

000 THINKING WITH SOUND: AUDIO CHAIN-OF-THOUGHT 001 ENABLES MULTIMODAL REASONING IN LARGE AUDIO- 002 LANGUAGE MODELS 003

004 **Anonymous authors**
 005
 006

007 Paper under double-blind review
 008
 009

010 ABSTRACT 011

012 Recent Large Audio-Language Models (LALMs) have shown strong performance
 013 on various audio understanding tasks such as speech translation and Audio Q&A.
 014 However, they exhibit significant limitations on challenging audio reasoning tasks
 015 in complex acoustic scenarios. These situations would greatly benefit from the
 016 use of acoustic tools like noise suppression, source separation, and precise tem-
 017 poral alignment, but current LALMs lack access to such tools. To address this
 018 limitation, we introduce **Thinking-with-Sound** (TwS), a framework that equips
 019 LALMs with Audio CoT by combining linguistic reasoning with on-the-fly audio-
 020 domain analysis. Unlike existing approaches that treat audio as static input, TwS
 021 enables models to actively *think* with audio signals, performing numerical analy-
 022 sis and digital manipulation through multimodal reasoning. To evaluate this ap-
 023 proach, we construct **MELD-Hard1k**, a new robustness benchmark created by in-
 024 troducing various acoustic perturbations. Experiments reveal that state-of-the-art
 025 LALMs suffer dramatic performance degradation on MELD-Hard1k, with accu-
 026 racy dropping by more than 50% compared to clean audio. TwS achieves substan-
 027 tial improvements in robustness, demonstrating both effectiveness and scalability:
 028 small models gain 24.73% absolute accuracy, with improvements scaling consist-
 029 ently up to 36.61% for larger models. Our findings demonstrate that Audio CoT
 030 can significantly enhance robustness without retraining, opening new directions
 031 for developing more robust audio understanding systems.

032 1 INTRODUCTION 033

034 Recent advances in Large Audio-Language Models (LALMs) have enabled unified modeling of
 035 auditory and textual modalities (Tang et al., 2023; Chu et al., 2024; Défossez et al., 2024; Fang
 036 et al., 2024). Unlike traditional audio processing systems that function as task-specific solvers,
 037 LALMs allow users to specify diverse audio-related tasks through natural language instructions.
 038 This flexibility enables them to perform various audio understanding tasks including audio trans-
 039 lation (de Seyssel et al., 2023), emotion recognition (Maimon et al., 2025), and audio Q&A (Yang
 040 et al., 2024; Wang et al., 2024). Notable examples include proprietary models like GPT-4o (OpenAI
 041 et al., 2024) and open-source contributions such as Qwen2.5 Omni (Xu et al., 2025) and Voxtral (Liu
 042 et al., 2025).

043 Despite these advances, current LALMs remain fundamentally limited in their acoustic under-
 044 standing capabilities (Lee et al., 2025). A critical weakness lies in their limited understanding of audio
 045 signals, particularly in analyzing temporal dynamics, spectral characteristics, energy distributions,
 046 etc. The prevailing approach simply encodes audio inputs into token representations that are then
 047 processed alongside text tokens for mixed modality reasoning. While this makes good use of the
 048 language modeling capabilities of LALMs, it fundamentally constrains the models' ability to per-
 049 form fine-grained acoustic analysis. The models lack mechanisms to iteratively reason about and
 050 manipulate audio in its native domain, instead treating it as a static, one-time encoded input. This
 051 architectural limitation becomes particularly pronounced when handling degraded audio or tasks
 052 requiring precise acoustic discrimination, where pure linguistic reasoning proves insufficient.

053 These limitations raise a critical question about how LALMs can be enhanced to reasoning with
 054 audio. Current approaches treat audio as a fixed input to be encoded once, but robust acoustic

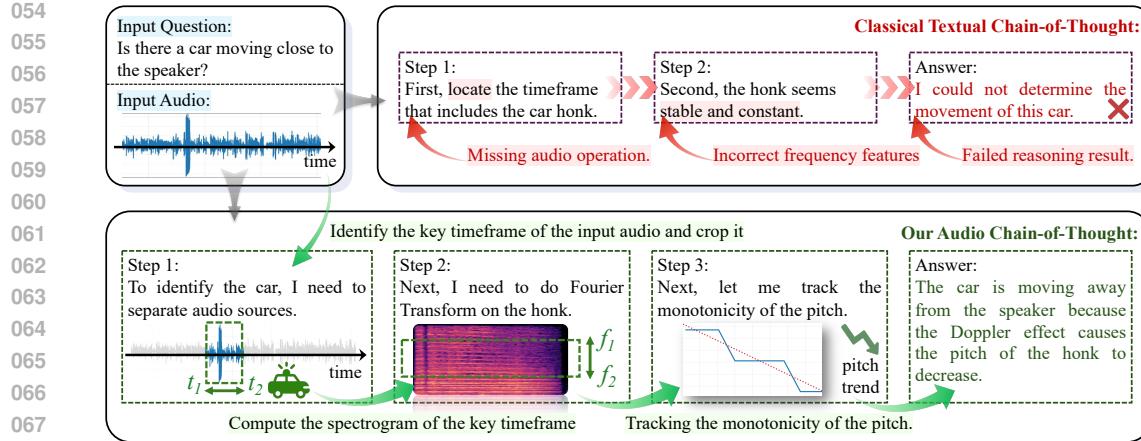


Figure 1: Our framework equips a Large Audio-Language Model with complex multimodal reasoning. Unlike traditional LALMs that struggle with acoustic details, our TwS-enabled model generates Audio Chain-of-Thought (CoT) (Wei et al., 2022) and flexibly invokes tools such as source separation and frequency analysis. This integration of linguistic reasoning with on-the-fly acoustic analysis enables accurate source identification, timestamp localization, and frequency feature extraction beyond standard inference pipelines.

understanding may require a fundamentally different paradigm. This motivates our central research question: **Can LALMs think actively with audio by iteratively analyzing and manipulating audio signals throughout the reasoning process?**

In this work, we introduce a novel **Thinking-with-Sound** reasoning framework (see Fig. 1 as overview) that enables large audio-language models (LALMs) to go beyond the limitations of purely text-based reasoning. Our approach allows the model to actively invoke appropriate tools for manipulating auditory inputs, such that the reasoning process alternates between linguistic thoughts and acoustic analysis. This design better aligns with the way humans engage in deep analysis of audio-sensitive tasks with tools, which bridges the modality gap between language and audio under complex scenarios. By jointly leveraging LALM’s intrinsic reasoning capabilities and tool-augmented interactions, the model is guided to generate more coherent, reliable, and grounded multimodal chains of thought, thereby unlocking its performance bottleneck in challenging audio reasoning tasks.

For experiments, we adopt the Multimodal EmotionLines Dataset (MELD) (Poria et al., 2019) as the base benchmark and construct a new evaluation set, **MELD-Hard1k**, by introducing various types of perturbations to the audio inputs. Experimental results show that, when comparing performance on MELD and MELD-Hard1k, models of different parameter scales suffer an average accuracy drop of more than 50%. This directly highlights the substantial limitations of the zero-shot generalization ability of current LALMs. By incorporating our proposed Thinking-with-Sound (TwS) framework, we observe that even lightweight models achieve an absolute accuracy improvement of 24.73%. Moreover, as model size increases, the performance gains become more pronounced, indicating that our method amplifies the inherent audio reasoning capabilities of LALMs and demonstrates stronger generalizability and scalability.

In summary, our contributions can be summarized as follows:

- (1) We propose **Thinking-with-Sound** (TwS), a novel reasoning framework that enables LALMs to perform audio CoT by interleaving linguistic reasoning with acoustic analysis.
- (2) We design **MELD-Hard1k**, a robustness-oriented benchmark that introduces perturbations to systematically evaluate LALMs under challenging audio conditions.
- (3) We demonstrate through extensive experiments that TwS consistently improves LALMs’ accuracy, robustness, and scalability across model sizes, highlighting its effectiveness in unlocking the full audio reasoning capabilities of LALMs.

108

2 RELATED WORKS

110 **Large Audio-Language Model** LALMs represent a significant advancement beyond traditional
 111 ASR systems, enabling comprehensive audio understanding and reasoning capabilities. Recent work
 112 has explored various architectural approaches: GAMA (Ghosh et al., 2024) integrates LLMs with
 113 multiple audio representations through a custom Audio Q-Former. However, current LALMs face
 114 reliability challenges, with studies showing that even advanced models like Qwen2-Audio lack ro-
 115 bustness awareness (Ma et al., 2025). These limitations motivate our focus on enhancing LALM
 116 reasoning through structured tool integration.

117 **Multimodal Chain-of-Thought** Chain-of-Thought reasoning has proven effective for complex
 118 reasoning tasks in language models (Wei et al., 2022; Kojima et al., 2022), with extensions to mul-
 119 timodal settings showing particular promise. Multimodal Chain-of-Thought (Zhang et al., 2023)
 120 demonstrates improved performance by incorporating vision and language modalities in a two-stage
 121 reasoning framework. Most similar to our work, Interleaved-modal Chain-of-Thought (ICoT) (Gao
 122 et al., 2025) generates sequential reasoning steps with paired visual and textual rationales, align-
 123 ing more closely with human cognitive processes and significantly outperforming text-only ap-
 124 proaches. Our work extends this paradigm from vision-language to audio-language tasks, addressing
 125 the unique challenges of temporal audio processing.

126 **Tool-Augmented Language Models** Integrating external tools has become central to enhanc-
 127 ing language models. Toolformer (Schick et al., 2023) enabled autonomous API calls via self-
 128 supervision, ReAct (Yao et al., 2023) combined reasoning with tool use, and HuggingGPT (Shen
 129 et al., 2023) positioned LLMs as controllers of specialized models. In audio, MusicAgent (Yu et al.,
 130 2023) and AudioGPT (Huang et al., 2023) explored LLM-based generation, but their one-shot or
 131 pipeline designs lack the iterative refinement needed for robust understanding. Since audio is inher-
 132 ently temporal and sequential, effective modeling requires dynamic multi-step manipulation. Our
 133 work addresses this gap by enabling LALMs to iteratively reason over acoustic signals, refining
 134 interpretations through targeted manipulations.

136

3 METHODOLOGY

137

3.1 PROBLEM FORMULATION

141 We consider the setting of Large Audio-Language Models (LALMs), where the goal is to process
 142 an audio input $x_a \in \mathcal{X}$ together with a natural language instruction $x_t \in \mathcal{V}^*$ to generate a response
 143 $y \in \mathcal{V}^*$. Here, \mathcal{X} denotes the space of audio signals, and \mathcal{V}^* represents sequences of tokens from
 144 vocabulary \mathcal{V} . The response y can encode various outputs including classifications, descriptions,
 145 or structured formats, depending on the task specified by x_t . Formally, we assume data triples
 146 (x_a, x_t, y) are sampled from an underlying distribution \mathcal{D} , and an LALM implements a conditional
 147 distribution:

$$f_{\theta}(y|x_a, x_t) = \prod_{i=1}^{|y|} f_{\theta}(y_i|y_{<i}, x_a, x_t) \quad (1)$$

148 where f_{θ} denotes a parameterized model trained on paired audio-text data, and generation follows an
 149 autoregressive factorization. For deterministic evaluation, we consider the mode of this distribution:
 $y = \arg \max_{y'} f_{\theta}(y'|x_a, x_t)$.

154

3.2 LIMITATIONS OF CURRENT TEXT-ONLY REASONING

155 Current LALMs employ a one-shot encoding paradigm where the audio signal x_a is compressed
 156 into a fixed sequence of embedding tokens $z_a = \text{Enc}(x_a) \in \mathbb{R}^{L \times d}$ through pre-trained audio
 157 encoders (Radford et al., 2023; Baevski et al., 2020; Hsu et al., 2021). This irreversible transforma-
 158 tion discards fine-grained spectral and temporal information, reducing rich acoustic features to static
 159 embeddings that are then concatenated with text tokens and processed through autoregressive gen-
 160 eration. Once encoded, the model cannot revisit the original waveform, analyze specific frequency
 161 bands, or adaptively focus on relevant temporal segments.

162 This architectural constraint becomes particularly limiting in scenarios requiring precise acoustic
 163 analysis. For instance, in speaker diarization tasks, the model cannot dynamically isolate and re-
 164 examine overlapping speech segments. Similarly, for emotion recognition in noisy environments,
 165 the model lacks the ability to iteratively enhance signal quality or selectively attend to emotion-
 166 bearing acoustic features like pitch contours and formant transitions. The reasoning process is thus
 167 confined to a sequence of latent states:

$$\mathcal{R} = (r_1, r_2, \dots, r_K) \quad (2)$$

$$r_k = f_\theta(r_{<k}, z_a, x_t) \quad (3)$$

172 where each state r_k evolves through text-space transformations without access to the underlying
 173 audio signal. Even when the model generates chain-of-thought reasoning about acoustic proper-
 174 ties, it operates solely on the compressed representation z_a , unable to verify hypotheses through
 175 targeted acoustic analysis or apply corrective operations like noise suppression or temporal seg-
 176 mentation. This fundamental limitation—treating audio as a static input rather than a manipulable
 177 signal—constrains LALMs’ ability to achieve robust understanding in challenging acoustic condi-
 178 tions.

179 3.3 THINKING-WITH-SOUND FRAMEWORK

181 We propose **Thinking-with-Sound (TwS)**, a training-free framework that augments LALMs with
 182 the ability to perform multi-step reasoning by interleaving linguistic reflection with audio-domain
 183 operations. Unlike conventional approaches that rely solely on text-based reasoning, TwS empowers
 184 models to actively manipulate and analyze audio signals during the inference process, leading to
 185 more robust and adaptive reasoning under challenging acoustic conditions.

186 The key insight behind TwS is that effective and human-level audio understanding often requires
 187 domain-specific operations that cannot be adequately captured even through textual level reasoning
 188 tokens alone. By allowing LALMs to invoke audio processing tools during reasoning, we enable
 189 them to: 1) Understand audio input via various acoustic tools, 2) Extract relevant features for fine-
 190 grained analysis, and 3) Iteratively refine their understanding through multi-step audio manipulation.

191 **General Framework.** We extend the standard reasoning process by introducing a set of audio-
 192 domain operators $\mathcal{T} = \{T_1, \dots, T_M\}$, where each $T_m : \mathcal{X} \rightarrow \mathcal{X}$ is a transformation acting on the
 193 raw audio signal $x_a \in \mathcal{X}$. The key idea is that at each reasoning step k , the model can choose
 194 between two types of actions: (1) generating linguistic reasoning tokens through the LALM, or (2)
 195 applying an audio operator to transform the current audio signal. The reasoning state r_k evolves by
 196 incorporating the results of both actions:

$$r_{k+1} = \begin{cases} f_\theta(r_k, \text{Enc}(x_a^{(k)}), x_t), & \phi(r_k, x_a^{(k)}, x_t) = 0, \\ f_\theta(r_k, \text{Enc}(T_m(x_a^{(k)})), x_t), & \phi(r_k, x_a^{(k)}, x_t) \neq 0 \end{cases} \quad (4)$$

202 where f_θ denotes the LALM’s text generation function, $\text{Enc}(\cdot)$ encodes audio into token represen-
 203 tations, and x_t is the textual instruction, and $\phi(\cdot)$ is a decision function that we will be defined in
 204 the following interleaved reasoning mechanism. This formulation enables the model to iteratively
 205 refine its understanding by dynamically manipulating the audio signal based on evolving reasoning
 206 needs, rather than being constrained to a single fixed audio encoding.

207 **Interleaved Reasoning Mechanism $\phi(\cdot)$** Our training-free approach leverages the inherent tool-
 208 using capabilities that existing LALMs learnt during their post-training phases. The model’s deci-
 209 sion to call an operator is formalized through:

$$d_k = \phi(r_k, x_a^{(k)}, x_t) \in \{0, 1, \dots, M\} \quad (5)$$

214 where $d_k = 0$ indicates continuing linguistic reasoning and $d_k = m > 0$ indicates invoking operator
 215 T_m . The decision function ϕ represents the model’s innate tool-selection capability, which evaluates
 the current reasoning state, audio condition, and task requirements to determine the action.

216 **Audio Operator Set \mathcal{T}** The TwS framework is designed to be operator-agnostic, which ensures
 217 that it can adapt to arbitrary audio processing operators and domain-specific needs without archi-
 218 tectural modifications. However, if the provided operators are irrelevant or misleading, TwS may
 219 fail to realize its full potential and, in the worst case, degenerate to the performance of the baseline
 220 method. We provide technical details in Appendix C.

221

222 **Inference Algorithm.** The complete TwS inference procedure orchestrates the interleaved reason-
 223 ing process, as detailed in Algorithm 1.

224 **Algorithm 1:** Thinking-with-Sound (TwS) Inference

225 **Input:** Audio x_a , instruction x_t , operators \mathcal{T} , LALM f_θ , max steps K_{\max}

226 **Output:** Final response y

227 1 $\mathcal{R} \leftarrow \text{InitPrompt}(x_t, \mathcal{T})$

228 2 $k \leftarrow 0$

229 3 **while** $k < K_{\max}$ and not $\text{IsTerminated}(\mathcal{R})$ **do**

230 4 $k \leftarrow k + 1$

231 5 $z_a \leftarrow \text{Enc}(x_a)$

232 6 $r \leftarrow f_\theta(\mathcal{R}, z_a)$; // Generate next reasoning step

233 7 **if** $m := \phi(r, x_a, x_t)$ **then**

234 8 $\text{args} \leftarrow \text{ParseToolCall}(r)$;

235 9 $x_a \leftarrow \mathcal{T}[m](x_a, \text{args})$; // Apply audio transformation

236 10 $\mathcal{R} \leftarrow \mathcal{R} \| r$

237 11 $y \leftarrow \text{ExtractAnswer}(\mathcal{R})$

238 12 **return** y

239 This formulation captures the essential insight of TwS: the model uses its pre-trained tool-calling
 240 abilities to dynamically invoke audio operators during reasoning, creating an iterative process where
 241 linguistic analysis and audio manipulation inform each other. The framework requires no additional
 242 training and simply provides domain-specific tools that LALMs can leverage through their existing
 243 capabilities.

244

245 3.4 THEORETICAL ANALYSIS OF TwS

246 In this subsection, we will establish theoretical foundations that explain TwS’s empirical effective-
 247 ness by analyzing how interleaved linguistic-acoustic multimodal reasoning can reduce error under
 248 perturbations.

249

Preliminaries. Let \mathcal{X} denote the raw audio signal space and we model the encoding process as
 250 $\text{Enc} : \mathcal{X} \rightarrow \mathbb{R}^{L \times d}$, which compresses audio into fixed embeddings. Given, an ideally clean audio
 251 input x_a and a textual prompt x_t , standard LALMs generate the corresponding answer by: $y = \arg \max_o f_\theta(o | \text{Enc}(x_a), x_t)$.

252

For perturbed input audio signal $x_a^{\text{noisy}} = x_a + \delta$, we first formalize the error analysis:

253 **Definition 3.1** (Task Loss). Let $\ell : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}_+$ be a task-specific loss function. For a model f_θ
 254 with true label y^* , the expected loss is:

255

$$\mathcal{L}(x_a, x_t; f_\theta) = \mathbb{E}_{y^*}[\ell(f_\theta(\text{Enc}(x_a), x_t), y^*)] \quad (6)$$

256

Under the assumption that f_θ is Lipschitz continuous with constant L_f , we can bound the perfor-
 257 mance degradation:

258

$$\mathcal{L}(x_a^{\text{noisy}}, x_t; f_\theta) \leq \underbrace{\mathcal{L}(x_a, x_t; f_\theta)}_{\text{Baseline Error}} + L_f \cdot \underbrace{\|\text{Enc}(x_a^{\text{noisy}}) - \text{Enc}(x_a)\|}_{\text{Encoding Deviation}} \quad (7)$$

259

260

This decomposition separates the inherent model error on clean data from the additional error in-
 261 duced by acoustic perturbations through encoding differences.

262

263

Definition 3.2 (Adaptive Operators). An operator $T \in \mathcal{T}$ is (ϵ, ρ) -adaptive for perturbation type δ
 264 if for all $x_a \in \mathcal{X}$:

$$\|\delta\| \leq \epsilon \implies \|T(x_a + \delta) - x_a\| \leq \rho \|\delta\| \quad (8)$$

270 where $\rho < 1$ is the reduction factor. The operator set \mathcal{T} is (ϵ, ρ) -covering if for each perturbation
 271 type in the distribution, there exists an adaptive operator.
 272

273 This definition captures the key insight: TwS succeeds when its operator set contains tools that can
 274 reduce specific perturbations encountered during inference.

275 **Theorem 3.3** (Error Reduction via Interleaved Reasoning). *Let \mathcal{T} be an (ϵ, ρ) -covering operator
 276 set with $\rho < 1$. Assume the LALM’s tool selection has accuracy $\alpha > 0$ (probability of selecting an
 277 appropriate operator). After K reasoning steps with TwS, let $x_a^{(K)}$ denote the processed audio. The
 278 expected encoding error satisfies:*

$$279 \mathbb{E}[\|Enc(x_a^{(K)}) - Enc(x_a)\|] \leq (1 - \alpha(1 - \rho))^K \|Enc(x_a^{noisy}) - Enc(x_a)\| \quad (9)$$

281 The proof is deferred to Appendix E.1

282 This theorem explains the empirical observation that TwS improvements scale with model capacity:
 283 larger models have higher tool selection accuracy α , leading to faster error reduction.

284 **Proposition 3.4** (Baseline Comparison). *For Lipschitz-continuous encoders (constant L_{enc}) and
 285 LALMs (constant L_f), define $L = L_f \cdot L_{enc}$. TwS with (ϵ, ρ) -covering operators achieves:*

$$287 \mathcal{L}(x_a^{(K)}, x_t; f_\theta) \leq L \cdot (1 - \alpha(1 - \rho))^K \|\delta\| + \mathcal{L}(x_a, x_t; f_\theta) \quad (10)$$

288 while baseline one-shot reasoning suffers:

$$289 \mathcal{L}(x_a^{noisy}, x_t; f_\theta) \leq L \cdot \|\delta\| + \mathcal{L}(x_a, x_t; f_\theta) \quad (11)$$

291 The proof is deferred to Appendix E.2

292 This formalizes why TwS recovers performance on perturbed audio while baselines fail catastrophically.

293 **Corollary 3.5** (Perturbation-Specific Gains). *If operator set \mathcal{T} contains highly adaptive operators
 294 ($\rho \ll 1$) for perturbation type δ_1 but weakly adaptive operators ($\rho \approx 1$) for δ_2 , then:*

$$297 \frac{Gain(\delta_1)}{Gain(\delta_2)} \approx \frac{1 - \rho_1}{1 - \rho_2} \quad (12)$$

299 The proof is deferred to Appendix E.3.

300 *Remark 3.6* (Model Scaling). The tool selection accuracy α increases with model capacity due to
 301 improved reasoning. This creates superlinear scaling in TwS benefits: larger models both select
 302 better operators and benefit more from each operation, explaining why larger model achieves more
 303 improvements than smaller model.

304 These results establish that TwS’s effectiveness stems from: (1) having adaptive operators, (2) the
 305 model’s ability to select appropriate tools, and (3) iterative refinement that compounds improvements.
 306 In general, the framework succeeds precisely because it enables LALMs to actively analyze
 307 acoustic features that one-shot encoding pipeline cannot handle.

310 4 EXPERIMENTS

312 4.1 EXPERIMENTAL SETUP

313 **Benchmarks.** We evaluate TwS on emotion recognition using the Multimodal EmotionLines
 314 Dataset (MELD) (Poria et al., 2019). Additionally, to systematically evaluate robustness, we care-
 315 fully curated **MELD-Hard1k** by applying controlled acoustic perturbations to 1,000 test utterances
 316 with human verification. We introduce four categories of real-world corruptions: additive noise (en-
 317 vironmental interference), reverberation (room acoustics), pitch shifting (speaker variability), and
 318 time stretching (speech rate variations). This benchmark design allows us to isolate the impact of
 319 specific acoustic challenges while maintaining ecological validity.

320 **Models.** We evaluate TwS across four state-of-the-art open-source LALMs spanning different ar-
 321 chitectures and scales: Qwen2.5-Omni (3B, 7B) (Xu et al., 2025) and Voxtral (3B, 24B) (Liu et al.,
 322 2025). This selection enables assessment of TwS’s generalizability across model families and its
 323 scaling properties with parameter count.

324 325 326 327 328 329 330 331 332	Model	Params	MELD (Clean)			MELD-Hard1k (Perturbed)		
			Baseline	TwS	Δ	Baseline	TwS	Δ
333 334 335 336 337	Qwen2.5-Omni	3B	50.18	51.43	+1.25	27.44	52.17	+24.73
		7B	47.65	49.21	+1.56	12.36	48.97	+36.61
338	Audio-Flamingo3	7B	48.33	49.81	+1.48	18.71	50.16	+31.45
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	Voxtral	3B	44.95	45.38	+0.43	30.05	41.43	+11.38
		24B	51.62	53.14	+1.52	24.55	49.49	+24.94

Table 1: Performance comparison of baseline LALMs versus TwS-enhanced models on clean (MELD) and perturbed (MELD-Hard1k) audio. Δ denotes absolute accuracy gain. Best performances among the *same model architecture* are highlighted in **bold**.

Configuration and Metrics. For TwS implementation, we configure the framework with a maximum of $K_{\max} = 5$ reasoning steps. Our training-free approach ensures fair comparison with baseline models while leveraging LALMs’ inherent tool-using capabilities. We measure emotion classification accuracy as our primary metric, comparing baseline LALM performance against TwS-enhanced models on both clean (MELD) and perturbed (MELD-Hard1k) conditions.

See Appendix A for more implementation details.

4.2 MAIN RESULTS

Table 1 presents our main experimental results comparing baseline performance against our TwS method on both clean (MELD) and perturbed (MELD-Hard1k) audio conditions. We evaluate four state-of-the-art LALMs spanning different architectures and scales to assess the generalizability and scalability of our approach.

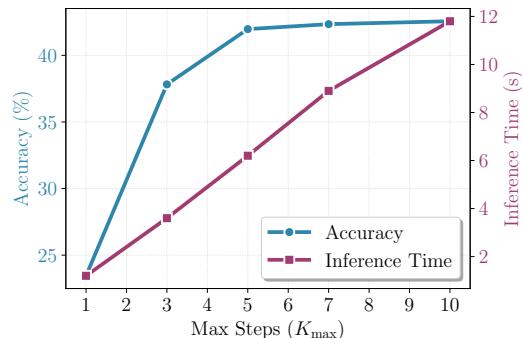
On the original MELD dataset, baseline models achieve emotion recognition accuracies ranging from 44.95% (Voxtral-3B) to 51.62% (Voxtral-24B). When TwS is applied to clean audio, we observe improvements of 0.43-1.56 percentage points, demonstrating that our framework enhances reasoning even when audio quality is not the primary limiting factor.

While these improvements on clean audio are modest, the true value of TwS becomes apparent when examining performance on MELD-Hard1k, where acoustic perturbations reveal critical vulnerabilities in current LALMs. All baseline models experience substantial performance degradation, with accuracy drops exceeding 50% relative to their clean performance. The most severe case, Qwen-7B, declines from 47.65% to 12.36%. In contrast to these baseline failures, TwS demonstrates strong effectiveness in handling perturbations, achieving absolute accuracy gains ranging from 11.38 percentage points (Voxtral-3B) to 36.61 percentage points (Qwen-7B). The framework’s recovery capabilities are particularly striking: TwS-enhanced models on perturbed audio often approach or exceed their baseline performance on clean audio, effectively compensating for acoustic corruptions. For instance, Qwen-3B with TwS achieves 52.17% on MELD-Hard1k, surpassing its own baseline performance of 50.18% on clean audio.

Beyond these individual improvements, our results reveal an intriguing pattern in how TwS’s effectiveness scales with model size. While larger models generally achieve better baseline performance on clean audio, they are not necessarily more robust to perturbations (Qwen-7B retains only 25.9% of its clean performance under perturbation, compared to 54.7% for Qwen-3B). However, the effectiveness of TwS correlates positively with model capacity, with relative improvements on MELD-Hard1k increasing from 37.9% for Voxtral-3B to 101.6% for Voxtral-24B, and even more pronounced scaling in Qwen series (90.1% for 3B versus 296.3% for 7B). This pattern suggests that larger models can better leverage the structured reasoning process enabled by TwS, potentially due to their enhanced capacity to coordinate between linguistic reasoning and audio manipulation. The superlinear scaling of improvements with model size indicates that TwS unlocks latent audio reasoning capabilities that were previously underutilized in standard inference pipelines.

378 4.3 ABLATION STUDIES
379380 To understand the mechanisms underlying TwS’s effectiveness, we conduct systematic ablation studies
381 examining the contribution of operators, reasoning dynamics, and computational trade-offs.
382383
384 **Operator Contribution Analysis.** Although TwS is operator-agnostic, we evaluate one instantiation
385 with four operator categories: denoising, enhancement, normalization, and analysis. These
386 categories, chosen for their relevance to our tasks, illustrate the framework’s effectiveness. Table 2
387 reports leave-one-out results. Denoising proves most critical, with its removal causing a 15.8% abso-
388 lute accuracy drop, consistent with the prevalence of additive noise in MELD-Hard1k. Enhancement
389 yields a 7.2% gain, particularly for temporal distortions. Normalization offers modest but con-
390 sistent improvements (3.4%), while analysis mainly supports subsequent operator selection rather than
391 direct transformation. These results reflect our chosen operators and benchmarks; alternative sets
392 would likely show different patterns while preserving the principle of adaptive tool selection.
393

Configuration	Denoise	Enhance	Normalize	Analyze	Accuracy (%)	Δ
TwS (our)	✓	✓	✓	✓	48.97	—
w/o Denoising	✗	✓	✓	✓	33.17	-15.80
w/o Enhancement	✓	✗	✓	✓	41.77	-7.20
w/o Normalization	✓	✓	✗	✓	45.57	-3.40
w/o Analysis	✓	✓	✓	✗	47.23	-1.74
Baseline	✗	✗	✗	✗	12.36	-36.61

394 Table 2: Operator ablation study on MELD-Hard1k. Each row removes one operator category while
395 retaining others. ✓ indicates the operator category is included, ✗ indicates removal.
396402 **Reasoning Dynamics.** Figure 2 reveals the relationship between maximum allowed reasoning
403 steps and performance. Most samples converge within 3-4 steps, with diminishing returns beyond
404 $K_{\max} = 5$. Interestingly, the average number of steps used, 2.8, is substantially lower than the
405 maximum, indicating that the model has the ability to terminate reasoning once sufficient confidence
406 is achieved. The computational overhead scales linearly with steps used, suggesting that adaptive
407 early stopping provides an effective efficiency-accuracy trade-off.
408409 **Perturbation-Specific Performance.** To un-
410 derstand where TwS provides the greatest ben-
411 efits, we analyze performance across differ-
412 ent perturbation types in Figure 3. As shown
413 in Figure 3(b), TwS demonstrates remarkable
414 effectiveness against additive noise (+35.2%)
415 and reverberation (+28.7%), where targeted
416 operators can directly address these corrup-
417 tions. Pitch shift sees moderate improvements
418 (+18.3%), primarily through frequency-domain
419 adjustments. Time stretching proves most chal-
420 lenging, with only 12.1% improvement, as tem-
421 poral distortions fundamentally alter phonetic
422 patterns that are difficult to recover through sig-
423 nal processing alone.424 The operator usage patterns depicted in Fig-
425 ure 3(a) align with intuition: noise-targeted op-
426 erators dominate for noise corruption (68% of
427 invocations), while enhancement operators are
428 preferentially selected for time-stretched audio
429 (45% of invocations). For pitch-shifted audio, frequency-adjustment operators take precedence
430 (42%), reflecting their natural alignment with this perturbation type. The consistent usage of analy-
431 sis operators (10-13% across all perturbations) indicates the model’s systematic approach to under-
432 standing corruption characteristics before applying corrective measures, validating TwS’s adaptive
433 reasoning mechanism.434 Figure 2: Impact of maximum reasoning steps on
435 performance and efficiency. Inference time mea-
436 sured on NVIDIA A100 GPU, averaged over 100
437 samples. The figure shows accuracy (left y-axis)
438 and inference time (right y-axis) as functions of
439 maximum allowed reasoning steps.

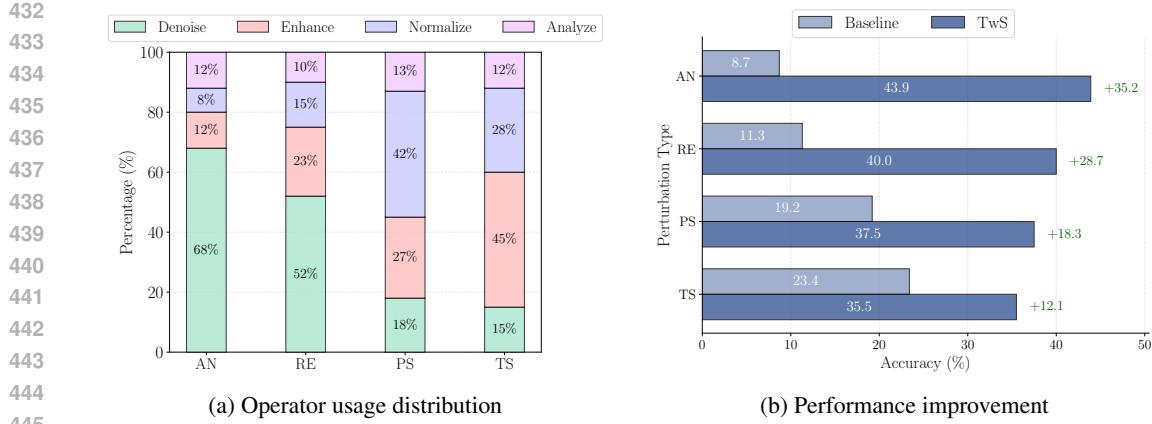


Figure 3: Performance breakdown by perturbation type (AN = Additive Noise, RE = Reverberation, PS = Pitch Shift, TS = Time Stretch). (a) Operator usage distribution across perturbations; (b) Accuracy comparison between baseline and TwS, with improvement percentages annotated. TwS shows aligned operator usage rate and consistent improvements across different perturbation types.

5 DISCUSSION

5.1 WHY DOES TW S WORK?

The effectiveness of TwS stems from its ability to enable multimodal reasoning, where models actively *think with audio*, thereby addressing a critical limitation of current LALMs’ naive Chain-of-Thought. Specifically, TwS supports an audio CoT that enables LALMs to perform precise audio signal processing operations, interleaved cross-modal reasoning, and iterative refinement during problem solving. Importantly, the improvements of TwS scale with model capacity, indicating that larger models can more effectively coordinate interleaved reasoning that bridge acoustic observations with linguistic reasoning under our framework.

5.2 COMPUTATIONAL TRADE-OFFS

TwS improves accuracy at the cost of higher inference overhead, mainly from additional reasoning steps. Most samples converge within 2–4 iterations with minimal latency from audio operators (Fig. 2). On Qwen-7B, inference is about $2.3\times$ slower than naive CoT. Larger models require fewer steps yet yield greater gains, suggesting favorable scaling. For real-time use, adaptive stopping or confidence-based thresholds can further mitigate latency.

6 CONCLUSION

We introduced Thinking-with-Sound (TwS), a training-free framework that enables Large Audio-Language Models to perform multi-step reasoning by interleaving linguistic analysis with dynamic audio manipulation. Unlike existing approaches that treat audio as static input, TwS allows models to iteratively process and re-examine acoustic signals, addressing the fundamental limitation that current LALMs cannot perform fine-grained acoustic analysis despite their strong linguistic capabilities. Our experiments on MELD-Hard1k demonstrate that while state-of-the-art LALMs suffer catastrophic performance degradation under acoustic perturbations ($>50\%$ accuracy drop), TwS achieves substantial recovery with improvements ranging from 24.73% to 36.61% absolute accuracy, scaling with model capacity. These results, supported by theoretical analysis establishing expressive completeness and robustness guarantees, demonstrate that effective audio understanding requires reasoning through acoustic signals rather than merely reasoning about them. By enabling models to actively manipulate audio during inference, TwS provides a practical path toward more robust audio-language systems with multimodal reasoning.

486 REFERENCES
487

- 488 Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
489 work for self-supervised learning of speech representations. *Advances in neural information*
490 *processing systems*, 33:12449–12460, 2020.
- 491 Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv,
492 Jinzheng He, Junyang Lin, et al. Qwen2-audio technical report. *arXiv preprint arXiv:2407.10759*,
493 2024.
- 494 Maureen de Seyssel, Antony D’Avirro, Adina Williams, and Emmanuel Dupoux. Emphassess: a
495 prosodic benchmark on assessing emphasis transfer in speech-to-speech models. *arXiv preprint*
496 *arXiv:2312.14069*, 2023.
- 497 Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou,
498 Edouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time dia-
499 logue. *arXiv preprint arXiv:2410.00037*, 2024.
- 500 Qingkai Fang, Shoutao Guo, Yan Zhou, Zhengrui Ma, Shaolei Zhang, and Yang Feng. Llama-omni:
501 Seamless speech interaction with large language models. *arXiv preprint arXiv:2409.06666*, 2024.
- 502 Jun Gao, Yongqi Li, Ziqiang Cao, and Wenjie Li. Interleaved-modal chain-of-thought. In *Proce-
503 dings of the Computer Vision and Pattern Recognition Conference*, pp. 19520–19529, 2025.
- 504 Sreyan Ghosh, Sonal Kumar, Ashish Seth, Chandra Kiran Reddy Evuru, Utkarsh Tyagi, S Sak-
505 shi, Oriol Nieto, Ramani Duraiswami, and Dinesh Manocha. Gama: A large audio-language
506 model with advanced audio understanding and complex reasoning abilities. *arXiv preprint*
507 *arXiv:2406.11768*, 2024.
- 508 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
509 and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
510 prediction of hidden units. *IEEE/ACM transactions on audio, speech, and language processing*,
511 29:3451–3460, 2021.
- 512 Rongjie Huang, Mingze Li, Dongchao Yang, Jiatong Shi, Xuankai Chang, Zhenhui Ye, Yuning
513 Wu, Zhiqing Hong, Jiawei Huang, Jinglin Liu, Yi Ren, Zhou Zhao, and Shinji Watanabe. Au-
514 dioGPT: Understanding and generating speech, music, sound, and talking head. *arXiv preprint*
515 *arXiv:2304.12995*, 2023.
- 516 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
517 language models are zero-shot reasoners. *Advances in Neural Information Processing Systems*,
518 35:22199–22213, 2022.
- 519 Tony Lee, Haoqin Tu, Chi Heem Wong, Zijun Wang, Siwei Yang, Yifan Mai, Yuyin Zhou, Cihang
520 Xie, and Percy Liang. Ahelm: A holistic evaluation of audio-language models. *arXiv*, 2025.
- 521 Alexander H Liu, Andy Ehrenberg, Andy Lo, Clément Denoix, Corentin Barreau, Guillaume Lam-
522 ple, Jean-Malo Delignon, Khyathi Raghavi Chandu, Patrick von Platen, Pavankumar Reddy Mud-
523 direddy, et al. Voxtral. *arXiv preprint arXiv:2507.13264*, 2025.
- 524 Ziyang Ma, Xiquan Li, Yakun Song, Wenxi Chen, Chenpeng Du, Jian Wu, Yuanzhe Chen, Zhuo
525 Chen, Yuping Wang, Yuxuan Wang, et al. Towards reliable large audio language model. *arXiv*
526 *preprint arXiv:2505.19294*, 2025.
- 527 Gallil Maimon, Amit Roth, and Yossi Adi. Salmon: A suite for acoustic language model eval-
528 uation. In *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal*
529 *Processing (ICASSP)*, pp. 1–5. IEEE, 2025.
- 530 OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
531 Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex
532 Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex
533 Nichol, Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis,
534 Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes,

540 Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein,
 541 Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey
 542 Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia,
 543 Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben
 544 Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake
 545 Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon
 546 Walkin, Brendan Quinn, Brian Guaraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo
 547 Lugaressi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li,
 548 Chan Jun, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu, Chong
 549 Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine
 550 Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czar-
 551 necki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler, Daniel
 552 Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki, Denny
 553 Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay, Edede Oi-
 554 woh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric Kramer,
 555 Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani, Felipe
 556 Petroski Such Zhang, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel
 557 Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao,
 558 Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hen-
 559 drick Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won
 560 Chung, Ian Kivlichan, Ian O'Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu, Ikai
 561 Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon, Ja-
 562 cob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie
 563 Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe,
 564 Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi
 565 Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers, Joel
 566 Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay, Jonathan Ue-
 567 sato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross,
 568 Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn Harri-
 569 man, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra
 570 Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe,
 571 Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman,
 572 Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian
 573 Weng, Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kon-
 574 draciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens,
 575 Madelaine Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall,
 576 Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty,
 577 Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese,
 578 Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang,
 579 Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Castro Temudo de, Mikhail
 580 Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat
 581 Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers,
 582 Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Fe-
 583 lix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum,
 584 Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen
 585 Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum,
 586 Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Prafulla
 587 Dhariwal, Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha
 588 Gontijo Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky
 589 Wang, Rob Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain
 590 Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu,
 591 Saachi Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Camp-
 592 bell, Sara Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani,
 593 Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi Xia, Sonia
 Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji,
 Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patward-
 han, Thomas Cunningham, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shad-
 well, Tianhao Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi,
 Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit

- 594 Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou,
 595 Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang,
 596 Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov. Gpt-4o system card. *arXiv*
 597 *preprint*, August 2024. URL <https://arxiv.org/abs/2410.21276>. Accessed June 22,
 598 2025.
- 599 Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria, and Rada
 600 Mihalcea. Meld: A multimodal multi-party dataset for emotion recognition in conversations. In
 601 *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp.
 602 527–536, 2019.
- 603 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 604 Robust speech recognition via large-scale weak supervision. *arXiv preprint arXiv:2212.04356*,
 605 2023.
- 606 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
 607 Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
 608 use tools. *arXiv preprint arXiv:2302.04761*, 2023.
- 609 Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hug-
 610 gingGPT: Solving AI tasks with ChatGPT and its friends in Hugging Face. *arXiv preprint*
 611 *arXiv:2303.17580*, 2023.
- 612 Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma,
 613 and Chao Zhang. Salmonn: Towards generic hearing abilities for large language models. *arXiv*
 614 *preprint arXiv:2310.13289*, 2023.
- 615 Bin Wang, Xunlong Zou, Geyu Lin, Shuo Sun, Zhuohan Liu, Wenyu Zhang, Zhengyuan Liu, AiTi
 616 Aw, and Nancy F Chen. Audiobench: A universal benchmark for audio large language models.
 617 *arXiv preprint arXiv:2406.16020*, 2024.
- 618 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 619 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 620 *Neural Information Processing Systems*, 35:24824–24837, 2022.
- 621 Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
 622 Fan, Kai Dang, et al. Qwen2. 5-omni technical report. *arXiv preprint arXiv:2503.20215*, 2025.
- 623 Qian Yang, Jin Xu, Wenrui Liu, Yunfei Chu, Ziyue Jiang, Xiaohuan Zhou, Yichong Leng, Yuanjun
 624 Lv, Zhou Zhao, Chang Zhou, et al. Air-bench: Benchmarking large audio-language models via
 625 generative comprehension. *arXiv preprint arXiv:2402.07729*, 2024.
- 626 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 627 React: Synergizing reasoning and acting in language models. *arXiv preprint arXiv:2210.03629*,
 628 2023.
- 629 Dingyao Yu, Kaitao Song, Peiling Lu, Tianyu He, Xu Tan, Wei Ye, Shikun Zhang, and Jiang Bian.
 630 MusicAgent: An AI agent for music understanding and generation with large language models.
 631 *arXiv preprint arXiv:2310.11954*, 2023.
- 632 Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao, George Karypis, and Alex Smola. Multimodal
 633 chain-of-thought reasoning in language models. *arXiv preprint arXiv:2302.00923*, 2023.
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647

648 **A IMPLEMENTATION DETAILS**649 **A.1 DATASETS**650 The base dataset, MELD, contains 13,708 utterances from conversational contexts with seven emotion
651 categories. MELD’s naturalistic audio conditions, including overlapping speech, background
652 noise, and varied prosody, provide an ideal testbed for assessing LALMs’ acoustic reasoning capa-
653 bilities beyond clean laboratory conditions. See Appendix B for **MELD-Hard1k**.
654655 **A.2 HYPER-PARAMETERS**
656657 We use NVIDIA A100 GPUs with fixed random seeds (seed=42 for sampling, seed=1337 for per-
658 turbations). Model inference employs default parameters (temperature=0, top-p=0.95) with greedy
659 decoding for deterministic evaluation. Complete implementation including perturbation generation,
660 TwS framework, and evaluation scripts will be released upon publication.
661662 **B PERTURBATION CONFIGURATION**
663664 We use the following perturbation configuration (see Table. 3) when constructing the **MELD-**
665 **Hard1k** dataset.
666667 Table 3: Detailed perturbation specifications for MELD-Hard1k construction. Each perturbation
668 type is applied with probability $p = 0.3$, with parameters sampled uniformly from the specified
669 ranges.
670

Pert. Type	Parameter	Range	Dist.	Impl.
Additive Noise	SNR (dB)	[0, 25]	Uniform	$x' = x + \alpha \cdot n(t)$
	Noise Type	{white, pink, brown}	Categorical	
	Temporal Mask	[0, 1]	Bernoulli(0.2)	
Reverberation	RT60 (ms)	[100, 800]	Log-uniform	$x' = x * h_{room}(t)$
	Room Size (m ³)	[20, 200]	Uniform	
Pitch Shift	Semitones	[-4, +4]	Uniform	PSOLA algorithm
	Formant Pres.	{True, False}	Bernoulli(0.7)	
Time Stretch	Stretch Fact.	[0.7, 1.3]	Uniform	Phase vocoder
	Quality Mode	{fast, high}	Bernoulli(0.8)	

684 **C DESIGN OF AUDIO OPERATOR SET \mathcal{T}**
685686 While TwS imposes no hard constraints on the operator set, our empirical analysis highlights consist-
687 ent patterns in what makes operators effective for audio reasoning. Operators that facilitate strong
688 performance typically share three characteristics: (1) they implement functionalities that LALMs are
689 not inherently good at, such as frequency-domain analysis and pitch tracking tasks which require
690 accurate numerical operation / analysis. (2) they return required data directly, without additional
691 descriptive text; and (3) they are documented with precise specifications and clear boundaries, in-
692 cluding intuitive names and well-defined parameters, so the agent can reliably determine when and
693 how to invoke them.
694695 In our experiments, for example, we instantiate \mathcal{T} with operators spanning enhancement (denois-
696 ing, echo cancellation), analysis (spectral analysis, pitch tracking), transformation (time-frequency
697 manipulations), and separation (source separation, human voice extraction). This particular choice
698 reflects common audio reasoning needs in our evaluation but LALMs are not natively good at.
699700 Nonetheless, our TwS framework naturally accommodates alternative operator sets. For instance,
701 speech recognition tasks might prioritize formant enhancement and silence removal, while mu-
702 sic analysis could benefit from harmonic-percussive separation and beat tracking—the same TwS
703 framework applies regardless of the specific operators employed.

702 **D PROMPTS**
703704 To ensure reproducibility, we provide the complete prompts used in our experiments. We employed
705 two main categories of prompts: baseline prompts for standard LALM evaluation and TwS-enhanced
706 prompts that enable audio chain-of-thought reasoning with tool integration.
707708 **D.1 BASELINE EVALUATION PROMPTS**
709710 For baseline experiments, we used standard emotion recognition prompts without any tool-calling
711 capabilities.
712**Baseline Prompt**

Instruction: You are an expert in audio analysis and emotion recognition. Listen to the provided audio clip and identify the speaker's emotional state.
 The audio contains a single speaker's utterance from a conversational context. Your task is to classify the emotion expressed in the speech.
 Choose from the following emotion: {categories:;anger,disgust,fear,joy,neutral,sadness,surprise}
 Think step-by-step and provide your answer in the following format: Emotion: [category]
 [AUDIO INPUT]

721 Figure 4: The baseline prompt used for standard LALM emotion recognition evaluation.
722723 **D.2 TWS FRAMEWORK PROMPTS**
724725 The TwS framework requires more sophisticated prompts that introduce tool-calling capabilities and
726 guide the model through multi-step audio reasoning processes.
727**TwS System Prompt**

System Instruction: You are an advanced audio analysis system with access to specialized audio processing tools. Your goal is to perform comprehensive emotion recognition by actively analyzing and manipulating audio signals when needed.
 You have access to the following audio processing tools:
 [Detailed Operator Set Description]
 When encountering audio that may be degraded or challenging to analyze, think step-by-step:
 1. First assess the audio quality and identify potential issues
 2. Apply appropriate preprocessing or enhancement tools as needed
 3. Perform detailed acoustic analysis using available tools
 Format tool calls as:
 [TOOL: tool_name(parameters)]

739 Figure 5: The system prompt that initializes TwS framework capabilities and introduces available
740 audio processing tools.
741742 **E PROOFS**
743744 **E.1 PROOF OF THEOREM 3.3**745 *Proof.* We analyze the error evolution over reasoning steps. At step k , let $x_a^{(k)}$ denote the current
746 audio state. If the model selects an appropriate operator T (which occurs with probability α), we
747 have:
748

749
$$\|x_a^{(k+1)} - x_a\| = \|T(x_a^{(k)}) - x_a\| \quad (13)$$

750
$$\leq \rho \|x_a^{(k)} - x_a\| \quad (\text{by } (\epsilon, \rho)\text{-adaptivity}) \quad (14)$$

751 If the model continues linguistic reasoning (probability $1 - \alpha$), the audio remains unchanged:
752
$$\|x_a^{(k+1)} - x_a\| = \|x_a^{(k)} - x_a\|.$$

756 **TwS Task Prompt**

757 **Task Instruction:** Analyze the provided audio clip to determine the speaker's emotional state. Use your
 758 available tools strategically to ensure accurate analysis, especially if the audio quality presents challenges.
 759 Emotion categories: {anger,disgust,fear,joy,neutral,sadness,surprise}
 760 Process:
 761 1. Initial Assessment: Listen to the audio and evaluate its quality
 762 2. Strategic Processing: If needed, apply appropriate tools to enhance or analyze the audio
 763 3. Feature Extraction: Use analysis tools to extract emotion-relevant acoustic features
 764 4. Integration: Combine your observations to reach a conclusion
 765 5. Final Decision: Provide emotion classification.
 766 Think through each step explicitly. Show your reasoning process and explain how each tool usage con-
 767 tributes to your final decision.
 768 Expected output format:
 769 Step-by-step Analysis: [Your detailed reasoning process with tool calls]
 770 Final Answer:
 771 Reasoning: [brief justification]
 772 Emotion: [category]
 773 [AUDIO INPUT]

774 Figure 6: The task-specific prompt used for TwS-enhanced emotion recognition, guiding multi-step
 775 reasoning and tool usage.

776
 777 Taking expectations over the model's stochastic tool selection:

$$\mathbb{E}[\|x_a^{(k+1)} - x_a\|] = \alpha \cdot \rho \|x_a^{(k)} - x_a\| + (1 - \alpha) \cdot \|x_a^{(k)} - x_a\| \quad (15)$$

$$= (1 - \alpha(1 - \rho)) \|x_a^{(k)} - x_a\| \quad (16)$$

782 Unrolling this recursion from $k = 0$ to K :

$$\mathbb{E}[\|x_a^{(K)} - x_a\|] \leq (1 - \alpha(1 - \rho))^K \|x_a^{(0)} - x_a\| \quad (17)$$

786 Since the encoding is Lipschitz (or at least continuous), this bound on audio-space error translates
 787 to the encoding-space error bound in the theorem statement. \square
 788

789 E.2 PROOF OF PROPOSITION 3.4

791 *Proof.* For TwS, after K steps with error reduction from Theorem 3.3:

$$\mathcal{L}(x_a^{(K)}, x_t; f_\theta) \leq \mathcal{L}(x_a, x_t; f_\theta) + L_f \cdot \|\text{Enc}(x_a^{(K)}) - \text{Enc}(x_a)\| \quad (18)$$

$$\leq \mathcal{L}(x_a, x_t; f_\theta) + L_f \cdot L_{\text{enc}} \cdot \|x_a^{(K)} - x_a\| \quad (19)$$

$$\leq \mathcal{L}(x_a, x_t; f_\theta) + L \cdot (1 - \alpha(1 - \rho))^K \|\delta\| \quad (20)$$

797 where $L = L_f \cdot L_{\text{enc}}$ combines the Lipschitz constants of the model and encoder.

798 For baseline one-shot reasoning without TwS:

$$\mathcal{L}(x_a^{\text{noisy}}, x_t; f_\theta) \leq \mathcal{L}(x_a, x_t; f_\theta) + L_f \cdot \|\text{Enc}(x_a^{\text{noisy}}) - \text{Enc}(x_a)\| \quad (21)$$

$$\leq \mathcal{L}(x_a, x_t; f_\theta) + L \cdot \|\delta\| \quad (22)$$

803 The improvement factor is $(1 - \alpha(1 - \rho))^K < 1$, showing TwS strictly reduces error when operators
 804 are adaptive ($\rho < 1$) and the model can select them ($\alpha > 0$). \square
 805

806 E.3 PROOF OF COROLLARY 3.5

808 *Proof.* The gain from TwS for perturbation type δ_i with reduction factor ρ_i is:

$$\text{Gain}(\delta_i) = \mathcal{L}_{\text{baseline}}(\delta_i) - \mathcal{L}_{\text{Tws}}(\delta_i) \approx L \|\delta_i\| (1 - (1 - \alpha(1 - \rho_i))^K) \quad (23)$$

810 For similar perturbation magnitudes $\|\delta_1\| \approx \|\delta_2\|$ and moderate K , taking the ratio:
 811

$$\frac{\text{Gain}(\delta_1)}{\text{Gain}(\delta_2)} \approx \frac{1 - (1 - \alpha(1 - \rho_1))^K}{1 - (1 - \alpha(1 - \rho_2))^K} \quad (24)$$

$$\approx \frac{\alpha K(1 - \rho_1)}{\alpha K(1 - \rho_2)} = \frac{1 - \rho_1}{1 - \rho_2} \quad (25)$$

817 where we used the approximation $(1 - x)^K \approx 1 - Kx$ for small x . \square
 818

819 F THE USE OF LARGE LANGUAGE MODELS (LLMs)

820 We used an LLM to assist with the phrasing and grammar of the manuscript. The LLM was used
 821 strictly as a writing aid and did not contribute to the scientific ideation, methodology, or results
 822 presented in this paper.
 823

824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863