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ABSTRACT

Comprehensive protein function and property prediction remains a major chal-
lenge due to the vast diversity of sequences, structural variations, and limited
labeled data. Existing models are often specialized to be task-specific, requir-
ing independent training, which limits scalability. To address this, we extend
Prot2Token, a unified autoregressive framework that focuses on the post-training
alignment of pre-trained protein language models (PLMs), to new applications.
Our approach enables next-token prediction across new applications of protein-
prediction tasks, including protein-protein structure similarity, 3D structure pre-
diction, mutation stability, post-translational modifications (PTMs), substrate-
kinase phosphorylation sites, protein-protein affinity, and protein-ion binding
sites. We introduce a self-supervised pre-training stage for the decoder, enhanc-
ing model initialization and improving downstream predictions. By integrating a
causal autoregressive transformer with a pre-trained ESM-2 encoder, our model
effectively aligns diverse protein tasks within a single framework. Additionally,
we discuss the opportunities and limitations of this approach, providing insights
for future research in optimizing PLMs as a general tool for broader biological
applications. Code is available on GitHub Repository.

1 INTRODUCTION

Proteins are the fundamental building blocks of life, playing a critical role in maintaining human
health. However, understanding the complex language of proteins—encoded in their sequences and
structures—remains a significant challenge for researchers Shim et al. (2019). This complexity
limits our ability to interpret, predict, and design proteins for various biomedical and therapeutic
applications.

Protein function prediction is particularly challenging due to the vast diversity of protein sequences,
structural variations, and the limited availability of labeled data. Unlike natural languages, pro-
tein sequences do not follow explicit syntactic rules understandable by humans, making it difficult
for models to learn meaningful representations without extensive biological knowledge Ofer et al.
(2021). Protein language models (PLMs) offer a transformative solution by learning meaningful
representations of protein sequences, enabling researchers to decode and translate protein data into
a more interpretable format An & Weng (2022); Ferruz & Höcker (2022). By leveraging PLMs, we
can bridge the gap between raw protein information and human understanding, advancing research
in drug discovery, disease mechanisms, and synthetic biology.
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While PLMs have significantly advanced protein function prediction, current models require task-
specific specialization after pre-training Hu et al. (2023); Roche et al. (2024). This reliance on
separate modules for distinct tasks leads to inefficient computational resource use and limited scal-
ability. Most PLMs undergo post-training alignment with specialized architectures for individual
tasks, requiring independent training and fine-tuning—an approach that is both time-consuming and
resource-intensive Weissenow & Rost (2025). A unified model capable of efficiently handling di-
verse protein-related tasks would overcome this limitation, streamlining protein function prediction
and enhancing its accessibility for real-world applications.

To the best of our knowledge, despite the emergence of foundation models for proteins, no compre-
hensive framework exists to systematically align them across a broad spectrum of protein prediction
tasks. Instead, researchers often modify existing foundation models to suit particular applications
Schmirler et al. (2024), such as predicting 3D protein structures from sequences using customized
techniques Jumper et al. (2021); Lin et al. (2022). One key limitation is that most existing models
are based on BERT-style architectures Unsal et al. (2022), while effective for providing meaningful
representation, lack the flexibility needed for diverse and controllable protein generation. In natu-
ral language processing (NLP), the transition from BERT-style models to autoregressive GPT-style
models has enabled more dynamic and human instruction (prompts) to control the generation pro-
cess. A similar paradigm shift is necessary in protein research—moving beyond static encoders
toward more advanced generative AI approaches that provide more comprehensive predictive capa-
bilities.

Although autoregressive transformer models have been explored for the language of protein—such
as ProGen2 Nijkamp et al. (2023), RITA Hesslow et al. (2022), and Ankh Elnaggar et al.
(2023)—they struggle with controllability and task alignment. Unlike human language models,
which leverage prompt mechanisms for guided generation, protein generative models currently lack
robust methods to steer their outputs toward biologically meaningful constraints. This gap hinders
their practical application in scenarios requiring fine-grained control over prediction outcomes. Ad-
dressing this challenge requires a framework that not only unifies multiple protein-related tasks but
also enhances model controllability.

To address these limitations, Prot2Token Pourmirzaei et al. (2024) takes a significant step toward
unification of diverse protein-related prediction tasks within a single framework. By introducing an
autoregressive interface for existing BERT-style PLMs, it uses next-token prediction for all tasks
in an instructive manner through a unified tokenization approach. This design allows PLMs to
perform a wide range of predictions. In this paper, we extend and refine Prot2Token to support
additional tasks, thereby enhancing its versatility in protein analysis. Specifically, we have adapted
it to predict protein-protein structure similarity, 3D structures from sequences, mutation-induced
melting temperature changes, six types of post-translational modification (PTM) sites, substrate-
kinase phosphorylation sites, protein-protein affinity, and protein-ion binding sites. To facilitate
site prediction tasks within the Prot2Token framework, we introduce a self-supervised pre-training
stage for the decoder, providing a more effective initialization for downstream predictions. This
extension strengthens Prot2Token’s capability as a unified model, reducing the need for task-specific
architecture specialization and broadening its applicability in computational biology.
2 RELATED WORK

Currently many foundation models exist for proteins Wang et al. (2025), but there is still no general
and unified approach to align them for a wide range of protein-prediction tasks. According to our
findings, only a few methods adopt general approaches for protein prediction tasks. Prot2Token
Pourmirzaei et al. (2024) exemplifies a task-agnostic strategy that employs autoregressive trans-
formers to facilitate alignment in a unified and scalable manner. Another effort, HelixProtX Chen
et al. (2024), aims to construct a general model for protein design by integrating various modalities,
including text, sequence, and structure; however, this approach remains confined to protein design
tasks rather than encompassing broader protein prediction. Additionally, within specialized domains
such as PTM, researchers have utilized general models to address entire domains collectively. For
instance, PTMGPT2 Shrestha et al. (2024) is a specialized model in the PTMs domain that lever-
ages a pre-trained GPT-2 autoregressive language model to predict multiple PTMs within a single
framework.
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3 METHOD

3.1 ARCHITECTURE

Our method is based on the Prot2Token framework, incorporating a causal autoregressive trans-
former, referred to as the decoder, connected to a pre-trained bidirectional transformer, designated
as the encoder. Specifically, we initialize the encoder with the pre-trained ESM-2 650M weights
Lin et al. (2022), allowing the decoder to access the encoder’s output through cross-attention. To
ensure that each task’s unique prediction requirements are met, separate tokenizers and embedding
tables are used for the encoder and decoder (see Figure 1). More details about the architecture are
presented in Appendix A.1.

3.2 SELF-SUPERVISED PRE-TRAINING

Unlike the encoder, which can leverage pre-trained weights such as those from ESM-2, the decoder
is initialized with random weights in the Prot2token approach. However, prior work in the original
Prot2Token paper demonstrated that incorporating self-supervised tasks alongside phosphorylation
training can be beneficial for certain tasks. We hypothesize that this advantage arises because the
decoder must first grasp the structural patterns of the labels (implicit biases) to generate meaningful
predictions. This challenge is particularly pronounced in tasks with larger label vocabularies, such as
PTMs, where the available samples may be insufficient for the model to infer these biases effectively,
leading to degraded performance.

To mitigate this issue, we introduce a self-supervised pre-training stage that provides the decoder
with an initialization before fine-tuning the model on the target task. In this pre-training phase,
amino acid sequences serve as inputs, while labels correspond to the positions of specific amino
acids. For instance, given a sequence like ”MAGTFAST”, the target output for a self-supervised task
focused on A would be the set of positions where it appears in the sequence. These positions are
recorded as a sorted set of indices in ascending order, such as {2, 6}. Expanding on this idea, we
constructed 20 self-supervised tasks, each dedicated to a different amino acid. A key advantage of
these tasks is that they can be generated automatically, eliminating the need for manual annotation.
A crucial aspect of these self-supervised tasks is the necessity of freezing the protein encoder. With-
out this constraint, the model risks collapsing due to shortcut learning, where it exploits spurious
correlations rather than learning meaningful representations.

3.3 TOKENIZATION OF LABELS

We adopt the tokenization framework from Prot2Token to transform target labels into discrete to-
kens. Specifically, we apply a regression scheme for protein-protein structure similarity, Protein-
Protein Affinity and Protein Mutation Melting Temperature, and use the original Prot2Token PTMs
methodology for PTMs and protein-kinase phosphorylation sites tasks in this paper. For protein-ion
binding sites, we utilize the same tokenization approach as PTMs but restrict the output tokens to
include only the indices of positive binding sites. All potential site tokens and the <sep> token
are excluded. To handle sequence-to-3D structure mapping, we employ the VQVAE method de-
scribed in Gaujac et al. (2024). This method converts the backbone coordinates of a PDB file into
a sequence of discrete tokens, ensuring that the resulting token sequence matches the length of the
corresponding amino acid sequence.

3.4 DATASETS

This study utilizes a mix of benchmark datasets and custom-curated datasets. PTM prediction, ki-
nase phosphorylation site prediction, protein-ion binding site prediction, protein-protein binding
affinity, and 3D structure prediction use datasets we constructed, while other tasks rely on standard
benchmarks. For PTM prediction, data from UniProt Consortium (2019) is clustered at 40% similar-
ity (CD-HIT Fu et al. (2012)) and split into training and testing sets, focusing on six key PTM types
(Appendix A.2.1). Kinase phosphorylation site data is collected from GPS 6.0 Chen et al. (2023),
mapped to UniProt and Kinase.com, clustered at 70% similarity, and split into training, validation,
and GPS test sets (Appendix A.2.2).

3

http://kinase.com/web/current/kinbase/genes/SpeciesID/9606/


Published at LMRL Workshop at ICLR 2025

Protein-ion binding site data is sourced from BioLip2 Zhang et al. (2024a), filtered for proteins with
at least 50 residues, clustered at 40% sequence identity, and split accordingly (Appendix A.2.6).
Protein-protein affinity data comes from PPB-Affinity Liu et al. (2024), supplemented with missing
sequences from RCSB PDB, filtered for single receptor-ligand pairs, and processed with a logarith-
mic transformation for stability (Appendix A.2.5).

For 3D structure prediction, we use high-confidence UniRef50 Suzek et al. (2015) PDBs from Al-
phaFold 2 Jumper et al. (2021), filtered by pLDDT scores and tokenized with a 3D structure VQVAE
model Gaujac et al. (2024) before splitting into training, validation, and test sets (Appendix A.2.4).
Protein-protein structure similarity and melting temperature tasks use ProteinShake Kucera et al.
(2024) and ProThermDB/ThermoMutDB Gromiha et al. (2000); Xavier et al. (2021) datasets, re-
spectively (Appendix A.2.3).
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Figure 1: Illustration of the extended Prot2Token framework, which integrates a bidirectional protein encoder
with an autoregressive decoder to unify diverse protein prediction tasks. The encoder processes protein se-
quences with bidirectional attention, generating rich contextual embeddings, while the decoder autoregressively
generates structured outputs tailored to specific prediction tasks. The framework supports various tokenization
strategies to align sequence-based, structural, and interaction-based protein tasks. On the right side of the fig-
ure, predicted tokens are converted to the right format for each task.

4 EXPERIMENTS

We assessed our model across multiple tasks, including protein-protein structure similarity, six
PTMs along with protein-kinase phosphorylation site prediction, protein-protein affinity, sequence-
to-3D structure mapping, protein-ion binding site identification, and protein mutation melting tem-
perature estimation. For a subset of these tasks, we incorporated a self-supervised pre-training
stage for the autoregressive decoder as an initial step. In all experiments, the protein encoder in
Prot2Token was initialized using the pre-trained ESM-2 650M model. Optimization was carried out
with the AdamW optimizer Loshchilov (2017), applying a weight decay of 0.1 and using beta-1
and beta-2 values of 0.9 and 0.999, respectively, while setting epsilon to 1e-16. The learning rate
followed a cosine annealing schedule with an initial warm-up phase Loshchilov & Hutter (2016),
starting at 1e-6 and gradually increasing to 5e-5 over the first 256 steps unless stated otherwise. The
training was performed using the PyTorch 2 framework Ansel et al. (2024) on a single computational
node equipped with four Nvidia A100 GPUs (80GB each).

4.1 PROTEIN-PROTEIN STRUCTURE SIMILARITY

In our initial experiment, we tokenized ProteinShake protein-protein structure similarity dataset
Kucera et al. (2024) and employed the Structure Split strategy for evaluation. To ensure consistency
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during training, we normalized the dataset labels to a range between 0 and 1, maintaining precision
up to four decimal places. Each sample comprised two protein sequences, which we concatenated
using the <EOS> token. The maximum sequence length was set to 1280, and longer sequences
were truncated symmetrically to fit within this limit. Additionally, from the total of 33, we fine-
tuned the last four blocks of the protein encoder by unfreezing their weights for training and used
batch size of 128 samples per iteration. The results of this experiment are presented in Table 1.

Table 1: Structure similarity comparison across different methods. The results are reported on the
test set using the Structure Split strategy. All ProteinShake methods rely on 3D structural informa-
tion. * For the ESM-2 model, a linear layer was added on top of the encoder and it was fine-tuned
on the last four blocks of the encoder.

Method Prot2Token
(Ours) ESM-2* ProteinShake

(Graph) Kucera et al. (2024)
ProteinShake

(Point) Kucera et al. (2024)
ProteinShake

(Voxel) Kucera et al. (2024)
Spearman R 0.5267 0.4653 0.518 0.564 0.573

4.2 POST-TRANSLATIONAL MODIFICATIONS

In the next step, we fine-tuned the model starting from the latest checkpoint obtained during the
self-supervised pre-training stage that is reported in Appendix A.3.1. This process involved jointly
training six PTMs alongside self-supervised samples. The maximum sequence length for input
protein sequences was set to 1024 tokens, and the batch size was adjusted to process 98,304 tokens
per iteration.

Notably, while it was possible to exclude self-supervised tasks entirely during fine-tuning, retain-
ing a subset of these samples led to improved generalization and enhanced performance on the
protein-kinase phosphorylation site prediction. From the 33 total blocks in the protein encoder, we
selectively fine-tuned the last eight blocks by unfreezing their weights for training. The results are
presented in Table 2.

Table 2: PTMs comparison based on F1 score on our test sets.ESM-2 method is reported in Appendix
A.3.2. † there is a strong possibility of data contamination between our test set and the PTMGPT2
training set. As a result, PTMGPT2 may achieve artificially high performance on our test set due to
memorization, while its real-world performance on unseen samples could be lower.

PTM Prot2Token (Ours) ESM-2 PTMGPT2†
Ubiquitylation 0.1382 0.1993 0.165

Phosphorylation 0.4055 0.3908 0.400
Acetylation 0.307 0.3273 0.350
Methylation 0.4608 0.4532 0.596

N-linked Glycosylation 0.9689 0.9586 0.862
O-linked Glycosylation 0.4695 0.4597 0.531

Succinylation 0.2663 0.3515 0.540

4.2.1 KINASE PHOSPHORYLATION

Building on the model’s ability to predict PTMs, we extended our approach to include protein-
kinase phosphorylation site prediction, a task with significant real-world applications. For this,
we selected protein-kinase sequence pairs along with their corresponding phosphorylation sites and
jointly trained them alongside 20 self-supervised tasks. The fine-tuning phase started from the latest
checkpoint obtained during the self-supervised pre-training stage.

Similar to the PTMs section, in this phase, the self-supervised tasks were reduced to a total of
20,000 samples. Substrate sequences longer than 1,280 amino acids were excluded during training
and evaluation. Additionally, the total sequence length, combining substrate and kinase sequences,
was capped at 2,048 tokens, with kinase sequences truncated as necessary to fit within this limit. The
batch size was set to process 98,304 tokens per iteration. We enabled fine-tuning for the weights of
the last eight blocks of the protein encoder.

Table 3, compares our results with two phosphorylation prediction tools, GPS 6.0 and KinasePhos3
Ma et al. (2023). Predictions with scores above 0.7 were classified as true positives. For GPS 6.0, we
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generated results by selecting each kinase group individually on their platform. Since the training
split of GPS 6.0 is not publicly available, there is a risk of data contamination between our validation
set and GPS 6.0’s training data. This could result in artificially high-performance estimates for GPS
6.0, potentially reflecting memorization rather than true generalization.

Table 3: Comparative results of our method against leading tools (KinasePhos3 and GPS 6.0) across the
validation and GPS test.

Method Validation Set GPS Test Set
Precision Recall F1 Precision Recall F1

KinasePhos3 0.9773 0.0388 0.0747 0.0215 0.9856 0.0421
GPS 6.0 0.2323 0.4549 0.3076 0.1564 0.5054 0.2389
Prot2Token (Ours) 0.8050 0.8200 0.8124 0.3673 0.3103 0.3364

4.3 PROTEIN-PROTEIN AFFINITY

We applied the same normalization approach on the labels as in the protein-protein structure simi-
larity prediction task, for the protein-protein affinity task. However, before normalization, we trans-
formed the output labels using a logarithmic function, as detailed in Appendix A.1. During training,
we initialized the decoder of Prot2Token with randomly assigned weights. We used the same hyper-
parameters of structure similarity training. The result is presented in Table 4.

Table 4: Comparison of protein-protein binding affinity prediction performance between Prot2Token
and PPB-Affinity.

Method Prot2Token (Ours) PPB-Affinity
Liu et al. (2024)

RMSE 1.6632 2.104

4.4 3D-STRUCTURE PREDICTION

We trained our model on 8 million randomly selected 3D structures from the training set for 64
epochs, keeping the last 12 blocks of the protein encoder trainable. Throughout training, we moni-
tored model performance on the validation set using the perplexity metric, with results summarized
in Table 5. Our analysis of training metrics, combined with computational constraints, suggests that
the model is still in the underfitting regime. Extending training on a larger dataset and for a longer
duration could further improve validation perplexity. Additionally, by extracting multiple data points
from the training process and fitting a regression model, we identified a linear correlation between
validation perplexity and the TM-Score of the test set, represented by the equation:

Test TM-Score = −0.016758× Valid Perplexity + 0.967207

Extrapolating this trend, we estimate that achieving validation perplexity of 6.4, 5.20 and 4.01 would
correspond to test set TM-Scores of 0.86, 0.88 and 0.90, respectively. Given the current trajectory,
this performance appears feasible with extended training. At the current stage, we evaluated the
model’s predictive capability using a checkpoint with a validation perplexity of 11.08 and com-
pared the model’s predictions against AlphaFold 2 predictions at this checkpoint. Failure cases are
visualized in Appendix A.3.3.

Table 5: Performance of the model at the end of training for three different checkpoints, evaluated
based on validation perplexity. The table presents the corresponding test set RMSD and TM-score
for each checkpoint.

Valid Set Perplexity Test Set RMSD Test Set TM-Score
11.53 3.89 0.7736
11.41 3.79 0.7771
11.08 3.72 0.781

4.5 PROTEIN-ION BINDING SITE PREDICTION

For the protein-ion binding site tasks, we focused on four well-known ions, each treated as a separate
task and assigned a unique task token. These tasks were jointly trained alongside 20 self-supervised
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AlphaFold 2

Prot2Token

(A) (B) (C)

RMSD: 1.875 ÅTM-Score: 0.9194 TM-Score: 0.9526 RMSD: 1.966 Å TM-Score: 0.9234 RMSD: 1.782 Å

Figure 2: Randomly selected test set samples where our model achieved a TM-score above 0.90. On average,
each sample was predicted and converted in approximately 1 second using an Nvidia A100 GPU.

Figure 3: Correlation between validation perplexity and test TM-score. The plot shows a negative linear
relationship, with a fitted regression line indicating the estimated trend.

tasks, using the latest checkpoint from the self-supervised pre-training phase as the starting point.
During fine-tuning, the number of self-supervised samples was reduced to 50,000. Additionally,
protein-ion samples with sequence lengths exceeding 1,280 were excluded, and the batch size was
set to 98,304 tokens. Only the last 6 blocks of the encoder (ESM2-650m) were fine-tuned, while all
non-encoder parameters of the super model were fully fine-tuned. Notably, while it was possible to
omit the self-supervised tasks entirely during fine-tuning, retaining a subset of these samples led to
a noticeable improvement in the model’s performance on the supervised protein-ion tasks.

To compare our model’s performance with other available methods, we present the results in Table
6. However, the comparison process was hindered by several challenges which are reported in
Appendix A.3.4. Moreover, for all these methods, there is a considerable risk that their training data
overlapped with our test sets, potentially biasing the results.

4.6 PROTEIN MUTATION MELTING TEMPERATURE

For this task, we followed the same label preparation strategy as in the Protein-Protein Structure
Similarity experiment. The details of the dataset preparation are provided in Appendix A.2.3. Before
training, we pre-trained a decoder specifically on the protein-protein structure similarity task while
keeping the protein encoder frozen. Then, we initialized the decoder of Prot2Token for this task
using that pre-trained decoder. Other than this, we used the same hyperparameters as in the structure
similarity training. The results are presented in Table 7.
5 DISCUSSION

The Prot2Token framework was initially designed as a general-purpose approach for unifying di-
verse protein-related tasks under an autoregressive model. By leveraging a task-agnostic tokeniza-
tion strategy, it demonstrated the ability to handle multiple protein prediction tasks without requiring

7



Published at LMRL Workshop at ICLR 2025

Table 6: Comparison of our method’s best performance for each ligand with other available methods on se-
lected ligands based on F1 score. The main values are based on their reported test set performance as described
in their respective papers. * Indicates they are reported on our test sets.

Ligand Metrics Prot2Token
(Our method)

TargetS
Yu et al. (2013)

LMetalSite
Yuan et al. (2022)

ZinCap
Essien et al. (2019)

MIB2
Lu et al. (2022)

CA2+ F1 0.6566* 0.392* 0.526 (0.7370*) - -
MCC - 0.320 (0.431*) 0.542 (0.7342*) - -
Acc - 0.984 (0.977*) 0.9884* - 0.941

MG2+ F1 0.4603* 0.433* 0.367 (0.5560*) - -
MCC - 0.383 (0.450*) 0.419 (0.5773*) - -
Acc - 0.990 (0.992*) 0.9949* - 0.946

ZN2+ F1 0.7594* 0.660* 0.76 (0.8299*) 0.451* -
MCC - 0.557 (0.660*) 0.761 (0.8275*) 0.54 (0.48*) -
Acc - 0.989 (0.989*) 0.9953* 0.870 (0.97*) 0.948

MN2+ F1 0.7376* 0.579* 0.662 (0.8048*) - -
MCC - 0.445 (0.574*) 0.661 (0.8024*) - -
Acc - 0.987 (0.989*) 0.995* - 0.950

Table 7: Comparison of protein mutation melting temperature prediction performance across differ-
ent methods.

Method Prot2Token (Our method) GeoDTm-Seq
Zhang et al. (2024b)

ESM-2
Zhang et al. (2024b)

RMSE 8.386 8.11 7.85

task-specific architectural modifications. In this study, we extend Prot2Token to further enhance its
applicability by incorporating 3D structure prediction, substrate-kinase phosphorylation site pre-
diction, mutation-induced melting temperature estimation, and protein-ion binding site prediction,
broadening its scope beyond the original framework. To improve generalization across these tasks,
we introduce a self-supervised pre-training stage for the decoder, ensuring better initialization for
site prediction tasks. Our results suggest that this extension enables Prot2Token to align diverse
protein-related predictions more effectively.

One key finding is the model’s strong performance in kinase phosphorylation site prediction and
protein-ion binding site identification, which achieved competitive or state-of-the-art results. These
interactions play a critical role in cellular regulation and drug discovery, making accurate predictions
particularly valuable for biomedical research.

For simulating AlphaFold-2 3D structure prediction, Prot2Token demonstrated promising speed im-
provements, generating predictions nearly 100 times faster than AlphaFold 2 with an average in-
ference time of 1 second on an Nvidia A100 GPU. However, while this efficiency is notable, the
accuracy of the generated structures remains lower than that of AlphaFold 2. The current imple-
mentation serves as a proof of concept, showing the feasibility of integrating sequence-to-structure
prediction within an autoregressive framework. In future work, we will focus on improving accuracy
by increasing training data and scaling compute resources, and extending it to predict protein com-
plexes. Given the sign of underfitting observed during training, increasing computational resources
by at least 10x could potentially enhance learning capacity and generalization. Additionally, replac-
ing ESM-2 650M with a larger or more advanced PLM could improve the encoder’s representations,
leading to better sequence-to-structure mappings.

Despite the advantages of a unified approach, our results highlight challenges, particularly in tasks
with limited labeled data. For instance, performance in mutation-induced melting temperature esti-
mation was impacted by the small dataset sizes, reflecting the data dependency of this framework.

In conclusion, this work extends Prot2Token to handle a broader range of protein prediction tasks
while maintaining a unified training framework. The model provides flexibility and efficiency,
though its performance remains dependent on data availability and task complexity. Moving for-
ward, we plan to further investigate substrate-kinase phosphorylation site prediction and protein-ion
binding site identification to refine their predictive capabilities and investigate them deeper. While
challenges remain, this study underscores the potential of next token prediction as a step toward
general-purpose protein prediction frameworks.
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MEANINGFULNESS STATEMENT

A meaningful representation of life reflects the fundamental principles that govern biological sys-
tems, allowing us to interpret the complexity of molecular interactions. Proteins, as essential com-
ponents of life, encode vast information within their sequences and structures, yet extracting and
unifying this knowledge remains a challenge. Our work extends Prot2Token to create a unified
framework for protein function prediction, aligning diverse tasks within a single model. By trans-
forming fragmented protein insights into a cohesive representation, we move closer to capturing the
underlying order in biological processes, ultimately advancing our ability to model and understand
life.
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Noelia Ferruz and Birte Höcker. Controllable protein design with language models. Nature Machine
Intelligence, 4(6):521–532, 2022.

Limin Fu, Beifang Niu, Zhengwei Zhu, Sitao Wu, and Weizhong Li. Cd-hit: accelerated for cluster-
ing the next-generation sequencing data. Bioinformatics, 28(23):3150–3152, 2012.
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A APPENDIX

A.1 ARCHITECTURE

The autoregressive transformer models the joint probability of a sequence x = (x1, x2, . . . , xT ) by
decomposing it into conditional probabilities as follows:

p(x) =

T∏
t=1

pθ (xt | x1, . . . , xt−1)

Training is conducted by minimizing the negative log-likelihood of the observed tokens:

L(θ) = −
T∑

t=1

log pθ (xt | x1, . . . , xt−1)

where θ represents the model parameters. A causal mask is applied during training to ensure that
each token xt attends only to preceding tokens x1, . . . , xt−1. This enforces the autoregressive prop-
erty, enabling the model to learn contextual representations of the preceding sequence. To refine the
standard autoregressive objective, we introduce token-specific weights wt, which allow regulation
of the loss contribution from each token. For instance, by setting w1 = 0, the prompt token (first
token) is excluded from the loss computation. For t ≥ 2, wt can be adjusted, enabling non-prompt
tokens to have varying importance. The updated training objective becomes:

L(θ) = −
T∑

t=1

wt log pθ (xt | x1, . . . , xt−1)

Here, wt ∈ [0,∞) is a user-defined parameter that specifies the importance of each token. This
approach provides flexibility during fine-tuning by removing the prompt token’s influence on the loss
(e.g., assigning it a weight of zero) and focusing on non-prompt tokens. The encoder in our model is
identical to the ESM-2 650M architecture. Its output is augmented with a learnable embedding and
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then reduced from 1,280 to 640 dimensions through a learnable linear projection layer. The decoder
consists of a standard causal (autoregressive) Transformer, featuring a hidden size of 640, a feed-
forward dimension of 2,560, GeLU activations, and 16 attention heads, distributed across 16 blocks.
To enhance training efficiency and memory usage, we integrate FlashAttention 2 Dao (2023). To
guide the decoder’s predictions for the protein-ion binding site tasks, we introduce task tokens into
the process. Unlike the original Prot2Token model, which employed a pre-trained chemical language
encoder, we simplify this step by directly mapping each ion type to a specific task token that is fed
to the decoder. This strategy allows the model to infer the ion type entirely from the task token,
removing the need for a chemical language encoder.

A.2 DATASET

A.2.1 PTMS

In this section, we describe the process of collecting PTM data. While numerous databases and pub-
lications provide PTM data, most only offer sequence fragments, typically 21 amino acids long, with
the PTM located at the center position. The largest database with PTM annotations is UniProt, which
contains over 200 million protein sequences and provides annotations for more than 200 PTM types
and their respective positions for some sequences. We downloaded full-length protein sequences
and PTM annotations from UniProt, focusing on annotations in the Modified Residue, Lipidation,
Glycosylation, and Cross-link sections and performed an advanced search in these sections using a
wildcard (*) to retrieve all values. This resulted in 106,195 protein sequences from the Reviewed
(Swiss-Prot) dataset and 4,173,205 sequences from the Unreviewed (TrEMBL) dataset. To ensure
data quality, we exclusively used the protein sequences from the Reviewed (Swiss-Prot) dataset.

We downloaded the 106,195 protein sequences as JSON files for further processing, only sequences
with lengths of 1,022 amino acids or fewer were retained. Next, CD-HIT was applied to cluster
the sequences based on a similarity threshold of 40% (c = 0.4), grouping sequences with similarity
above 40% into the same cluster. Subsequently, we split the data into training and testing sets in a 4:1
ratio, ensuring that sequences within the same cluster were assigned to the same dataset. Given the
distribution of PTM types, we focused on six types for this study: Phosphorylation (S), Methylation
(R), N-glycosylation (N), O-glycosylation (T), Acetylation (K), and Ubiquitylation (K). Table 8
shows PTM dataset statistics.

Table 8: Statistics of PTM datasets.

PTM type Annotation in Uniprot Amino acid Number of sequences Number of positions
Ubiquitylation Glycyl lysine isopeptide (Lys-Gly) (interchain with G-Cter in ubiquitin) K 2,370 5,029

Phosphorylation Phosphoserine S 34,260 121,398
Acetylation N6-acetyllysine K 9,115 23,615
Methylation Omega-N-methylarginine R 1,813 3,279

N-linked Glycosylation N-linked (GlcNAc...) asparagine N 30,310 11,5767
O-linked Glycosylation O-linked (GalNAc...) threonine T 568 2,723

Succinylation N6-succinyllysine K 2,392 7,446

A.2.2 KINASE SPECIFIC PHOSPHORYLATION SITES

The dataset was gathered from GPS 6.0 and contains 24,160 phosphorylation sites. We mapped
IDs from the UniProt database and obtained 13,401 sequences with kinase information. To retrieve
kinase sequences, we used Kinase.com and the UniProt database. To reduce sequence similarity,
we applied CD-HIT with a 70% similarity threshold to group similar protein substrate sequences.
We kept one representative from each group and selected positive substrate-kinase pairs using two
criteria: (1) cross-cluster selection, where pairs from different groups were kept to increase diversity,
and (2) within-cluster selection, where only one unique kinase pair per group was retained to avoid
repetition. The final dataset includes kinase sequences, kinase information (group/family/kinase),
substrate UniProt IDs, substrate sequences, and phosphorylation sites. It contains 386 kinase types
across 12 groups. We removed the rare groups “RGC” and “PKL” due to their poor representation.
The dataset was randomly split into training (5,385 unique substrates) and validation (969 unique
substrates) sets (Table 9). To test our results against other methods, we used the GPS test set from
the “CMGC” group, which includes 146 unique substrate-kinase pairs with phosphorylation site
information.
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Table 9: Statistics of kinase phosphorylation site datasets.

Dataset Number of samples Number of p-sites Number of groups
All samples 6,500 13,376 10
Training set 5,385 10,621 10

Validation set 969 2,455 9
GPS-test 146 300 1

A.2.3 PROTEIN MUTATION MELTING TEMPERATURE

We used data from GeoStab. The training dataset consists of 4,346 single-point mutations across
349 proteins, sourced from ProThermDB Gromiha et al. (2000) and ThermoMutDB Xavier et al.
(2021). The testing dataset contains 571 single-point mutations from 37 proteins, obtained from the
same sources.

A.2.4 3D-STRUCTURE

To construct a high-quality dataset for training our model on sequence-to-structure mapping, we
utilized the UniRef50 database, which offers clustered sets of sequences from the UniProt Knowl-
edgebase, reducing redundancy and enhancing computational efficiency. This resource provided
us with approximately 67 million unique protein sequences. We then retrieved the corresponding
3D structures for these sequences from the UniProt Predicted Structures Database, which contains
models predicted by AlphaFold 2. This effort resulted in the acquisition of 40 million Protein Data
Bank (PDB) files. To ensure the reliability of our dataset, we filtered these structures based on their
predicted Local Distance Difference Test (pLDDT) scores, a per-residue measure of confidence pro-
vided by AlphaFold 2. Structures with a mean pLDDT below 0.85 were excluded, as scores above
this threshold indicate high confidence in the predicted local structure. This filtering step reduced
our dataset to 11 million PDB files. From this refined collection, we randomly selected two sub-
sets of 2,000 PDB files each, ensuring that all chosen structures had pLDDT scores exceeding 0.90,
indicating very high model confidence. These subsets were designated as our validation and test
sets, respectively. The remaining structures constituted our training set. Prior to training, all PDB
files were converted into discrete tokenized representations using the VQVAE model Gaujac et al.
(2024). This process transformed the continuous 3D coordinate data into sequences of discrete
tokens, facilitating their use in autoregressive transformers.

A.2.5 PROTEIN-PROTEIN AFFINITY

We used data from PPB-Affinity Liu et al. (2024), the largest publicly available dataset for protein-
protein binding (PPB) affinity. PPB-Affinity provides key information, including crystal structures
of protein-protein complexes, PPB affinity values, receptor protein chains, and ligand protein chains.
Since PPB-Affinity does not include protein sequences, we retrieved them from the RCSB Protein
Data Bank (PDB) based on the protein names provided in PPB-Affinity. To construct a relevant
dataset for our model, we applied the following filtering steps:

1. Chain Filtering – We removed samples containing more than two chains, retaining only
those with a single receptor chain and a single ligand chain.

2. Mutation Removal – Samples containing mutated sequences were excluded.
3. Affinity Label Processing – For identical protein complexes with multiple PPB affinity

values, we averaged the KD (M) values to obtain a single affinity label.
4. Data Splitting – The final dataset was split into training (50%), validation (20%), and

testing (30%) sets, resulting in 765, 180, and 270 samples, respectively.

The (KDKD) values, representing dissociation constants, were preprocessed to ensure numeri-
cal stability and improve model performance. First, a log10 transformation was applied to ad-
dress the wide dynamic range and skewed distribution of KD values, using the formula: KDlog =
log10(KD + ϵ), where ϵ = 10−16 prevents undefined values for extremely small inputs. The log-
transformed values were then normalized to a range between 0 and 1 using Min-Max scaling based
on the training dataset’s minimum and maximum KDloglog values. Importantly, during model met-
ric calculation and evaluation, both the log-transformation and normalization effects were reversed,
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ensuring that the calculated metrics accurately reflect the original KD scale. This preprocessing
pipeline provided a consistent and interpretable representation of KD values for both model training
and evaluation.

A.2.6 PROTEIN-ION BINDING SITE

We utilized the BioLip2 database to obtain protein interactions with metal ions. BioLip2 primarily
relies on the Protein Data Bank (PDB), literature reviews, and other specialized databases. To re-
fine our dataset, we removed DNA/RNA sequences and excluded any protein sequences with fewer
than 50 residues. Additionally, we applied CD-HIT with a 40% sequence identity cutoff to cluster
the training, validation, and testing datasets. This step ensured a reliable evaluation by maintaining
a clear separation between the training and testing datasets. Table 10 provides details on the se-
lected metal ions, including the total number of interacting protein sequences and the corresponding
number of residues.

Table 10: Protein-ion dataset statistics.

Chemical Formula Name Num Sequences Binding Sites
CA2+ Calcium Ion 3043 22161
MG2+ Magnesium Ion 2951 9494
ZN2+ Zinc Ion 4665 23310
MN2+ Manganese Ion 789 3315

A.3 EXPERIMENTS

A.3.1 SELF-SUPERVISED PRE-TRAINING

At the initial stage, we selected 4 million protein sequences from the UniRef50 database Suzek
et al. (2015) for training and allocated 4,000 sequences for validation. To expand the dataset, we
generated 80 million training samples and 20,000 validation samples by treating each occurrence
of an amino acid type within a protein as a distinct training instance. From this pool, we further
sampled 1 million training and 1,000 validation samples to construct the final dataset.

For model training, we set the input sequence length to 1,280 and applied a weight decay of 0.01,
using a batch size of 192 samples, which corresponds to 73,728 tokens. The training schedule
included a warm-up phase of 512 steps. Throughout training, we froze the encoder weights while
updating all other parameters. After 16 epochs, the model reached a validation perplexity of 2.31,
demonstrating its ability to accurately reconstruct protein sequences from the encoder’s embeddings.

A.3.2 PTMS

Training of ESM-2 method was performed for 48 epochs with a cosine annealing learning rate
schedule and a warm restart at epoch 24. The initial learning rate is 5×10−5 , resetting to 2.5×10−5

at epoch 24, with a minimum learning rate of 0. The AdamW optimizer is used with a weight decay
of 1 × 10−2, and gradient clipping with a norm of 1 is applied to prevent exploding gradients.
The dataset is processed with a batch size of 8 and a maximum sequence length of 768 to ensure
compatibility with computational constraints.

A.3.3 3D STRUCTURE

During the training process, we encountered multiple interruptions due to various factors, including
model collapse, suboptimal learning rates, and unforeseen coding bugs. Given the computational
constraints, it was not feasible to maintain a single uninterrupted training session. As a result, we
adopted a checkpointing strategy, where training was resumed from the most recent stable check-
point after each interruption. While this approach allowed us to progress despite hardware limita-
tions, it also introduced challenges related to training continuity, as well as reporting and tracking
training logs and metrics. Future iterations of this work would benefit from a more robust computa-
tional setup to enable seamless, long-duration training runs.

During inference, we encountered a challenge where the decoder occasionally generated an output
sequence with either more or fewer tokens than the actual number of amino acids in the input se-
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quence. To address this issue, we applied a constraint on the end <EOS>token probability. Specifi-
cally, during inference, we artificially adjusted the probability of the <EOS> token, ensuring that it
was only allowed if the number of predicted 3D tokens matched the length of the input amino acid
sequence. This adjustment effectively enforced sequence alignment and resolved inconsistencies in
output length of generated structure. We also demonstrated three failure cases in Figure 4.

AlphaFold 2

Prot2Token

(A) (B) (C)

RMSD: 26.172 ÅTM-Score: 0.7385 TM-Score: 0.4921 RMSD: 30.447 Å TM-Score: 0.6833 RMSD: 18.115 Å

Figure 4: Randomly selected test set samples where the model achieved a TM-score lower than 0.75.

A.3.4 PROTEIN-ION BINDING SITE

While comparing our method with other well-known tools, we encountered several challenges.
Some web servers were inaccessible during testing, while others only supported single-sample pre-
dictions, making bulk evaluations impractical and time-consuming. Specifically, we attempted to
evaluate the IonCom Hu et al. (2016) and MIB2 Lu et al. (2022) server tools but faced significant
issues: MIB2 exhibited extremely slow response times, and IonCom imposed strict limitations on
the number of samples that could be evaluated.
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