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Abstract— Analysis of the 3-D texture is indispensable for
various tasks, such as retrieval, segmentation, classification, and
inspection of sculptures, knit fabrics, and biological tissues. A 3-D
texture represents a locally repeated surface variation (SV) that
is independent of the overall shape of the surface and can be
determined using the local neighborhood and its characteristics.
Existing methods mostly employ computer vision techniques that
analyze a 3-D mesh globally, derive features, and then utilize them
for classification or retrieval tasks. While several traditional and
learning-based methods have been proposed in the literature,
only a few have addressed 3-D texture analysis, and none have
considered unsupervised schemes so far. This article proposes
an original framework for the unsupervised segmentation of 3-D
texture on the mesh manifold. The problem is approached as
a binary surface segmentation task, where the mesh surface
is partitioned into textured and nontextured regions without
prior annotation. The proposed method comprises a mutual
transformer-based system consisting of a label generator (LG)
and a label cleaner (LC). Both models take geometric image rep-
resentations of the surface mesh facets and label them as texture
or nontexture using an iterative mutual learning scheme. Exten-
sive experiments on three publicly available datasets with diverse
texture patterns demonstrate that the proposed framework out-
performs standard and state-of-the-art unsupervised techniques
and performs reasonably well compared to supervised methods.

Index Terms— 3-D surface, segmentation, texture, transform-
ers, unsupervised.

I. INTRODUCTION

ITH the widespread use of 3-D cameras and scanning

devices to capture the rich geometrical properties of
object surfaces, many computer vision-based interdisciplinary
applications have emerged in recent years. A large volume of
work has been addressing the problem of segmenting, clas-
sifying, and retrieving 3-D shapes based on their similarities
using triangle mesh and point clouds as input [1], [2], [3],
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[4], [5], [6], [7]. However, the segmentation and classification
of 3-D geometric textures (or, simply, 3-D textures) are less
explored. Unlike shape, 3-D texture is a surface feature char-
acterized by repetitive geometric, regular, or random patterns
on the surface. These patterns can be considered geometric
corrugations of the surface that alter its local appearance
without affecting its global shape. There is a diverse range of
surfaces exhibiting 3-D texture, including knit fabrics, artwork
patterns, artist styles, and natural structures such as tree
barks [8], [9]. Texture-based applications can benefit various
industries, including remote sensing, 3-D content creation, and
animation [10]. One of the most important uses is in cultural
preservation, where researchers have studied and developed
methods to retrieve and categorize cultural objects based on
texture [11], [12], [13]. Recent progress in this field has shown
remarkable performance in transforming historical buildings
into semantically structured 3-D models, enabling enhanced
detection and comprehension of heritage structures [14].

All the 3-D texture classification and segmentation methods
developed so far have relied on supervised schemes that
require demanding manual annotation of a large amount of
data. Manual annotation of textured regions on 3-D surfaces
is even more tedious than its counterpart in 2-D images, as it
requires repeating the procedure over multiple views. Also, the
manual annotation is susceptible to error because the annotator
operates on a 2-D projection of the surface.

In this article, we present an original framework for the
unsupervised segmentation of the 3-D texture segmentation
on the mesh manifold. The problem is approached as a
fully unsupervised binary surface segmentation where the
mesh surface is partitioned into textured and nontextured
regions (see examples in Fig. 1). This novel scheme eliminates
labor-intensive labeling while achieving comparable segmen-
tation performance to supervised methods. The behavior of
autoencoder models during our attempts to reconstruct surface
patches served as inspiration for our strategy. We found
that the reconstruction error for textured patches (which are
heterogeneous) was typically greater than for their nontextured
counterparts (which are homogeneous or smooth patches).
In Fig. 2, we present the distribution of reconstruction loss
for texture and nontexture patches collected from different
surfaces. The heterogeneity of textured surfaces, which exhibit
a greater degree of entropy compared to the homogeneous
nontextured patches. Based on these observations, we hypoth-
esize that this difference in behavior could be amplified and
utilized more effectively through a cleaner learning mechanism
in an adversarial scheme for fully unsupervised classification
of surface patches.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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Fig. 1.  Samples of 3-D surfaces exhibiting diverse texture patterns are
shown. The top row displays cultural heritage artifacts, and the bottom row
distinguishes nontextured areas in yellow and textured areas in blue.

The proposed model consists of two main components:
a label generator (LG) and a label cleaner (LC). The gen-
erator is trained to reconstruct surface patch features, and
the reconstruction loss function is utilized to assign labels
to the patches. Patches with low loss are labeled as tex-
ture, while those with high loss are labeled as nontexture.
This set of pseudo-labels is expected to contain several
misclassified patches, and thus there is a need for further
segregation. To address this, we introduce a discriminative
learning mechanism that involves training a binary classifier
with the pseudo-labeled patches. The classifier is then used
to reclassify the patches in the second stage, correcting the
initial assignments. For instance, a patch labeled as textured
initially could be reclassified as nontextured, and vice versa,
as the classifier training is not expected to be entirely accurate.
The modified set of pseudo-labeled patches is then utilized in
the next iteration to enhance the generator further. By repeat-
ing this procedure iteratively, the pseudo-LG and pseudo-LC
modules learn from each other and enhance the overall surface
patch classification performance.

The proposed framework outperforms the classical unsu-
pervised approaches and baseline methods on three datasets:
KU 3DTexture [15], SHREC’18 [16], and SHREC’17 [17].
In summary, our original contributions are summarized as
follows.

1) We propose leveraging the surface patch reconstruction
error as an underlying concept for classifying textured
and nontextured patches.

2) We present a fully unsupervised mutual transformer
learning approach for 3-D texture segmentation on mesh
surfaces. To the best of our knowledge, this is the first
attempt at facet-level texture segmentation.

3) We validated the proposed framework for texture
segmentation on three datasets with complex texture
patterns and varying resolutions, achieving significantly
better results than conventional clustering and baseline
approaches.

II. RELATED WORK

As a recent topic, there is not yet a large volume of work
on 3-D texture analysis. Nevertheless, the existing research
can be classified into three main categories: 3-D texture
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Fig. 2. Distributions of reconstruction loss for texture and nontexture patches.
(a) Losses obtained early in the process show that there is a significant overlap
between the distributions of texture and nontexture patches, resulting in a high
misclassification error, whereas (b) losses obtained near the end of the process
show that there is a noticeable separation between the distributions of texture
and nontexture patches, resulting in a lower misclassification error.
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classification [18], [19], [20], 3-D texture retrieval [17], [21],
[22], and 3-D texture segmentation [23], [24], [25].

In the 2-D image domain, local descriptors like Gabor
or local binary pattern (LBP) [26] are often used to define
texture patterns based on repeatability, randomness, and ori-
entation [27], [28]. However, in the 3-D domain, texture
analysis is still in its early stages. In the realm of classification,
Werghi et al. [19], [29] introduced the concept of 3-D texture
by proposing mesh-LBP, an extension of LBPs to the mesh
manifold, which uses a structure of local ordered rings to clas-
sify textured patterns on mesh surfaces. They later extended
it to other applications, such as 3-D face recognition, in sub-
sequent work [18], [20], [30]. The shape retrieval community
found Werghi et al.’s 3-D texture concept intriguing, which
prompted them to publish a number of 3-D relief pattern
datasets in the SHREC contests [17]. Moscoso et al. [21]
further contributed to this field by introducing the edge-LBP
descriptor, which uses contours defined based on a sphere-
mesh intersection. They applied this representation to match
archeological fragments using the Battacharya distance as
a metric [22]. Thompson et al. [21] later presented various
techniques, all focused on identifying the best representation
for characterizing 3-D texture patterns and related similarity
metrics.

Liu et al. [23] introduced a supervised snake-based segmen-
tation method, requiring manual selection of snake contours
that evolve to distinguish smooth surfaces and relief patterns.
Zatzarinni et al. [24] approached similar issues analytically
using a height function over the surface, tailored for relief
patterns. However, these methods are specific to identifying
protrusions on the main surface and cannot be extended
to the broader context of 3-D texture. Tortorici et al. [25]
proposed a recent approach using convolution tools on the
mesh for weakly supervised texture feature extraction, employ-
ing random forest. Additionally, a mesh convolution with
spherical harmonics as orthonormal bases for 3-D meshes
is presented, but identifying small variations on 3-D sur-
faces remains challenging [31]. Further, spectral descriptors,
a popular texture analysis category, offer resilience to 3-D
object transformations by leveraging the Laplace—Beltrami
operator [32], [33]. Despite its real-time robustness, the com-
plexity of this approach scales with the number of vertices
in the input mesh. Simplifying complexity by ensuring a
consistent vertex count in 3-D input samples may lead to
information loss, impacting texture recognition performance.
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Choi et al. [34] introduced a semantic segmentation method,
utilizing FC-DenseNet to extract 3-D scripts from rough
surfaces, with training based on feature images from local
shape features. Similarly, generalized 3-D semantic segmenta-
tion and classification networks are found in the literature,
with GNN-based approaches being well-suited for holistic
3-D surface tasks [5], [6], [13]. However, GNN struggles
to incorporate minor surface variations (SVs) due to the
insensitivity of node proximity to deformation. Further, recent
advancements in point cloud understanding include the devel-
opment of novel approaches such as the next iteration of
PointNets, referred to as PointNeXt [35], learning point-level
representations through various aggregations [36], and the
introduction of a universal point set operator for point clouds
known as PointMixer [37]. These networks effectively address
challenges associated with the inherent sparsity, unordered
nature, and irregularity of point clouds, showcasing high
efficiency in part-based segmentation and classification tasks.
However, there remains a need to address the tracking of SVs,
particularly when traversing the 3-D surface, to examine
intricate surface patterns.

III. PROBLEM DEFINITION

The following outlines the objectives of a proposed learning
model:

1) Input: A 3-D surface texture M.

2) Output: L = f(M), a proposed learning model that
maps M to £, where M is the input surface texture
and L is the facet labels.

3) Objective: To minimize the texture and nontexture
facet-level classification errors.

I'V. PRELIMINARIES

A 3-D texture pattern is a manifold embedded
in 3-D Euclidean space with 3-D points P(u,v) =
x(u,v), y(u,v), z(u,v) where x,y,z are the coordinates
in 3-D space and u,v are the independent variables that
correspond to the manifold dimension. The following
preliminaries provide an overview of the terminologies used
in this proposed research work.

Definition 4.1: A mesh M = {V, &, F} is a polygonal
representation of a surface where )V is a set of vertices
{x,y,z} € R3, & is a set of edges connecting neighboring
vertices pair and F is the set of faces, that is, polygons
connected with edges and vertices from (&, F).

Definition 4.2: Curvature (Cur) is a geometric property that
is frequently utilized in 3-D surface analysis. It is defined
by the intersection of curves with normal planes in different
orientations ¢. For example, k; is the curvature defined by
(Py, t,n), where Py is the plane, ¢ is the direction, and n is
the normal to the surface. The curvature at any point can be
computed as a combination of two curvatures, k;, and k,,
maximum and minimum, in two principal directions, #; and f,.

Definition 4.3: Ordered ring facets (ORF) is computed at
each facet by employing adjacent faces {1, 2, 3} and other
faces, Fgap, as shown in Fig. 3(a). To normalize the starting
position of a facet in a ring, we reorder it so that the first
facet in each ring is closest to the centroid of the rings.
A regular mesh with R = r, r,, ..., r, ordered rings, where
r; represents the first ring with 12 facets, r, represents the
second ring with 24 facets, and r,, represents the nth ring with
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Fig. 3. OREF. (a) Ring constructed at a facet using the adjacent facets {1, 2, 3}
and the Fgap facets. (b) Ten rings constructed similarly using the adjacent and
Fgap facets.

Algorithm 1 Pseudocode for LD and SV
Input: vertices, facets, RingList (R)

R=ry, ray -1y
v, V2, "'vl‘l(_flv f27 fn<_R
C < GetCenter(vy, v, ---VUy)

C <~ mean(C)
H<« CxC
[A, V] <« eig(H)
/\1 <—A1, )\2 <—A2, )\3 <—A3
v < Vi, v < Vo3 < V3
normal < v,
if sign([0 O 1] * normal) < O then
normal = -normal
end if
Construct a plane Ax + By + Cz + D=0 using C and
normal
LocalDepth < d = |Axy+ Byy+ Czo+ D|/+/(A> + B> +
Cc?

. ge Al
SurfaceVariation < S wyw

n - 12 facets. The facets in each ring are described using the
proposed features, which aid in describing the texture of a 3-D
mesh. Fig. 3(a) and (b) depicts an illustration of one ring and
ten rings generated on a 3-D mesh surface.

Definition 4.4: Local depth (LD) is computed using the
ORF where the neighbors’ vertices C are extracted from the
facets, and then a covariance matrix H = CTxC is computed,
where C = C — C and C is the mean of vertices C. Further,
eigenvalues and eigenvectors are obtained by decomposing H,
where the eigenvector of the smallest eigenvalue is chosen as a
normal. A plane is then constructed using the obtained normal
to find the LD of any point by computing the distance between
the point and the plane. Algorithm 1 provides pseudocode for
implementation.

Definition 4.5: SV is computed using the eigenvalues \; <
Ay < A3, obtained from the decomposition of H.

Definition 4.6: Shape Index (SI) used to quantify the cur-
vature at a point P is given by

SI(P)=1—larctan ki (P) + ko (P)
2 7

ki(P) — k2 (P)
where k; and k; represent the maximum and minimum princi-
pal curvatures, respectively, with the condition that k; > k; is

satisfied for all points P. The expressions for k; and k, are
defined as follows:

ki(P) = H(P) ++/ H*(P) — K(P)

ky(P) = H(P) —  H*(P) — K(P).
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Fig. 4. Outline of the proposed surface patch classification for texture segmentation. (a) 3-D surface and (b) 2-D surface patch images computed across the
mesh triangle facets using geometric features (see Fig. 5). (c) Deep feature extraction from the surface patch images. (d) LG inputs deep features and assigns
a pseudo-label (texture or nontexture) to each surface patch. Noticeably, this assignment produces misclassified surface patches (i.e., noisy labels). (e) LC
cleans the noisy pseudo-labels generated in (d) repeated over several iterations. (f) Ground truth and the predicted results, where yellow and blue represent

the nontexture and texture regions, respectively.

Algorithm 2 Calculate AZ and EL
Input: vertex, face, RingList (R)

R <« {ri,r,....,r} {(R contains n rings, each with
multiple facets)}
Vi, V2, o.vy Uy < f1, f2,..., fu < R {(Obtain facets and

vertices from R)}
normal(x, y, z) <~
{(Compute normal)}
Azimuth < atan2(y, x)

Elevation < atan2(z, v/x2 + y?)

computeNormal(vertex, face)

{(Calculate Azimuth)}
{(Calculate Elevation)}

Here, H(P) and K (P) denote the mean and Gaussian curva-
tures at point P.

Definition 4.7: Azimuth (AZ) and Elevation (EL) are defined
as follows.

1) The AZ angle represents the horizontal angle in a
polar coordinate system, measured in degrees or radians.
In our study, it is used to describe the orientation or
direction of a surface feature.

The EL angle represents the vertical angle in a polar
coordinate system, measured in degrees or radians.
It describes the inclination or tilt of a surface feature
with respect to the horizontal plane.

2)

Psuedo code to implement AZ and EL given in Algorithm 2.

V. PROPOSED METHODOLOGY

The schematic illustration of our proposed method is
depicted in Fig. 4. The method encompasses three main
steps: patch image extraction, deep feature extraction, and
unsupervised patch classification using dual transformers.

A. Surface Patch Image Extraction

Our segmentation technique wuses local classification,
in which the mesh surface is browsed and a neighbor-
hood around each triangle facet is constructed as shown in
Fig. 3(b); each neighborhood creates a multichannel geometric
image with each channel representing a geometric feature.

Surface variation

Local depth Curvature

Fig. 5. Example of a surface patch image extraction. A facet grid is
constructed around a central facet (here, a 24 x 24), and three different
geometric descriptors are computed at each facet of the grid: SV, LD, and
curvature, producing a three-channel image.

The multichannel image is constructed using the ORF struc-
ture developed in [20]. We extract an ORF from each facet
and utilize it to generate a grid to encode facets as a 2-D
matrix. Further, at each facet, three geometric descriptors are
computed: SV, LD, and mean curvature, and the resulting geo-
metric maps are stacked to generate a three-channel geometric
image, which we refer to as the surface patch image, as shown
in Fig. 5.

B. Deep Feature Extraction

The geometric image, while reflecting the local geometry
of a surface patch, does not possess sufficient discrimination
capacity. For improved discrimination, a pre-trained ResNet
model is employed to create a deep feature representation f,
from geometric images. The model has not been tuned or
exposed to texture or nontexture data in an effort to stick to
the concept of a fully unsupervised framework.

C. Initial Patch Clustering

Unsupervised learning techniques are more effective when
the classes are homogeneous and compact (e.g., a k-mean
clustering works fine when the feature space’s class distri-
butions are compact and reasonably separated). While such
an ideal scenario is unlikely in our data, we can reduce the
heterogeneity of the classes’ samples (here, patch instances in
the texture and the nontexture classes). Assuming our deep
features have adequate discrimination capacity, one method
is to do mean-shift clustering on the deep feature samples,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GANAPATHI et al.: UNSUPERVISED DUAL TRANSFORMER LEARNING

select the two most predominant clusters, and discard the
rest. The two dominating clusters are anticipated to display
reasonable compactness as a density-based approach, whereas
the excluded clusters are most likely to contain hard sam-
ples. Another simpler and computationally less demanding
approach, which we found working reasonably, is to run the
K-means clustering with many clusters above 2. In the exper-
imentation, we empirically found K =5, a suitable value.

D. Unsupervised Patch Classification

As mentioned before, our unsupervised patch classification
employs a model composed of two modules, the LG, and
the LC. The two models encompass an autoencoder-like
model and a binary classifier, respectively. For both mod-
els, we adopted a transformer backbone architecture. While
transformers demonstrated remarkable performance in several
image analysis tasks [38], [39], [40], our primary motivation
stems from their capacity to model both short-range and long-
range dependencies. This aspect is quite present in the textured
surface patches because of the repetitive patterns all along
their surface. We dubbed the LG and the LC the transformer
LG (TLG) and the transformer LC (TLC).

1) Transformer Label Generator: Our transformer projector
comprises a multi-head self-attention (MSA) layer and a
multilayer perceptron (MLP) containing two fully connected
layers. The filtered patch instances obtained from the initial
patch clustering (IPC) are passed to TLG. Here, their deep
feature representations are projected into a latent space using
a transformer-based projector and then inverse-transformed to
the original space using a transformer-based inverse projector.
The transformation loss is then used to assign pseudo-labels
to each patch instance.

We employed a similar transformer architecture proposed
by Vaswani et al. [41]. Let N be the number of patches in the
mesh surface, and let f; be the deep feature representation
of the ith patch, then we re-arrange f; as a sequence of
position-aware word representations g; = [&i.1, 8.2, - - - » Sin s
ny is the length of the sequence. The projector converts g;
to a latent representation p; via. the following sequence of
transformations:

Po = &i

qx = ky = vy = LN(p,—1)

Px = MSA(Gy, ke, vi) + pri
rL=19i1,9i2 - qinl (L

where x = 1,..., L denotes the number of layers and LN
represents layer normalization. In the TLG architecture, the
latent space retains the same size as the input sequence.

The architecture of the inverse projector is similar to that
of the transformer projector. It consists of two MSA layers
followed by MLP. There is also a latent learned bias vector b

utilized in reconstructing features z;, = [gi1, 825« -+ &iny ]
via the sequence of transformations

20 = PL

qx = Kx = LN(ZX—I) + b, Ux = LN(Zx—I)

Zx = MSA(q,, ki, vx) + 24-1, qAx =LN(Z,) +b
kx = i)x = LN(ZO)’ Zx = MSA(@xv ]le/}x) + 2)c

We optimize the TLG by minimizing the following loss
function:

Lric =D llgi — &lli )
i=1

where n is the total number of surface patches in a batch.
Once optimized, the reconstruction error is computed for the
ith patch instance as

e =llgi — &illr- 3)

Afterward, we generate its pseudo-label in the first iteration
by thresholding

= 1, if e%LG'— averagey, . (€ g) = 0 @
0, otherwise

where the label 1 and O correspond to the texture and nontex-
ture, respectively.

In the subsequence iterations, the pseudo-label assignment is
modified. For a patch labeled nontexture in the previous itera-
tion, the reconstruction error of (3) is used. The reconstruction
error of the following equation is used for a patch-labeled
texture:

erg = 1187 — &ilh &)
where g s is a random Gaussian vector having normal distribu-
tion. Empirically, we found that switching to the above formula
enhances the capacity of the TLG to detect the textured patches
and improves the overall segmentation. To train a generator to
produce desired images in a generative framework, a negative
correlation between the discriminator and generator losses
must be achieved [42]. In our network, a similar approach
is employed to get desired labels by increasing the loss of
the discriminator for texture by providing a fixed Gaussian as
input.

2) Transformer Label Cleaner: We also employ transformer
architecture similar to the transformer projector for the TLC,
where the last layer is connected to a dense neuron. Further,
the TLC, a binary classifier, is trained with the patches used
in the previous step and their pseudo-labels generated in (4),
using a simple binary cross-entropy loss

Lric =3 —Gilog@) + (1 - I log(1 — ¢))  (6)
-
where ¢; is the output of the binary classifier represents the
probability of a textured region, and 1 — ¢; represents the
probability of a nontextured region. Once trained, each patch
instance is passed to the binary classifier, and its label is
adjusted as follows:

z,:[l’
0,

These adjusted labels I; are used to train the LG in the next
iteration.

TLG and TLC alternate over the batch of surface patches
until the mesh surface is completely covered. The algorithm
goes into the next epoch till a maximum number of epochs
is reached. Fig. 6 depicts an exemplar of the evolution of the
patch classification across the epochs. It is evident that the

if ¢; > average, ., (¢:)
otherwise.

(7
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Algorithm 3 Proposed Algorithm

Input: N deep feature vectors representing all the surface
patches
for each epoch do
Take a batch of n samples
Minimize TLG’s loss function (2)
Compute construction errors eiT LG>
equation (3)
set pseudo-label /; using equation (4)
Label Cleaner
Minimize TLC’s loss function (6) using the labels /;
Compute ¢; < TLC(g;,1;), i=1:n
if ¢; > B. then
l; < textr
end if
while iter do
Take a batch of n samples
Minimize TLG’s loss function (2)
if /; == textr then
& < Gaussian noise(gy)
Compute eiT LG as per equation (5)
else
Compute eiT L as per equation (3)
end if
Label Cleaner:
Minimize TLC’s loss function (6) using the labels /;
Compute ¢; < TLC(g;,1;), i=1:n
Compute /; using equation (7)
end while
end for
Return cleaned label /;

i=Il:n, using

segmentation improves as the number of iterations increases,
resulting in well-separated textured and nontextured regions.
The pseudo code for implementation of the proposed approach
is given in Algorithm 3.

E. Weakly Supervised Algorithm

To verify performance, the majority of existing unsupervised
algorithms in the literature are trained in a weakly supervised
manner. Weakly supervised experimental settings refer to
situations where the amount or quality of labeled data is
insufficient for training a deep learning model. We therefore
include weak supervision in our proposed framework. In the
first setting, the proposed algorithm is trained with weak
supervision, only a subset of the data is labeled, and the rest

Illustration of the segmentation improvement across the iterations. Correctly classified texture facets are colored in blue, nontexture in yellow, and

of the data is unlabeled. The model learns from both labeled
and unlabeled data to improve its performance to distinguish
between textures and nontextures.

VI. EXPERIMENTAL RESULTS

We evaluate our frameworks using three datasets:
SHREC’17 [17], SHREC’18 [16], and KU 3DTexture [15].
SHREC’17 contains 15 distinct textures with 720 meshes, and
each texture class contains 48 samples with varying mesh
resolutions. The dataset SHREC’18 has 12 distinct surfaces
with distinct texture patterns, each with a unique resolution.
The KU 3DTexture [15] contains 89 real-world data sam-
ples with dense texture regions. Since the problem involves
classifying each facet, the number of facets exposed to the
network is essential. The data have a minimum of 10-785 K
facets per sample. Even though the number of surfaces used is
smaller, we found that the overall number of available facets is
sufficient to train the network. Despite this, we have utilized
augmented data and subjected our model to various surface
variances to generalize to previously unseen patches.

The performance of the proposed method is compared to
ten existing techniques, including seven based on supervised
and three based on unsupervised techniques. All unsupervised
methods employed in the performance evaluation incorpo-
rated ORF. Conversely, in supervised approaches, the baseline
techniques employed for comparison accept either 3-D point
clouds or 3-D meshes as inputs and therefore do not incor-
porate ORF. The proposed method is evaluated and compared
using F1-Score, Precision, and Recall, with an Intersection
over Union (IoU) threshold of 0.5. Additionally provided is
the mean IoU (mloU) score. The objective is to categorize each
facet of a given surface as belonging to a texture or nontexture
region.

A. Quantitative Analysis

We compared the proposed method to unsupervised and
fully supervised approaches. Since there is no current unsu-
pervised approach for texture segmentation on 3-D surfaces,
we initially implemented three traditional methods to com-
pare the proposed method with: K-Means [43], density-based
spatial clustering of applications with noise (DBSCAN) [44],
and Gaussian Mixture Model (GMM) Clustering [45]. In addi-
tion, we compare the performance of the proposed method
with popular 3-D shape classification and segmentation net-
works [35], [46], [47], [48], [49], [50], [51]. The objective
of these networks is to segment distinctive and consistent
structures. Distinctive shapes are utilized to discern the unique
structures within each class. Our goal is to classify individual
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TABLE I

QUANTITATIVE RESULTS OF OUR METHOD AND BASELINES ON
THE SHREC’17 [17] DATASET. BOLD FONT INDICATES THE
TOP-PERFORMING RESULTS, WHILE THE BLUE FONT
HIGHLIGHTS THE SECOND-BEST PERFORMANCE

TABLE III

QUANTITATIVE RESULTS OF OUR METHOD AND BASELINES ON THE
KU 3DTEXTURE [15] DATASET. BOLD FONT INDICATES THE
TOP-PERFORMING RESULTS, WHILE THE BLUE FONT
HIGHLIGHTS THE SECOND-BEST PERFORMANCE

Inference

Inference

Pret Rect FIT mloU?T Parameters Time (Sec) Pre t RectT F11 mloUT Parameters Time (Sec)

PointNet [CVPR’17] [46] - - - 51.8 3.5M 0.2 PointNet [CVPR’17] [46] - - - 48.2 3.5M 1.0

PointNet++ [NeurIPS*17] [47] - - - 48.3 1.5M 0.1 PointNet++ [NeurIPS’17] [47] - - - 49.7 1.5M 0.8

Supervised MeshSegNet [TMI'20] [48] - - - 62.4 1.8M 0.1 Supervised MeshSegNet [TMI'20] [48] - - - 58.0 1.8M 0.8
A Ahes BAAFNet [CVPR’21] [49] - - - 56.2 5.6M 0.1 A roa&;hes BAAFNet [CVPR’21] [49] - - - 511 5.5M 0.7
pproac PointMLP [ICLR'22] [50] - - - 613 13.2M 0.3 PP PointMLP [ICLR'22] [50] - - - 67.0 13.2M 16
PointNeXt-S [NeurIPS’22] [35] - - - 69.1 1.5M 0.1 PointNeXt-S [NeurIPS'22] [35] - - - 68.9 1.5M 0.1

CurveNet [ICCV’21] [51] - - - 66.4 5.5M 0.1 CurveNet [ICCV’21] [51] - - - 64.0 5.5M 0.9

Proposedsup 79.0 5.4M 0.6 Proposedsu - - - 80.3 5.4M 5.6

K-Means [43] 23.6 214 22.6 30.5 - 10.3 K-Means [43] 12.6 18.4 16.1 225 - 26.1
Unsupervised  DBSCAN [44] 27.1 26.4 26.7 36.5 - 53 Unsupervised  DBSCAN [44] 17.1 26.8 225 30.6 - 18.9
Approaches GMM Clustering [45] 12.1 83 102 164 - 54 Approaches GMM Clustering [45] 6.9 10.1 235 15.3 - 18.5
Proposed 68.2 69.1 69.0  70.1 5.4M 21.0 Proposed 65.2 66.4 650  66.2 5.4M 58.0

TABLE I

QUANTITATIVE RESULTS OF OUR METHOD AND BASELINES ON
THE SHREC’ 18 DATASET [16]. BOLD FONT INDICATES THE
TOP-PERFORMING RESULTS, WHILE THE BLUE FONT
HIGHLIGHTS THE SECOND-BEST PERFORMANCE

Inference

Pret Rect F17T mloUT Parameters

Time (Sec)

PointNet [CVPR’17] [46] - - - 54.2 3.5M 0.6

PointNet++ [NeurIPS*17] [47] - - - 58.1 1.5M 0.6

Supervised MeshSegNet [TMI'20] [5] - - - 60.3 1.79M 05
A maéhes BAAFNet [CVPR’21] [49] - - - 58.7 53M 0.6
PP PointMLP [ICLR'22] [50] - - - 66.7 13.2M 1.2
PointNeXt-S [NeurIPS’22] [35] - - - 68.1 1.5M 0.1

CurveNet [ICCV’21] [51] - - - 70.4 5.5M 0.6

Proposed - - - 82.0 5.4M 3.8
K-Means [43] 33.6 254 29.5 38.2 - 20.6

Unsupervised ~ DBSCAN [44] 28.7 30.6 29.4 35.0 - 9.4
Approaches GMM Clustering [45] 10.3 8.2 9.1 12.1 - 95
Proposed 68.1 69.6 70.0 734 5.4M 52.0

points or facets as textured or nontextured based on local
SVs, rather than segmenting the overall shape. Moreover, there
exists an imbalance between the proportions of texture and
nontexture regions. Therefore, we refined the loss functions,
introducing a balanced focal loss to prioritize challenging
classes, thereby adapting the models for texture and nontexture
classification. The input comprises labeled point clouds or 3-D
meshes, with each point and facet annotated.

1) Evaluation on SHREC’17 Dataset: This dataset presents
a significant challenge due to the wide variety of mesh resolu-
tions and texture patterns. The proposed technique has yielded
promising results and demonstrates its robustness against
varying mesh resolutions. Table I clearly shows that the pro-
posed method under supervised and unsupervised conditions
performed better than the classical and deep learning-based
methods. Moreover, it is worth mentioning that the proposed
unsupervised approach performs better than all the supervised
approaches [35], [46], [47], [48], [49], [50], [51] with a
better margin. The proposed method using supervised and
unsupervised is the best performer, and PointNeXt-S [35] and
DBSCAN [44] are the second-best performer.

2) Evaluation on SHREC’18 Dataset: We additionally eval-
uate our method on SHREC’18, which has 3-D surfaces
with multiple texture patterns on each surface with com-
plex boundaries between the patterns. Also, the surfaces
with varying mesh resolution which is further challenging.
As shown in Table II, the proposed method under supervised
and unsupervised is the best performer, and curveNet [51], and
K-Means [43] is the second-best performer. Also, the scores
obtained by our unsupervised approach are close to our fully
supervised counterpart, and also it is superior to all supervised
approaches [35], [46], [47], [48], [49], [50], [51].

3) Evaluation on KU 3DTexture Dataset: The results of
our method, together with other sets of supervised and unsu-
pervised approaches, are reported in Table III. Our method
surpasses the classical clustering-based unsupervised meth-
ods [43], [44], [45] by large margins on all metrics showing the
advantage of our method in fully leveraging both transformer
modules, LG, and LC. The proposed unsupervised approach
has superior performance than five techniques [46], [47],
[48], [49], [51] out of seven. KU 3DTexture has diverse
patterns and complex surfaces, so the results obtained are
slightly less compared to the other two datasets. Also, in the
case of the supervised approach, the proposed approach has
shown superior performance compared to [46], [47], [48],
[49], and [51]. Though these approaches are designed for 3-D
shape analysis and demonstrated remarkable performance on
semantic segmentation of 3-D shapes, in our case, they are not
successful in capturing the textures on 3-D surfaces.

B. Qualitative Analysis

A few samples in Fig. 7 show the effectiveness of the
proposed technique. The 3-D surfaces presented have mul-
tiple texture patterns; however, we are interested in binary
classification; we consider all texture patterns as one class
and all nontexture patterns as another. A few facet misclassifi-
cations on the segmented surfaces using qualitative analysis
are discovered, particularly at the texture and nontexture
boundaries. This is because using ordered rings around a
facet at boundaries covers neighboring facets from texture to
nontexture regions. We use a wide range of facets, from texture
and nontexture, to handle these challenges to some extent.
However, the issues are inescapable because the surfaces
come in various patterns and resolutions. The top two rows
in Fig. 7 show the 3-D surfaces and respective ground truths,
and the remaining rows show the predicted results, where
blue represents the texture region and yellow represents the
nontextured region. Since ORF does not cover the entire
surface due to boundary restrictions, only the central portion
of surfaces is utilized for training and testing.

VII. ABLATION STUDIES

We conducted five ablative tests on the SHREC’18 dataset
to evaluate different configurations of the proposed model. The
performance of each variant has been analyzed by introducing
components to the base model, and the results are presented
in Table IV, showcasing the impact of each component on the
overall system.
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K-Means [43]|DBSCAN [44]MeshSegNet [4&]|CurveNet [51][PointMLP [50]| Ground Truth | 3D Surface

GMM [45]

Proposed

Fig. 7. Segmentation outcomes of the proposed approach are depicted using
a selection of samples. The initial row exhibits the original 3-D surfaces,
while the second row exhibits the associated ground truth. In the ground
truth, the nontexture region is highlighted in yellow, and the texture region
is represented in blue. The segmentation from both baseline methods and the
proposed approach are shown in rows from the third to the last.

TABLE IV

ABLATION STUDY FOR PROPOSED MODULES ON SHREC’18.
ALG STANDS FOR AUTO-ENCODER-BASED LABEL GENERATOR,
MLC STANDS FOR MLP-BASED LABEL CLEANER, TLG STANDS

FOR TRANSFORMER LABEL GENERATOR AND TLC STANDS
FOR TRANSFORMER LABEL CLEANER

Module Pret Rect FI1T mloU*T
ALG 60.2 59.4 60.1 628
ALG + MLC 62.5 63.2 63.6 642
TLG 64.0 63.1 634  66.0
TLG + Initial Clustering 65.8 66.0 663 675
TLG + TLC 68.3 67.1 67.8  70.5
TLG + TLC + Initial Clustering  69.6 68.1 70.0 734

1) Initially, the experiment involved an autoencoder-based
label generator (ALG), achieving an overall Fl-score
of 60.1%.

2) The addition of an LC based on MLP led to a 3.5%
increase in the overall F1-score.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE V

MEAN AND VARIATIONS OF THE TWO DISTRIBUTIONS ACROSS THE
EPOCHS. AS THE EPOCH INCREASES, THE MEAN OF THE TEXTURE
AND THE NONTEXTURE SHIFT TOWARD HIGH AND
LOW VALUES, RESPECTIVELY

Epoch  non-Texture (mean)  Texture (mean)
5 0.65 1.05
10 0.50 1.10
15 0.40 1.15
20 0.37 1.17
25 0.35 1.25
30 0.33 1.30

3) Replacing the autoencoder with a transformer-based
architecture (TLG) resulted in a 3.3% improvement
compared to ALG.

4) Including initial clustering along with TLG boosted the
overall Fl-score by 6%.

5) Integrating a transformer-based discriminator to fine-
tune the pseudo-labels generated by TLG yielded a 7.7%
increase in overall performance.

6) The complete network TLG + TLC + IC demonstrated
the most significant improvement, with a 10% increase
compared to the base model.

Despite initial clustering not precisely labeling patches, the
addition of this module to the framework, feeding the two
largest clusters to the LG and LC, significantly enhanced
performance. Instance clustering effectively eliminates uncer-
tain patches, enabling the proposed network to establish a
decision boundary with high confidence. Similarly, the dis-
criminator module played a crucial role, improving efficiency
by approximately 7.7% through the removal of misclassified
labels. The architectures of simple ALG includes seven fully
connected layers [1024, 512, 256, 128, 256, 512, 1024] and
an MLP-based LC (MLC). We set the maximum number of
epochs to 200. However, we can reduce the number of epochs
using a proper convergence criterion (e.g., when the number
of texture and nontexture labels stabilizes).

A. Loss Distributions

We labeled 3-D surfaces using the reconstruction losses
of texture and nontexture patches. We hypothesize that these
losses would be significant for textured patches because of
the surface’s local shape heterogeneity and low for nontexture
patches. We reported the loss distributions for several increas-
ing epochs in Fig. 8 to support our idea. We notice that the loss
distributions of the textured and the nontextured patches move
toward the right-end (high value) and the left-end (low value)
as the epochs progress. We can also observe that the shape of
the two distributions evolves from a multimodal with a high
variation to a unimodal with a low variation. This behavior is
also confirmed by the evolution of the means of two distribu-
tions across the same epochs, which we reported in Table V.
This evolution is reflected in the segmentation, which starts
with heterogeneous and mixed regions and converges toward
two compact and separated regions corresponding to the
texture and the nontexture classes.

Note that the segmentation can be improved further using
morphological post-processing operations, e.g., hole filling.
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Fig. 8. Loss distributions and facet classification sampled across several epochs. The top row shows the loss distributions for texture and nontexture patches,
while the bottom row shows the facets classifications (yellow: nontexture, blue: texture, and black: mis-classified).

TABLE VI

ABLATION STUDY ON GRID SIZE OF FEATURE PATCH GENERATION
ON SHREC’18. BOLD REPRESENT THE BEST PERFORMANCE
AND BLUE HIGHLIGHT REPRESENT THE
SECOND-BEST PERFORMANCE

Grid size Pre1T Rect Fl1| mloU]
8x8 63.6 60.5 62.4 68.6
16 x 16 65.0 68.2 67.1 70.6
24 x 24 68.1 69.6 70.0 73.4
32 x 32 68.0 69.1 70.2 74.0
20 x 20 66.2 67.4 66.7 70.5

For example, a single facet classified as texture surrounded
by nontexture facets should be converted to a nontexture, and
vice versa. Many facets meeting this description can be spotted
by zooming in on the last segmentation figure at epoch 30
in Fig. 8.

B. Parameters Selection

We tested extensively the parameters that influence perfor-
mance in the proposed approach.

Grid size is an important parameter since it determines
the feature image size at each facet. It is essential to choose
a grid size that covers a facet with sufficient surface area
to determine whether the facet belongs to texture or not.
After experimenting with various grid sizes, we found that
a range of 24-32 worked best with our proposed method,
yielding superior results for both low- and high-resolution
meshes. A small grid size does not adequately cover the
surface area and performs poorly, while increasing the grid
size has a border effect that reduces the segmented surface’s
area. As shown in Table VI, the performance of various grid
sizes has been evaluated, revealing that grid sizes 24 and 32
provide superior performance compared to other grid sizes.
Although there is a slight performance difference between
grid sizes 24 and 32, we chose a grid size of 24 for our
experiment.

Feature selection is another important parameter that
affects performance. We have tested multiple feature com-
binations to extract patches and checked the performance
of the proposed approach. Since the texture pattern is a
local variation on the surface, as expected, a combina-
tion of SVs, LD, and curvatures has shown better results.

Table VII summarizes the performance for different combi-
nations. However, we observed that LD plays an important
role, and its combination with other geometric features has
consistently shown better results. The other combinations
related to SVs, such as SI, also show better results; however,
they produce false positives in edge-like structures detected as
texture.

C. Comparison With Weakly Supervised Approach

The primary objective of our work is to perform entirely
unsupervised classification of texture and nontexture at the
facet level, which has not yet been described in the literature.
To achieve this goal, we implemented weakly supervised train-
ing, in which a subset of labeled data serves as a representative
for the task. We conducted experiments on three datasets,
varying the percentage of labeled data from 0% (represent-
ing unsupervised learning) to 100% (representing supervised
learning). For weakly supervised learning, we incrementally
employed 10% of labels to train our proposed model and
evaluated its performance. The results, as shown in Table VIII,
demonstrate that the performance is close to unsupervised
learning when fewer labels are used and close to supervised
learning when the entire labeled dataset is used. Additionally,
we found that each of the three datasets with 50% labeled data
yielded promising results comparable to those of supervised
approaches.

D. Comparison With Unsupervised Learning-Based Methods

We compared our unsupervised segmentation method with
conventional techniques. Additionally, we evaluated several
contemporary approaches, including self-supervised [52], [53],
weakly supervised [54], [55], [56], and unsupervised learning-
based methods [57], [58], [59], [60], [61]. However, these
methods are designed for 2-D images and cannot be applied
directly to 3-D meshes. To use these methods on 3-D models,
we need to first convert them to a 2-D domain. However,
this conversion is challenging because 3-D models contain
complex manifolds and mapping points from a point cloud to
a regular 2-D grid image is difficult. Additionally, focusing on
the surfaces of 3-D models is critical for texture identification,
and projecting to a 2-D domain often results in the loss of
information for small details, which are essential for texture
recognition.
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TABLE VII

ABLATION STUDIES ON GEOMETRIC FEATURE SELECTION FOR PATCH GENERATION. CUR—CURVATURE, AZ—AZIMUTH ANGLE,
SV—SURFACE VARIATION, EL—ELEVATION ANGLE, SI—SHAPE INDEX, AND LD—LOCAL DEPTH

[Cur, AZ, EL]  [LD, AZ, EL] [SI, LD, Cur] [SV, AZ EL] [SV,LD, AZ] [SV, LD, Cur] [SV, SI, AZ] [SV, SI, Cur] [SV, SI, LD]
Pre 56.8 54.3 67.3 54.2 50.1 68.1 61.0 62.6 63.2
Rec 56.0 55.1 70.5 52.7 52.6 69.6 60.7 63.0 64.5
Fl1 57.1 54.7 68.5 53.4 51.3 70.0 60.9 62.8 64.0
TABLE VIII

USING THREE DATASETS, THE PERFORMANCE OF THE PROPOSED METHOD FOR TEXTURE VERSUS NONTEXTURE CLASSIFICATION IN TWO DISTINCT

SCENARIOS, INCLUDING A COMPLETELY UNSUPERVISED ALGORITHM AND WEAKLY SUPERVISED ALGORITHM, HAS BEEN EVALUATED.
FOR UNSUPERVISED SETTINGS, 0% LABELS ARE USED, BUT FOR WEAKLY SUPERVISED SETTINGS, VARIABLE
PERCENTAGES OF LABELS ARE USED, AND MIOU IS REPORTED FOR EACH DATASET

Datasets 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
KU 3D Texture 662 68.7 692 708 731 748 76,7 782  80.1 80.2 803
SHREC’17 70.1 709 718 732 745 756 764 776 784 790 79.0
SHREC’18 734 740 746 749 756 762 796 802 819 820 820

Fig. 9.
above, highlighting two specific scenarios. (a) In the first scenario, a 3-D head
example is chosen, where the hair texture is globally visible but not locally
evident. (b) In the second scenario, a surface has highly dense texture regions
and less dense nontexture regions. The ground truth of (b) reveals that the
texture (yellow) regions occupy a relatively smaller percentage of space on
the 3-D surface compared to the nontexture (blue) regions.

Proposed method exhibits some instances of failure, as shown

VIII. FAILURE CASES

The proposed approach exhibited lower performance in
specific cases. One notable scenario involved the selection of
a 3-D surface characterized by a complex manifold, where an
almost equal number of facets represented texture and nontex-
ture regions. Upon visual inspection, it became apparent that,
despite the equal representation, the texture regions occupied a
significantly smaller area compared to the nontexture regions.
In essence, the texture regions were highly dense relative
to the nontexture regions. The use of a fixed grid size for
creating 2-D images at each facet made this imbalance worse,
which contributed to the observed decline in performance.
We are actively addressing this issue in our future work by
implementing adaptive grid sizes with a multiscale approach.
This adaptive strategy aims to better handle surfaces with
imbalanced texture and nontexture regions, thereby improving
the robustness and overall performance of our technique.
In addition to the previously mentioned scenario, we also
observed another case where the surface texture apparent on
a global scale while not visible at the local level. Specifically,

we chose a 3-D surface representing hair, where the SVs are
evident when observed holistically. However, the challenge
arose when attempting to capture these variations at the local
level within the neighborhood. Due to the spread of the
texture region over a large manifold, local representations
struggled to distinctly capture the intricate texture details. The
challenges in discerning the texture variations locally impacted
the overall performance of the proposed technique in this
specific case. Qualitative analysis of both samples is shown
in Fig. 9.

IX. CONCLUSION AND FUTURE WORK

In this article, a novel method for segmenting surfaces into
textured and nontextured regions is presented. The proposed
method is entirely unsupervised, unlike previous techniques,
which are limited to classification and retrieval and rely
on human annotation for training networks. The proposed
fully unsupervised framework consists of an LG and LC in
which samples are projected onto a latent space and then
inverse-projected to the original space using a projector and an
inverse projector. Instances are assigned a texture or nontexture
pseudo-label based on the transformation error. The LC then
cleans these pseudo-labels using a label-cleaning mechanism.
Both modules learn from each other in an iterative manner
to produce improved labels. The generator module used a
discriminative learning mechanism based on the estimated
cleansed labels. This makes the transformation error go up for
positive examples and down for negative examples. We con-
ducted experiments on three distinct datasets in both fully
unsupervised and weakly supervised settings and achieved seg-
mentation results comparable to those of supervised methods.
We intend to develop a multiclass segmentation method for
textured surfaces with adaptive grid size as part of our future
work.
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