate a new Jupyter Notebook (.ipynb) in VS Code.
create new workspace Set up a complete new project (scaffolding, dependencies, config, boilerplate).
get project setup info Provides project setup information for a VS Code workspace after workspace creation.
read file Read the contents of a file. Supports offsets and limits for large files.
open simple browser Preview or open a URL in VS Code’s Simple Browser.
test failure Include test failure information in the prompt.
think Think deeply about a request and log structured reasoning (no execution). Useful for

planning, debugging, and brainstorming.
get vscode api Retrieve comprehensive VS Code API documentation and references for extension

development.
run vscode command Run a VS Code command by ID with arguments. Used mainly in workspace creation.
fetch webpage Fetch main content from a webpage for summarization or analysis.

Table 5: Available tools and their descriptions. We note that many tools available to the agent are
never used.

Table 6: Average Pytest Pass Rate and Test F1 Score of different models using SWE-Agent on the
main table (Table 1) test dataset.

Models Execution Fidelity Average Pytest Pass Rate Test F1 Score

GPT-5-mini 30.9 49.2 47.9
GPT-5 30.7 88.8 45.0

Claude-3.7 40.7 61.9 55.9
Claude-4 56.7 72.2 60.0

Table 7: Analysis of tool usage during the GISTIFY task

Models Avg. tool usage view search execute other

GPT-5-mini 10.8 71.9 9.8 1.7 16.6
GPT-5 18.5 72.4 8.3 3.3 16.1

Claude-Sonnet-3.7 17.3 67.5 10.1 4.5 17.9
Claude-Sonnet-4 19.3 74.6 2.1 11.8 11.5

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

@pytest.mark.parametrize(
"value, expected",
(

(’foo="is a fish", bar="as well"’, {"foo": "is a fish", "bar": "
as well"}),

("key_without_value", {"key_without_value": None}),
),

)
def test_parse_dict_header(value, expected):

assert parse_dict_header(value) == expected

(a) Original Test Case

assert parse_dict_header(’foo="is a fish", bar="as well"’) == {"foo": "is
a fish", "bar": "as well"}

assert parse_dict_header("key_without_value") == {"key_without_value":
None}

(b) Gistified File

Figure 13: The test function test parse dict header is simplified: in the original, it used
@pytest.mark.parametrize to feed multiple input/expected pairs into one function; in the
gistified version, this is replaced with two direct assert statements, one per case.

Behavior Reading

How to Operate:
1. Examine the test file and the test function used for {problem statement}
2. Identify which module used by these functions are defined in {working dir}
3. Copy and inline the code from those modules into ‘concise.py’
4. Check these modules for any internal functions or classes and inline them as needed.
5. Repeat this process recursively until all internal dependencies are inlined.
6. Do not forget to copy and paste external imports.

Figure 14: Prompt for Reading strategy.

Trace Reasoning

How to Operate:
1. Predict the execution traces.
2. Follow the traces and inline (copy) only the necessary executed lines into ‘concise.py’
3. Repeat until all traces are fully handled.

Figure 15: Prompt for Tracing strategy.

Tool Information

* search repo (repograph): searches in the mentioned repository with a specific function or
class, and returns the def and ref relations for the search term.
* trace info (tracing): returns the trace log when running the ‘pytest’ command for the test
currently being debugged in the given repo

Figure 16: Details of the information provided to the model about each tool.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

{
"role": "assistant",
"tool_calls": {
"arguments": "{\"command\":\"cd /app && python -m pytest concise.

py::TestDeprecationOptions::test_new_names -v\"}",
"name": "bash"
}

},
{
"role": "tool",
"content": [
{
"type": "text",
"text": "OBSERVATION: test session starts ...AssertionError\n

...pylint: error: unrecognized arguments: /app/regrtest_data/empty.py
\n FAILED concise.py::TestDeprecationOptions::test_new_names ..."

}
},
...
(fix concise.py based on observation)
...
{
"role": "assistant",
"tool_calls": {
"arguments": "{\"command\":\"cd /app && python -m pytest tests/

config/test_argparse_config.py::TestDeprecationOptions::
test_new_names -v -s\"}",

"name": "bash"
}

},
...
{
"role": "assistant",
"content": "Excellent! The messages are identical. Let me verify my

implementation removes all unused imports and only includes what’s
needed:"
}

Figure 17: Trajectory when including execution tool. Models often iteratively execute the given
codebase or generated gistified file to ensure that it operates expectedly.

E.2 STATIC CODING LLM

Execution
Fidelity

Line
Existence

Line
Execution

0

20

40

60

80

Sc
or

es

static coding LLM
static coding LLM w/ COT
mini-SWE-Agent

SWE-Agent
Copilot

Figure 18: Performance over Static and
Dynamic Coding LLM

Figure 18 presents the performance of static and dynamic
coding LLM, including a static model augmented with a
single-turn, multi-step chain-of-thought prompt. To test
whether explicit reasoning and planning can mitigate the
limitations of static coding LLMs, which must output the
entire program in a single turn, we compare this CoT-
augmented static model against both the baseline static
model and the dynamic models.

Overall, we observe a trend similar to the baseline
static model without a chain-of-thought: adding chain-
of-thought yields only a modest improvement over the
static model without it, and it still performs worse than the
dynamic models, underscoring the importance of multi-
turn generation and tool use.

Relative to the baseline static model, the CoT-augmented
version slightly improves line-execution rates but slightly

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

decreases line-existence. We hypothesize that this is because the CoT procedure encourages the
model to focus on minimal set of necessary lines.

Details of the prompt used in this experiment are provided in Figure 19.

Static Coding LLM with CoT

THINK STEP BY STEP, and SHOW YOUR REASONING. You must follow a multi-step
solution process: (1) determine what code executes during test, (2) determine the minimal
set of lines required, (3) plan the final single-file layout, and finally (4) output the new
single-file code.

Figure 19: Prompt added to the static coding LLM to enable chain-of-thought reasoning. A similar
instruction is also included in the system prompt.

E.3 TOOL USAGE RATES

Table 7 shows the statistics on tool usage across models using SWE-bench. We group various tools
into four categories: view, search, execute, and other, which includes all remaining tools. For all
models, we compute usage rates both with and without execution enabled, and then average across
the two settings.

Among all models, Claude-4 exhibits the highest average tool usage for each test cases, followed by
GPT-5, Claude-3.7, and GPT-5-mini. In terms of specific functionality, Claude-4 shows the highest
rate of both view and execute tool usage, while Claude-3.7 shows the highest usage of the search
tool. To generate a high-quality gistified file, a model must effectively view relevant files and copy
only the necessary content. The strong performance of Claude-4 on line existence may be related to
its high usage of the view tool. Also, the execution tool tends to support correctness verification of
the generated file, which would lead to high execution fidelity.

F USER STUDY ON THE DEFINITION

We conduct a user study to assess whether our proposed metrics, line existence and line execution,
successfully capture the task’s intended notions of faithfulness and minimality, respectively.

We recruit three software/AI engineers as annotators and provide them with 15 test cases. Each test
case contains a pair of gistified files generated by different frameworks or different models. For each
pair, annotators were asked to choose the file that better satisfied the task’s criteria of minimality and
faithfulness. Annotators were given: (1) a description of how the gistified files were constructed,
(2) the definitions of minimality and faithfulness used in our task, (3) the two gistified files for
comparison, and (4) execution-tracing information to help them understand the flow of each test
run. Figure 23 shows the instructions provided to annotators.

To measure alignment between human judgment and our metrics, we computed Cohen’s kappa
correlation between the annotators’ selections and the rankings produced by line existence and line
execution. We observed an average Cohen’s kappa of 0.61 (0.52, 0.72, 0.58) for minimality with
line execution and 0.76 (0.81, 0.71, 0.77) for faithfulness with line existence, indicating that our
metrics correspond well with human judgments of minimality and faithfulness.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

class TestGetNetrcAuth:
def test_works(self, tmp_path, monkeypatch):

netrc_path = tmp_path / ".netrc"
monkeypatch.setenv("NETRC", str(netrc_path))
with open(netrc_path, "w") as f:

f.write("machine example.com login aaaa password bbbb\n")
auth = get_netrc_auth("http://example.com/thing")
assert auth == ("aaaa", "bbbb")

(a) Original Test Case

if __name__ == "__main__":
Reproduce tests/test_utils.py::TestGetNetrcAuth::test_works
with tempfile.TemporaryDirectory() as tmpdir:

netrc_path = os.path.join(tmpdir, ".netrc")
os.environ["NETRC"] = netrc_path
with open(netrc_path, "w") as f:

f.write("machine example.com login aaaa password bbbb\n")
auth = get_netrc_auth("http://example.com/thing")
assert auth == ("aaaa", "bbbb")

(b) Gistified File

Figure 20: Test Modification Case 1: The test TestGetNetrcAuth.test works is converted
from a pytest unit test into a standalone script.

Test class and method - preserved unchanged
class TestArgparseOptionsProviderMixin:

"""Tests for the argparse implementation of OptionsProviderMixIn.

The logger checker is used as an example checker for this
implementation.
"""

@staticmethod
def test_logger_without_options() -> None:

"""Check that we raise messages when we do not supply any options
."""

with pytest.raises(SystemExit) as ex:
Run([LOGGING_TEST])

assert ex.value.code == 2

Main execution for pytest
if __name__ == "__main__":

test = TestArgparseOptionsProviderMixin()
test.test_logger_without_options()

Figure 21: Test Modification Case 2: Adding unnecessary " main " guard

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Create a minimal in-memory ’requests’ package with required submodules.
requests_mod = types.ModuleType(’requests’)
requests_mod.__path__ = []
compat_mod = types.ModuleType(’requests.compat’)
structures_mod = types.ModuleType(’requests.structures’)

Populate compat with only what’s needed by this test suite import paths
.

compat_mod.Mapping = Mapping
compat_mod.MutableMapping = MutableMapping
compat_mod.urljoin = urljoin

Populate structures with the classes.
structures_mod.CaseInsensitiveDict = CaseInsensitiveDict
structures_mod.LookupDict = LookupDict

Wire the package hierarchy and register in sys.modules.
requests_mod.compat = compat_mod
requests_mod.structures = structures_mod
sys.modules[’requests’] = requests_mod
sys.modules[’requests.compat’] = compat_mod
sys.modules[’requests.structures’] = structures_mod

if __name__ == ’__main__’:
import pytest
raise SystemExit(pytest.main([’-q’, ’tests/test_structures.py::
TestCaseInsensitiveDict::test_list’]))

Figure 22: Test Modification Case 3: Manually mocking a minimal in-memory package to bypass
missing dependencies and force the test to run.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

User Study Instruction

You are given two code files produced by a coding LLM. Both files attempt to complete
the same task: create a single, minimal, self-contained file that reproduces a specific
functionality of a codebase.

This is the prompt we provide to the model to describe the task:

[Figure C.3]

Your task:
Evaluate the two files and determine which one is more minimal and more faithful
according to the criteria below.

1. A file is “minimal” if:
- It contains only the code truly required to reproduce the runtime behavior.
- Unused functions, classes, variables, or imports should be removed.
- The evaluator must understand the code well enough to identify which lines are actually
executed and are essential. However, we do not penalize minor extra lines that exist solely
because of formatting or structure constraints (e.g., keeping an unused method such as
try-except because the format requires it).

2. A file is “faithful” if:
- No hallucinated code is introduced. Every piece of code must come directly from the
original codebase.
- The structure of the code must stay consistent with the original. For example, moving a
method that originally lived inside a class to the top level is considered incorrect.
- Simple changes such as incorrect indentation or broken multi-line statements are not pe-
nalized as long as the intended semantics are still clear. However, structural changes that
alter the meaning of the code are penalized. For example: If the original code defines a
class with inheritance, such as class ABC(DE):, but the generated file changes it to class
ABC:, then this is considered incorrect, because removing the parent class changes the ac-
tual operation of the code.

Figure 23: Instruction for User Study

29

	Introduction
	Related Works
	Codebase-level Understanding Benchmark
	Runtime Execution

	Gistify
	Task Definition
	Evaluation Protocol
	Metrics

	Experiments
	Setting
	Results
	Error Analysis Over Execution Failure
	Importance of Faithfully Preserving the Test Function

	Analysis
	Effect of Various Strategies and Tools
	Tests with High Coverage are Harder to Gistify
	Static Coding LLM

	Discussion and Conclusion
	Related Works
	Methods for Codebase-Level Understanding

	Gistify
	Metrics

	Experimental Setting
	Framework
	Experimental Test Set Construction
	Prompt for Gistify
	Providing specific parameters to commands tends to make models generate parameter-specific gistified files
	Additional Hyperparameters

	Results
	Example of gistified file
	Error analysis over execution failure
	Tools Available in GitHub Copilot
	Change Test
	Additional Metrics

	Analysis
	Effect of various strategies and tools
	Static Coding LLM
	Tool Usage Rates

	User Study on the Definition

