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ABSTRACT

Recent Large Audio-Language Models (LALMs) have shown strong performance
on various audio understanding tasks such as speech translation and Audio Q&A.
However, they exhibit significant limitations on challenging audio reasoning tasks
in complex acoustic scenarios. These situations would greatly benefit from the
use of acoustic tools like noise suppression, source separation, and precise tem-
poral alignment, but current LALMs lack access to such tools. To address this
limitation, we introduce Thinking-with-Sound (TwS), a framework that equips
LALMs with Audio CoT by combining linguistic reasoning with on-the-fly audio-
domain analysis. Unlike existing approaches that treat audio as static input, TwS
enables models to actively think with audio signals, performing numerical analy-
sis and digital manipulation through multimodal reasoning. To evaluate this ap-
proach, we construct MELD-Hard1k, a new robustness benchmark created by in-
troducing various acoustic perturbations. Experiments reveal that state-of-the-art
LALMs suffer dramatic performance degradation on MELD-Hard1k, with accu-
racy dropping by more than 50% compared to clean audio. TwS achieves substan-
tial improvements in robustness, demonstrating both effectiveness and scalability:
small models gain 24.73% absolute accuracy, with improvements scaling consis-
tently up to 36.61% for larger models. Our findings demonstrate that Audio CoT
can significantly enhance robustness without retraining, opening new directions
for developing more robust audio understanding systems.

1 INTRODUCTION

Recent advances in Large Audio-Language Models (LALMs) have enabled unified modeling of
auditory and textual modalities (Tang et al., 2023; Chu et al., 2024; Défossez et al., 2024; Fang
et al., 2024). Unlike traditional audio processing systems that function as task-specific solvers,
LALMs allow users to specify diverse audio-related tasks through natural language instructions.
This flexibility enables them to perform various audio understanding tasks including audio trans-
lation (de Seyssel et al., 2023), emotion recognition (Maimon et al., 2025), and audio Q&A (Yang
et al., 2024; Wang et al., 2024). Notable examples include proprietary models like GPT-4o (OpenAI
et al., 2024) and open-source contributions such as Qwen2.5 Omni (Xu et al., 2025) and Voxtral (Liu
et al., 2025).

Despite these advances, current LALMs remain fundamentally limited in their acoustic understand-
ing capabilities (Lee et al., 2025). A critical weakness lies in their limited understanding of audio
signals, particularly in analyzing temporal dynamics, spectral characteristics, energy distributions,
etc. The prevailing approach simply encodes audio inputs into token representations that are then
processed alongside text tokens for mixed modality reasoning. While this makes good use of the
language modeling capabilities of LALMs, it fundamentally constrains the models’ ability to per-
form fine-grained acoustic analysis. The models lack mechanisms to iteratively reason about and
manipulate audio in its native domain, instead treating it as a static, one-time encoded input. This
architectural limitation becomes particularly pronounced when handling degraded audio or tasks
requiring precise acoustic discrimination, where pure linguistic reasoning proves insufficient.

These limitations raise a critical question about how LALMs can be enhanced to reasoning with
audio. Current approaches treat audio as a fixed input to be encoded once, but robust acoustic
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Input Question: 
Is there a car moving close to 
the speaker?
Input Audio: 

time

Classical Textual Chain-of-Thought:

Step 1:
First, locate the timeframe 
that includes the car honk.

Step 2:
Second, the honk seems 
stable and constant.

Answer:
I could not determine the 
movement of this car.

Missing audio operation. Incorrect frequency features Failed reasoning result.

Our Audio Chain-of-Thought:

Step 2:
Next, I need to do Fourier 
Transform on the honk.

Step 3:
Next, let me track the 
monotonicity of the pitch.

Answer:
The car is moving away 
from the speaker because 
the Doppler effect causes 
the pitch of the honk to 
decrease.

Step 1:
To identify the car, I need to 
separate audio sources.

t1 t2
time

Identify the key timeframe of the input audio and crop it 

Compute the spectrogram of the key timeframe

f1
f2

Tracking the monotonicity of the pitch.

pitch
trend

Figure 1: Our framework equips a Large Audio-Language Model with complex multimodal reason-
ing. Unlike traditional LALMs that struggle with acoustic details, our TwS-enabled model generates
Audio Chain-of-Thought (CoT) (Wei et al., 2022) and flexibly invokes tools such as source separa-
tion and frequency analysis. This integration of linguistic reasoning with on-the-fly acoustic analysis
enables accurate source identification, timestamp localization, and frequency feature extraction be-
yond standard inference pipelines.

understanding may require a fundamentally different paradigm. This motivates our central research
question: Can LALMs think actively with audio by iteratively analyzing and manipulating
audio signals throughout the reasoning process?

In this work, we introduce a novel Thinking-with-Sound reasoning framework (see Fig. 1 as
overview) that enables large audio-language models (LALMs) to go beyond the limitations of purely
text-based reasoning. Our approach allows the model to actively invoke appropriate tools for manip-
ulating auditory inputs, such that the reasoning process alternates between linguistic thoughts and
acoustic analysis. This design better aligns with the way humans engage in deep analysis of audio-
sensitive tasks with tools, which bridges the modality gap between language and audio under com-
plex scenarios. By jointly leveraging LALM’s intrinsic reasoning capabilities and tool-augmented
interactions, the model is guided to generate more coherent, reliable, and grounded multimodal
chains of thought, thereby unlocking its performance bottleneck in challenging audio reasoning
tasks.

For experiments, we adopt the Multimodal EmotionLines Dataset (MELD) (Poria et al., 2019) as the
base benchmark and construct a new evaluation set, MELD-Hard1k, by introducing various types
of perturbations to the audio inputs. Experimental results show that, when comparing performance
on MELD and MELD-Hard1k, models of different parameter scales suffer an average accuracy drop
of more than 50%. This directly highlights the substantial limitations of the zero-shot generalization
ability of current LALMs. By incorporating our proposed Thinking-with-Sound (TwS) framework,
we observe that even lightweight models achieve an absolute accuracy improvement of 24.73%.
Moreover, as model size increases, the performance gains become more pronounced, indicating that
our method amplifies the inherent audio reasoning capabilities of LALMs and demonstrates stronger
generalizability and scalability.

In summary, our contributions can be summarized as follows:

(1) We propose Thinking-with-Sound (TwS), a novel reasoning framework that enables LALMs to
perform audio CoT by interleaving linguistic reasoning with acoustic analysis.

(2) We design MELD-Hard1k, a robustness-oriented benchmark that introduces perturbations to
systematically evaluate LALMs under challenging audio conditions.

(3) We demonstrate through extensive experiments that TwS consistently improves LALMs’ gaccu-
racy, robustness, and scalability across model sizes, highlighting its effectiveness in unlocking the
full audio reasoning capabilities of LALMs.
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2 RELATED WORKS

Large Audio-Language Model LALMs represent a significant advancement beyond traditional
ASR systems, enabling comprehensive audio understanding and reasoning capabilities. Recent work
has explored various architectural approaches: GAMA (Ghosh et al., 2024) integrates LLMs with
multiple audio representations through a custom Audio Q-Former. However, current LALMs face
reliability challenges, with studies showing that even advanced models like Qwen2-Audio lack ro-
bustness awareness (Ma et al., 2025). These limitations motivate our focus on enhancing LALM
reasoning through structured tool integration.

Multimodal Chain-of-Thought Chain-of-Thought reasoning has proven effective for complex
reasoning tasks in language models (Wei et al., 2022; Kojima et al., 2022), with extensions to mul-
timodal settings showing particular promise. Multimodal Chain-of-Thought (Zhang et al., 2023)
demonstrates improved performance by incorporating vision and language modalities in a two-stage
reasoning framework. Most similar to our work, Interleaved-modal Chain-of-Thought (ICoT) (Gao
et al., 2025) generates sequential reasoning steps with paired visual and textual rationales, align-
ing more closely with human cognitive processes and significantly outperforming text-only ap-
proaches. Our work extends this paradigm from vision-language to audio-language tasks, addressing
the unique challenges of temporal audio processing.

Tool-Augmented Language Models Integrating external tools has become central to enhanc-
ing language models. Toolformer (Schick et al., 2023) enabled autonomous API calls via self-
supervision, ReAct (Yao et al., 2023) combined reasoning with tool use, and HuggingGPT (Shen
et al., 2023) positioned LLMs as controllers of specialized models. In audio, MusicAgent (Yu et al.,
2023) and AudioGPT (Huang et al., 2023) explored LLM-based generation, but their one-shot or
pipeline designs lack the iterative refinement needed for robust understanding. Since audio is inher-
ently temporal and sequential, effective modeling requires dynamic multi-step manipulation. Our
work addresses this gap by enabling LALMs to iteratively reason over acoustic signals, refining
interpretations through targeted manipulations.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

We consider the setting of Large Audio-Language Models (LALMs), where the goal is to process
an audio input xa ∈ X together with a natural language instruction xt ∈ V∗ to generate a response
y ∈ V∗. Here, X denotes the space of audio signals, and V∗ represents sequences of tokens from
vocabulary V . The response y can encode various outputs including classifications, descriptions,
or structured formats, depending on the task specified by xt. Formally, we assume data triples
(xa, xt, y) are sampled from an underlying distribution D, and an LALM implements a conditional
distribution:

fθ(y|xa, xt) =

|y|∏
i=1

fθ(yi|y<i, xa, xt) (1)

where fθ denotes a parameterized model trained on paired audio-text data, and generation follows an
autoregressive factorization. For deterministic evaluation, we consider the mode of this distribution:
y = argmaxy′ fθ(y

′|xa, xt).

3.2 LIMITATIONS OF CURRENT TEXT-ONLY REASONING

Current LALMs employ a one-shot encoding paradigm where the audio signal xa is compressed
into a fixed sequence of embedding tokens za = Enc(xa) ∈ RL×d through pre-trained audio en-
coders (Radford et al., 2023; Baevski et al., 2020; Hsu et al., 2021). This irreversible transformation
discards fine-grained spectral and temporal information, reducing rich acoustic features to static
embeddings that are then concatenated with text tokens and processed through autoregressive gen-
eration. Once encoded, the model cannot revisit the original waveform, analyze specific frequency
bands, or adaptively focus on relevant temporal segments.

3
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This architectural constraint becomes particularly limiting in scenarios requiring precise acoustic
analysis. For instance, in speaker diarization tasks, the model cannot dynamically isolate and re-
examine overlapping speech segments. Similarly, for emotion recognition in noisy environments,
the model lacks the ability to iteratively enhance signal quality or selectively attend to emotion-
bearing acoustic features like pitch contours and formant transitions. The reasoning process is thus
confined to a sequence of latent states:

R = (r1, r2, . . . , rK) (2)

rk = fθ(r<k, za, xt) (3)

where each state rk evolves through text-space transformations without access to the underlying
audio signal. Even when the model generates chain-of-thought reasoning about acoustic proper-
ties, it operates solely on the compressed representation za, unable to verify hypotheses through
targeted acoustic analysis or apply corrective operations like noise suppression or temporal seg-
mentation. This fundamental limitation—treating audio as a static input rather than a manipulable
signal—constrains LALMs’ ability to achieve robust understanding in challenging acoustic condi-
tions.

3.3 THINKING-WITH-SOUND FRAMEWORK

We propose Thinking-with-Sound (TwS), a training-free framework that augments LALMs with
the ability to perform multi-step reasoning by interleaving linguistic reflection with audio-domain
operations. Unlike conventional approaches that rely solely on text-based reasoning, TwS empowers
models to actively manipulate and analyze audio signals during the inference process, leading to
more robust and adaptive reasoning under challenging acoustic conditions.

The key insight behind TwS is that effective and human-level audio understanding often requires
domain-specific operations that cannot be adequately captured even through textual level reasoning
tokens alone. By allowing LALMs to invoke audio processing tools during reasoning, we enable
them to: 1) Understand audio input via various acoustic tools, 2) Extract relevant features for fine-
grained analysis, and 3) Iteratively refine their understanding through multi-step audio manipulation.

General Framework. We extend the standard reasoning process by introducing a set of audio-
domain operators T = {T1, . . . , TM}, where each Tm : X → X is a transformation acting on the
raw audio signal xa ∈ X . The key idea is that at each reasoning step k, the model can choose
between two types of actions: (1) generating linguistic reasoning tokens through the LALM, or (2)
applying an audio operator to transform the current audio signal. The reasoning state rk evolves by
incorporating the results of both actions:

rk+1 =

{
fθ(rk,Enc(x(k)

a ), xt), ϕ(rk, x
(k)
a , xt) = 0,

fθ(rk,Enc(Tm(x
(k)
a )), xt), ϕ(rk, x

(k)
a , xt) ̸= 0

(4)

where fθ denotes the LALM’s text generation function, Enc(·) encodes audio into token represen-
tations, and xt is the textual instruction, and ϕ(·) is a decision function that we will be defined in
the following interleaved reasoning mechanism. This formulation enables the model to iteratively
refine its understanding by dynamically manipulating the audio signal based on evolving reasoning
needs, rather than being constrained to a single fixed audio encoding.

Interleaved Reasoning Mechanism ϕ(·) Our training-free approach leverages the inherent tool-
using capabilities that existing LALMs learnt during their post-training phases. The model’s deci-
sion to call an operator is formalized through:

dk = ϕ(rk, x
(k)
a , xt) ∈ {0, 1, . . . ,M} (5)

where dk = 0 indicates continuing linguistic reasoning and dk = m > 0 indicates invoking operator
Tm. The decision function ϕ represents the model’s innate tool-selection capability, which evaluates
the current reasoning state, audio condition, and task requirements to determine the action.

4
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Audio Operator Set T The TwS framework is designed to be operator-agnostic, which ensures
that it can adapt to arbitrary audio processing operators and domain-specific needs without archi-
tectural modifications. However, if the provided operators are irrelevant or misleading, TwS may
fail to realize its full potential and, in the worst case, degenerate to the performance of the baseline
method. We provide technical details in Appendix C.

Inference Algorithm. The complete TwS inference procedure orchestrates the interleaved reason-
ing process, as detailed in Algorithm 1.

Algorithm 1: Thinking-with-Sound (TwS) Inference
Input: Audio xa, instruction xt, operators T , LALM fθ, max steps Kmax

Output: Final response y
1 R ← InitPrompt(xt, T )
2 k ← 0
3 while k < Kmax and not IsTerminated(R) do
4 k ← k + 1
5 za ← Enc(xa)
6 r ← fθ(R, za) ; // Generate next reasoning step
7 if m:= ϕ(r, xa, xt) then
8 args← ParseToolCall(r);
9 xa ← T [m](xa, args) ; // Apply audio transformation

10 R ← R∥r
11 y ← ExtractAnswer(R)
12 return y

This formulation captures the essential insight of TwS: the model uses its pre-trained tool-calling
abilities to dynamically invoke audio operators during reasoning, creating an iterative process where
linguistic analysis and audio manipulation inform each other. The framework requires no additional
training and simply provides domain-specific tools that LALMs can leverage through their existing
capabilities.

3.4 THEORETICAL ANALYSIS OF TWS

In this subsection, we will establish theoretical foundations that explain TwS’s empirical effective-
ness by analyzing how interleaved linguistic-acoustic mutlimodal reasoning can reduce error under
perturbations.

Preliminaries. Let X denote the raw audio signal space and we model the encoding process as
Enc : X → RL×d, which compresses audio into fixed embeddings. Given, an ideally clean audio
input xa and a textual prompt xt, standard LALMs generate the corresponding answer by: y =
argmaxo fθ(o|Enc(xa), xt).

For perturbed input audio signal xnoisy
a = xa + δ, we first formalize the error analysis:

Definition 3.1 (Task Loss). Let ℓ : Y × Y → R+ be a task-specific loss function. For a model fθ
with true label y∗, the expected loss is:

L(xa, xt; fθ) = Ey∗ [ℓ(fθ(Enc(xa), xt), y
∗)] (6)

Under the assumption that fθ is Lipschitz continuous with constant Lf , we can bound the perfor-
mance degradation:

L(xnoisy
a , xt; fθ) ≤ L(xa, xt; fθ)︸ ︷︷ ︸

Baseline Error

+Lf · ∥Enc(xnoisy
a )− Enc(xa)∥︸ ︷︷ ︸

Encoding Deviation

(7)

This decomposition separates the inherent model error on clean data from the additional error in-
duced by acoustic perturbations through encoding differences.
Definition 3.2 (Adaptive Operators). An operator T ∈ T is (ϵ, ρ)-adaptive for perturbation type δ
if for all xa ∈ X :

∥δ∥ ≤ ϵ =⇒ ∥T (xa + δ)− xa∥ ≤ ρ∥δ∥ (8)

5
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where ρ < 1 is the reduction factor. The operator set T is (ϵ, ρ)-covering if for each perturbation
type in the distribution, there exists an adaptive operator.

This definition captures the key insight: TwS succeeds when its operator set contains tools that can
reduce specific perturbations encountered during inference.
Theorem 3.3 (Error Reduction via Interleaved Reasoning). Let T be an (ϵ, ρ)-covering operator
set with ρ < 1. Assume the LALM’s tool selection has accuracy α > 0 (probability of selecting an
appropriate operator). After K reasoning steps with TwS, let x(K)

a denote the processed audio. The
expected encoding error satisfies:

E[∥Enc(x(K)
a )− Enc(xa)∥] ≤ (1− α(1− ρ))K∥Enc(xnoisy

a )− Enc(xa)∥ (9)

The proof is deferred to Appendix E.1

This theorem explains the empirical observation that TwS improvements scale with model capacity:
larger models have higher tool selection accuracy α, leading to faster error reduction.
Proposition 3.4 (Baseline Comparison). For Lipschitz-continuous encoders (constant Lenc) and
LALMs (constant Lf ), define L = Lf · Lenc. TwS with (ϵ, ρ)-covering operators achieves:

L(x(K)
a , xt; fθ) ≤ L · (1− α(1− ρ))K∥δ∥+ L(xa, xt; fθ) (10)

while baseline one-shot reasoning suffers:
L(xnoisy

a , xt; fθ) ≤ L · ∥δ∥+ L(xa, xt; fθ) (11)

The proof is deferred to Appendix E.2

This formalizes why TwS recovers performance on perturbed audio while baselines fail catastroph-
ically.
Corollary 3.5 (Perturbation-Specific Gains). If operator set T contains highly adaptive operators
(ρ≪ 1) for perturbation type δ1 but weakly adaptive operators (ρ ≈ 1) for δ2, then:

Gain(δ1)
Gain(δ2)

≈ 1− ρ1
1− ρ2

(12)

The proof is deferred to Appendix E.3.
Remark 3.6 (Model Scaling). The tool selection accuracy α increases with model capacity due to
improved reasoning. This creates superlinear scaling in TwS benefits: larger models both select
better operators and benefit more from each operation, explaining why larger model achieves more
improvements than smaller model.

These results establish that TwS’s effectiveness stems from: (1) having adaptive operators, (2) the
model’s ability to select appropriate tools, and (3) iterative refinement that compounds improve-
ments. In general, the framework succeeds precisely because it enables LALMs to actively analyze
acoustic features that one-shot encoding pipeline cannot handle.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmarks. We evaluate TwS on emotion recognition using the Multimodal EmotionLines
Dataset (MELD) (Poria et al., 2019). Additionally, to systematically evaluate robustness, we care-
fully curated MELD-Hard1k by applying controlled acoustic perturbations to 1,000 test utterances
with human verification. We introduce four categories of real-world corruptions: additive noise (en-
vironmental interference), reverberation (room acoustics), pitch shifting (speaker variability), and
time stretching (speech rate variations). This benchmark design allows us to isolate the impact of
specific acoustic challenges while maintaining ecological validity.

Models. We evaluate TwS across four state-of-the-art open-source LALMs spanning different ar-
chitectures and scales: Qwen2.5-Omni (3B, 7B) (Xu et al., 2025) and Voxtral (3B, 24B) (Liu et al.,
2025). This selection enables assessment of TwS’s generalizability across model families and its
scaling properties with parameter count.

6
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Model Params
MELD (Clean) MELD-Hard1k (Perturbed)

Baseline TwS ∆ Baseline TwS ∆

Qwen2.5-Omni
3B 50.18 51.43 +1.25 27.44 52.17 +24.73

7B 47.65 49.21 +1.56 12.36 48.97 +36.61

Audio-Flamingo3 7B 48.33 49.81 +1.48 18.71 50.16 +31.45

Voxtral
3B 44.95 45.38 +0.43 30.05 41.43 +11.38

24B 51.62 53.14 +1.52 24.55 49.49 +24.94

Table 1: Performance comparison of baseline LALMs versus TwS-enhanced models on clean
(MELD) and perturbed (MELD-Hard1k) audio. ∆ denotes absolute accuracy gain. Best perfor-
mances among the same model architecture are highlighted in bold.

Configuration and Metrics. For TwS implementation, we configure the framework with a max-
imum of Kmax = 5 reasoning steps. Our training-free approach ensures fair comparison with
baseline models while leveraging LALMs’ inherent tool-using capabilities. We measure emotion
classification accuracy as our primary metric, comparing baseline LALM performance against TwS-
enhanced models on both clean (MELD) and perturbed (MELD-Hard1k) conditions.

See Appendix A for more implementation details.

4.2 MAIN RESULTS

Table 1 presents our main experimental results comparing baseline performance against our TwS
method on both clean (MELD) and perturbed (MELD-Hard1k) audio conditions. We evaluate four
state-of-the-art LALMs spanning different architectures and scales to assess the generalizability and
scalability of our approach.

On the original MELD dataset, baseline models achieve emotion recognition accuracies ranging
from 44.95% (Voxtral-3B) to 51.62% (Voxtral-24B). When TwS is applied to clean audio, we ob-
serve improvements of 0.43-1.56 percentage points, demonstrating that our framework enhances
reasoning even when audio quality is not the primary limiting factor.

While these improvements on clean audio are modest, the true value of TwS becomes apparent when
examining performance on MELD-Hard1k, where acoustic perturbations reveal critical vulnerabil-
ities in current LALMs. All baseline models experience substantial performance degradation, with
accuracy drops exceeding 50% relative to their clean performance. The most severe case, Qwen-7B,
declines from 47.65% to 12.36%. In contrast to these baseline failures, TwS demonstrates strong
effectiveness in handling perturbations, achieving absolute accuracy gains ranging from 11.38 per-
centage points (Voxtral-3B) to 36.61 percentage points (Qwen-7B). The framework’s recovery capa-
bilities are particularly striking: TwS-enhanced models on perturbed audio often approach or exceed
their baseline performance on clean audio, effectively compensating for acoustic corruptions. For
instance, Qwen-3B with TwS achieves 52.17% on MELD-Hard1k, surpassing its own baseline per-
formance of 50.18% on clean audio.

Beyond these individual improvements, our results reveal an intriguing pattern in how TwS’s ef-
fectiveness scales with model size. While larger models generally achieve better baseline perfor-
mance on clean audio, they are not necessarily more robust to perturbations (Qwen-7B retains only
25.9% of its clean performance under perturbation, compared to 54.7% for Qwen-3B). However,
the effectiveness of TwS correlates positively with model capacity, with relative improvements on
MELD-Hard1k increasing from 37.9% for Voxtral-3B to 101.6% for Voxtral-24B, and even more
pronounced scaling in Qwen series (90.1% for 3B versus 296.3% for 7B). This pattern suggests
that larger models can better leverage the structured reasoning process enabled by TwS, potentially
due to their enhanced capacity to coordinate between linguistic reasoning and audio manipulation.
The superlinear scaling of improvements with model size indicates that TwS unlocks latent audio
reasoning capabilities that were previously underutilized in standard inference pipelines.

7
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4.3 ABLATION STUDIES

To understand the mechanisms underlying TwS’s effectiveness, we conduct systematic ablation stud-
ies examining the contribution of operators, reasoning dynamics, and computational trade-offs.

Operator Contribution Analysis. Although TwS is operator-agnostic, we evaluate one instanti-
ation with four operator categories: denoising, enhancement, normalization, and analysis. These
categories, chosen for their relevance to our tasks, illustrate the framework’s effectiveness. Table 2
reports leave-one-out results. Denoising proves most critical, with its removal causing a 15.8% abso-
lute accuracy drop, consistent with the prevalence of additive noise in MELD-Hard1k. Enhancement
yields a 7.2% gain, particularly for temporal distortions. Normalization offers modest but consis-
tent improvements (3.4%), while analysis mainly supports subsequent operator selection rather than
direct transformation. These results reflect our chosen operators and benchmarks; alternative sets
would likely show different patterns while preserving the principle of adaptive tool selection.

Configuration Denoise Enhance Normalize Analyze Accuracy (%) ∆

TwS (our) ✓ ✓ ✓ ✓ 48.97 —
w/o Denoising × ✓ ✓ ✓ 33.17 −15.80
w/o Enhancement ✓ × ✓ ✓ 41.77 −7.20
w/o Normalization ✓ ✓ × ✓ 45.57 −3.40
w/o Analysis ✓ ✓ ✓ × 47.23 −1.74

Baseline × × × × 12.36 −36.61

Table 2: Operator ablation study on MELD-Hard1k. Each row removes one operator category while
retaining others. ✓ indicates the operator category is included, × indicates removal.

Reasoning Dynamics. Figure 2 reveals the relationship between maximum allowed reasoning
steps and performance. Most samples converge within 3-4 steps, with diminishing returns beyond
Kmax = 5. Interestingly, the average number of steps used, 2.8, is substantially lower than the
maximum, indicating that the model has the ability to terminate reasoning once sufficient confidence
is achieved. The computational overhead scales linearly with steps used, suggesting that adaptive
early stopping provides an effective efficiency-accuracy trade-off.
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Figure 2: Impact of maximum reasoning steps on
performance and efficiency. Inference time mea-
sured on NVIDIA A100 GPU, averaged over 100
samples. The figure shows accuracy (left y-axis)
and inference time (right y-axis) as functions of
maximum allowed reasoning steps.

Perturbation-Specific Performance. To un-
derstand where TwS provides the greatest ben-
efits, we analyze performance across differ-
ent perturbation types in Figure 3. As shown
in Figure 3(b), TwS demonstrates remarkable
effectiveness against additive noise (+35.2%)
and reverberation (+28.7%), where targeted
operators can directly address these corrup-
tions. Pitch shift sees moderate improvements
(+18.3%), primarily through frequency-domain
adjustments. Time stretching proves most chal-
lenging, with only 12.1% improvement, as tem-
poral distortions fundamentally alter phonetic
patterns that are difficult to recover through sig-
nal processing alone.

The operator usage patterns depicted in Fig-
ure 3(a) align with intuition: noise-targeted op-
erators dominate for noise corruption (68% of
invocations), while enhancement operators are
preferentially selected for time-stretched audio
(45% of invocations). For pitch-shifted audio, frequency-adjustment operators take precedence
(42%), reflecting their natural alignment with this perturbation type. The consistent usage of analy-
sis operators (10-13% across all perturbations) indicates the model’s systematic approach to under-
standing corruption characteristics before applying corrective measures, validating TwS’s adaptive
reasoning mechanism.
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Figure 3: Performance breakdown by perturbation type (AN = Additive Noise, RE = Reverberation,
PS = Pitch Shift, TS = Time Stretch). (a) Operator usage distribution across perturbations; (b)
Accuracy comparison between baseline and TwS, with improvement percentages annotated. TwS
shows aligned operator usage rate and consistent improvements across different perturbation types.

5 DISCUSSION

5.1 WHY DOES TWS WORK?

The effectiveness of TwS stems from its ability to enable multimodal reasoning, where models
actively think with audio, thereby addressing a critical limitation of current LALMs’ naive Chain-
of-Thought. Specifically, TwS supports an audio CoT that enables LALMs to perform precise audio
signal processing operations, interleaved cross-modal reasoning, and iterative refinement during
problem solving. Importantly, the improvements of TwS scale with model capacity, indicating that
larger models can more effectively coordinate interleaved reasoning that bridge acoustic observa-
tions with linguistic reasoning under our framework.

5.2 COMPUTATIONAL TRADE-OFFS

TwS improves accuracy at the cost of higher inference overhead, mainly from additional reasoning
steps. Most samples converge within 2–4 iterations with minimal latency from audio operators
(Fig. 2). On Qwen-7B, inference is about 2.3× slower than naive CoT. Larger models require fewer
steps yet yield greater gains, suggesting favorable scaling. For real-time use, adaptive stopping or
confidence-based thresholds can further mitigate latency.

6 CONCLUSION

We introduced Thinking-with-Sound (TwS), a training-free framework that enables Large Audio-
Language Models to perform multi-step reasoning by interleaving linguistic analysis with dynamic
audio manipulation. Unlike existing approaches that treat audio as static input, TwS allows mod-
els to iteratively process and re-examine acoustic signals, addressing the fundamental limitation
that current LALMs cannot perform fine-grained acoustic analysis despite their strong linguistic
capabilities. Our experiments on MELD-Hard1k demonstrate that while state-of-the-art LALMs
suffer catastrophic performance degradation under acoustic perturbations (>50% accuracy drop),
TwS achieves substantial recovery with improvements ranging from 24.73% to 36.61% absolute ac-
curacy, scaling with model capacity. These results, supported by theoretical analysis establishing
expressive completeness and robustness guarantees, demonstrate that effective audio understanding
requires reasoning through acoustic signals rather than merely reasoning about them. By enabling
models to actively manipulate audio during inference, TwS provides a practical path toward more
robust audio-language systems with multimodal reasoning.
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A IMPLEMENTATION DETAILS

A.1 DATASETS

The base dataset, MELD, contains 13,708 utterances from conversational contexts with seven emo-
tion categories. MELD’s naturalistic audio conditions, including overlapping speech, background
noise, and varied prosody, provide an ideal testbed for assessing LALMs’ acoustic reasoning capa-
bilities beyond clean laboratory conditions. See Appendix B for MELD-Hard1k.

A.2 HYPER-PARAMETERS

We use NVIDIA A100 GPUs with fixed random seeds (seed=42 for sampling, seed=1337 for per-
turbations). Model inference employs default parameters (temperature=0, top-p=0.95) with greedy
decoding for deterministic evaluation. Complete implementation including perturbation generation,
TwS framework, and evaluation scripts will be released upon publication.

B PERTURBATION CONFIGURATION

We use the following perturbation configuration (see Table. 3) when constructing the MELD-
Hard1k dataset.
Table 3: Detailed perturbation specifications for MELD-Hard1k construction. Each perturbation
type is applied with probability p = 0.3, with parameters sampled uniformly from the specified
ranges.

Pert. Type Parameter Range Dist. Impl.

Additive Noise
SNR (dB) [0, 25] Uniform

x′ = x+ α · n(t)Noise Type {white, pink, brown} Categorical
Temporal Mask [0, 1] Bernoulli(0.2)

Reverberation
RT60 (ms) [100, 800] Log-uniform

x′ = x ∗ hroom(t)
Room Size (m³) [20, 200] Uniform

Pitch Shift
Semitones [-4, +4] Uniform

PSOLA algorithm
Formant Pres. {True, False} Bernoulli(0.7)

Time Stretch
Stretch Fact. [0.7, 1.3] Uniform

Phase vocoder
Quality Mode {fast, high} Bernoulli(0.8)

C DESIGN OF AUDIO OPERATOR SET T

While TwS imposes no hard constraints on the operator set, our empirical analysis highlights consis-
tent patterns in what makes operators effective for audio reasoning. Operators that facilitate strong
performance typically share three characteristics: (1) they implement functionalities that LALMs are
not inherently good at, such as frequency-domain analysis and pitch tracking tasks which require
accurate numerical operation / analysis. (2) they return required data directly, without additional
descriptive text; and (3) they are documented with precise specifications and clear boundaries, in-
cluding intuitive names and well-defined parameters, so the agent can reliably determine when and
how to invoke them.

In our experiments, for example, we instantiate T with operators spanning enhancement (denois-
ing, echo cancellation), analysis (spectral analysis, pitch tracking), transformation (time-frequency
manipulations), and separation (source separation, human voice extraction). This particular choice
reflects common audio reasoning needs in our evaluation but LALMs are not natively good at.

Nonetheles, our TwS framework naturally accommodates alternative operator sets. For instance,
speech recognition tasks might prioritize formant enhancement and silence removal, while mu-
sic analysis could benefit from harmonic-percussive separation and beat tracking—the same TwS
framework applies regardless of the specific operators employed.
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D PROMPTS

To ensure reproducibility, we provide the complete prompts used in our experiments. We employed
two main categories of prompts: baseline prompts for standard LALM evaluation and TwS-enhanced
prompts that enable audio chain-of-thought reasoning with tool integration.

D.1 BASELINE EVALUATION PROMPTS

For baseline experiments, we used standard emotion recognition prompts without any tool-calling
capabilities.

Baseline Prompt

Instruction: You are an expert in audio analysis and emotion recognition. Listen to the provided audio clip
and identify the speaker’s emotional state.
The audio contains a single speaker’s utterance from a conversational context. Your task is to classify the
emotion expressed in the speech.
Choose from the following emotion: {categories:,anger,disgust,fear,joy,neutral,sadness,surprise}
Think step-by-step and provide your answer in the following format: Emotion: [category]
[AUDIO INPUT]

Figure 4: The baseline prompt used for standard LALM emotion recognition evaluation.

D.2 TWS FRAMEWORK PROMPTS

The TwS framework requires more sophisticated prompts that introduce tool-calling capabilities and
guide the model through multi-step audio reasoning processes.

TwS System Prompt

System Instruction: You are an advanced audio analysis system with access to specialized audio processing
tools. Your goal is to perform comprehensive emotion recognition by actively analyzing and manipulating
audio signals when needed.
You have access to the following audio processing tools:
[Detailed Operator Set Description]
When encountering audio that may be degraded or challenging to analyze, think step-by-step:
1. First assess the audio quality and identify potential issues
2. Apply appropriate preprocessing or enhancement tools as needed
3. Perform detailed acoustic analysis using available tools
Format tool calls as:
[TOOL: tool name(parameters)]

Figure 5: The system prompt that initializes TwS framework capabilities and introduces available
audio processing tools.

E PROOFS

E.1 PROOF OF THEOREM 3.3

Proof. We analyze the error evolution over reasoning steps. At step k, let x(k)
a denote the current

audio state. If the model selects an appropriate operator T (which occurs with probability α), we
have:

∥x(k+1)
a − xa∥ = ∥T (x(k)

a )− xa∥ (13)

≤ ρ∥x(k)
a − xa∥ (by (ϵ, ρ)-adaptivity) (14)

If the model continues linguistic reasoning (probability 1 − α), the audio remains unchanged:
∥x(k+1)

a − xa∥ = ∥x(k)
a − xa∥.
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TwS Task Prompt

Task Instruction: Analyze the provided audio clip to determine the speaker’s emotional state. Use your
available tools strategically to ensure accurate analysis, especially if the audio quality presents challenges.
Emotion categories: {anger,disgust,fear,joy,neutral,sadness,surprise}
Process:
1. Initial Assessment: Listen to the audio and evaluate its quality
2. Strategic Processing: If needed, apply appropriate tools to enhance or analyze the audio
3. Feature Extraction: Use analysis tools to extract emotion-relevant acoustic features
4. Integration: Combine your observations to reach a conclusion
5. Final Decision: Provide emotion classification.
Think through each step explicitly. Show your reasoning process and explain how each tool usage con-
tributes to your final decision.

Expected output format:
Step-by-step Analysis: [Your detailed reasoning process with tool calls]
Final Answer:
Reasoning: [brief justification]
Emotion: [category]
[AUDIO INPUT]

Figure 6: The task-specific prompt used for TwS-enhanced emotion recognition, guiding multi-step
reasoning and tool usage.

Taking expectations over the model’s stochastic tool selection:

E[∥x(k+1)
a − xa∥] = α · ρ∥x(k)

a − xa∥+ (1− α) · ∥x(k)
a − xa∥ (15)

= (1− α(1− ρ))∥x(k)
a − xa∥ (16)

Unrolling this recursion from k = 0 to K:

E[∥x(K)
a − xa∥] ≤ (1− α(1− ρ))K∥x(0)

a − xa∥ (17)

Since the encoding is Lipschitz (or at least continuous), this bound on audio-space error translates
to the encoding-space error bound in the theorem statement.

E.2 PROOF OF PROPOSITION 3.4

Proof. For TwS, after K steps with error reduction from Theorem 3.3:

L(x(K)
a , xt; fθ) ≤ L(xa, xt; fθ) + Lf · ∥Enc(x(K)

a )− Enc(xa)∥ (18)

≤ L(xa, xt; fθ) + Lf · Lenc · ∥x(K)
a − xa∥ (19)

≤ L(xa, xt; fθ) + L · (1− α(1− ρ))K∥δ∥ (20)

where L = Lf · Lenc combines the Lipschitz constants of the model and encoder.

For baseline one-shot reasoning without TwS:

L(xnoisy
a , xt; fθ) ≤ L(xa, xt; fθ) + Lf · ∥Enc(xnoisy

a )− Enc(xa)∥ (21)
≤ L(xa, xt; fθ) + L · ∥δ∥ (22)

The improvement factor is (1−α(1−ρ))K < 1, showing TwS strictly reduces error when operators
are adaptive (ρ < 1) and the model can select them (α > 0).

E.3 PROOF OF COROLLARY 3.5

Proof. The gain from TwS for perturbation type δi with reduction factor ρi is:

Gain(δi) = Lbaseline(δi)− LTwS(δi) ≈ L∥δi∥
(
1− (1− α(1− ρi))

K
)

(23)
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For similar perturbation magnitudes ∥δ1∥ ≈ ∥δ2∥ and moderate K, taking the ratio:

Gain(δ1)
Gain(δ2)

≈ 1− (1− α(1− ρ1))
K

1− (1− α(1− ρ2))K
(24)

≈ αK(1− ρ1)

αK(1− ρ2)
=

1− ρ1
1− ρ2

(25)

where we used the approximation (1− x)K ≈ 1−Kx for small x.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used an LLM to assist with the phrasing and grammar of the manuscript. The LLM was used
strictly as a writing aid and did not contribute to the scientific ideation, methodology, or results
presented in this paper.
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