Under review as a conference paper at ICLR 2026

GISTIFY! CODEBASE-LEVEL UNDERSTANDING
VIA RUNTIME EXECUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

As coding agents are increasingly deployed in large codebases, the need to au-
tomatically design challenging, codebase-level evaluation is central. We pro-
pose GISTIFY, a task where a coding LLM must create a single, minimal, self-
contained file that can reproduce a specific functionality of a codebase. The cod-
ing LLM is given full access to a codebase along with a specific entrypoint (e.g.,
a python command), and the generated file must replicate the output of the same
command ran under the full codebase, while containing only the essential compo-
nents necessary to execute the provided command. Success on GISTIFY requires
both structural understanding of the codebase, accurate modeling of its execution
flow as well as the ability to produce potentially large code patches. Our findings
show that current state-of-the-art models struggle to reliably solve GISTIFY tasks,
especially ones with long executions traces.

1 INTRODUCTION

Large language models (LLMs) are increasingly being used in code-related tasks, powering appli-
cations in debugging (Yuan et al.}2025) and agentic code generation (Yang et al.,2024; |[Liang et al.,
2025). Thus, the ability to handle isolated snippets and reasoning across entire codebases, includ-
ing complex file and module relationships, is becoming increasingly essential. Yet, the evaluation
toolkit for assessing such capabilities has lagged behind. Recent evidence shows that widely-adopted
repository-level benchmarks such as SWE-bench (Jimenez et al., [2024) and RepoBench (Liu et al.,
2023b) still do not require full reasoning over the whole execution and could be solved through
heuristic shortcuts or retrieval of localized patches (Aleithan et al.l 2024} Liang et al.| |2025). More-
over, because many of these datasets rely on GitHub issues or pull requests for construction, they
are not easily generalizable to arbitrary repositories. At the same time, coding agents are increas-
ingly deployed in large, real-world codebases, highlighting the need for automatically constructed,
broadly applicable, and more challenging repository-level evaluation.

To fill this gap, we introduce the GISTIFY task, which is deliberately inspired by a common prac-
tice of how developers navigate and understand unfamiliar repositories. Rather than reading files
in isolation, they start from a concrete execution point such as test command or entry script often
mentioned in READMEs. Then, they iteratively reason over the runtime behavior such as identi-
fying dependencies, following control paths to uncover the codebase’s structure and functionality.
GISTIFY formalizes this practice by requiring an (agentic) coding model to extract the gist of a given
command, i.e. to generate a single, self-contained, minimal, and executable gistified file that faith-
fully reproduces the runtime behavior of a given command as when using the original full codebase
(Figure[T). In addition to serving as a challenging coding task, such gistified repositories might give
human coders a better understanding of a specific functionality of a given codebase, or even a way
to export the single functionality of interest without inheriting heavy dependencies.

To perform well in GISTIFY, an agent should generate a single gistified file that satisfies four key
requirements: it should be self-contained, including all necessary components from the codebase
so that it can be executed independently; it should ensure execution fidelity, producing the same
outputs as the original codebase under the given command; it should satisfy minimality, retaining
only the essential code required for execution without redundant or extraneous lines; and it should
guarantee faithful preservation, avoiding hallucinated or fabricated code and relying solely on con-
tent from the original codebase. To assess model performance, we introduce evaluation metrics that

Under review as a conference paper at ICLR 2026

i
i
1| compact.py T }
1 auth.py A .
1| from http.cookies import Morsel | gistified_file.py
] K def basic_auth(username): |
i .
o 1 from http.cookies import Morsel
: \ L\ ‘
1| test_requests.py \ N\ ' def basic_auth(username):
i
: from requests.compact import Morsel adapters.py .%A"«, } "
1| from adapters import HTTPAdapter from authimport _basic_at ! closs BaseAdapter:
i
1| class TestMorsel: class BaseAdapter: |
! morsel = Morsel .
I b dEf‘a"th(wm' ' | dlass HTTPAdapter(BaseAdapter):
' sasic_auth(self.name) i
i -]
! class HTTPAdapter(BaseAdapter): .
; def (): def _init_(self): | class TestMorsel:
| s=TestMorsel() i morsel = Morsel()
1| smount(HTTPAdapter(0, 0)) self.auth() |
]
] —
| | Gist ify deftest_cookie():
! 1 s =TestMorsel()
e e e e e e s.mount("http://", HTTPAdapter(0, 0)
]
i
]

Figure 1: The GISTIFY task: given a codebase and a command of entrypoint, the goal is to generate
a minimal, self-contained gistified code file that faithfully reproduces the original runtime behavior
using code from the given codebase.

align with these requirements, providing a systematic way to measure codebase-level understand-
ing. GISTIFY requires agents to follow the execution path through the codebase without bypassing
modules, i.e., understanding how relevant objects are modified along the way, and identifying which
classes or functions can be simplified or removed. Since even moderately sized codebases exceed
the context window of current LLMs, success also requires effective search capabilities.

The advantages that GISTIFY brings are multiple: first, it provides direct insight into the ability
of models to reason at the codebase level with an understanding of runtime execution, rather than
on isolated code snippets. Second, it is lightweight and broadly applicable: it requires only the
repository and a test suite (or any other collection of entrypoints with a well-defined expected output)
and does not require issue logs or pull requests. This allows automatic construction of challenging
tasks for arbitrary repositories, including private ones. Finally, gistified files themselves are valuable
outputs: by compressing a specific feature of a large codebase into a minimal file, they can be applied
to various downstream tasks, including automated debugging or error localization.

We conduct experiments across a variety of frameworks (mini-SWE-agent, SWE-agent, and Copi-
lot) and models (GPT-5-mini, GPT-5, Claude-3.7-Sonnet, and Claude-Sonnet-4) and uncover several
interesting findings. First, even widely used, high-performing frameworks and models struggle to
create a successful gistified file, especially when execution traces are long and have high coverage
on the repositories. Second, faithfully reproducing the test function in the generated file is a strong
indicator of gistified performance, as it serves as the starting step for reasoning about execution
traces. Third, enabling execution tools yields small but consistent performance gains, and addition-
ally providing global code context and runtime information further boosts performance. Finally,
agentic models benefit from dynamically deciding what to read and refine their reasoning through
multi-step trajectories, outperforming static approaches.

2 RELATED WORKS

2.1 CODEBASE-LEVEL UNDERSTANDING BENCHMARK

Previous work has introduced a variety of benchmarks to evaluate LLMs on codebase-level code
understandin These generally fall into three categories: question answering, code synthesis,
and mapping natural language specifications to the entire codebase. Several benchmarks introduce
codebase-level question-answering (Strich et al.,2024;|L1 et al.|[2024b; Sahu et al.,|2024; (Chen et al.}
2025} Hu et al., |2024; [Fu et al.| [2025). In these settings, the model must correctly answer questions
that require an understanding of the codebase. The questions are drawn from various sources, in-
cluding real-world GitHub issues and queries resembling those asked of tools like Copilot. Another
line of work evaluates whether models can synthesize code by leveraging information distributed

'See Appendix for related works regarding “Methods for Codebase-level Understanding”

Under review as a conference paper at ICLR 2026

across multiple files in the codebase (Zhang et al.| |2023; [Liu et al., [2023b} Ding et al., 2023} [Li
et al.,2024a;|Yu et al., 2024). These benchmarks include tasks such as retrieval-augmented comple-
tion, cross-file refactoring, and more specialized settings such as sketch-based coding or codebase
evolution. Moreover, there is a line of benchmark that maps natural language specifications to entire
code repositories, leveraging hierarchical or multi-stage representations to capture inter-file relation-
ships and maintain consistency across a codebase (Tang et al.,[2023}; Zan et al.,|2024; N1 et al.||2025).
Our work tackles a more complex setting, where models must reason over full execution traces and
examine multiple files, making the task challenging, and even widely used agentic models struggle
alongside static ones.

2.2 RUNTIME EXECUTION

Various works have introduced benchmarks to evaluate LLMs’ ability to reason over code execution
at runtime (Gu et al., 2024;|Chen et al.| 2024} Xie et al.,|2025; Beger & Duttal 2025} Hu et al.| [2025).
These benchmarks typically test whether models can predict execution traces or intermediate states
such as variable values, control flow, or data dependencies—given code and inputs, or alternatively,
infer inputs from code and outputs. Some benchmarks further extend this paradigm by leveraging
execution traces to construct new problems through program composition, thereby varying complex-
ity in a principled way. Beyond evaluation, execution traces have also been incorporated into training
pipelines to strengthen models’ runtime reasoning abilities (Liu et al., 2023a; |Ding et al., [2024)). By
augmenting pre-training and fine-tuning with execution states, paths, and coverage signals, these
methods help models capture program dynamics and generalize to execution-aware tasks. At infer-
ence time, several frameworks leverage runtime feedback to iteratively guide models in debugging
or completing partial programs, thereby improving performance on execution-driven tasks (Zhong
et al.| 2024} Xue et al.,|2024). In this work, we extend prior approaches by going beyond reasoning
over execution traces to also reformulate programs; the model not only tracks execution but also
identifies how to compress and organize code into a concise, coherent file. We further show that
this capability serves as a useful tool at inference time, helping models better structure and complete
execution-driven tasks.

3 GISTIFY

3.1 TASK DEFINITION

As shown in Figure |1} when given a codebase and a command as input, the coding agent must
generate a single gistified file that reproduces the runtime behavior of the original codebase under
the given command. Specifically, the gistified file must satisfy the following requirements.

Self-Contained: All necessary components from the given codebase must be included so that the
gistified file can be executed standalone, i.e. without relying on the codebase. The model must iden-
tify all relevant modules and dependencies, demonstrating understanding of inter-file relationships.

Execution Fidelity: Executing the gistified file must replicate the original codebase’s runtime be-
havior, ensuring the model captures the dynamic execution, not just static code patterns.

Minimalism: Only the code essential to reproducing the runtime behavior should be preserved,
with unused functions and objects pruned. This requires fine-grained understanding of the code to
identify which lines are actually executed and essential for the task.

Grounded Preservation: No hallucinated code may be introduced. All content must be derived
directly from the original codebase. This ensures the task evaluates the model’s understanding of
the codebase, rather than its ability to generate arbitrary code that happens to satisfy the command.

3.2 EVALUATION PROTOCOL

There are two inputs to a GISTIFY task: i) a docker image containing the target codebase, for
consistent evaluation; ii) an entrypoint, such as a pytest command on one of the tests in the codebase.
Test cases are existing entrypoints one can easily leverage, but broadly, any command that the user
would want to use to run a functionality of the existing codebase is allowed.

Under review as a conference paper at ICLR 2026

All models are prompted to generate a gistified file for the entrypoint. We can programmatically
verify whether the expected behavior is preserved when the ground-truth test is run within this setup.
Here, we focus on comparing outputs of test commands. Once the model generates the gistified file,
to ensure that execution for evaluation is based on the original test, we integrate the test code from
the original codebase to the gistified file and execute it. This ensures that the model does not cheat
by modifying the test.

3.3 METRICS

Once a gistified file is generated, we evaluate it using the given execution command. The evaluation
considers three dimensions, aligned with the task requirements, to provide a comprehensive measure
of a model’s ability to reason over an entire codebase and understand its execution behavior. See
Appendix [B.T] for more details.

Execution Fidelity is a binary metric where 1 means the gistified file runs successfully and produces
the same output as the original codebase when executed under the given command; otherwise, it is
0. Failures include cases where the file is not runnable or yields different outputs. The comparison
checks for tests pass/fail consistency and stdout/stderr matching.

Formally, let ¢ denote the given command, C a given codebase, and G a gistified file. Define
runs(c, C) as an indicator of whether ¢ executes without crashing when running over C, and out(c, C)
returns the set of outputs and error traces from running ¢ with C. Then, execution fidelity is defined
as

1[runs(c, G) Aout(c,G) = out(c,C)], (D
where 1[-] is the indicator function.

Line Execution Rate measures minimality by calculating the fraction of lines in the gistified file that
are actually executed under the given command. A 100% execution rate means all lines are essential,
indicating a focused and concise file. This metric is only computed for files that run successfully,
since the execution trace is required to determine which lines are run.

Formally, let L. (G) be a list of executable lines (i.e., no comments) in G. Then, the Line Execution
rate is defined as

1
- 1[¢ is executed]. ”
|Lexee ()] eeu%(g) | |

Line Existence Rate measures the proportion of code in the gistified file that is directly preserved
from the original codebase. Specifically, lines of code are grouped into blocks (classes, functions,
or top-level units), and matches are computed block by block while respecting the code hierarchy.
This helps avoiding false matches from common lines appearing in unrelated parts of the codebase.
To ensure robustness, we normalize across common variations such as indentation, multi-line state-
ments, and imports. A 100% existence rate indicates full fidelity to the original codebase without
hallucination.

Formally, let Bg and B be the sets of blocks in the gistified file and the original codebase, respec-
tively. For a block b, let £(b) represent its set of lines. Then, the existence rate is defined as

]l{g S Ec } 3)
Zbezgg\ (b) Ib;;g g(b

where 1{¢ € L¢(b)} = 0, if no matching block exists in Be.

4 EXPERIMENTS

4.1 SETTING

We conduct experiments using three widely adopted open-sourced frameworks. SWE-Agent (Yang
et al.| [2024) and GitHub Copilot (Microsoft, |2025) provide a rich scaffolding to LLM-based agents,
enabling them autonomously perform software engineering tasks. This includes a set of tools for

Under review as a conference paper at ICLR 2026

Table 1: Average Performance over three agentic frameworks with four models. We evaluated over
25 tests over 5 repositories. Execution Fidelity is shown as w/o exec, and w execution tools. Line
Existence and Execution are averaged across the two settings for clarity.

Framework Model Execution Fidelity Line Existence ~ Line Execution
(wo exec / w. exec)

GPT-5-mini 17.1/24.0 449 61.2
mini-SWE-agent GPT-5 51.0/54.0 56.8 83.1
Claude-3.7 38.7/43.3 66.0 69.2
Claude-4 54.0/55.3 67.0 75.7
GPT-5-mini 3097453 479 74.8
SWE-agent GPT-5 30.7/46.0 483 81.7
Claude-3.7 40.7/46.0 66.8 69.9
Claude-4 56.7/57.3 66.3 729
GPT-5-mini 58.0/55.3 62.4 77.8
Copilot GPT-5 58.7/60.7 66.9 81.4
Claude-3.7 43.3/56.0 63.0 74.4
Claude-4 58.7/61.3 69.6 80.3

creating and editing code files, navigating repositories, and executing tests. These frameworks also
offer the LLM controllable cache management, and LLMs follow the standard tool-calling format.
We also experiment with Mini-SWE-Agent (Yang et al., 2024)), a lightweight framework where
LLMs only have access to a bash terminal to solve the task. Commands are parsed from the agent
output and executed directly. As the task objective is for the model to use reasoning over the exe-
cution flow rather than ability of tool usage, for the agentic models, we exclude the execution tools
(“python”, “pytest”) in the default setting where execution is disabled. For all three frameworks,
unless specified otherwise, hyperparameters and configurations (e.g. system prompts, cache man-
agement, tools) are kept to the default values. Please see Appendix

Our evaluation spans four leading LLM variants: GPT-5 (OpenAl, 2025a), GPT-5-mini (OpenAl,
2025b), Claude-3.7-Sonnet (Anthropic, 2025a), and Claude-Sonnet-4 (Anthropic} [2025b), offering
different cost / performance tradeoffs. For ease or reading, we will refer to the last two models as
Claude-3.7 and Claude-4. We use a 128K token limit for all models. All experiments ran are capped
at 50 steps, after which whatever is generated at this moment in the gistifed file is submitted for
evaluation.

On the data side, we experiment over with widely used GitHub repositories which are present in
SWE-Bench (requests, pylint, flask, scikit-learn, seaborn). We also explore an
additional repository, debug-gym (Yuan et al., 2025 This library is relatively new and impor-
tantly does not overlap with SWE-Bench. We extract and filter test sets for each repository. Namely,
we remove tests whose execution is dependent on the test’s file location. For the main experiment,
we evaluate over 25 tests for each of the 5 repositories. More details regarding the evaluation setup
and prompt can be found in the Appendix [C}

4.2 RESULTS

We begin by giving an overview of the main results presented in Table[I] We report results for our
main evaluation protocol, where the model does not have access to execution tools (e.g. “python”
and “pytest” commands), as well as the alternative. Examples of gistified files are in Appendix [D.1]

Claude-4 shows the most robust performance. Across all frameworks and configurations. Claude-
4 consistently provides the best performance, reaching a 54-60% average solve rate. Moreover, the
model shows the highest values of Line Existence, meaning that it was the most successful model
at faithfully extracting code from the original codebase. We note however that GPT-5 produces the
most concise outputs, with Line Execution rate markedly higher than other models.

>We provide link to all the GitHub repositories used in this work in TableE}

Under review as a conference paper at ICLR 2026

Table 2: Average error rates (%) of different failure reasons when running SWE-agent across models.
Error cases are categorized into four groups. The numbers in parentheses indicate the number of
errors for each category.

Models ‘ Import Error File Creation Failure ~ Missing Test Function ~ Pytest Runtime Error
GPT-5-mini 2.1(2) 11.3(11) 76.3 (72) 10.3 (10)
GPT-5 524 10.4 (8) 77.9 (60) 6.5 (5)
Claude-Sonnet-3.7 20.0 (10) 20.0 (10) 2.0(1) 58.0 (29)
Claude-Sonnet-4 32.5(13) 10.0 (4) 7.5 (3) 50.0 (20)

Frontier models (GPT-5 / Claude-4) are strong bash users. When looking at performance on
mini-swe-agent, where the models only have access to a bash terminal to solve the task, both models
perform relatively well, solving over half of the tasks. Importantly, this is not the case for smaller
and previous-generation models.

Execution tools are not a silver bullet. Overall, when comparing performance with and without
execution in Table [T} we note that in most cases we observe only a small performance gain. We
expected that current coding LLMs could better leverage execution tools: indeed, using tools specif-
ically for runtime execution analysis, such as a debugger, could significantly help solving a gistify
task. However, we are not seeing this behavior emerge, even from frontier models. We observed a
sharp decrease in performance for the GPT-5 model when evaluated on SWE-Agent without execu-
tion tools. We performed a visual inspection and noticed formatting issues when rewriting the input
test function. A detailled discussion can be found in Appendix [D.2]

Small(er) models perform well with scaffolding. We note that GPT-5-mini’s performance varies
significantly across different evaluation settings, from 17% in a bash-only setup to 58% when pro-
vided with a large inventory of tools from the Copilot framework (see Appendix for a full list).
We note that this performance increase is also reflected in the quality of the generated gist, where
we see a notable increase in line existence and line execution.

4.3 ERROR ANALYSIS OVER EXECUTION FAILURE

We proceed with an analysis of the underlying failure causes, in order to understand which aspect
of the GISTIFY task different models struggle with. Table 2] shows that each model tends to fail for
different reasons. See Appendix for detailed examples of each error case.

Import Error occurs when the model incorrectly imports the original codebase (e.g., import
requests) instead of inlining the required modules into the gistified file. We note that this error
occurs even as coding LLMs are explicitly prompted not to import the specific packages in question.
Perhaps surprisingly, the best performing model, Claude-4, commits this seemingly innocuous error
the most out of all four models.

File Creation Failure errors arise when the model fails to generate the gistified file. This can happen
in two ways: the model exceeds the maximum step limit, or the model terminates the task without
any file being generated.

Missing Test Function errors occur when the generated gistified file does not contain the function
implementation for the test specified in the given command, or implements the test in a different
structure. This can happen when the model strips out the content of the test and executes it outside
of the pytest wrapper, under e.g. 1f _name__ == _main__:. Claude models tend to avoid this
mistake, while this is the main source of error for GPT-5 models, specifically under the SWE-agent
framework. Importantly, we observe that this error does not happen at random, but rather alongside
other execution errors; we attempted to add the missing test function, and it in most cases the test
fails to run, i.e. it results in a runtime error. This aligns with the analysis in the next section,
showing a strong correlation between the task’s success and the fidelity between the original and the
generated tests.

Under review as a conference paper at ICLR 2026

Table 3: Analysis of the effect of different strategies and tools (global information, execution) on
the GISTIFY task. We evaluate SWE-Agent with Claude 4 using 50 test instances from the pylint
codebase. Max Steps Reached (%) indicates the percentage of runs that terminated because the
maximum step limit was reached.

. . - Max Steps

Ablation Type Execution Fidelity — Line Existence Line Execution Reached (%)
Base GISTIFY 42,0 65.0 583 | 14.6
Prompted Strategies Tracing 48.0 754 62.8 0.0
p Bles Reading 50.0 776 62.6 39
RepoGraph 52.0 76.1 60.1 6.0
Global Info (Tool) Tracing 56.0 75.1 65.1 0.0
E tion (Tool) Bash 52.0 73.1 64.2 16.0
recution (100 Edit And Execute 56.0 743 64.2 10.0

Pytest Runtime Error occurs when the execution of the generated file fails, either due to a runtime
error or because the gistified output does not match the output from the original codebase. The
results indicate this is the most common cause of error for the best performing model, Claude-4.

4.4 IMPORTANCE OF FAITHFULLY PRESERVING THE TEST FUNCTION

We observe that models frequently modify the test function, despite being provided with explicit
instructions to copy without modification, except for unavoidable adjustments (e.g., removing im-
ports). Again, to ensure consistent evaluation, we replace the test function in the gistified file with
the original version before evaluation.

To measure such modifications, we define the Test Fy Score as the line-level overlap between the
test code of the original file and the gistified version. High Test F} Score indicates that the model
has successfully identified and copied the correct test function to the gistified file. We observe
a strong correlation between Test F; Score and execution fidelity (correlation=0.76, p=0.01); test
instances with higher F; scores are substantially more likely to produce a successful gistified file.
We hypothesize that this arises because in the GISTIFY task, models often reason backwards from
the test file, thereby if the model fails from identifying or copying the test function, the subsequent
reasoning process is highly likely to fail.

To better understand the impact of the first step—searching, viewing, and copying the test func-
tion—we conduct an ablation study where we remove potential failure at this stage. Specifically, we
explicitly provide the correct test function body and signature in the prompt, so the model no longer
needs to locate or copy it. This isolates the effect of errors in identifying the test function. In this set-
ting, we observe that Test F; Score improves highly from the base GISTIFY 68.4 to 85.3, along with
execution fidelity (from 42.0% to 60.0%). This suggests that accurately handling the test function is
a critical first step to do the GISTIFY task successfully. Detailed results are in Appendix

5 ANALYSIS

In this section, we analyze how different strategies and tools affect performance on the GISTIFY
task, identify factors that contribute to its difficulty, and experiment with the use of a static coding
LLM to gain a deeper understanding of the task. For all experiments, we evaluate 50 test instances
drawn from the pylint codebase, a setting where the model generally exhibited modest performance.
We use SWE-Agent paired with Claude-Sonnet-4.

5.1 EFFECT OF VARIOUS STRATEGIES AND TOOLS

In this section, we analyze how different strategies and sources of information affect model perfor-
mance. We begin with the simplest approach, modifying the prompt to guide the model (Prompt-
Based Guidance), and then move to more explicit approaches that rely on additional tools: providing
global context (Global Information via Tools) or feedback from code execution (Execution-Based

Under review as a conference paper at ICLR 2026

Tools). Detailed descriptions of prompts and tools, along with examples, are provided in the Ap-

pendix

Prompt-Based Guidance We first begin with the simplest approach: modifying the prompt to
provide explicit task guidance. We experiment over two settings. In the former, we prompt the
model to perform step-by-step reasoning, by first predicting the execution traces and then going
over them, adding relevant code snippets along the way (tracing). In the latter, a similar approach is
used, with explicit instructions on how to recursively determine the execution traces: starting from
the test, identify the relevant components and read the files where they are defined, and repeat until
the end (reading). As shown in Table [3] we observe that adding such strategies tends to enhance
overall metrics, giving both better execution fidelity and more faithful code extractions, as measured
by line existence.

Global Information via Tools Building on the above observation, we next assess the effect of
explicitly providing global context through external tools, rather than predicting it. We examine
two tools: (1) RepoGraph (Ouyang et al.| [2024), which constructs a graph of the codebase where
each node represents a line of code and edges capture connections between lines, enabling graph-
based search over the entire codebase; and (2) a Tracing tool that exposes gold execution traces
obtained from running the given test command. Results in Table [3| show that both tools improve
performance, with the Tracing tool yielding the largest gains. This finding suggests that access to
the global context, especially the gold tracing information, substantially strengthens the model’s
ability to perform runtime reasoning, as it can easily identify which file to look at.

Execution-Based Tools In Section{4.2] we saw that enabling execution tools resulted in small but
consistent gains overall. In this section, we examine whether having unrestricted access to a bash
terminal is really necessary to observe these gains, or whether simply having access to execution logs
of the generated file is enough. For this experiment we compare Bash access with a simple method
that executes and prints the output of the gistified file whenever it is edited (Edit And Execute). No
other execution tools are available to the agent, including runtime information about the ground truth
test. The results are surprising: having access to fewer tools actually increases performance. Indeed,
we note that when give access to a full set of bash commands, the coding LLM tends to explore more
tools, increasing the overall trajectory length, and potentially reaching the maximum step limit.

5.2 TESTS WITH HIGH COVERAGE ARE HARDER TO GISTIFY

In this section, we investigate what properties makes a given test hard to GISTIFY. We hypothesize
that tests generating a longer and more complex execution trace would entail a harder task for the
coding LLM. To this end, we investigate how two axes to measure a runtime execution’s difficulty
affect performance: the length of trace, as measured by the number of function calls executed, and
the number of unique files touched by the tracing procedure. While these metrics correlate with
one another, they will differ when, for example, a function is looped over many times or when the
location of the relevant functions is in a single file versus across multiple files.

For this experiment, we use again the same configuration as prior analysis, namely Claude-4 with 50
tests sampled from the pylint codebase. In Figure[2a] we see a clear correlation between the difficulty
of a given GISTIFY task, and how complex the execution traces are, according to both metrics
considered. We leverage this insight to create a GISTIFY-hard subset, where we select the 30 most
difficult examples according to each. We end up with 57 unique datapoints (30 from pylint, 28 from
sklearn, 6 from seaborn). On this subset, performance drops to 21%, as compared to 43%, the
baseline weighted performance average following the same distribution over repositories. Overall,
this selection criteria offers a promising direction for designing challenging evaluation scenarios
with GISTIFY.

5.3 StATIiC CODING LLM

In this section, we experiment over how models perform in a static setup, where they have no access
to tools and cannot iterate on the generated solution. As such static coding LLMs do not have
tools, they cannot search or view files dynamically. Thereby, to measure a possible upper bound for
non-agentic approaches, we provide as input all files that were accessed during the original program

Under review as a conference paper at ICLR 2026

Performance according to Exec. Trace Difficulty 777 static coding LLM SWE-Agent
100 \ —e— Trace Length mini-SW?;ent Copilot
- Number of Files Covered
2 8o 80 é
2 1y
£ 7
?‘; 60 " 60 Z é
s S |z 7 %
2 S0l 7
) 40 & a0 % é %
[J]
& % 7 7
20 20 / / /
7 7 7
07'\ Q‘D«\ Qg)\ 0gz,\ ,\,9\ / % /
[\ 10 [[} d 0
QO Q- O \\R Q" Execution Line Line
Binned Test Quantiles according to difficulty metric Fidelity Existence Execution

(a) Difficulty of the Gistify task is measured as a func- (b) Performance of a static coding LLM and vari-
tion of the execution trace difficulty of the underlying ous agentic coding LLMs (mini-SWE-Agent, SWE-
test. Agnet, Copilot).

execution (gold files). Also, as they cannot iterate over multiple steps, they have to output everything
at once and are therefore restricted by the context window of the LLM. Since solving the GISTIFY
task involves touching multiple files, we observe in many cases that the inputs exceed the model’s
maximum sequence length. Thus, we sample a subset of test examples where the combined content
fits within the 128K token limit of the LLM. As shown in Figure[2b] agentic models outperform static
ones even when the latter receive all relevant files. This suggests that selecting files dynamically
over multiple iterations is more effective than providing everything at once, which can overwhelm
the model’}| However, interestingly, the static coding LLM setup achieves the highest Line Existence
score. This is likely because the model can copy lines directly from input, yet it performs worse on
Line Execution and Execution Fidelity, suggesting that models do not have a good understanding of
the codebase, often copying lines that are incomplete or incorrect.

6 DISCUSSION AND CONCLUSION

In this paper, we introduced the GISTIFY task in which a coding LLM extracts a specific funtionality
of a codebase into a single, self-contained file. Beyond serving as a standalone evaluation task that
is easily applicable to arbitrary repositories with a test suite, the gistified file itself also opens sev-
eral promising directions for research and practical applications. Large codebases often overwhelm
automated agents due to their complex dependencies, and they especially struggle when tasked with
fixing bugs that span multiple files (Ganhotra,|2025)). In such scenarios, a gistified file would greatly
reduce this challenge, and enable a more efficient reasoning about the codebase without navigating
through unrelated code. In other words, this file could be leveraged in other downstream tasks such
as code refactoring or debugging, or even as a way to extract and share a minimal implementation of
a specific codebase functionality. Lastly, a current limitation of the results presented is the reliance
on an existing test suite for a given repository. We believe that the GISTIFY task can be extended
to arbitrary entrypoints, although issues stemming from non-deterministic execution will need to be
carefully addressed. We defer a proper exploration of this to future work.

In summary, with coding LLMs increasingly being deployed in real-world software development,
the need for automatically constructing evaluation setups that require codebase-level understanding
of arbitrary repositories is growing. Through extensive experiments across a range of models and
frameworks, we found that state-of-the-art LLMs still face challenges on the GISTIFY task, espe-
cially when faced with long, complex execution traces. Our analysis shows that incorporating global
code context or execution-aware tools improves performance, and agentic coding LLM tend to han-
dle the task more effectively by reasoning about which files to inspect using various tools. Beyond
serving as a benchmark, the gistified files themselves are valuable artifacts. They distill the essential
functionality of complex systems into a compact, executable form, making them easier to inspect
and understand. Such files could support a range of practical applications, including debugging,
refactoring, and code review, which we leave this for future work.

3See Appendixfor detailed statistics on the usage of various tools.

Under review as a conference paper at ICLR 2026

REFERENCES

aider. Ai pair programming in your terminal. 2025. URL https://github.com/Aider-AI/
aider?tab=readme-ov-file.

Reem Aleithan, Haoran Xue, Mohammad Mahdi Mohajer, Elijah Nnorom, Gias Uddin, and Song
Wang. Swe-bench+: Enhanced coding benchmark for llms. arXiv preprint arXiv:2410.06992,
2024.

Anthropic. Claude sonnet 3.7. https://www.anthropic.com/news/
claude-3-7-sonnet, 2025a. Hybrid reasoning model; accessed: 2025-09-25.

Anthropic. Claude sonnet 4. https://www.anthropic.com/claude/sonnet, 2025b.
Improved version over Sonnet 3.7; accessed: 2025-09-25.

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Vageesh D C, Arun Iyer, Suresh Parthasarathy,
Sriram Rajamani, Balasubramanyan Ashok, and Shashank Shet. Codeplan: Repository-level
coding using llms and planning. Proceedings of the ACM on Software Engineering, 1(FSE):
675-698, 2024.

Claas Beger and Saikat Dutta. Coconut: Structural code understanding does not fall out of a tree. In
2025 IEEE/ACM International Workshop on Large Language Models for Code (LLM4Code), pp.
128-136. IEEE, 2025.

Jialiang Chen, Kaifa Zhao, Jie Liu, Chao Peng, Jierui Liu, Hang Zhu, Pengfei Gao, Ping Yang, and
Shuiguang Deng. Coreqa: uncovering potentials of language models in code repository question
answering. arXiv preprint arXiv:2501.03447, 2025.

Junkai Chen, Zhiyuan Pan, Xing Hu, Zhenhao Li, Ge Li, and Xin Xia. Reasoning runtime behavior
of a program with 1lm: How far are we? arXiv preprint arXiv:2403.16437, 2024.

cursor. cursor. 2025. URL https://cursor.com/.

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Krishna
Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, et al. Crosscodeeval: A diverse
and multilingual benchmark for cross-file code completion. Advances in Neural Information
Processing Systems, 36:46701-46723, 2023.

Yangruibo Ding, Benjamin Steenhoek, Kexin Pei, Gail Kaiser, Wei Le, and Baishakhi Ray. Traced:
Execution-aware pre-training for source code. In Proceedings of the 46th IEEE/ACM Interna-
tional Conference on Software Engineering, pp. 1-12, 2024.

Lingyue Fu, Hao Guan, Bolun Zhang, Haowei Yuan, Yaoming Zhu, Jun Xu, Zongyu Wang, Lin Qiu,
Xunliang Cai, Xuezhi Cao, et al. Corecodebench: A configurable multi-scenario repository-level
benchmark. arXiv preprint arXiv:2507.05281, 2025.

Jatin Ganhotra. Do swe-agents solve multi-file issues like humans? a deep dive into swe-bench ver-
ified, January 2025. URL https://jatinganhotra.dev/blog/swe-agents/2025/
01/05/swe-bench-mutliple-files/. Blog post.

Dhruv Gautam, Spandan Garg, Jinu Jang, Neel Sundaresan, and Roshanak Zilouchian Moghaddam.
Refactorbench: Evaluating stateful reasoning in language agents through code. arXiv preprint
arXiv:2503.07832, 2025.

Alex Gu, Baptiste Roziere, Hugh James Leather, Armando Solar-Lezama, Gabriel Synnaeve, and
Sida Wang. CRUXEval: A benchmark for code reasoning, understanding and execution. In
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scar-
lett, and Felix Berkenkamp (eds.), Proceedings of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine Learning Research, pp. 16568—-16621. PMLR,
21-27 Jul 2024.

Ruida Hu, Chao Peng, Jingyi Ren, Bo Jiang, Xiangxin Meng, Qinyun Wu, Pengfei Gao, Xinchen

Wang, and Cuiyun Gao. Coderepoqa: A large-scale benchmark for software engineering question
answering. arXiv preprint arXiv:2412.14764, 2024.

10

https://github.com/Aider-AI/aider?tab=readme-ov-file
https://github.com/Aider-AI/aider?tab=readme-ov-file
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/claude/sonnet
https://cursor.com/
https://jatinganhotra.dev/blog/swe-agents/2025/01/05/swe-bench-mutliple-files/
https://jatinganhotra.dev/blog/swe-agents/2025/01/05/swe-bench-mutliple-files/

Under review as a conference paper at ICLR 2026

Wenhao Hu, Jinhao Duan, Chunchen Wei, Li Zhang, Yue Zhang, and Kaidi Xu. Dynacode: A
dynamic complexity-aware code benchmark for evaluating large language models in code gener-
ation. arXiv preprint arXiv:2503.10452, 2025.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024.

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. Evocodebench: An evolving code gen-
eration benchmark aligned with real-world code repositories. arXiv preprint arXiv:2404.00599,
2024a.

Linyi Li, Shijie Geng, Zhenwen Li, Yibo He, Hao Yu, Ziyue Hua, Guanghan Ning, Siwei Wang,
Tao Xie, and Hongxia Yang. Infibench: Evaluating the question-answering capabilities of code
large language models. Advances in Neural Information Processing Systems, 37:128668—-128698,
2024b.

Shanchao Liang, Spandan Garg, and Roshanak Zilouchian Moghaddam. The swe-bench illusion:
When state-of-the-art Ilms remember instead of reason. arXiv preprint arXiv:2506.12286, 2025.

Chenxiao Liu, Shuai Lu, Weizhu Chen, Daxin Jiang, Alexey Svyatkovskiy, Shengyu Fu, Neel Sun-
daresan, and Nan Duan. Code execution with pre-trained language models. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational
Linguistics: ACL 2023, pp. 4984-4999, Toronto, Canada, July 2023a. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.findings-acl.308. URL https://aclanthology.
org/2023.findings—acl.308/.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. arXiv preprint arXiv:2306.03091, 2023b.

Xiangyan Liu, Bo Lan, Zhiyuan Hu, Yang Liu, Zhicheng Zhang, Fei Wang, Michael Shieh, and
Wenmeng Zhou. Codexgraph: Bridging large language models and code repositories via code
graph databases. arXiv preprint arXiv:2408.03910, 2024.

Qinyu Luo, Yining Ye, Shihao Liang, Zhong Zhang, Yujia Qin, Yaxi Lu, Yesai Wu, Xin Cong,
Yankai Lin, Yingli Zhang, et al. Repoagent: An llm-powered open-source framework for
repository-level code documentation generation. arXiv preprint arXiv:2402.16667, 2024.

Microsoft. Github copilot in vs code. 2025. URL https://code.visualstudio.com/
docs/copilot/overview.

Ziyi Ni, Huacan Wang, Shuo Zhang, Shuo Lu, Ziyang He, Wang You, Zhenheng Tang, Yuntao Du,
Bill Sun, Hongzhang Liu, et al. Gittaskbench: A benchmark for code agents solving real-world
tasks through code repository leveraging. arXiv preprint arXiv:2508.18993, 2025.

OpenAl. Gpt-5 technical overview. https://platform.openai.com/docs, 2025a. Ac-
cessed: 2025-09-25.

OpenAl. Gpt-5 mini. https://platform.openai.com/docs/models/gpt—5-mini}
2025b. Compact variant of GPT-5; accessed: 2025-09-25.

Siru Ouyang, Wenhao Yu, Kaixin Ma, Zilin Xiao, Zhihan Zhang, Mengzhao Jia, Jiawei Han, Hong-
ming Zhang, and Dong Yu. Repograph: Enhancing ai software engineering with repository-level
code graph. arXiv preprint arXiv:2410.14684, 2024.

Surya Prakash Sahu, Madhurima Mandal, Shikhar Bharadwaj, Aditya Kanade, Petros Maniatis, and
Shirish Shevade. Codequeries: A dataset of semantic queries over code. In Proceedings of the
17th Innovations in Software Engineering Conference, pp. 1-11, 2024.

11

https://aclanthology.org/2023.findings-acl.308/
https://aclanthology.org/2023.findings-acl.308/
https://code.visualstudio.com/docs/copilot/overview
https://code.visualstudio.com/docs/copilot/overview
https://platform.openai.com/docs
https://platform.openai.com/docs/models/gpt-5-mini

Under review as a conference paper at ICLR 2026

Disha Shrivastava, Denis Kocetkov, Harm De Vries, Dzmitry Bahdanau, and Torsten Scholak. Re-
pofusion: Training code models to understand your repository. arXiv preprint arXiv:2306.10998,
2023.

Jan Strich, Florian Schneider, Irina Nikishina, and Chris Biemann. On improving repository-level
code QA for large language models. In Xiyan Fu and Eve Fleisig (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research
Workshop), pp. 209-244, Bangkok, Thailand, August 2024. Association for Computational Lin-
guistics. ISBN 979-8-89176-097-4. doi: 10.18653/v1/2024.acl-srw.28.

Xiangru Tang, Yuliang Liu, Zefan Cai, Yanjun Shao, Junjie Lu, Yichi Zhang, Zexuan Deng, Helan
Hu, Kaikai An, Ruijun Huang, et al. Ml-bench: Evaluating large language models and agents for
machine learning tasks on repository-level code. arXiv preprint arXiv:2311.09835, 2023.

Huacan Wang, Ziyi Ni, Shuo Zhang, Shuo Lu, Sen Hu, Ziyang He, Chen Hu, Jiaye Lin, Yifu Guo,
Yuntao Du, et al. Repomaster: Autonomous exploration and understanding of github repositories
for complex task solving. arXiv preprint arXiv:2505.21577, 2025.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024.

Danning Xie, Mingwei Zheng, Xuwei Liu, Jiannan Wang, Chengpeng Wang, Lin Tan, and Xiangyu
Zhang. Core: Benchmarking llms code reasoning capabilities through static analysis tasks. arXiv
preprint arXiv:2507.05269, 2025.

Zhipeng Xue, Zhipeng Gao, Shaohua Wang, Xing Hu, Xin Xia, and Shanping Li. Selfpico: Self-
guided partial code execution with llms. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 1389-1401, 2024.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R Narasimhan,
and Ofir Press. SWE-agent: Agent-computer interfaces enable automated software engineering.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianx-
iang Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative
pre-trained models. In Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering, pp. 1-12, 2024.

Xingdi Yuan, Morgane M Moss, Charbel El Feghali, Chinmay Singh, Darya Moldavskaya, Drew
MacPhee, Lucas Caccia, Matheus Pereira, Minseon Kim, Alessandro Sordoni, et al. debug-gym:
A text-based environment for interactive debugging. arXiv preprint arXiv:2503.21557, 2025.

Daoguang Zan, Ailun Yu, Wei Liu, Dong Chen, Bo Shen, Wei Li, Yafen Yao, Yongshun Gong,
Xiaolin Chen, Bei Guan, et al. Codes: Natural language to code repository via multi-layer sketch.
arXiv preprint arXiv:2403.16443, 2024.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval
and generation. arXiv preprint arXiv:2303.12570, 2023.

Li Zhong, Zilong Wang, and Jingbo Shang. Debug like a human: A large language model debugger
via verifying runtime execution step-by-step. arXiv preprint arXiv:2402.16906, 2024.

12

Under review as a conference paper at ICLR 2026

A RELATED WORKS

A.1 METHODS FOR CODEBASE-LEVEL UNDERSTANDING

Recent work on autonomous agents for codebase-level code understanding has focused on improv-
ing code navigation, reasoning, and generation through structured representations and planning.
Approaches leverage structural information of code for function-call graphs, module-dependency
graphs, and hierarchical code structures to provide models with core components of reposito-
ries (Wang et al., 2025} Liu et al., 2024). Another line of work integrate multi-step reasoning and
state update policies to enable more effective planning over complex tasks (Bairi et al., [2024; |Gau-
tam et al., 2025). Additional methods combine various agents with multiple tools to streamline
codebase-level exploration and task solving (Luo et al.| 2024; Zhang et al., 2023} |Shrivastava et al.,
2023} [Wang et al., [2024; [Yang et al., |[2024; [Tang et al., 2023} jaider, 2025} Microsoft, [2025} |cursor,
2025).

B GISTIFY

B.1 METRICS

Execution Fidelity Execution fidelity measures whether the generated gistified file reproduces the
same functional behavior as the original codebase under the given command. This includes produc-
ing the same number of test passes or failures, as well as consistent outputs and error handling. If
the file’s behavior matches the original codebase, it is assigned 100%; otherwise it receives 0%.

Line Execution Rate The line execution rate measures the proportion of lines in the gistified file
that are actually executed when running it under the given command. We first analyze the gistified
file to identify which lines are executable (e.g., imports, function or class definitions) versus not-
executable (e.g., comments). Using a tracing function, we then determine which of the executable
lines are touched during execution. The line execution rate is computed as the fraction of executable
lines that are executed. A rate of 100% indicates that the gistified file is concise and contains
primarily necessary lines that are executed, while 0% indicates that non of the executable lines were
touched. When calculating line execution rate, we exclude the tests where the self-containment is
0% as the goal of line execution rate is to evaluate the model’s ability to construct concise, executable
file, not to penalize failures in generating runnable code.

We classify each line of code into three categories: executable, potentially executable, and non-
executable. Executable lines include imports and functional code that can be directly run. Potentially
executable lines are those that may or may not be executed during a run, such as the except block of a
try-except statement or placeholders for classes and function definitions. Non-executable lines, such
as comments, are those that have no effect on execution. To calculate the line execution rate, we first
classify each line in the gistified file and then consider only the executable lines. Non-executable
lines are ignored since their presence or absence does not affect execution outcomes, and potentially
executable lines are excluded because they are often ambiguous (e.g., placeholders) and cannot be
reliably judged as necessary or removable.

Line Existence Rate The line existence rate measures the proportion of lines in the gistified file
that are directly preserved from the original codebase. We first parse both the gistified file and the
original codebase into blocks, where each block corresponds to a class or function. Within classes,
functions are nested under their parent class, forming a hierarchy. Lines outside of any block (e.g.,
top-level statements) are treated as standalone units.

For each block in the gistified file, we locate the corresponding block in the original codebase using
its name and hierarchical position. If a matching block exists, we compare the two line by line to
determine which lines are preserved; whether the lines in the gistified block appear in the corre-
sponding original block. If no match is found, all lines in that block are treated as non-existent.
For lines outside any block, existence is determined by direct comparison with top-level lines in the
original codebase.

13

Under review as a conference paper at ICLR 2026

Preprocess

Require: Gistified file G, original repository R, module name M, execution information £
for lines in G

: Preprocessing: Line Classification
: for all lines ¢ in G do

assign type[l] € {comment, control_flow,definition,executable, impox
end for

2 5 W B

Figure 3: Details of Line Execution and Line Existence (Part 1): Preprocessing

Details of Line Execution

Require: Preprocessed gistified file GG, original repository R, module name M, execution
information E for lines in G
Ensure: Line execution rate 7exec

1: Line Execution Rate
2: S+ {£ € G |type[f] € {executable, import}}
3: Sexec < {€ € S| £is marked as executed in E'}

Sex
4 Toxee + ezzel

Figure 4: Details of Line Execution and Line Existence (Part 2): Line Execution

An existence rate of 100% indicates perfect preservation of the original code without hallucinated
content.

Normalization for Line-wise Code Matching Figure [3| [4] and [5] show the detailed procedure
to compute the line existence rate and line execution rate for a gistified file. The process begins
by classifying every line of the gistified file into one of the categories: comment, control flow,
definition, executable, import, or blank (Figure E[) This classification forms the basis for later
filtering and comparison steps.

When calculating the line execution rate, we consider only lines classified as executable or import,
because these are the lines whose execution status can be directly observed in the execution infor-
mation (Figure[d). We deliberately exclude control-flow and definition lines from this rate: although
they are crucial for the gistified file to behave like the original repository, whether such lines “exe-
cute” or not is often input- or parameter-dependent and therefore not reliably captured by a simple
per-line execution count. The validity of control-flow and definition structures will be instead be
indirectly assessed through our execution fidelity metric, which measures whether the gistified file
and the original repository exhibit consistent overall execution behavior. In this way, the line exe-
cution rate focuses on directly measurable execution coverage, while execution fidelity provides a
higher-level signal about behavioral correctness.

When calculating the line existence rate, both the gistified file and the original repository are parsed
into nested structural blocks such as functions or classes. Any lines that are not contained within a
structural block are treated separately as top-level lines (line 1-4 in Figure [5). For all cases, when
calculating the line existence rate, we do not consider comments or blanks. The algorithm then
examines each structural block in the gistified file and attempts to find the matching block from the
original repository. If no matching block is found, all lines in the block are considered missing (line
12-19 in Figure5). Otherwise (line 20-40 in Figure[5), each line undergoes a series of normalization
steps such as fixing whitespace, indents, removing trailing comments, etc. The normalized line is
then evaluated according to its type. Based on the comparison, each line in the block is marked as
either existing or not. Once all lines have been processed, the line existence rate is computed by

14

t,blank}

Under review as a conference paper at ICLR 2026

Details of Line Existence

Require: Preprocessed gistified file G, original repository R, module name M, execution information E for lines in G
Ensure: Line existence rate rexist

. Structural Block Parsing

. parse G and R into nested structural blocks (e.g., functions and classes)
B <+ setof blocks in G

! L¢op < lines in G not contained in any structural block

. Initialization

. for all lines £ in G do
exists[¢] < undefined
. end for

9: Block-Level Existence Analysis
10: for all blocks b € B¢ do
1 orig < best-matching block for b in R

12: if orig does not exist then

13: for all lines £ € b do

14: if type[¢] ¢ {comment,blank} then

15: exists[l] < false

16: end if

17: end for

18: continue to next block

19: endif

20: foralllines £ € bdo

21: if type[f] € {comment,blank} then

22: continue

23: end if

24 normalize £: fix spacing, remove trailing comments, remove module prefixes, and split compound (“;”) statements
25: if type[¢] = control_flow then

26: if £isan i f or elif statement then

27: set exists[€] by comparing the conditional expression with corresponding i f/elif statements in orig
28: else if £ is an e1se statement then

29: exists[f] < true for else-body matches

30: end if

31: else if type[¢] = definition then

32: verify existence of corresponding decorators (if any) in orig

33: verify existence of each argument in the definition separately in orig

34: assign exists[¢] based on these matches

35: else if type[¢] = import then

36: decompose into individual imports and set exists[¢] by per-import matching
37: else

38: compare against lines in orig and assign exists[¢] accordingly

39: end if

40: end for

41: end for

42: Line Existence Rate
43: Lyaiia + {£ € G | type[f] ¢ {comment,blank}}
44: Lexist < {€ € Lyania | exists[f] = true}

. | Lexist |
45: Texist € TZvatid]

Figure 5: Details of Line Execution and Line Existence (Part 3): Line Existence

Table 4: Details of the GitHub repositories used as the test set.

Repository ‘ URL License
flask https://github.com/pallets/flask BSD 3-Clause
requests https://github.com/psf/requests Apache-2.0
pylint https://github.com/pylint-dev/pylint GPL 2.0
scikit-learn | https://github.com/scikit-learn/scikit-learn BSD 3-Clause
seaborn https://github.com/mwaskom/seaborn BSD 3-Clause
debug-gym https://github.com/microsoft/debug-gym MIT

how many lines are marked as existing in the original repository over all lines except for comments
or blanks (line 43-45 in Figure [3).

15

https://github.com/pallets/flask
https://github.com/psf/requests
https://github.com/pylint-dev/pylint
https://github.com/scikit-learn/scikit-learn
https://github.com/mwaskom/seaborn
https://github.com/microsoft/debug-gym

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL SETTING

C.1 FRAMEWORK

We evaluate experiments with three agentic frameworks: mini-SWE-Agent (Yang et al., 2024),
SWE-Agent (Yang et al.l 2024), and Copilot (Microsoft, [2025). Unless otherwise noted, all ex-
periments are run in the default GISTIFY setup, where the model is restricted from executing any
commands (e.g., python, pytest). SWE-Agent and Copilot Agent enable LLMs to interact with
a codebase through a suite of tools, including bash commands. These tools support capabilities such
as viewing, searching, editing, and creating files or directories. In addition, Copilot Agent extends
this functionality with browser integration, explicit reasoning, and API usage. mini-SWE-agent is
a simplified variant of SWE-Agent that only supports bash commands. Despite its minimal design,
it achieves strong performance on the SWE-Bench Verified benchmark (Jimenez et al., 2023). For
both mini-SWE-Agent and SWE-Agent, we set the maximum number of steps to 50 and run them
in the same Docker environment, using the current version of the repositories.

C.2 EXPERIMENTAL TEST SET CONSTRUCTION

Table] summarizes the repositories used in our evaluation. For each repository, we begin by ex-
tracting all available test cases, including parameterized ones. For experimental test runs, we group
tests{ﬂ that share the same base structure but differ only in parameterization, treating them as a single
test. During evaluation, however, we execute all parameterized instances and measure how many
are passed, thereby assessing execution fidelity. Finally, we filter out environment-dependent tests,
such as those requiring relative file paths or fixed module locations. In the main experiments, we
used 25 test instances for each of the six codebases, and the analysis was conducted using 50 test
instances from the pylint codebase.

C.3 PROMPT FOR GISTIFY

Figure[6] shows the prompt used in the main experiments.

C.4 PROVIDING SPECIFIC PARAMETERS TO COMMANDS TENDS TO MAKE MODELS
GENERATE PARAMETER-SPECIFIC GISTIFIED FILES

We observe that when specific command-line parameters are provided, models often adapt the gen-
erated gistified file to those parameters rather than producing a fully general solution. Examples of
this parameter-specific behavior are shown in Figures [7]and[8] Accordingly, in our experiments, we
group test cases based on the parameters provided to the command.

C.5 ADDITIONAL HYPERPARAMETERS

All experiments were executed with the same base set of hyperparameters. For framework specific
hyperparameters (e.g. cache management, system prompts, tools), we use the default configuration
made available by each framework, except for vscode-copilot-chat, where we have listed the tools
used in the experiments can be found in[5]

All the models used in the were configured with a maximum context window length of 128K. We
used a default temperature of 1 and performed a single run for each configuration.

D RESULTS

D.1 EXAMPLE OF GISTIFIED FILE

Figure [9] and Figure [I0] show two gistified files on the same test case with different models; each
model succeed or fail in generating a gistified file with execution fidelity of 100% and 0%, re-

“We adopt this grouping design as we observe that models often overfit to specific values when parameters
are provided. See Appendix [C.4]for more details.

16

Under review as a conference paper at ICLR 2026

Prompt for GISTIFY

I've uploaded a python code repository in the directory {working dir}.

There is an original test invocation (the command that reproduces behavior we want to
preserve): problem statement Your job: create a single file named ‘concise.py’ saved at
{working dir} that is **self-contained**, **minimal**, and **executable**, and when
used in place of the original test run reproduces the same runtime behavior and outputs.
Follow the instructions below when creating the file.

OUTPUT

- Produce one file only: ‘{working dir}/concise.py’.

- The assistant must return only the contents of ‘concise.py’ (no extra files, no analysis, no
commentary).

HIGH-LEVEL RULES for creating ‘concise.py’

1. Inline internal dependencies

* Copy into ‘concise.py’ every function, class, or top-level code from the files inside
{working dir} that is executed when running {problem statement}.

* Do not use ‘import” statements for modules defined in {working dir}.

2. Remove unexecuted lines

* When copying lines in ‘concise.py’, keep only the lines that is actually executed when
running {problem statement}.

* Delete unused functions, classes, variables, if-else, imports, and unreachable branches.

* Ensure the file remains syntactically correct and minimal after removal.

3. Preserve original source lines

* Do not rewrite or reformat lines unless necessary to keep the files valid.

* Do not arbitrary generate new lines that do not exist in the original {working dir} files.

* You may adjust indentation, remove empty ‘else’‘ blocks, or adapt ‘try-except’ structures
only when required to preserve correctness.

4. Keep external imports

* Leave imports to external libraries, frameworks, or standard runtime libraries unchanged.
* Only remove or inline dependencies that come from {working dir}.

5. No shortcuts or cheating

* Do not stub, fake, or monkey-patch external modules.

* Do not reimplement or newly add third-party libraries.

* Do not hard-code outputs

* Do not replace test logic with simplified equivalents

6. Preserve test behavior

* The test function much remain unchanged, except for import adjustments needed to
reference inlined code.

* The output, exceptions, or exit codes must match the original run of {problem statement}.
7. Do not execute the code

* Do not run or simulate the program (e.g., with ‘pytest’, ‘python’, or any other tools)

Figure 6: Base Prompt Template for GISTIFY Task.

spectively. In the successful case (Figure [J), the generated file handles both parameters correctly,
achieving a 100% line existence rate, a 65.5% execution rate, and a test F; score of 100. In contrast,
the failed case (Figure @) cannot execute due to a missing import pytest statement. More-
over, the hallucinated test function yields a test £} score of 0, and the file shows a much lower line
existence rate of 28%.

D.2 ERROR ANALYSIS OVER EXECUTION FAILURE

We categorize errors into four types:

17

Under review as a conference paper at ICLR 2026

@pytest.mark.parametrize (
"value, expected",
(
("application/xml", ("application/xml", {})),
(
"application/Jjson ; charset=utf-8",
("application/json", {"charset": "utf-8"}),
)
("text/plain", ("text/plain", {})),

)
def test__parse_content_type_header (value, expected):
assert _parse_content_type_header (value) == expected

(a) Original Test Case

def test_ _parse_content_type_header () :
"""Test for the _parse_content_type_header function with application/
json and charset=utf-8"""

value = "application/json ; charset=utf-8"
expected = ("application/json", {"charset": "utf-8"})
assert _parse_content_type_header (value) == expected

(b) Gistified File

Figure 7: Example of a model generating a parameter-specific gistified file when given a command
that includes a parameter.

Import Error Figure|l1|shows an example of Import Error. This occurs when the model incor-
rectly imports the original repository (e.g., import requests) instead of inlining the required
modules into the gistified file.

File Creation Failure This error arises when the model fails to generate the gistified file. This
can happen in two ways: (1) the model exceeds the maximum step limit or (2) the model completes
within the time limit but still fails to generate the new file using the tool.

Missing Test Function This occurs when the generated gistified file does not contain the modules
for specified test in the given command. It typically arises when the model fails to locate or copy
the modules necessary for the test into the gistified file. Conceptually, this corresponds to a 0%
line existence rate for the test function. Since the presence of the modules for the given test case is
essential for validation, we classify this as an error.

We also observe an interesting behavior of GPT-5 where it tends to insert __name_. ==
"__main__" even though it is not provided in the original codebase and even though it is explic-
itly mentioned that we will test on the provided command and expect the same output. They often
remove the test function but move the lines in the test function under the "__main__" guard (e.g.,
Figure[20). We hypothesize that this may be because they are more familiar with codebases follow-
ing this pattern. We also observe cases where the model attempts to “cheat” the task by injecting a
mock, in-memory version of the original codebase package to satisfy import dependencies, rather
than copying the necessary code inline (e.g., Figure 22)).

Pytest Runtime Error

This error refers to failures that occur during pytest execution, such as syntax errors or fixture-
related issues (e.g., Figure[I2). Although the absence of test functions is also one of pytest failures,
we explicitly separate those cases by first verifying the presence of the required test functions and
running pytest only when they exist.

18

Under review as a conference paper at ICLR 2026

@pytest.mark.parametrize (
"url, expected",

(
("http://192.168.0.1:5000/", True),

("http://google.com:5000/v1.0/", False),
) s

def test_should bypass_proxies_no_proxy (url, expected, monkeypatch) :
"""Tests for function should_bypass_proxies to check if proxy

can be bypassed or not using the ’'no_proxy’ argument
mmon

no_proxy = "192.168.0.0/24,127.0.0.1,1ocalhost.localdomain,172.16.1.1
"
Test ’"no_proxy’ argument
assert should_bypass_proxies (url, no_proxy=no_proxy) == expected
(a) Original Test Case

def test_should_bypass_proxies_no_proxy (url, expected, monkeypatch) :
"""Tests for function should_bypass_proxies to check if proxy

can be bypassed or not using the ’'no_proxy’ argument
mmn

no_proxy = "192.168.0.0/24,127.0.0.1,1ocalhost.localdomain,172.16.1.1
Test 'no_proxy’ argument
assert should_bypass_proxies (url, no_proxy=no_proxy) == expected

(b) Gistified File

Figure 8: Example of a model generating a parameter-specific gistified file when given a command
that includes a parameter.

D.3 TooLs AVAILABLE IN GITHUB COPILOT

Table 5] shows the list of available tools in Github Copilot.

D.4 CHANGE TEST

even high performing models and frameworks (especially GPT-5 and GPT-5-mini) seems to modify
test codes even though explicitly mentioned not to. We observed three common modification: (1)
removing the test function but move the lines in the test function under the "__main__" guard (e.g.,
Figure 20), (2) adding the "__main__" guard even though unnecessary (e.g., Figure [21)), and (3)
mocking a minimal in-memory package to bypass missing dependencies and force the test to run

(e.g., Figure 22).

D.5 ADDITIONAL METRICS

Table [6] shows the result of additional evaluation metrics, including the Average Pytest Pass Rate,
which is defined as the average test pass rate over cases with at least one successful run, and the
Test Fy Score, which quantifies the line-wise F) existence between the test functions in the original
codebase and those in the gistified fie.

GPT-5 shows a notably higher Average Pytest Pass Rate, indicating that among the ones they suc-
cessfully generate, they tend to pass all pytest. For the Test F} Score, Claude-4 shows the highest
performance, aliging with the trend discussed in Section 4]

19

Under review as a conference paper at ICLR 2026

01-2.0.html

main/

b/main/C

s: httr // m/pylint-d

(c) https://github.com/pylint-d

NTRIBUTORS. txt
from _ future__ import annotations

import os
from collections.abc import Sequence
from typing import Any

import pytest

def discover_package_path (modulepath: str, source_roots: Sequence[str]) -> str:
"""Discover package path from one its m 1les and source roots."""
dirname = os.path.realpath (os.path.expanduser (modulepath))
if not os.path.isdir (dirname) :

dirname = os.path.dirname (dirname)
Look for a source root that contains the module directory
for source_root in source_roots:
source_root = os.path.realpath (os.path.expanduser (source_root))
if os.path.commonpath ([source_root, dirname]) in [dirname, source_root]:

return source_root

Fall ba
it’s the only v
while True:
if not os.path.exists(os.path.join(dirname, "__init__ .py")):
return dirname
old_dirname = dirname
dirname = os.path.dirname (dirname)
if old_dirname == dirname:
return os.getcwd /()

@pytest.mark.parametrize (
"py_mod_base_name",
("__dinit__ ", "impl"),
ids=("explicit-namespace", "implicit-namespace"),

)

def test_discover_package_path_source_root_as_parent (
py_mod_base_name: str,
tmp_path: Any,

) —> None:

nnNTe gt urce root s a parent of the module.

/tmp_r
proj
my-package/

i __1nit__ .py

project_dir = tmp_path / "project"

package_dir = project_dir / "mypackage"
package_dir.mkdir (parents=True)

(package_dir / f"{py_mod_base_name}.py") .touch ()

V1 _dir as source root (parent of ge)
discover_package_path (str (package_dir), [str(project_dir)]
assert result == str(project_dir)

Figure 9: Example of a successful gistified file: the code correctly handles all parameters, achieving
100% line—existence rate, a test F; score of 100, and an execution rate of 65.5%.

E ANALYSIS

E.1 EFFECT OF VARIOUS STRATEGIES AND TOOLS

Prompt-Based Guidance We experiment with two variants of the prompt, Reading and Tracing,
where, on top of the base prompt (Figure [6), we add specific instructions of How to Operate
to encourage reasoning using a particular strategy. The addition prompt detail of Reading is in
Figure@ and for Tracing is in Figure@

20

Under review as a conference paper at ICLR 2026

import os

import sys

from contextlib import contextmanager
from pathlib import Path

def discover_package_path (path, _search_paths):

wun
Minimal
to that
path to the

nun

if isinstance (path, Path):

p = path

else:
p = Path(path)

if p.exists() and p.is_dir():
return p

raise ValueError ("Cannot determine package path")

@contextmanager
augmented_sys_path (paths) :

wnn

def

1l context man

ded paths (in o

original = list (sys.path)

try:
new = []
for p in paths:
pth = Path(p)
Ensure we us the p dire ory (the "source root" in the test)
parent = pth.parent
new.append (str (parent))
sys.path[:] = new
yield
finally:
sys.path[:] = original

@pytest.mark.parametrize (

def

"py_mod_base_name",
("_init_ "),
ids=("explicit-namespace"),

test_discover_package_path_source_root_as_parent () :
This test’s b 318

5 da augment
I nt (the ¢ t/tes i v) .
TEST_DATA_DIR = os.path.abspath(os.path.join(os.path.dirname(__file), "tests", "data")
PROJECT_ROOT_DIR = os.path.abspath(os.path.join (TEST_DATA_DIR, ".."))

with augmented_sys_path ([discover_package_path (TEST_DATA_DIR, [])]):

assert sys.path == [PROJECT_ROOT_DIR]

1t us

p

Figure 10: Example of failed gistified file: the code fails to import pytest. The model hallucinates
the function test_discover_package_path_source_root_as_parent (), resulting in a
test F score of 0 and a low line—existence rate of 28.0%

Global Information via Tools We experiment with two tools that provide global information:
RepoGraph and Tracing. Details of the information provided to the model about each tool are
shown in Figure

RepoGraph (Ouyang et al.|[2024) is a plug-in module designed to help LLMs leverage the codebase-
level structure. It parses code at the line level, extracts relationships, and constructs a graph where
each node represents a line of code and each edge encodes dependencies between code definitions
and their references. Thereby, when given a specific module, it returns the relationship with other
modules as represented within the constructed graph.

Tracing is a tool that uses the tracer provided from the sy s module to execute a command and track
which components of the codebase are accessed. When the model uses the tool with a specific com-
mand, the tool provides the model with the files and functions touched when running the command,
in the order in which they are encountered.

21

Under review as a conference paper at ICLR 2026

@click.option("--all-methods", is_flag=True, help="Show HEAD and OPTIONS
methods.")

@Qwith_appcontext

def routes_command(sort, all_methods):
"""Show all registered routes with endpoints and methods.
from flask import current_app

nun

rules = list (current_app.url_map.iter_rules())

if not rules:
click.echo ("No routes were registered.")
return

Figure 11: Example of an Import Error: the gistified file imports from the original repository (e.g.,
from flask import current_app).

T = t.TypeVar("T")

class ConfigAttribute (t.Generic|[T]) :

"""Makes an attribute forward to the config"""

def _ _init_ (

self, name: str, get_converter: t.Callable[[t.Any], T] | None =
None
) —> None:

self._ name__ = name

self.get_converter = get_converter

(a) Original Test Case
class ConfigAttribute:

def __init_ (

self, name: str, get_converter: t.Callable[[t.Any], T] | None =
None
) —> None:

self._ name__ = name

self.get_converter = get_converter

(b) Gistified File

Figure 12: Example of an Pytest Runtime Error: gistified file fails with error message E
TypeError: type ’'ConfigAttribute’ is not subscriptable

Execution-Based Tools We experiment with two execution-based tools: the Bash tool and the
Edit and Execute tool.

The Bash tool is a basic utility that allows the model to invoke any necessary Bash commands. In
contrast, the Edit and Execute tool is designed specifically for working with the gistified file: it
enables the model to create or modify the gistified file and optionally execute it to verify changes.

The primary difference between the two tools is their scope of execution. The Bash tool can run
commands on both the original codebase and the gistified file, whereas the Edit and Execute tool is
restricted to executing only the gistified file.

We include an example of the behavior observed when adding the execution tool in Figure
Common patterns we observe are: (1) the model first runs the provided command to identify which
files are accessed and to gather execution feedback; (2) after creating a file, it iteratively executes
it to verify that the generated gistified file behaves as expected; and (3) it repeatedly compares the
outputs of the gistified file and the original codebase under the given command. We also observe
that, due to this iterative checking process, enabling the execution tool often leads the model to
terminate because it reaches the maximum step limit.

22

Under review as a conference paper at ICLR 2026

Tool

Description

copilot_getNotebookSummary

Returns the list of Notebook cells with id, types, line ranges, language, execution info,
and output mime types. Useful for getting cell IDs, execution order, and outputs.

edit_notebook_file

Edit an existing Notebook file in the workspace. Supports inserting, deleting, or edit-
ing cells while preserving whitespace and indentation.

apply_patch

Edit text files using a special diff/patch format. Do not use for Jupyter notebooks.

semantic_search

Run a natural language search for relevant code or documentation comments in the
workspace.

create_directory

Create a new directory structure in the workspace (like mkdir -p).

create_file Create a new file with specified content. Automatically creates directories if they do
not exist.

file_search Search for files in the workspace by glob pattern (e.g., » x/* . Js). Returns matching
paths only.

test_search For a source file, find the corresponding test file, and vice versa.

grep_search Fast text or regex search in the workspace. Useful for exact string or regex queries.

run_notebook _cell

Run a code cell in a notebook file and return the output. Avoid running Markdown
cells.

read_notebook_cell_output

Retrieve the latest output for a notebook cell, even if not run in the current session.

get_search_view _results

Returns results from the search view.

github_repo

Search a GitHub repository for relevant code snippets. Use only for external repos,
not local workspaces.

insert_edit_into_file

Insert or edit code in an existing file using minimal hints, avoiding duplication of
unchanged code.

install_extension

Install an extension in VS Code. Used only during workspace creation.

list_dir

List the contents of a directory (folders and files).

create_new_jupyter_notebook

Generate a new Jupyter Notebook (.ipynb) in VS Code.

createmew,workspace

Set up a complete new project (scaffolding, dependencies, config, boilerplate).

get_project_setup-info

Provides project setup information for a VS Code workspace after workspace creation.

read_file

Read the contents of a file. Supports offsets and limits for large files.

open_simple_browser

Preview or open a URL in VS Code’s Simple Browser.

test_failure

Include test failure information in the prompt.

think

Think deeply about a request and log structured reasoning (no execution). Useful for
planning, debugging, and brainstorming.

get_vscode_api

Retrieve comprehensive VS Code API documentation and references for extension
development.

run_vscode_command

Run a VS Code command by ID with arguments. Used mainly in workspace creation.

fetch_webpage

Fetch main content from a webpage for summarization or analysis.

Table 5: Available tools and their descriptions. We note that many tools available to the agent are
never used.

Table 6: Average Pytest Pass Rate and Test F; Score of different models using SWE-Agent on the
main table (Table[T)) test dataset.

Models ‘ Execution Fidelity ‘ Average Pytest Pass Rate Test F Score
GPT-5-mini 30.9 49.2 479
GPT-5 30.7 88.8 45.0
Claude-3.7 40.7 61.9 55.9
Claude-4 56.7 722 60.0

Table 7: Analysis of tool usage during the GISTIFY task

Models ‘ Avg. tool usage ‘ view search execute other
GPT-5-mini 10.8 71.9 9.8 1.7 16.6
GPT-5 18.5 72.4 8.3 33 16.1
Claude-Sonnet-3.7 17.3 67.5 10.1 4.5 17.9
Claude-Sonnet-4 19.3 74.6 2.1 11.8 11.5

23

Under review as a conference paper at ICLR 2026

@pytest.mark.parametrize (
"value, expected",
(
(" foo="is a fish", bar="as well"’, {"foo": "is a fish", "bar": "
as well"}),
("key_without_value", {"key_without_value": None}),
),
)

def test_parse_dict_header (value, expected):

assert parse_dict_header (value) == expected
(a) Original Test Case
assert parse_dict_header (' foo="is a fish", bar="as well"’) == {"foo": "is
a fish", "bar": "as well"}
assert parse_dict_header ("key_without_value") == {"key_without_value":
None}

(b) Gistified File

Figure 13: The test function test_parse_dict_header is simplified: in the original, it used
@pytest .mark.parametrize to feed multiple input/expected pairs into one function; in the
gistified version, this is replaced with two direct assert statements, one per case.

Behavior Reading

How to Operate:

1. Examine the test file and the test function used for {problem statement}

2. Identify which module used by these functions are defined in {working dir}

3. Copy and inline the code from those modules into ‘concise.py’

4. Check these modules for any internal functions or classes and inline them as needed.
5. Repeat this process recursively until all internal dependencies are inlined.

6. Do not forget to copy and paste external imports.

Figure 14: Prompt for Reading strategy.

Trace Reasoning

How to Operate:

1. Predict the execution traces.

2. Follow the traces and inline (copy) only the necessary executed lines into ‘concise.py’
3. Repeat until all traces are fully handled.

Figure 15: Prompt for Tracing strategy.

Tool Information

* search repo (repograph): searches in the mentioned repository with a specific function or
class, and returns the def and ref relations for the search term.

* trace info (tracing): returns the trace log when running the ‘pytest’ command for the test
currently being debugged in the given repo

Figure 16: Details of the information provided to the model about each tool.

24

Under review as a conference paper at ICLR 2026

"role": "assistant",
"tool_calls": {
"arguments": "{\"command\":\"cd /app && python -m pytest concise.
py::TestDeprecationOptions: :test_new_names -v\"}",
"name": "bash"
}
b
{

"role": "tool",
"content": [
{

"type": "text",

"text": "OBSERVATION: test session starts ...AssertionError\n
...pylint: error: unrecognized arguments: /app/regrtest_data/empty.py
\n FAILED concise.py::TestDeprecationOptions::test_new_names ..."

}
}s

(fix concise.py based on observation)

{

"role": "assistant",
"tool_calls": {
"arguments": "{\"command\":\"cd /app && python -m pytest tests/

config/test_argparse_config.py::TestDeprecationOptions: :
test_new_names -v —-s\"}",

"name": "bash"
}
}y
{
"role": "assistant",
"content": "Excellent! The messages are identical. Let me verify my
implementation removes all unused imports and only includes what’s
needed:"

}
Figure 17: Trajectory when including execution tool. Models often iferatively execute the given

codebase or generated gistified file to ensure that it operates expectedly.

E.2 StaTiC CODING LLM

Figure[I8|presents the performance of static and dynamic
coding LLM, including a static model augmented with a

single-turn, multi-step chain-of-thought prompt. To test w5 static coding LLM SWE-Agent
whether explicit reasoning and planning can mitigate the ey copilot
limitations of static coding LLMs, which must output the 7

entire program in a single turn, we compare this CoT- 80)
augmented static model against both the baseline static 460 Z

model and the dynamic models. § w0l &

Overall, we observe a trend similar to the baseline 20

static model without a chain-of-thought: adding chain- .

of-thought yields only a modest improvement over the B e Exemeion

static model without it, and it still performs worse than the
dynamic models, underscoring the importance of multi- Figure 18: Performance over Static and

turn generation and tool use. Dynamic Coding LLM

Relative to the baseline static model, the CoT-augmented
version slightly improves line-execution rates but slightly

25

Under review as a conference paper at ICLR 2026

decreases line-existence. We hypothesize that this is because the CoT procedure encourages the
model to focus on minimal set of necessary lines.

Details of the prompt used in this experiment are provided in Figure [T9}

Static Coding LLM with CoT

THINK STEP BY STEP, and SHOW YOUR REASONING. You must follow a multi-step
solution process: (1) determine what code executes during test, (2) determine the minimal
set of lines required, (3) plan the final single-file layout, and finally (4) output the new
single-file code.

Figure 19: Prompt added to the static coding LLM to enable chain-of-thought reasoning. A similar
instruction is also included in the system prompt.

E.3 TooL USAGE RATES

Table[7] shows the statistics on tool usage across models using SWE-bench. We group various tools
into four categories: view, search, execute, and other, which includes all remaining tools. For all
models, we compute usage rates both with and without execution enabled, and then average across
the two settings.

Among all models, Claude-4 exhibits the highest average tool usage for each test cases, followed by
GPT-5, Claude-3.7, and GPT-5-mini. In terms of specific functionality, Claude-4 shows the highest
rate of both view and execute tool usage, while Claude-3.7 shows the highest usage of the search
tool. To generate a high-quality gistified file, a model must effectively view relevant files and copy
only the necessary content. The strong performance of Claude-4 on line existence may be related to
its high usage of the view tool. Also, the execution tool tends to support correctness verification of
the generated file, which would lead to high execution fidelity.

F USER STUDY ON THE DEFINITION

We conduct a user study to assess whether our proposed metrics, line existence and line execution,
successfully capture the task’s intended notions of faithfulness and minimality, respectively.

We recruit three software/Al engineers as annotators and provide them with 15 test cases. Each test
case contains a pair of gistified files generated by different frameworks or different models. For each
pair, annotators were asked to choose the file that better satisfied the task’s criteria of minimality and
faithfulness. Annotators were given: (1) a description of how the gistified files were constructed,
(2) the definitions of minimality and faithfulness used in our task, (3) the two gistified files for
comparison, and (4) execution-tracing information to help them understand the flow of each test
run. Figure 23|shows the instructions provided to annotators.

To measure alignment between human judgment and our metrics, we computed Cohen’s kappa
correlation between the annotators’ selections and the rankings produced by line existence and line
execution. We observed an average Cohen’s kappa of 0.61 (0.52, 0.72, 0.58) for minimality with
line execution and 0.76 (0.81, 0.71, 0.77) for faithfulness with line existence, indicating that our
metrics correspond well with human judgments of minimality and faithfulness.

26

Under review as a conference paper at ICLR 2026

class TestGetNetrcAuth:
def test_works (self, tmp_path, monkeypatch):
netrc_path = tmp_path / ".netrc"
monkeypatch.setenv ("NETRC", str(netrc_path))
with open (netrc_path, "w") as f:
f.write ("machine example.com login aaaa password bbbb\n")
auth = get_netrc_auth ("http://example.com/thing")
assert auth == ("aaaa", "bbbb")

(a) Original Test Case

if _ name_ == "_ main__ ":
Reproduce tests/test_utils.py::TestGetNetrcAuth::test_works
with tempfile.TemporaryDirectory () as tmpdir:
netrc_path = os.path. join (tmpdir, ".netrc")
os.environ["NETRC"] = netrc_path
with open (netrc_path, "w") as f:
f.write ("machine example.com login aaaa password bbbb\n")
auth = get_netrc_auth ("http://example.com/thing")
assert auth == ("aaaa", "bbbb")

(b) Gistified File

Figure 20: Test Modification Case 1: The test TestGetNetrcAuth.test_works is converted
from a pytest unit test into a standalone script.

Test class and method - preserved unchanged
class TestArgparseOptionsProviderMixin:
"""Tests for the argparse implementation of OptionsProviderMixIn.

The logger checker is used as an example checker for this

implementation.
mmnn

@staticmethod
def test_logger_without_options () —-> None:
"""Check that we raise messages when we do not supply any options
with pytest.raises (SystemExit) as ex:
Run ([LOGGING_TEST])
assert ex.value.code ==

Main execution for pytest
if _ name_ == "_ main_ ":

test = TestArgparseOptionsProviderMixin ()
test.test_logger_without_options ()

Figure 21: Test Modification Case 2: Adding unnecessary "__main__" guard

27

Under review as a conference paper at ICLR 2026

Create a minimal in-memory ’requests’ package with required submodules.
requests_mod = types.ModuleType (' requests’)

requests_mod.__path__ = []

compat_mod = types.ModuleType (' requests.compat’)

structures_mod = types.ModuleType (' requests.structures’)

Populate compat with only what’s needed by this test suite import paths

compat_mod.Mapping = Mapping
compat_mod.MutableMapping = MutableMapping
compat_mod.urljoin = urljoin

Populate structures with the classes.
structures_mod.CaseInsensitiveDict = CaselInsensitiveDict
structures_mod.LookupDict = LookupDict

Wire the package hierarchy and register in sys.modules.
requests_mod.compat = compat_mod

requests_mod.structures = structures_mod
sys.modules [’ requests’] = requests_mod
sys.modules [’ requests.compat’] = compat_mod
sys.modules [’ requests.structures’] = structures_mod

if name == '_main__ '":

import pytest
raise SystemExit (pytest.main([’-qg’, ’'tests/test_structures.py::
TestCaseInsensitiveDict::test_1list’]))

Figure 22: Test Modification Case 3: Manually mocking a minimal in-memory package to bypass
missing dependencies and force the test to run.

28

Under review as a conference paper at ICLR 2026

User Study Instruction

You are given two code files produced by a coding LLM. Both files attempt to complete
the same task: create a single, minimal, self-contained file that reproduces a specific
functionality of a codebase.

This is the prompt we provide to the model to describe the task:
[Figure|C.3|]

Your task:
Evaluate the two files and determine which one is more minimal and more faithful
according to the criteria below.

1. A file is “minimal” if:

- It contains only the code truly required to reproduce the runtime behavior.

- Unused functions, classes, variables, or imports should be removed.

- The evaluator must understand the code well enough to identify which lines are actually
executed and are essential. However, we do not penalize minor extra lines that exist solely
because of formatting or structure constraints (e.g., keeping an unused method such as
try-except because the format requires it).

2. A file is “faithful” if:

- No hallucinated code is introduced. Every piece of code must come directly from the
original codebase.

- The structure of the code must stay consistent with the original. For example, moving a
method that originally lived inside a class to the top level is considered incorrect.

- Simple changes such as incorrect indentation or broken multi-line statements are not pe-
nalized as long as the intended semantics are still clear. However, structural changes that
alter the meaning of the code are penalized. For example: If the original code defines a
class with inheritance, such as class ABC(DE):, but the generated file changes it to class
ABC:, then this is considered incorrect, because removing the parent class changes the ac-
tual operation of the code.

Figure 23: Instruction for User Study

29

	Introduction
	Related Works
	Codebase-level Understanding Benchmark
	Runtime Execution

	Gistify
	Task Definition
	Evaluation Protocol
	Metrics

	Experiments
	Setting
	Results
	Error Analysis Over Execution Failure
	Importance of Faithfully Preserving the Test Function

	Analysis
	Effect of Various Strategies and Tools
	Tests with High Coverage are Harder to Gistify
	Static Coding LLM

	Discussion and Conclusion
	Related Works
	Methods for Codebase-Level Understanding

	Gistify
	Metrics

	Experimental Setting
	Framework
	Experimental Test Set Construction
	Prompt for Gistify
	Providing specific parameters to commands tends to make models generate parameter-specific gistified files
	Additional Hyperparameters

	Results
	Example of gistified file
	Error analysis over execution failure
	Tools Available in GitHub Copilot
	Change Test
	Additional Metrics

	Analysis
	Effect of various strategies and tools
	Static Coding LLM
	Tool Usage Rates

	User Study on the Definition

