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Abstract

Automatically generating or captioning music playlist titles
given a set of tracks is of significant interest in music stream-
ing services as customized playlists are widely used in per-
sonalized music recommendation, and well-composed text ti-
tles attract users and help their music discovery. We present
an encoder-decoder model that generates a playlist title from
a sequence of music tracks. While previous work takes track
IDs as tokenized input for playlist title generation, we use
artist IDs corresponding to the tracks to mitigate the is-
sue from the long-tail distribution of tracks included in the
playlist dataset. Also, we introduce a chronological data split
method to deal with newly-released tracks in real-world sce-
narios. Comparing the track IDs and artist IDs as input se-
quences, we show that the artist-based approach significantly
enhances the performance in terms of word overlap, semantic
relevance, and diversity.

1 Introduction
With the popularization of music streaming services, music
playlists have become essential resources in helping music
discovery from huge collections of music (Dias, Gonçalves,
and Fonseca 2017). Because of the expected difficulty of
browsing a large number of music playlists, a music playlist
title that depicts the content information is often provided
to attract users and help their discovery. For example, a ti-
tle could be used to describe genre (e.g., “send this playlist
to your friend who doesn’t know what indie rock is”), sit-
uation (e.g., “best jogging music for motivation”), original-
ity (e.g., “playlist that will make you feel like an Arabian
princess”), and so on. Making an informative and attractive
title, however, does not come easily to everybody; we have
seen a lot of titles that do not contain musically meaningful
information (e.g., “my favorites”) or simply consist of a few
related words (e.g., “meditation, zen, yoga, sleep, study, fo-
cus”). Thus, if a descriptive playlist title could be generated
automatically, it would help make the playlist more inviting
and discoverable.

Several approaches have been proposed to automatically
generate a playlist’s title or description. They are mainly
based on a neural machine translation model, which encodes
a whole sequence of musical information into fixed-length
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latent vectors and then decodes them into text (Bahdanau,
Cho, and Bengio 2014; Vaswani et al. 2017). Specifically,
they used an RNN-based sequence-to-sequence model that
learns from audio and supplementary text data (e.g., genre)
(Choi et al. 2016) or a transformer-based model that takes
a series of track IDs (unique IDs given to each track) (Doh,
Lee, and Nam 2021) to generate a title for a music playlist.
From the previous work, we observe two major issues. One
is that a significant amount of the data is rarely-seen, mak-
ing it difficult to capture the semantics for the model. As a
result, the model has a tendency to repetitively produce mu-
sically meaningless titles such as “my favorite songs”. An-
other issue is that it does not reflect real-world settings in
which the model makes inferences from playlists containing
new releases. An ideal music playlist title generation sys-
tem should generalize well across different types of music
playlists; its performance should not deviate when inferring
from playlists with rarely appearing tracks or new releases.

To address these limitations, we introduce a music playlist
title generation model that takes artist IDs instead of track
IDs as input (Section 2). Because tracks by the same artist all
use the same input embedding vector, the model is capable
of capturing the semantics of songs regardless of their fre-
quency of appearance in playlists. To better represent real-
world settings, we propose a chronological data split method
to simulate the case of inferring from tracks that are newly
released (Section 3). Furthermore, we perform a systematic
evaluation regarding word overlap, semantic relevance, and
diversity (Section 4). Section 5 shows that the artist ID em-
bedding approach improves the ability to deal with unpopu-
lar tracks or artists without compromising the ability to han-
dle popular tracks or artists. Finally, Section 6 concludes this
paper by discussing its limitations and future work. Repro-
ducible code is available online 1.

2 Music Playlist Title Generation
Encoder-Decoder Model
Similar to the previous work (Doh, Lee, and Nam 2021), our
music playlist title generation model is based on an encoder-
decoder framework: an encoder network for obtaining the
semantics of music tracks and a decoder for generating a

1github.com/havenpersona/title generation



Figure 1: Model Architecture.

sequence of natural language. We use the Transformer ar-
chitecture (Vaswani et al. 2017), which has two or three
sub-layers: multi-head attention sub-layers, fully-connected
sub-layers, and the masked multi-head attention layer in the
case of the decoder. As illustrated Figure 1, the architecture
takes unique token IDs from a sequence of music tracks. In
the proposed systems, a music track sequence is a collec-
tion of track or artist information x, with each track or artist
represented as a unique token (x1, ..., xn). The tokenized
IDs are initialized by dmodel dimension random vectors and
processed by the encoder network f : X 7→ Z. The vec-
tors are transformed into a sequence of latent representations
z = (z1, ..., zn), which is fed to the decoder g : Z 7→ Y, and
it generates an output sequence ŷ = (ŷ1, .., ŷm) where ŷ
refers to a generated music playlist title and each element in
(ŷ1, .., ŷm) refers to each token in the title. We used the soft-
max cross-entropy loss for comparing the ground truth with
the prediction.

Music Track Representations

We use music track sequences as input for the encoders.
Each element of the track sequence was represented with
metadata, such as a track ID and an artist ID. Tracks provide
more specific information than artists. Such high specificity
may capture the detail of music semantics, but it often causes
the issue that the system cannot extract meaningful seman-
tics if the track was infrequently seen in the training phase.
For example, in the playlist datasets in our experiment, more
than 17% of tracks do not appear more than two times in the
training phase. On the other hand, only less than 5.0% artist
IDs appear more than twice. Therefore, using artist IDs may
allow the system to extract the semantics from the informa-
tion obtained from prior songs by the same artists.

Dataset Statistic Original Doh et al. Proposed

Melon

# of Playlist 148,826 51,404 80,160
# of Unique Track 649,902 429,266 516,220
# of Unique Artist 115,457 77,145 92,020
# of Unique Title 115,318 59,209 77,905
# of Unique Word 88,524 49,978 62,834
Avg. Char Length 2.8 3.6 3.1
Avg. Title Length 3.6 4.7 5.2
Avg. Track Length 39.7 46.2 44.6

MPD

# of Playlist 1,000,000 50,083 34,115
# of Unique Track 2,262,292 402,523 303,779
# of Unique Artist 286,787 69,641 55,103
# of Unique Title 17,381 1,859 1,229
# of Unique Word 11,146 1,886 1,258
Avg. Char Length 5.2 4.2 4.1
Avg. Title Length 1.4 3.4 3.4
Avg. Track Length 66.3 66.3 64.2

Table 1: Dataset Statistics.

Dataset Entity <UNK>
Proportion

Melon Track ID 14.70%
Artist ID 3.53%

MPD Track ID 9.86%
Artist ID 2.91%

Table 2: Proportion of <UNK> tokens in validation and test
sets

3 Dataset and Experiment
We used two different datasets: the Melon Playlist Dataset
(Melon) (Ferraro et al. 2021) and the Spotify Million Playlist
Dataset (MPD) (Chen et al. 2018). The dominant languages
used are Korean and English, respectively. Originally cre-
ated for the automatic playlist continuation (APC) tasks, the
datasets contain playlist titles, music track sequences, and
music metadata (track, artist name), along with the last mod-
ification date. Using both datasets, the previous work (Doh,
Lee, and Nam 2021) suggested a random data split scheme
and a noise-cleaning strategy for generating playlist titles.
However, this approach has two limitations – First, validat-
ing and testing on randomly divided data does not mimic
the circumstance of making inferences from newly released
tracks and artists. Second, the filtering strategy considered
the structural quality of titles only, while overlooking the se-
mantic quality. This would reduce the usability of the system
in practice. To address the problem, we propose a new data
split and noise-filtering strategy.

Chronological Data Split
In the real world, the model makes predictions on playlists
with new releases as a large number of music tracks are up-
loaded to music streaming platforms every day. Validating
and testing on randomly split sets does not represent this
reality. To overcome this limitation, we performed training,
validation, and testing on data that was chronologically di-
vided, as shown in Figure 2 and replaced a new release with



(a) Melon Playlist (b) Million Playlist

Figure 2: Chronologically split data. Training data is colored
blue, and validation/test data are colored red. The horizontal
axes are split by year and quarter.

a special token, <UNK>. For the Melon Playlist Dataset, we
used playlists made in 2020 as validation and test sets. Any
playlist created before that was used as training data. For the
Million Playlist Dataset, playlists made in the last quarter of
2017 were used as validation and test sets. Those created be-
fore that were used as training data. The approximated ratio
of train sets to validation/test sets is 83:17 and 82:18, respec-
tively. As Table 2 shows, the proportion of <UNK> token is
significantly higher when using track IDs as input than artist
IDs, which implies that the model is more likely to handle
unseen data when taking track IDs as input.

Filtering Out Noisy Data
As the previous study (Doh, Lee, and Nam 2021) suggested,
some playlists in datasets come with undesirable titles or
a very small number of tracks (including playlists with no
tracks). Therefore, they only used playlists that met the fol-
lowing criteria: i) The title should have at least three to-
kens after white space tokenization. ii) The average charac-
ter length of tokens should be at least three. iii) The playlist
should contain at least ten tracks. We modified the crite-
ria by mitigating the second and third criteria and adding
a newly introduced one. The new criterion was introduced
to avoid generating titles without musically meaningful in-
formation, such as “good music to listen to” or “best music
ever”. Therefore, we only used playlists that contained at
least one word from a pre-defined list of music tags. The
following steps were taken to obtain the list of music tags.

Korean: The list of music tags in Korean is based on the
30,652 unique tags provided by the Melon Playlist Dataset.
We only considered tags that appeared at least fifty times in
the entire dataset. Tags that are musically meaningless, such
as “recommendation” and “compilation” were excluded.
The total number of tags in Korean is 731.

English: The Million Playlist Dataset does not provide
music tags. We obtained the tag list in English from two
publicly available music tag datasets for music auto-tagging
research (the MTG-Jamendo Dataset (Bogdanov et al. 2019)
and the Million Song Dataset (Bertin-Mahieux et al. 2011)).
Since they do not contain a large number of genres that have
recently gained popularity (e.g., “trap”), we gained addi-

tional tags from frequently appearing words on YouTube
Music. Again, we removed tags that are not suitable for mu-
sic playlist descriptions. As a result, we obtained a total of
1,013 English tags.

To summarize, we filtered out playlists that did not meet
the following criteria: i) The title should have at least three
tokens after white space tokenization. ii) The average char-
acter length of tokens should be at least two. iii) The playlists
should contain at least two tracks. iv) The title should con-
tain at least one musically meaningful word. As a result of
our modification of criteria, we were able to collect titles
with meaningful information, as all of the titles include at
least one musically relevant term without reducing the aver-
age title length (see Table 1).

Training Details
The model was optimized with the Adam optimizer with a
0.005 learning rate and 10−4 learning rate decay (Kingma
and Ba 2014). The rate was scheduled with the cosine an-
nealing scheduler with a minimum learning rate of 10−6

(Loshchilov and Hutter 2017). We used a batch size of 64
and performed validation at the end of every epoch. Follow-
ing previous research, we ignored the position of the input
sequence because the order of tracks or artists in a music
playlist does not provide crucial information when generat-
ing a title in most circumstances.

4 Evaluation Metrics
For our evaluation, we use text generation evaluation met-
rics (Celikyilmaz, Clark, and Gao 2020) and grouped them
into three categories: (i) n-gram based overlap metrics (ii)
BERT-based neural metrics (iii) n-gram based diversity met-
rics. Using these metrics, we assess the overall performance.
In addition, we measure the robustness which we define
as the degree to which the model’s performance changes
when dealing with data that appears infrequently versus fre-
quently.

n-gram Overlap Metrics
Counting the number of overlapping n-gram between a ref-
erence y = (y1, ..., yl) and a candidate ŷ = (ŷ1, ..., ŷm)
is one of the most common ways to evaluate models for
text generation. This paper uses three popular n-gram over-
lap metrics to evaluate the model performance — BLEU,
ROUGE, and METEOR.

Bilingual Evaluation Understudy (BLEU) was pro-
posed to assess machine translation performance, and this
includes modified n-gram precision (Papineni et al. 2002).
The computation of the modified precision score for one
reference sentence and one candidate sentence is done by
counting the number of n-gram matches and dividing it by
the number of candidate n-grams. In this paper, we calcu-
lated BLEU for two different values of n (n = 1, 2).

Recall-Oriented Understudy for Gisting Evaluation
(ROUGE) was proposed for text summarization evaluation
and has also been used for evaluating short text generation
(Lin 2004). Whereas BLEU focuses on precision, ROUGE



Dataset Input Loss n-gram Overlap Metrics BERT-Based Metrics
NLL BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 METEOR BERT Score SentBERT

Melon Track ID 6.40 0.048 0.01 0.061 0.01 0.041 0.417 0.775
Artist ID 6.23 0.056 0.01 0.074 0.01 0.049 0.430 0.778

MPD Track ID 1.35 0.232 0.180 0.237 0.174 0.212 0.889 0.408
Artist ID 1.17 0.288 0.229 0.293 0.223 0.265 0.897 0.460

Table 3: Comparison between the track ID embedding model and the artist ID embedding model. The results indicate that word
overlap and BERT-based metric improve when using the artist ID embedding.

(a) Melon Playlist (b) Million Playlist

Figure 3: Distribution of average track frequency (Ft) and average artist frequency (Fa). We removed items above the 99th
percentile to eliminate statistical outliers. The red lines were added to visualize the values that divide the data into four parts.

uses both recall and precision. In this paper, we use the f1-
score of ROUGE-N , one of the variants of ROUGE, for
evaluating our model. It is obtained by calculating the har-
monic mean of prediction (the number of n-gram matches
divided by the number of candidate n-grams) and recall (the
number of n-gram matches divided by the number of refer-
ence n-grams). The values of n used are 1 and 2.

Metric for Evaluation of Translation with Explicit
ORdering (METEOR) was proposed to address some lim-
itations of BLEU for machine translation evaluation (Baner-
jee and Lavie 2005). In a similar fashion to ROUGE, this
metric considers both recall and precision. It could be ob-
tained by calculating the harmonic mean of the unigram
precision score and the unigram recall score, with weight-
ing recall nine times more than precision. The final score
combines this with the chunk penalty. The penalty increases
if the number of chunks (consecutive unigrams) increases.
When there is no bi-gram match, the maximum number of
penalty (0.5) is given.

BERT-Based Neural Metrics
Instead of counting the number of exact matches, BERT-
based metrics use the pre-trained contextual embeddings
generated by the model to capture the semantic similarity
between a reference sentence y = (y1, ..., yl) and a candi-
date sentence ŷ = (ŷ1, ..., ŷm).

BERT Score is obtained by computing the cosine sim-
ilarity between each token in a reference sentence and in

a candidate sentence and using greedy matching to max-
imize the score (Zhang et al. 2019). In this paper, we
used the pretrained KcBert-Base model (Lee 2020) for
evaluating the Melon Playlist Dataset and the pretrained
RoBERTa-large model (Zhuang et al. 2021) for evalu-
ating the Million Playlist Dataset to get the contextual em-
beddings.

Sentence BERT (SentBERT) was proposed for semantic
textual similarity evaluation tasks (Reimers and Gurevych
2019). The SentBERT uses a siamese pre-trained BERT net-
work to derive semantically meaningful sentence embed-
dings. Each embedding is calculated by taking the mean of
all vector representations of each token and computing the
cosine similarity between them. In this paper, we adopted
the embeddings of KLEU RoberTa small (Park et al.
2021) for evaluating the Melon Playlist Dataset and the
all-MiniLM-L6-v2 (Wang et al. 2020) for evaluating
the Million Playlist Dataset.

n-gram-Based Diversity Metrics
A successful music playlist title generation model should
avoid generating repetitive titles and instead produce diverse
outputs. Researchers suggested n-gram-based diversity met-
rics show a high correlation with lexical diversity (Tevet
and Berant 2021). One of the n-gram based metrics used
for diversity evaluation is distinct-n, the number of distinct
n-grams divided by the total number of n grams (Li et al.
2016). In this paper, we evaluated lexical variations using



(a) Melon Playlist (b) Million Playlist

Figure 4: Distribution of BERT Score of the highest 25% Ft group and the lowest 25% Ft group. The score of the lowest 25%
group is improved without impairng the performance of the highest 25% group when the artist ID embedding is used.

(a) Melon Playlist (b) Million Playlist

Figure 5: Distribution of BERT Score of the highest 25% Fa group and the lowest 25% Fa group. The score of the lowest 25%
group is improved without imparing the performance of the highest 25% group when the artist ID embedding is used.

distinct-n with three values of n (n = 1, 2, 3).

5 Results and Discussion
Word Overlap and Semantic Relevance
Table 3 compares all n-gram overlap performances (BLEU,
ROUGE, and METEOR) of different input models (Track
ID, Artist ID). The artist ID embedding model shows a
clear performance improvement over the track ID embed-
ding model. In the case of the Melon Playlist Dataset, the
change in BLEU-2 was not noticeable because of the gram-
matical characteristics of Korean (that post-positional par-
ticles immediately follow a noun or pronoun without white
space). We observed a similar trend on the Negative Log-
likelihood (NLL) loss and the BERT-based neural metrics
(BERT Score and Sentence BERT). This indicates that uti-
lizing artist IDs lessens the problem of dealing with in-
frequently appearing tracks, enabling the system to extract
more musically meaningful information.

Diversity
Figure 6 shows an increase in distinct-n when using artist
ID embedding regardless of the value of n. Despite the bet-
ter specificity of track IDs, the artist ID embedding model
produces more lexically diverse outputs. This indicates that
the high <UNK> token ratio in track ID (Table 2) lowers not
only semantic relevance but also diversity performance.

(a) Melon Playlist (b) Million Playlist

Figure 6: distinct-n (n = 1, 2, 3) indicates that the artist ID
embedding generates more lexically diverse titles.

Robustness
We assessed the model’s robustness by comparing its per-
formance when dealing with infrequently appearing data
versus frequently appearing data. We defined the frequency
of appearances from two perspectives: average track fre-
quency and average artist frequency. Based on these points
of view, we equally divided the entire playlist into four
groups and compared the model’s performance on the top
25% and bottom 25%. In this paper, we denote them as Ft

and Fa, respectively. The average track frequency Ft and
the average artist frequency Fa are calculated in the fol-
lowing way. When a playlist consists of tracks (t1, ..., tm)
and artists (a1, ..., an), the average track frequency Ft is ob-



PID 143802 75870

Ft 355.39 0.75

Ground Truth 카페를가득채우는감성노래
(An atmosphere of touching music permeates a cafe.)

나른한오후에어울리는잔잔한연주
(Calming melodies in the afternoon when feeling drowsy)

Track ID Embedding 따뜻한커피한잔과함께듣는발라드
(Ballad music and a cup of coffee in hand))

영화속 ost모음
(Movie soundtracks compilation)

Artist ID Embedding 센치한밤에듣는감성노래
(A sentimental night with touching music)

잔잔한피아노선율로듣는클래식
(Piano melodies in classical music that are soothing)

Table 4: Inference examples from the highest 25% Ft group (Left) and the lowest 25% Ft group (Right).

PID 117646 116152

Fa 3161.39 540.40

Ground Truth 달빛아래들려오는감미로운보이스
(A sweet voice in the moonlight)

한국힙합흐름따라가기
(Catching up with the flow of the Korean hip-hop scene)

Track ID Embedding 따뜻한커피한잔과함께듣는발라드
(Ballad music and a cup of coffee in hand)

영화속 bgm rock영화속 bgm모음
(BGM rock music in the movie, Compilation of movie BGMs)

Artist ID Embedding 조용한밤에듣는감성노래
(Touching songs you might wanna listen to on a calm night)

한국힙합의시작에서정착까지
(Korean hip-hop: From its inception until its maturation)

Table 5: Inference examples from the highest 25% Fa group (Left) and the lowest 25% Fa group (Right).

tained by taking the mean of track frequency (f1, ..., fm).
Similarly, we can calculate the average artist frequency score
Fa by averaging the frequency of each artist in the train sets
(f̂1, ..., f̂n) (The numbers of m and n could be different be-
cause there could be multiple artists on a single track).

Ft =
1

m
Σm

x=1fx (1)

Fa =
1

n
Σn

x=1f̂x (2)

As shown in figure 3, there were a much greater number
of playlists with low Ft than those with low Fa.

The artist ID embedding model shows remarkably better
performance on the lowest Ft score group (those from 0%
to 25%) than the track ID embedding in terms of semantic
relevance, as shown in figure 4. The improvement is made
without impairing the performance on the highest Ft score
group (those from 75% to 100%). In fact, the performance
on the highest Ft group improves when using artist ID em-
bedding, as in the case of the Million Playlist Dataset. As a
consequence of this, the performance gap between the sub-
groups is mitigated. We also observed that the artist ID em-
bedding improved the performance on the lowest Fa score
group (those from 0% to 25%) and alleviated the perfor-
mance gap, as shown in Table 5.

Qualitative Results
We provide four inference examples on playlists from the
Melon Playlist Dataset, along with their PIDs (unique iden-
tification numbers assigned to each playlist) in Table 4 and
5, with English translation. Each playlist is from the group
that has the highest 25% Ft, the lowest 25% Ft, the high-
est 25% Fa, and the lowest 25% Fa. Regardless of the in-
puts, the model successfully generated a phrase-like title de-

scribing the mood (e.g., touching) or location (e.g., cafe) of
the playlists from the highest 25% Ft and highest 25% Fa

group. The model trained with artist ID embedding produced
informative titles that represent the mood (soothing), origi-
nality (Korean) and genre (hip-hop) of the playlists from the
lowest 25% Ft and lowest 25% Fa group. However, when
trained with track IDs, the model could not generate a ti-
tle with the correct information for the playlist from the
lowest 25% Ft and lowest 25% Fa groups (PID: 75870).
Whereas the ground truth defines each playlist as calming
melodies and Korean hip-hop, the model predicts them as
movie soundtracks and rock music in the movie, respectively.

6 Conclusions

In this paper, we proposed a model for music playlist title
generation using a series of artist IDs as input. Throughout
our assessment, we showed that the artist ID embedding can
improve the performance in terms of word overlap, seman-
tic similarity, and diversity. We also proved that the artist ID
embedding improves the model’s robustness because rarely
or never-before-seen data are less likely to be handled by
the model. Our findings were supported by two datasets in
different languages. However, our research has two limita-
tions. First, in the real world, a single artist might cover
multiple genres and styles over time. A fixed artist ID em-
bedding does not reflect such variety. Second, the artist ID
embedding model would still need to deal with unseen data
(new artists). One approach to solving this problem is to use
content-based audio embedding for encoder input and ob-
serve the model’s performance. For future work, we plan to
experiment with different inputs such as audio, genre labels,
or a mixture of multiple inputs.
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