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ABSTRACT

We study kernel regression with common rotation-invariant kernels on real datasets
including CIFAR-5m, SVHN, and ImageNet. We give a theoretical framework that
predicts learning curves (test risk vs. sample size) from only two measurements:
the empirical data covariance matrix and an empirical polynomial decomposition of
the target function f,. The key new idea is an analytical approximation of a kernel’s
eigenvalues and eigenfunctions with respect to an anisotropic data distribution.
The eigenfunctions resemble Hermite polynomials of the data, so we call this
approximation the Hermite eigenstructure ansatz (HEA). We prove the HEA for
Gaussian data, but we find that real image data is often “Gaussian enough” for the
HEA to hold well in practice, enabling us to predict learning curves by applying
prior results relating kernel eigenstructure to test risk. Extending beyond kernel
regression, we empirically find that MLPs in the feature-learning regime learn
Hermite polynomials in the order predicted by the HEA. Our HEA framework is a
proof of concept that an end-to-end theory of learning which maps dataset structure
all the way to model performance is possible for nontrivial learning algorithms on
real datasets.

1 INTRODUCTION

The quest to understand machine learning is largely motivated by a desire to predict and explain
learning behavior in realistic settings. This means that, sooner or later, scientists of machine learning
must develop theory that works for real datasets, somehow incorporating task structure into predictions
of model performance, optimal hyperparameters, and other objects of interest. This necessity has
been the elephant in the room of much of deep learning theory for some time: despite much progress
in the study of neural network training and generalization, it has proven difficult to move beyond
simplistic models of data and make analytical predictions applicable to real data distributions.

The central difficulty is of course the complexity of real data. There can be no full analytical
description of any real data distribution, so it is difficult to see how we might develop mathematical
theory that describes how such a dataset is learned. How might we hope to proceed?

One way forward may be to identify a comparatively succinct “reduced description” of a data
distribution that characterizes its structure, at least insofar as a particular class of learner is concerned.
We would like this reduced description to be sufficient to predict quantities of interest yet minimal
enough to be a significant reduction in complexity. Ideally, we would like the theory that makes
predictions from this reduced description to be mathematically simple, and we would like the
description itself to give some insight into how the class of learner in question sees the data.

In this paper, we present such a reduced description of high-dimensional datasets that is suitable
for describing their learning by kernel ridge regression (KRR) with rotation-invariant kernels. We
find that just the data covariance matrix ¥ := E [zx "], together with a Hermite decomposition of
the target function,” is sufficient to characterize learning by rotation-invariant kernels. We obtain
this reduced description, which we term “Hermite eigenstructure,” from a study of Gaussian data,
but we nonetheless find it predictive for complex image datasets including CIFAR-5m, SVHN, and
ImageNet. From just the covariance matrix, we can predict kernel eigenstructure and learning curves

Code to reproduce all experiments available at [url_redacted_for_ review].
2See Section 3.2 and Appendix A for a review of Hermite polynomials.
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Figure 1: We provide an end-to-end theory of learning for kernel ridge regression (KRR) that
maps minimal statistics of the data distribution to test-time performance. (Top left.) KRR
implicitly consists of two steps: (1) the kernel maps the data to high-dimensional nonlinear features
x — 1P (x), then (2) it fits a linear estimator to these features. Let the PCA covariance in data space
be E[xxz'| = UTU " and let the feature covariance in latent space be E [¢(x)p(x) | = EAE.
(Lower left.) We introduce an ansatz (blue box) that predicts the feature covariance statistics (2, A)
from only the data covariance (U, T') and the functional form of 4/ (-). This is sufficient to predict
average-case test error using known results (green box). (Top right.) We are able to predict learning
curves for KRR on image tasks without requiring omniscient knowledge of the feature statistics (i.e.,
without ever constructing or diagonalizing a kernel matrix). (Bottom right.) We are able to accurately
predict the KRR sample complexity, including constant prefactors, for learning polynomials of the
ImageNet dataset. See Figure 3 for additional plots and Appendix D for experimental details.

for synthetic functions. Using the true labels to estimate the target function’s Hermite decomposition,
we are additionally able to predict KRR learning curves on real tasks. Unlike previous approaches for
predicting learning curves, this method does not require numerically constructing or diagonalizing a
kernel matrix to find the kernel eigensystem.

Our approach relies on recent results in the theory of KRR which assert that knowledge of the kernel’s
eigenstructure with respect to a data measure is sufficient to predict learning behavior (Sollich (2001);
Bordelon et al. (2020); Jacot et al. (2020); Simon et al. (2021)). These works provide a set of
equations that map this eigenstructure to predictions of test-time error. Our central observation is
that, despite the complexity of high-dimensional datasets and the great variety of rotation-invariant
kernels, this kernel eigenstructure is often very close to a simple analytical form expressible in terms
of Hermite polynomials in the original data space. We term this claim the “Hermite eigenstructure
ansatz,” and we identify a (broad) set of conditions under which it empirically holds.

Concretely, our contributions are as follows:

* We propose the Hermite eigenstructure ansatz (Section 4), a closed-form expression for the
eigensystem of rotation-invariant kernels on real datasets. We find empirically that it holds
to an excellent approximation for real image datasets (Figure 2).

* We prove that the HEA holds in the case of Gaussian data for two limiting cases of the
kernel function (Theorems 1 and 2).

* We use the HEA to predict KRR learning curves on CIFAR-5m, SVHN, and ImageNet from
only data covariance statistics and a Hermite decomposition of the target function (Figures |
and 3).

* We empirically find that MLPs in the feature-learning regime learn Hermite polynomials of
CIFAR-5m in the same order as the HEA predicts for KRR (Figure 4).



2 RESEARCH CONTEXT AND RELATED WORKS

Kernel models as proxies for neural networks. Our motivation for studying KRR comes from the
“neural tangent kernel” (NTK) line of work, which finds suitably parametrized infinite-width networks
are equivalent to KRR, and that for MLPs, the kernel function is rotation-invariant (Neal, 1996; Lee
etal., 2018; Jacot et al., 2018). Kernel methods have proven useful as models of network dynamics
and optimization (Chizat et al., 2019; Du et al., 2019; Bordelon & Pehlevan, 2021).

Learning curves for KRR. Motivated by the NTK, many recent works have converged on a set of
equations which predict KRR’s test-time error from the kernel and task eigenstructure (Sollich, 2001;
Bordelon et al., 2020; Jacot et al., 2020; Simon et al., 2021). This “KRR eigenframework” depends on
the kernel’s eigenvalues and eigenfunctions with respect to the data distribution. Our main result is an
approximate analytical expression for these eigenvalues and eigenfunctions, permitting the inductive
bias of KRR to be studied directly in the data space. Appendix C reviews this eigenframework.

Exactly-solved cases of kernel eigenstructure. Exact kernel diagonalizations with machine-learning-
relevant kernels are known in many highly-symmetric settings, including stationary kernels on the
torus T¢ and rotation-invariant kernels on the sphere S? (Mei & Montanari, 2019). Moving to
anisotropic domains, Ghorbani et al. (2020) gave the eigenstructure of rotation-invariant kernels when
the measure is a “product of spheres” of different radii. The case of a Gaussian kernel on a Gaussian
measure was solved exactly by Zhu et al. (1997). Our Hermite eigenstructure ansatz is consistent
with all these results and unifies them in a limiting case.

Modeling data with a Gaussian measure. A developing body of literature argues that MLPs’
learning of complex data distributions is similar to the behavior one would see if the data were
Gaussian with the same covariance (Goldt et al., 2020; Refinetti et al., 2023). We broadly adopt this
lens in the study of KRR and find that, indeed, the data is well-modeled as Gaussian.

Single- and multi-index models. Much recent literature has studied MLPs’ learning of single- and
multi-index functions which depend only on a rank-one or rank-k projection of the input « (Dudeja &
Hsu, 2018; Bietti et al., 2022; Dandi et al., 2023; Lee et al., 2024; Mousavi-Hosseini et al., 2024).
This work partially motivated our study, and the multidimensional Hermite basis we use in this work
is a basis of multi-index functions. Prior work in this vein has found that higher-order Hermite
polynomials require more samples or gradient steps to learn. Two ways in which we depart from this
body of work are that (a) we seek to predict the value of the test error (including constant prefactors),
not just asymptotics or scaling laws, and (b) we study anisotropic data, which allows application of
our results to real datasets.

Analytical models of data. Several recent works have proposed theoretical models for the hierarchical
structure in image and text data with the aim of understanding neural network performance on such
datasets (Cagnetta et al., 2024; Sclocchi et al., 2025; Cagnetta & Wyart, 2024). Our work in this
paper is undertaken in a similar spirit.

3 PRELIMINARIES

We will work in a standard supervised setting: our dataset consists of n samples X = {x;}_, drawn
i.i.d. from a measure ;. over R?, and we wish to learn a target function f, from noisy training labels
y = {yi};—, where y; = f.(z;) +N(0, €?) with noise level e > 0. We will assume with minimal
loss of generality that p has mean zero: Eg.,[x] = 0. Once a learning rule returns a predicted

function f, we evaluate its test mean-squared error MSE,e = Egn, [(f*(a:) - f(:c))ﬂ + €2

We write (g, h), := Ez~,u[g(x)h(x)] and ||g\|i := (g, g),, for the L? inner product and norm with

respect to . We write (a;);ez to denote an ordered sequence with index set Z, and we write only
(a;) when the index set is clear from context.

3.1 KERNEL REGRESSION AND KERNEL EIGENSYSTEMS

KRR is a learning rule specified by a positive-semidefinite “kernel function” K : R x R¢ — R and
a ridge parameter § > 0. Given a dataset (X, y), KRR returns the predicted function

f(®) = kax (Kxx + 01,) "'y, (1



where the vector [kzx]; = K (x, ;) and matrix [K xx];; = K(x;, x;) contain evaluations of the
kernel function. In this paper, we will restrict our attention to two special classes of kernel:

Definition 1 (Rotation-invariant kernel). A kernel function is rotation-invariant if it takes the form
K(z,2') = K(|z|,|2'| .z "a').

Such a kernel K is called “rotation-invariant” because K (Uz,Ux’) = K (x, z’) for any orthonor-
mal matrix U. Many widely-used kernels are rotation-invariant, including the Gaussian kernel

7|2 ’
K(z,2') = ezl the Laplace kernel K (z,2') = e 7 1==='|l and the Neural Network
Gaussian Process (NNGP) kernels and NTKs of infinite-width MLPs. We will be particularly
interested in a subset of rotation-invariant kernels which discard the explicit radial dependence:

Definition 2 (Dot-product kernel). A kernel function is a dot-product kernel if it takes the form
K(z,x') = K(z"').

For a dot-product kernel to be positive-semidefinite on all domains, it must admit a Taylor series
Kz x') =, % (x"a’)" with nonnegative level coefficients ¢, > 0 (Schoenberg, 1942). We
will find it useful to describe dot-product kernels in terms of their level coefficients (¢;)¢>o.

We would like to study arbitrary rotation-invariant kernels, but it is easier to study dot-product kernels,
which admit the above series expansion. Fortunately, a rotation-invariant kernel is a dot product
kernel when the domain is restricted to a sphere, and if we know that our data has typical norm r, we
may approximate the rotation-invariant kernel as the dot-product kernel which matches on rS?~!:

Definition 3 (On-sphere level coefficients). The on-sphere level coefficients of a rotation-invariant
kernel K at aradius r > 0 are the nonnegative sequence coeffs(K, ) := (c¢)s>0 such that

K(z,z') = Z Z—Z(w—rw’)é for all ¢, ' such that |z| = |z'| = r. 2)

|
>0

We give the on-sphere level coefficients for various kernels in Appendix B.

An eigenfunction of a kernel K with respect to a measure g is a function ¢ such that
Ep oK (z, 2" )p(x")] = Ap(x) for some A > 0. By Mercer’s Theorem (Mohri et al., 2018,
Theorem 6.2), any compact kernel admits a complete basis of orthonormal eigenfunctions with
(¢i, ), = 6;; and may be spectrally decomposed® as K (z, ') = >, Nid;(x)¢;(x). We will
write eigensystem(u, K) = (\;, ¢;)52; to denote the sequence of all eigenpairs, indexed in decreas-
ing eigenvalue order (\; > \;11) unless otherwise specified. It will prove useful to decompose the
target function in the kernel eigenbasis as f.(x) = >, v;¢;(x), where (v;) are eigencoefficients.

3.2 HERMITE POLYNOMIALS AS A NATURAL BASIS FOR GAUSSIAN DATA

Throughout, we write (h)r>o for the normalized probabilist’s Hermite polynomials. These are the

orthogonal polynomials for the standard Gaussian measure, satisfying E,xr(0,1) [k (2) b (2)] =

S%m- The first few such polynomials are ho(z) =1, hy(x) =z, ha(z)= 2= (22 —1). See Appendix A

V2
for a review of Hermite polynomials.

We can use these 1D Hermite polynomials to construct an orthonormal basis for a multivariate
Gaussian measure  ~ N (0, ZT) with positive-definite covariance 3 > 0. First we diagonalize
the covariance as ¥ = UTU ' with orthogonal matrix U = [u; - - - ug] and diagonal matrix
T = diag (71, - - - ,7a)- Then for any multi-index o € N, we define

d
) (x) := H ha; (z), where 2=T"Y2UTgx. 3)
i=1

In Equation (3), the elements of o specify the order of the Hermite polynomial along each prin-
cipal direction of data covariance. These multidimensional Hermite polynomials are orthonormal,

satisfying Egar(0,3) {h&z)(w)hfxg)(w)} = Saar’-

3Here is an intuitive description of a kernel eigensystem which is shown visually in Figure 1. Any kernel
function K may be viewed as an inner product in a high-dimensional feature space: K (z,x') = (1(x), ¥ (z')).
Consider mapping the dataset into this hiqgh—dimensional space and then computing the principal components
of ¥y = E, [’t,b(a:)d;T(m)] = EAE . Each eigenvalue ); is a kernel eigenvalue. The corresponding

eigenfunction is a projection onto the i-th principal direction: ¢;(x) = A; 1/2 (Y(x), &).



In the next section, we assert that this naive guess of basis is in fact often close to the true basis of
kernel eigenfunctions for synthetic and real datasets.

4 THE HERMITE EIGENSTRUCTURE ANSATZ: THEORY AND EXPERIMENT

Prior work has shown that predicting kernel regression learning curves boils down to understanding
the kernel eigensystem. With this as motivation, we are ready to introduce our primary mathematical
object: an explicit functional form for the kernel eigensystem, suitable for rotation-invariant kernels
and high-dimensional datasets.

Plan of attack. First we will write down this explicit functional form (Definition 4). Then we will
state our assertion that this functional form approximates the true kernel eigensystem (HEA). Next,
we will demonstrate that the HEA is an excellent approximation for several rotation-invariant kernels
on several real image datasets (Figure 2). We will then give an intuitive justification for the HEA and
give two formal theorems which state that the HEA holds for Gaussian data as kernel width grows
(Theorems 1 and 2). Afterwards, we will characterize the factors that make the HEA work better or
worse (Section 4.2). Finally, we will use the HEA to predict KRR learning curves in Section 5.

We begin by explicitly defining our Hermite eigensystem:

Definition 4 (Hermite eigensystem). Given a data covariance matrix ¥ = UTU " and a sequence
of level coefficients (c¢), we define the (X, (¢;))—Hermite eigensystem to be the set of (scalar,
function) pairs

HE(X, (cr)) = {(Na, Pa) forall v € N3} 4)
where for each multi-index « the proposed eigenvalue and eigenfunction are constructed as

d
Aa =l [[77 and ¢a = h5Y, )
i=1

where || = )", a; and h(az) is the multivariate Hermite polynomial given in Equation (3).

The (X, (c¢))—Hermite eigensystem is a set of Hermite polynomials ¢, and associated positive
scalars A\, one for each multi-index o € N¢. The eigenvalues (\,,) are monomials in the data
covariance eigenvalues (y;), rescaled by the appropriate level coefficient c|o|.

We now present the Hermite eigenstructure ansatz, which attests that this set of (scalar, function)
pairs is in fact a close match to the true kernel eigensystem.

Let K be a rotation-invariant kernel and let ;; be a measure over R? with zero mean. Then let:
e X =Esp [:cacT] be the data covariance matrix,

« 7 = Tr[X]2 be the root-mean-squared data norm, and
* (cg) = coeffs(K, ) be the level coefficients of K restricted to the sphere rS?~!.

The Hermite eigenstructure ansatz asserts that
eigensystem(u, K) =~ HE(X, (cp)). (HEA)

That is, the true kernel eigensystem is approximately equal to the (X, (¢/))-Hermite eigensystem
given in Definition 4.

The HEA is a strong claim: it asserts that the kernel eigensystem, to a good approximation, has a
simple analytical form which depends only on the second-order statistics of 1 and no higher moments
and that the kernel eigenfunctions are multivariate Hermite polynomials independent of the kernel
chosen (so long as it is rotation-invariant).

Rather than a provable fact, the HEA should be treated as a falsifiable claim that may hold well
or poorly in any given setting. A natural first question to ask is: does the HEA hold in settings of
interest? This is a question best answered empirically — it suffices to check that both the predicted
spectrum and predicted Hermite eigenbasis match the empirical kernel spectrum and eigenbasis
(up to finite-dataset effects). Surprisingly, we find that the answer is yes: in Figure 2, we give four
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Figure 2: The Hermite eigenstructure ansatz (HEA) accurately predicts the eigenvalues (top)
and eigenfunctions (bottom) of various kernel/dataset combinations. For four kernel/dataset

settings (columns), we compute the empirical kernel eigensystem {()\Eemp), ¢§emp))} and compare
to the theoretical eigenpairs {()\Eth), gb?h))} obtained from Definition 4 and indexed in order of
decreasing )\glh). In the top plot in each column, the i-th point from the top right has coordinates
(A" AU and its color indicates the polynomial degree of ¢\"™ . In the bottom plot in each column,
we bin both the predicted and empirical eigenfunctions into logarithmic spectral bins and visualize
the pairwise subspace overlap (Equation (43)), with axes matching the top plot. Grey pixels indicate

bins with no eigenvalues. In all plots, concentration along the diagonal indicates theory-experiment
match. See Appendix D.2 for further explanation and experimental details.

examples across various kernels and image datasets. In the following subsections, we provide intuitive
derivations and rigorous theorem statements that explain when and why the HEA approximates the
true kernel eigensystem well in natural settings.

4.1 THE HEA FOR GAUSSIAN DATA: SOME INTUITION AND TWO THEOREMS
When might we expect the HEA to hold? To gain the central intuition, it is sufficient to consider
a simple case of univariate Gaussian data x ~ u = N(0,~) and the Gaussian kernel K, (z,z') =
—1 N2
327 @=)" This kernel admits the feature map K, (z,2') = (¥, (x), ¥y (z')) where
—a? T x? zt
We would like to find the directions of principal covariance of 1, (z). Let us suppose that o2 >> ~v:
the kernel width dominates the width of the data distribution. Examining Equation (6), we can make
two observations. First, the exponential prefactor will be close to one, and we may approximate 1,

. ¢ . L
componentwise as [¢, (x)]e ~ ﬁ This amounts to approximating our kernel as K, (z,z') =

(6)

AY4
¢ (f;ﬁ%! — that is, as a dot-product kernel with coefficients ¢, = o~2¢. Second, each component
of 1, will dominate all subsequent components:

E, [[1#0(1:)]?] x o ¥yt > Ex[[ng(m)]fﬂ] o aiQ(Hl)vlﬂ. @)

Since the first element of 1), is by far the largest (and since we do not center 1), before computing
eigendirections), the first direction of principal variation will correspond to ¢ (x) & 1, with variance
Ao & 1.* The next direction will correspond to ¢; () ~ v~ /22 with variance A\; ~ o~2. The next
eigenfunction must incorporate the 2 direction, but we have a problem: z? is not orthogonal to

*We index eigenmodes from 0 instead of 1 here to match the polynomial order £.



¢o(z) = 1. We must therefore orthogonalize it with respect to ¢ against our measure y in the usual
Gram-Schmidt fashion. This yields ¢o(z) ~ —=(y~'2% — 1), which using standard formulas for

V2
Gaussian integrals gives an eigenvalue

ha = [ Ko )oa()oae)dta)dula') m o~ ®)

Continuing this process to higher orders, we find that the kernel eigensystem matches that predicted
by the HEA: ¢, is the ¢-th orthogonal polynomial with respect to our Gaussian measure — that is, the
Hermite polynomial h,(y~'/2z) — and the ¢-th eigenvalue is \; =~ 024" = ¢,". The corrections
hidden by every “~ in this derivation are of relative size O(o ~27) and thus vanish as o grows.’

This same analysis holds for any dot-product kernel K (z,2") = Y-, % (x2’)* with level coefficients
(ce) such that CZC% < 1. It can, with some difficulty, be further extended to apply to multivariate
Gaussian data z ~ N(0,X). But what if the kernel is not a dot-product kernel, such as the

Laplace kernel K (z, x') = e#l2=2"[9 Unlike the Gaussian kernel, the Laplace kernel is not well-
approximated by a dot-product kernel even at large width because of its nonanalyticity at zero.
However, like all rotation-invariant kernels, the Laplace kernel is a dot-product kernel when restricted
to a sphere (and will be close to a dot-product kernel when restricted to a spherical shell whose

thickness is not too big). In such a case, we will require the data to be high-dimensional: for data

2
with a high effective dimension dg := %EL] > 1, samples will tend to concentrate in norm.® We

may thus safely approximate any rotation-invariant K as a dot-product kernel.

Having given an intuitive derivation of the HEA for Gaussian data, we now move to formal statements.
Our first theorem states that the HEA holds for the Gaussian kernel at large width.

Theorem 1 (The HEA holds for a wide Gaussian kernel on a Gaussian measure).

7112
Let p = N(0,X) be a multivariate Gaussian measure and let K, (x,z') = e mz e[ pe
the Gaussian kernel with width o. Let r = Tr [2]1/2 and let (cy) = coeffs(K,,r), which yields

7,2
co = o e 202, Then:

as o — oo, eigensystem(u, K, ) — HE(X, (cp)).

Proof sketch (full proof in Appendix H). Mehler’s formula can give the Gaussian kernel’s eigensystem
exactly (Mehler, 1866). Taking o — oo in the resulting expressions yields agreement with the HEA.

Our second theorem applies to dot-product kernels with fast-decaying level coefficients.

Theorem 2 (The HEA holds for a fast-decaying dot-product kernel on a Gaussian measure).
Let p = N(0,X) be a multivariate Gaussian measure with variance 3. = 0 and let

oo
Ce T 1\
K(ca)(wi/) = Z E(m m/)
£=0
be a dot-product kernel with coefficients cy > 0 such that cp1q1 < € - ¢cg for some € > 0. Then:

as € — 0, eigensystem(u, K(.,)) — HE(X, (ce)) linearly in e.

Proof sketch: Our proof formalizes the intuitive “Gram-Schmidt” derivation of the HEA given above.
We use perturbation theory to show that the kernel eigenstructure splits into exponentially-separated
segments, with the ¢-th segment eigenstructure determined almost fully by the ¢-th order term of

>Were we to repeat this calculation with a different measure y for x, we would obtain the orthogonal polyno-
mials with respect to p as eigenfunctions. For example, if © = U[—1, 1], we get the Legendre polynomials.

SFor Gaussian data = ~ N(0, X), the relative variance of the norm is Var [|z|*] /E [|z|?] = 2/du,
which falls to zero as d.s grows.
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Figure 3: Using only the empirical data covariance and a polynomial decomposition of the target
function, we predict learning curves across a variety of kernels, datasets, and targets. (Top row.)
We predict test error on synthetic target functions of real datasets. Each target is the multi-Hermite
polynomial (Equation (3)) whose leading term is indicated in the plots. (Recall that z; = uZT:c / Vi
are the rescaled PCA coordinates.) For each of these targets, our ansatz predicts both learning curves
(top left) and the sample complexity required to achieve MSE < 0.5 (top right). (Bottom left and
center.) We train on binarized true target functions. See Appendix D.1 for details. (Bottom right.)
We construct synthetic targets by drawing from a Gaussian process. The source exponent controls the
difficulty of the target. See Appendix D.1 for details. For all learning curve predictions, we estimate
the coefficients of the target function in the predicted eigenbasis using the Gram-Schmidt process
described in Appendix D.3. See Appendix D.4 for full experimental details.

K (c,)- Due to the complexity of the proof, we break it up into stages: we rigorously state and prove
the one-dimensional case in Appendix I, then state and prove the general case in Appendix J.

4.2 CONDITIONS FOR SUCCESS: FAST DECAY OF ¢y, HIGH DATA DIMENSION, AND A
“GAUSSIAN ENOUGH” DATA DISTRIBUTION

Informed by these theoretical results, we empirically identify (Appendix E) three conditions under
which the HEA holds reasonably well:

1) Fast decay of level coefficients. As discussed in Section 4.1, we need ¢, > ~1cp41 for the
Gram-Schmidt process underlying the HEA to work. In Figure 12, we show that as we decrease the
Gaussian kernel’s width (and thus increase ”c#) on a fixed dataset, the HEA eventually breaks.

2) High data dimension (for some kernels). As previously discussed, concentration of norm (via
high d.) is required if we are to approximate an arbitrary rotation-invariant kernel as a dot-product
kernel. In Figure 13, we show that for the Laplace kernel and ReLU NTK, agreement with the HEA
worsens as deg decreases. However, since the Gaussian kernel is smooth at & = «/, it does not require
concentration of norm, and low d. is fine (Figure 14).

3) “Gaussian enough” data distribution. Common image datasets are complex enough to roughly
satisfy simple tests of Gaussianity, such as coordinatewise Gaussian marginals. As we make the
dataset simpler (CIFAR — SVHN — MNIST — tabular), these marginals become less Gaussian,
and HEA agreement degrades (Figures 15 and 16). It is noteworthy that our theory empirically works
better on more complex datasets thanks to the blessings of dimensionality.

5 THE HEA ALLOWS PREDICTION OF KRR LEARNING CURVES

Under the conditions outlined in the previous section, we expect the HEA to accurately predict kernel
eigenstructure. We aim to plug these results directly into the aforementioned KRR eigenframework



(of e.g. Simon et al. (2021)) to predict the final test risk of KRR. However, a key challenge remains:
using the eigenframework requires knowing the coefficients of the target function in the kernel
eigenbasis, f.(x) = >, vi¢;(x). We must estimate these coefficients v; from finitely many samples

of the target function.

Were the data perfectly Gaussian, the multi-Hermite polynomials would be an orthonormal basis
with respect to the measure. We could then estimate the coefficients by simply taking inner products
between the target vector and generated Hermite polynomials and expect the estimation error to decay
as O(N ~1/2) with the total number of samples N. However, small amounts of non-Gaussianity in
the data introduce cascading non-orthogonality in the Hermite basis. As a result, the naive method
overestimates the power in the overlapping modes. To rectify this effect, we modify our measurement
technique by re-orthogonalizing the sampled Hermite polynomials via the Gram-Schmidt process:’

iterate over increasing o : hfs) = unitnorm (ha - Z <h<§s>7 ha> h(f,s)> ©)]

a'<a

where hy, := ho (X)) is the sampled multi-Hermite polynomial and the « are sorted by their HEA

eigenvalues. We proceed to estimate the coefficients as 0; = (thS), y). As we show in Figure 3, with
the resulting coefficients we can reliably predict learning curves on a variety of tasks and kernels.

6 MLPS LEARN HERMITE POLYNOMIALS IN THE ORDER PREDICTED BY THE HEA

One consequence of our theory is that there exists a canonical learning order in which KRR learns
Hermite polynomials as sample size increases: each polynomial’s learning priority is given by its
associated HEA eigenvalue. Here, we check whether this order also predicts the training time
learning order of feature-learning MLPs (Yang & Hu, 2021). We train MLPs online on multi-Hermite
polynomial target functions of Gaussian data and CIFAR-5m. We find that the effective optimization
time required to reach MSE < 0.1 is well predicted by the HEA eigenvalue (Figure 4).
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Figure 4: The HEA accurately predicts polynomial learning order in feature-learning MLPs.
We measure the amount of time it takes to train feature-learning MLPs, each dot being a trained MLP
on one multi-Hermite polynomial target once a test error of MSE < 0.1 is reached. We observe find
that the optimization time is well-predicted by the inverse square root of the HEA eigenvalue /\;1/ 2,

Details of our exact MLP setup experiments can be found in Appendix F, detailing validation of the
feature-learning regime, insight into hyperparameter choices, and model performance when taken

into the NTK/lazy and ultra-rich regimes.
7 DISCUSSION

We have presented a theoretical framework which describes how KRR “sees” complex natural
datasets: namely, as a nearly-Gaussian measure with Hermite eigenstructure as per Definition 4. This
is a proof of concept that end-to-end theories of learning — mapping dataset structure all the way to
model performance — are possible for a nontrivial learning algorithm on real datasets. Theories of
this sort applicable to more general algorithms may be a good end goal for learning theory.

"For a full discussion of this method, see Appendix D.3.
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STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) for analytical computations, writing code, detailed literature
search on narrow topics, and the Taylor expansions of Laplace and ReLU kernels appearing in
Appendix B. We found that LLMs performed certain tasks faster than us but with a propensity for
miscommunication or overconfidence, especially when fashioning proofs, so we sought or performed
independent verification of everything useful we got from an LLM.
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A REVIEW OF HERMITE POLYNOMIALS

Our ansatz for kernel eigenstructure is constructed from Hermite polynomials, and we use several
key properties throughout the paper. In this appendix, we give a brief review of Hermite polynomials.

Let us write He, for the probabilist’s Hermite polynomials.® These are the unique set of polynomials
satisfying the following properties:

(i) Degree. Hey is a polynomial of degree ¢.
(ii) Monic. The leading coefficient is 1, so Hey(z) = z* + - - - (in particular Hey(z) = 1).
(iii) Orthogonality w.r.t. A'(0, 1). For £ # m, it holds that .z (o,1)[He¢(z)Hep, ()] = 0.

The probabilist’s Hermite polynomials have squared norm E,.ar(0,1) [He? (:c)] = /1. Since we will

use the Hermite polynomials as a basis in which to express other functions, we will prefer them to

have unit norm, so we use the normalized probabilist’s Hermite polynomials hy(z) = ﬁHeg(I),

which satisty E,ar(0,1)[hx(2)he(x)] = Ope. The first several such polynomials are given by

h()(x) = 1,
hi(z) =z,
h (:c):i(achl)
2 \/§ )
-1 3 — 3z
hs(x) = \/6( 3),
1
hy(z) = i (z* — 62 + 3),
hs(x) = ! (z° — 102® 4 152).

g

12

The Hermite polynomials obey a remarkable number of useful mathematical relations. In particular,
single- and multidimensional integrals of Hermite polynomials against exponentials and other poly-
nomials are often computable in closed form. The Wikipedia page (https://en.wikipedia.
org/wiki/Hermite_polynomials) is a good first reference. Here we state only one such
integral which is useful for understanding the intuitive derivation of the HEA in Section 4.1:

m/!
, m>fandm=/{ (mod 2),
Epno,1)[he(z) 2™] = Vi 2(m=0)/2 ((m—10)/2)! ( ) (10)

0, otherwise.

That is, the ¢-th Hermite polynomial is orthogonal to all monomials ™ whose order is less
than ¢ (or whose order is simply of a different parity from ¢). In particular, this implies that
Eqronro,0)[(z2")™he(2")] = 0 when m < £: the function hy lies in the nullspace of the rank-one
kernel term K (z,2') = (xz’)™.

At one point, we need the multiplication and differentiation formulas:

min(m,n)
HenHem == Z <Z/L> (?) ] !Hen—i-m—2j (1 1)

Jj=0

He), = nHe,, 1 (12)

8Some references use the physicist’s Hermite polynomials Hy. These are related to the probabilist’s Hermites
by He, by Hy(z) = 2“/2He,(+/2 ). When using Hermite polynomials, be sure you know which ones you're
talking about!
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B ON-SPHERE LEVEL COEFFICIENTS FOR COMMON ROTATION-INVARIANT
KERNELS

In this appendix, we tabulate the on-sphere level coefficients for various kernels. We begin by
recalling Definition 3.

Definition 3 (On-sphere level coefficients). The on-sphere level coefficients of a rotation-invariant
kernel K at a radius r > 0 are the nonnegative sequence coeffs(K, r) := (cg)s>0 such that

K(z,x') = Z zf (x"2')" forall z,a’ such that |z| = |z'| = r. (13)
>0

B.1 GAUSSIAN KERNEL

For the Gaussian kernel K (z, @) = ¢~ 2.7 ad ¥ , the level coefficients (c¢;) = coeffs(K,r) may
be found by noting that, when |z| = |'| = r, then
N LR SN
K(z,x2')=e o7 -e 2 =e¢ 02-20220@ ')’ (14)
>0

Pattern-matching to Definition 3, we may then observe that

_T2
co=¢€ o2,
2
r
co=¢e %072,
2
r
cp=e o7 g 4

cp=¢€ o

B.2 LAPLACE KERNEL

Here we obtain the on-sphere level coefficients for the Laplace kernel K (x, ') = e~ ===l Let

T
2
si= 22 e-1,1], B:= var, (15)
r o
Since ||& — «'|| = v/27r /1 — s on the sphere,
K(z, ') =exp(— V1 —5s). (16)

Closed form for on-sphere level coefficients. Let y,,(x) denote the reverse Bessel polynomials,
with exponential generating function

tf 1
Zyg,l(a:)a :eXp(ﬂ(l —\/1—2:1:t)). (17)
>0
Applying (17) with & = 55 and t = 5 s gives
s/2
exp(A(1 — VT=3)) = X ura(5) L2 (18)
£>0

Multiplying by e~# and substituting s = (2" 2')/r?, the definition K (@, ') = Y, % (z"2')"
implies

14



The first few coefficients. With the convention y_; = 1, yo(z) = 1, y1(z) = 1 + =, y2(x) =
3+ 3z + 22, y3(v) = 15 + 152 + 62% + 23, we obtain (for 3 = V/2r /o)

Co—e,

e ? B
01—725

Sl
=2 (53).

(B 880
CB(S m*m)

-# 36°  56° 58
= (16+16+32+128>-

Large-/ asymptotics. The dominant singularity of F(s) = e #V1=%is at s = 1, with F(s) =
1 — Bv1 =5+ O(1 — s), yielding [s]F(s) ~ %5’3/2, where the coefficient extraction operator
[s] F(s) returns the ¢-th coefficient in the power series of F'(s). Since ¢, = r~2¢ 0! [s]F(s),

4 Vor

37 T2 (£ = o0), 8= -

co o~ (20)

B.3 THE RELU NNGP KERNEL

For a one-hidden-layer ReLU network with first-layer weight variance o2, and bias variance o7 (and
no output bias), the first-layer preactivation kernel is

Ki(z,x') =02z’ + o} (21)
On the sphere ||| = ||&'|| = r, set
. ' 2,2 2
K
q:=Ki(z,x)=0lr*+ o0}, 5= 22 Qwa p= 1(@,2) = Zul S+U”.
r \/Kl((B,.’B)Kl(CC/,J}/) q
(22)
The ReLU NNGP kernel is
o2 o2
Ky(z, ') = "q ( 1 — p? + (7 — arccos p) p) =: 2 qH(p). (23)
27 27

We Taylor-expand K in powers of | &’ and write
ce
Ky(z,x') = Z il (x'x)’. (24)
£>0
A change of variables gives the coefficients

2 o2 \* o2
cp = 2—“’ q (“’) H® (a) with a:= -4, q=o0’r*+of, (25)
™ q q

where H(p) = /1 — p2 + (7 — arccos p)p and H®) denotes the (-th derivative.

The first few coefficients follow from

H(a) = v/1—a?+ (7 — arccosa) a,
H'(a) = 7 — arccos a,
1
H//( ) — 1 = a27
®)(q) = ¢

H (a’) - (1-&2)3/27

2a% +1

4) —

H ( )_(1—042)5/27



yielding

Co =

C1 =

2
(5)
_012“ 0121,2 1
02—%(1 ? ﬁ’ (26)
(%)

2 3

ez = 2w Tw a

* T or q ) (1—a2)3/%’
o2 o2 Y2a2 41

=gl 2) ———5.

T A (1 —a?)5/2

Asymptotics. As ¢ grows, the coefficient ¢, grows as

o (o2 “ o

B.4 THE RELU NTK

As in the previous subsection, we treat a shallow ReLU network. The ReLU NNGP kernel remains

N O o
Ky(z,2') = o ( 1 — p? + (7 — arccos p) p) =: qu(p). (28)

The corresponding two-layer ReLU NTK is
1

Oy(z, ') = 02 Ky (z,2') - Py (m —arccosp) + Ka(z,x') (29)
m N———
raining first layer training second layer
o? o2
= ﬁq (\/1 —p2—|—2p(7r—arccosp)) =: ﬁqJ(p). (30)

We Taylor-expand © in powers of "’ and write
e,
Oy(z,x’) = Z 7 ("'t (31)
£>0

A change of variables gives the coefficients

2 2\* 2
cp = g—“’ q (U“’) J(Z)(a) with a:= @, q=o02r*+ o}, (32)
T q q

where J(p) = /1 — p2 + 2p(m — arccos p) and J©) denotes the ¢-th derivative.

The first few coefficients follow from the identities

J(a) =+1—a?+ 2a(w — arccosa),
a

J'(a) = 2(m — arccosa) +

V1—a?’
3 — 2a?
J//(a) = 7(1 — a2)3/27
2
@)y a(5—2a%)
‘] (a’)_ (1_012)5/27
5+ 14a% — 4a*
(4) -0
J (a’) - (1 _ a2)7/2 )
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yielding

Co =

q{\/ 1 —a? + 2a (m — arccos a)} ,

o
2m
o2 (03) {2( )+ a
og=2ql2 T —arccosa) + ————
1 - q q i
o2 o2 >3- 2a2
Co = — I T oN2/9)
27 91 q (1 —a2)3/2
o2 (o2 *a (5 — 2a?)
c3=2q(2) ——=7,
7o 1\ g (1 —a?)5/2
oz (o * 5+ 1402 — 4a*
“= o q (1—a?)7/2

Asymptotics. As ¢ grows, the coefficient ¢, grows as

o o “ o
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C REVIEW OF THE KRR EIGENFRAMEWORK FOR PREDICTING TEST
PERFORMANCE FROM TASK EIGENSTRUCTURE

The central piece of existing theory which we use in this paper is a set of equations which give the
average-case test MSE of KRR in terms of the task eigenstructure. In this appendix, we will review
this KRR eigenframework.

This eigenframework has been derived many times by different means in both the statistical physics
community and the classical statistics community (which usually phrases the result as applying to
linear ridge regression). References studying KRR include Sollich (2001); Bordelon et al. (2020);
Jacot et al. (2020); Simon et al. (2021); Loureiro et al. (2021); Wei et al. (2022); references studying
linear ridge regression include Dobriban & Wager (2018); Wu & Xu (2020); Hastie et al. (2022);
Richards et al. (2021); Cheng & Montanari (2022). The result is essentially the same in all cases.
Here we will adopt the terminology and notation of Simon et al. (2021).

Recall that we are studying KRR with a kernel function K with data sampled x; ~ pu, targets
generated as y; = f.(x;) + 7, and noise  ~ N(0, €2) with variance ¢2 > 0. The kernel admits an
eigendecomposition K (x, ') = >, \i¢i(x)¢;(x") with orthonormal eigenfunctions (¢;). Let us
decompose the target function in the eigenbasis as f,(x) = >, v;¢;(x). Suppose we run KRR with
n samples and a ridge parameter § > 0, and we compute the population (i.e. test) and train MSEs as

MSEe = Egoy [( ful@) — f(2)?] + &, (34)

MSEy = % Z(yi — flx:))™. (35)

?

C.1 STATEMENT OF THE EIGENFRAMEWORK
We are now ready to state the eigenframework. Let £ > 0 be the unique nonnegative solution to

> A (36)

Ni+K K
Then test risk is given approximately by
MSE = & := EB, (37)
where the overfitting coefficient &y is given by

Sim— (38)

and the bias is given by

2
— K 2, 2
B—% (AH—/@) vy +0o°. (39)

52
MSE[r ~ 5[1’ = W(g‘te, (40)

Train risk is given by

What is meant by the “~” in Equations (37) and (40)? This result only becomes exact in certain
stringent cases; it is formally derived under an assumption that the eigenfunctions are independent
Gaussian (or sub-Gaussian) variables when x is sampled from p, and it is exact only in an asymptotic
limit in which n and the number of eigenmodes in a given eigenvalue range (or the number of duplicate
copies of any given eigenmode) both grow large at a proportional rate (Hastie et al., 2022; Bach,
2023). These conditions emphatically do not apply to any realistic instance of KRR. Nonetheless,
numerical experiments find that Equations (37) and (40) hold with small error even at modest n
(Canatar et al., 2021; Simon et al., 2021; Wei et al., 2022): though derived in an idealized setting and
exact only in a limit, this eigenframework holds reliably in practical cases.

In this paper, we use this eigenframework as a tool to map predictions of task eigenstructure to
predictions of learning curves. Since we are here using it in settings very similar to those tested by
previous works (Bordelon et al., 2020; Jacot et al., 2020; Simon et al., 2021; Wei et al., 2022), we
expect it to work well. Its use introduces some small error (as it is not perfect at finite n), but this is
usually not the dominant source of error.
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D EXPERIMENTS CHECKING THE HEA: DETAILS AND FURTHER DISCUSSION

This appendix contains descriptions of the experimental stack used to verify the HEA, as well as
a discussion of practical considerations for applying the HEA to real datasets. It is organized as
follows:

* In Appendix D.1 we catalog the kernels, datasets, and target functions we use throughout
our experiments.

* In Appendix D.2 we explain the experiments that directly check whether the kernel eigen-
structure matches the HEA prediction (Figure 2).

* In Appendix D.3 we describe our method for estimating the decomposition of the target
function in the Hermite eigenbasis. Unlike previous work, our method does not require
constructing or diagonalizing an empirical kernel matrix.

* In Appendix D.4 we detail the experimental setups for each of the learning curve and sample
complexity plots (Figures 1 and 3).

* Finally, in Appendix D.5 we show the results of various additional experiments.

D.1 KERNELS, DATASETS, AND TARGET FUNCTIONS

Kernels. We use the Gaussian kernel, Laplace kernel, ReLU NNGP kernel, and ReLU NTK in our
experiments. A detailed review of these kernels can be found in Appendix B.’

Datasets. We use the following datasets for the main experiments:

* Mean-zero anisotropic Gaussian data. This synthetic dataset is fully specified by its
(diagonal) covariance. Different experiments set the data dimension and covariance decay
rate differently; see experiment-specific details in Appendices D.2, E and F.

e CIFAR-5m (Nakkiran et al., 2020). This dataset consists of more than 5 million samples of
synthetic images akin to CIFAR-10. These images were sampled using a deep generative
model trained on CIFAR-10. Though the distributions of CIFAR-5m and CIFAR-10 may
not be identical, they are typically considered close enough for research purposes.

* SVHN (Netzer et al., 2011). This dataset contains over 600,000 images of numerals, taken
from house numbers found on Google Street View.

» ImageNet-32 (Deng et al., 2009). This dataset contains downsampled ImageNet images
(32 x 32 pixels).

e MNIST (LeCun et al., 1998) and Mushroom dataset (Dua & Graff, 2017). We use MNIST
and the UCI Mushroom tabular dataset in Appendix E as examples of insufficiently Gaussian
datasets.

We sometimes employ regularized ZCA whitening to increase the effective dimension of the data.
This is a data preprocessing technique parameterized by a ZCA strength w? which maps

— ~1/2
X=-USVT »US (w252 T Id) vT (41)

where X € R4¥ is the data matrix, USV T is its SVD, and we use the normalization notation
A= A/(|A||z/d). As the ZCA strength w? — 0, we get no spectral transformation apart from a
scalar normalization X — USV T. Conversely, when w? — 0o, we get full whitening X — UV ",
The crossover point of this behavior occurs at w? ~ 1. Note that although partially-whitened Gaussian
data are slightly less anisotropic, they are still distributed as a multivariate Gaussian.

We sometimes employ sample normalization,  — x/||«||. Note that although the normalized data
lie on the hypersphere, their distribution is still anisotropic.

cr” /H

°A note for users of our codebase: in this paper, we define the Laplace kernel to be K (x, ') = ¢~

S W P
but because we initially used a different convention, in code it is K (z, ') = e +v2 == ” When we report a
kernel width in this paper, this is the width in the parameterization we use in the paper, not in code.
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Both sample normalization and ZCA whitening are preprocessing techniques that, on aggregate, shift
high-dimensional data samples closer to the hypersphere. Since the HEA relies on an expansion
of kernel functions in terms of on-sphere coefficients (see Appendix B), these methods move any
experimental setup closer to the regime well-described by the HEA. See Appendix E for further
discussion of this point.

Targets. We use a variety of synthetic and real target functions in our experiments. All targets
are scalar; the synthetic targets take continuous values, whereas the real targets are binarized (y; €
{+1,—1}). All targets are mean-zero; for real targets, this means that the binary (super)classes are
always balanced (even if the binary superclasses contain a differing number of base classes).

We use the following targets for the main experiments:

* (Synthetic.) Multi-Hermite targets. A single (normalized) multi-Hermite polynomials of
the PCA components (Equation (3)).

* (Synthetic.) Powerlaw targets. We draw a random sample of the Gaussian process
P
fulx) = Z cih;i(x) + € - (white noise), 42)

where h;(z) is shorthand for the ™ multi-Hermite polynomial h, (2) and ¢; is a mean-zero
Gaussian random variable with variance (i +6)~?. The so-called source exponent 3 satisfies
B > 1 and controls the Sobolev smoothness of the target: the larger 3 is, the smoother
and easier-to-learn the target. We choose a numerical truncation threshold P = 30, 000 for
convenience, choosing the target noise level e to ensure that the target is unit norm E[y;] = 1.
Our results are empirically insensitive to the randomness in the target.

* (Real.) class vs. class. A binarization in which samples are only drawn from two
classes.

* (Real.) class vs. all others. A binarization similar to a single output element of practical
neural networks with one-hot label encodings. A key difference here is that samples are
drawn from each binary superclass in equal proportion so that E[y;] = 0.

* (Real.) Domesticated vs. wild animals. CIFAR-5m binarization: [cat, dog, horse]
vs. [bird, deer, frogl].

¢ (Real.) Vehicles vs. animals. CIFAR-5m binarization: [plane, car, ship,
truck] vs. [bird, cat, deer, dog, frog, horse]. Samples are drawn
from each superclass in equal proportion so that E[y;] = 0.

* (Real.) Even vs. odd. SVHN binarization based on parity: [0, 2, 4, 6, 8] vs. [1,
3, 5, 7, 91.

* (Real.) Prime vs. composite. SVHN binarization based on primality: [2, 3, 5, 7] vs.
[4, 6, 8, 9].Weleaveout [0] and [1], numerals whose primality is undefined.

* (Real.) Genus 0 vs. genus > 1. SVHN binarization based on the numeral’s topological
genus: [1, 3, 5, 7] vs. [0, 6, 8, 9]. Weleave out [2] and [4], numerals
whose topological genus is font-dependent.

D.2 DIRECT EIGENSTRUCTURE CHECKS

What is the appropriate way to numerically compare two eigensystems?

The spectra are easy to compare — one can simply check whether Mi;’\” is small for all 7. An easy
visual check is to simply scatter one spectrum against the other on a log-log plot; if the points remain

close to the y = z line, then the spectra agree.

Comparing the eigenbases, on the other hand, is a subtler matter. One must be careful when the
eigensystems have small eigenvalue gaps. This issue is most easily understood by considering the
limit: what happens when comparing two diagonalizations of a degenerate matrix? In this case,
numerical eigendecomposition is undefined since the true eigenvectors are not unique; the computed

eigenvectors are thus arbitrary. Simply comparing qigi with ¢; for all ¢ is therefore insufficient.
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Clearly, any good eigenbasis comparison must be spectrum-aware. In particular, differences between
eigenvectors belonging to (near-)degenerate subspaces should not be strongly penalized.

A coarse but simple way to make this comparison is with spectral binning. We divide R™ into
logarithmically-spaced bins; then, for each eigenbasis, we treat the modes whose eigenvalues fall
within the same bin as a single near-degenerate eigenspace. Applying this procedure to the HEA'”
yields a set of disjoint Hermite eigenspaces {q)?h)};ﬁil“s, and likewise for the empirical basis. Let

A = dim(q)(jth)) and likewise for "™ . Note that in general we do not expect dg') to equal dg') for
i # j; indeed, some bins may contain no modes at all. However, we do expect d\™ = d'°™ for all i

(if the theory is accurate).

Having handled any issues of spectral near-degeneracy, we may directly compare the two eigenbases
by computing the pairwise overlaps between the binned eigenspaces:

1 (th) T g (emp) ||2 (th) (emp)
o ) @™ @™, & #Oand d™ #0,
Overlap(i, j) = ¢ d; 43)
undefined, otherwise.

where again 1 < 7, 7 < nbins enumerate the bins.

To visualize this in Figure 2, we plot the overlaps in a heatmap, graying out pixels whose spectral
bins do not contain any eigenmodes (and thus have undefined overlap). We note that discrepancies in
the tails are primarily caused by distortions in the empirical eigenbasis caused by finite-size effects,
rather than genuine disagreement between the theory and the true eigensystem (see Figure 5).

The experiments that generated Figure 2 used the following hyperparameters:

* Gaussian kernel, gaussian data. Kernel width 0 = 6. Data = € R?%0 drawn i.i.d. Gaussian
with diagonal covariance E [27] = (i + 6) 73", This results in deg ~ 7. We choose a steep
covariance decay exponent to ensure that cubic modes are clearly present in the plot.

* Gaussian kernel, CIFAR-5m. Kernel width ¢ = 6. No ZCA nor sample normalization.
This results in deg ~ 9.

* Laplace kernel, SVHN. Kernel width 0 = 8+/2. Whiten data with ZCA strength w? =
5 x 1073 and then unit-normalize. This results in d.g =~ 21. We generally observed that
deg > 20 is a reliable rule of thumb for obtaining good agreement with the HEA using the
Laplace kernel.

¢ ReLU NTK, ImageNet-32. Bias variance o = 1.68 and weight variance o2, = 0.56.
Whiten data with ZCA strength w? = 5 x 1072 and then unit-normalize. This results in
degr ~ 40. Examining the on-sphere coefficients, we see that ag / aﬁ) > 1is the ReLU NTK
equivalent for the wide kernel condition for Gaussian kernels.

D.3 HOW TO DECOMPOSE THE TARGET FUNCTION
We are interested in recovering the coefficients of the target f, in the kernel eigenbasis:

Recover v; from samples of f,(x) = Z v;Pi(x), (44)

where i is the mode index. According to the HEA, this amounts to expanding f, in the multi-Hermite
basis:

ful@) = vihi(w). (45)
where h;(z) is shorthand for the i multi-Hermite polynomial A, (z). We use different notation for

the Hermite coefficients since the HEA will not hold exactly in practical settings.

Of course, obtaining any full expansion of f, from NN samples is exactly as hard as the original
learning problem. However, we can hope to obtain an expansion that is good enough to predict the
behavior of KRR trained with up to NV samples.

Here, we abuse terminology by referring to the proposed Hermite basis as an eigenbasis; evaluated on
finitely many samples of real data, these basis vectors may not be truly orthonormal.
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Let us define y € RY as the vector of target samples and h; € RY as the i multi-Hermite
polynomial evaluated on the samples. Let us stack the top P < N modes [hy hy ---hp]T and call
the resulting matrix H € RP*N 11 We would like to recover the top P coefficients & € R” from y
and H.

Naive first try. As a first pass, let’s simply run linear regression: © = H'y, where H' is the
pseudo-inverse. Empirically, the recovered coefficients are not very good. There are two main
reasons.

* The true target contains Hermite modes which are not represented in our top P list. This
is an essential model misspecification which appears to linear regression as target noise.
This is not a problem in itself; the learning curve eigenframework can handle this kind of
noise, if it knows how much noise power there is. However, it is unclear how to measure the
magnitude of this misspecification noise, since it gets mixed in with the sampling “noise.”

* Linear regression has a flat inductive bias: it tends to fit the samples using each of its
regressors with equal enthusiasm. Here, the regressors are functions, arranged (roughly) in
order of decreasing smoothness. On the other hand, natural targets are relatively smooth;
their power tends to concentrate on the early modes. This leads to large estimation errors in
the top coefficients.

These two challenges, left unresolved, result in poorly predicted learning curves.

Second pass. Let us instead consider the following greedy iterative algorithm:

Algorithm 1 Greedy Residual Fitting (GRF)

Require: Target vector y € R™, Hermite feature matrix H € RP*¥,

Y@y

2: forp=1to P do

33 h,<+ H,.

(hp, y(p_1)>

1P 13

y®) — y-1 _ p by > subtract off the projection onto h,,

end for

: return © = (91,...,9p) and & = |Jy)||3

—

&

Dp > find the coefficient of h,, in y®~1)

AN

This target recovery algorithm has a few notable virtues. First, it is direct; it does not require
matrix inverses, so it runs in quadratic rather than cubic time. Second, since it is iterative and
stateful, it automatically prioritizes correctly estimating the top coefficients, which is where the target
power tends to lie. Third, it naturally estimates the noise power (it is simply the norm of the final
residual ||y®]|?). Fourth, it estimates the correct amount of total power: by the Pythagorean theorem,

>, 08+ & = |ylif [hy| = V/'N, that is, if the Hermite polynomials are indeed unit norm.'”

We empirically find that this algorithm works well for synthetic targets on synthetic Gaussian data.
However, real data is not perfectly Gaussian. Even small deviations from Gaussianity introduce
systematic correlations between the Hermite polynomials {h;}; these overlaps cause the greedy
algorithm to systematically overestimate the target power in the affected modes.

We empirically found that if the target is sufficiently “dense” in the Hermite modes (i.e., not dominated
by very few coefficients), then these errors “average out” (loosely speaking) and the predicted learning
curves remain accurate. Unfortunately, this is rarely the case in real targets. Real targets often contain
much power in a few early modes, many of which suffer from this overlap problem. As a result, the
predicted learning curves are often far off the mark. See Figures 8 and 10 for empirics.

"In our experiments we choose P = 30,000 and N = 80, 000 since manipulating this tensor maximizes our
GPU VRAM utilization.
12If they are not unit norm, then for the purposes of the KRR eigenframework, one usually wants to take

0p — N™Y2 | hy| o, to estimate the total amount of power in Hermite direction p. After adopting this scaling,
GREF again conserves total power by the Pythagorean theorem: ZP 172 +é& =y
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Third pass. To rectify these modes, we simply squeeze out the non-orthogonality, starting from
the top Hermite modes (which we expect to be the most accurate matches to the true eigenmodes).
A standard technique for iteratively eliminating overlaps is to use the Gram-Schmidt process. In
practice, this simply amounts to performing a QR decomposition, QR = H, and estimating the
coefficients from the orthogonal component as v = Qy.

The major strength of this coefficient recovery technique is that it accurately predicts learning curves.
Another strength is that since the regressors are orthogonal, the noise power is easily obtained as
1 — © " 9. The main drawback is that we must once again resort to a cubic-time algorithm. A natural
question is then: if we are going to run a cubic-time algorithm anyways, why not simply diagonalize
the empirical kernel matrix? There are three reasons:

* Finite-size effects. Diagonalizing the finite-sample empirical kernel matrix typically intro-
duces distortions in the tail modes. The HEA avoids this issue by constructing the basis
directly.

* Numerical conditioning. The (non-orthogonalized) Hermite polynomial matrix H is very
well-conditioned on natural datasets. Performing Gram-Schmidt orthogonalization tends
to be numerically robust, even at 32-bit floating-point precision. On the other hand, the
numerical conditioning of kernel diagonalization worsens as the number of samples (and
retrievable modes) increases; in practice, we typically need 64-bit precision to obtain
reliable eigenvectors. As a consequence, the prefactors for GPU VRAM space complexity
are friendlier for Gram-Schmidt.

* Theoretical insight. Kernel diagonalization is an opaque numerical computation which does
not easily expose the functional form of the eigenfunctions. The perturbed closed-form
expression offered by HEA + Gram-Schmidt reveals the analytical structure of learning in
kernels.

Takeaway. The HEA conceptually holds; the kernel eigenfunctions are small perturbations of the
multi-Hermite polynomials, even for complex real data. If the target function is sufficiently dense, the
perturbations are not important to model, and the target coefficients can be estimated using a direct
greedy method. However, for some real targets with prominent coefficients, we must be careful to
account for their perturbations.

D.4 LEARNING CURVES AND SAMPLE COMPLEXITIES

In this section, we detail the parameters used in each of our main experiments. All kernel regression
experiments use a ridge of § = 1073 and run up to 50 trials, each with a new test set of size 5,000.
All target function estimates use 80,000 samples.

* Figure 1, top right. Gaussian kernel, width ¢ = 4. No ZCA nor normalization.

* Figure 1, bottom right. Laplace kernel, width o = 4+/2. ZCA strength w? = 103 with
data sample normalization. Sample complexities are obtained by computing learning curves
(empirical curves averaged over 20 trials), performing logarithmic interpolation, and finding
where the test risk falls below 0.5.

* Figure 3, top left. Gaussian kernel, width ¢ = 8. No ZCA nor normalization. We use a
wide kernel for better agreement at targets of high degree; for comparison with a narrower
kernel, see Figure 6 below.

* Figure 3, top right. Same as Figure 1, bottom right.

* Figure 3, bottom left. Gaussian kernel, width ¢ = 10. No ZCA, but the samples are
normalized. For comparison with a narrow kernel and no sample normalization, see Figure 7
below.

* Figure 3, bottom center. Laplace kernel, width o = 41/2. ZCA strength w? = 5 x 1073
with data sample normalization. For comparison with no sample normalization, see Figure 9.

« Figure 3, bottom right. ReLU NTK, bias and weight variances 0 = 1.96 and o2, = 0.49.
ZCA strength w? = 102 with data sample normalization. We found that the HEA for the
ReLU NTK is particularly sensitive to insufficient effective dimension.
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D.5 ADDITIONAL EXPERIMENTS

Gaussian kernel Gaussian kernel Laplace kernel ReLU NTK
@ Gaussian data @ CIFAR-10 @ SVHN @ Imagenet32
10°4 10° 10°4 10° 4
®  predicted
102 — empirical | ;42 10-2 102
=
ERUE 107 1044 107
2
S 10-6 | ® constant mode —6 | —6 6
=4 10 linear modes 10 10 10
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101 '« cubic modes 107 4 10784 1078
e quartic modes
10° 10! 102 10° 10° 00 1o 102 10° 10° 100 10! 102 10° 10* 10° 10! 102 10° 10°
Mode index i Mode index i Mode index i Mode index i

Figure 5: We show an alternative visualization of the top row of Figure 2, comparing the predicted and
empirical spectra of various kernel/dataset combinations. We see that the HEA accurately predicts the
minute details of the kernel spectrum. Furthermore, tail deviations are indeed caused by finite-kernel
effects in the empirical spectrum rather than a failure of the HEA.

Kernel width =8 Kernel width =2
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Figure 6: We compare the original plot from Figure 3 with kernel width 8 (left) to the same
experimental setup except for a kernel width 2 (right). The true eigenfunctions of the narrower kernel

deviate from the HEA prediction, especially for the high-degree modes. For a similar comparison,
see Figure 12.
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Figure 7: We compare the original experimental setup from Figure 3 (sample normalization, kernel
width 10) on the left, to two similar setups: no sample normalization (center) and a narrower kernel
width of 4 (right). Interestingly, the narrow kernel width does not change the agreement much;
removing sample normalization worsens agreement slightly.
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Figure 8: Here we show four plots in which the experimental setup does not change; instead, we
compare different techniques for estimating the required theoretical quantities. (Upper left.) HEA
prediction, identical to Figure 1. (Upper right.) We numerically diagonalize the kernel matrix
(size 25000 x 25000) and use the obtained eigenstructure to make predictions. The accuracy of the
prediction degrades as the number of training samples approaches the size of the kernel matrix used to
estimate the true eigenstructure. (Lower left.) We use the greedy algorithm described in Algorithm 1
to estimate the target coefficients. We see good initial agreement, but it degrades due to accumulating
non-orthogonality. (Lower right.) For comparison, we include the predictions one would obtain if
one modeled the data distribution as an isotropic Gaussian. Clearly, a major contribution of our work
is to handle the anisotropy in natural data, since it strongly affects the resulting learning curves.
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Figure 9: We compare the plot from Figure 3 on the left with an identical experimental setup, except
without sample normalization. We see that normalization is necessary for obtaining agreement, since
the HEA is derived using the kernel’s on-sphere level coefficients.
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Figure 10: For “dense” synthetic targets (i.e., targets whose power is split among many eigenfunc-
tions), the HEA predicts the performance of the Laplace kernel very well. Contrasting this with
the predictions for Laplace kernel on real targets (Figure 9), we conclude that dense targets are
more forgiving of errors in target coefficient recovery. For this experiment, we use ZCA strength
w? = 1072 and sample normalization.
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Figure 11: Additional sample complexity plot, this time for Laplace kernel on CIFAR-5m. We use
sample normalization and a ZCA strength of 3 x 1075.
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E WHAT BREAKS THE HEA? CASE STUDIES OF THREE CAUSES OF FAILURE

In the main text, we have primarily shown results in settings in which the HEA works quite well
in predicting kernel eigenstructure, learning curves, and monomial learning rates. Here we get our
hands dirty and show where it breaks.

First cause of failure: narrow kernel width. The discussion of Section 4.1 suggests that if we make
kernel width too narrow — or, in kernels without a notion of width, change the kernel so that %
is not much less than one — we should start to see the HEA break. In particular, since for a Gaussian
kernel ¢; ox o ~2¢, narrow width means non-small level coefficient ratios and vice versa. Fi gure 12
shows an empirical test: on the same synthetic data distribution, the kernel is made progressively

narrower. As expected, the HEA breaks.

Second cause of failure: low data dimension leading to non-concentration of norm. The HEA
treats all rotation-invariant kernels as if they were dot-product kernels. In fact, it throws away all
information about the kernel function that cannot be obtained by its value on a sphere. For this to
work in practice, we should expect our data to lie fairly close to a sphere. For Gaussian data © ~ X,

this is assured if the data has high effective dimension dg := % Figure 13 shows that with a

Laplace kernel on a Gaussian dataset, the HEA breaks as d. decreases.

Interestingly, not all rotation-invariant kernels require high effective dimension. For example, our
heuristic derivation of the HEA for Gaussian data in Section 4.1 took place in just one dimension!
As it turns out, this is because the Gaussian kernel is given by a polynomial feature map (of infinite
dimension), but the Laplace kernel has a cusp at ¢ = &’ and is not. (Equivalently, the Gaussian kernel

is analytic, but the Laplace kernel is not.) For a stationary kernel K (x,x’) = k (% |z — ' ||2>

which depends only on the distance between points with scaling factor o, the 0 — 0 limit will give
the HEA on Gaussian data if the function k(-) is real-analytic at zero. The Gaussian kernel satisfies
this real-analytic critrion, but the Laplace kernel does not. As evidence of this, Figure 14 repeats the
above experiment with a Gaussian kernel and finds that low d.¢ is no problem.

Third cause of failure: the data not being ‘“Gaussian enough.”

The HEA is theoretically derived for Gaussian data, but nonetheless works for some real datasets.
This suggests that the datasets for which it works are “Gaussian enough” in some sense. Here we
support this intuition with experiments. First, in Figure 15, we plot the marginal distributions of the
first few normalized principal coordinates for four datasets of decreasing complexity: CIFAR-10,
SVHN, MNIST, and the tabular UCI Mushrooms dataset (Dua & Graff, 2017). Plotted this way,
these datasets appear increasingly non-Gaussian. Then, in Figure 16, we test the HEA on these four
datasets, finding that the HEA indeed seems to work worse as the dataset becomes “less Gaussian.”
For good measure and out of interest, we plot the first few PCA coordinates for the three image
datasets in Figure 17.

Of course, we put “Gaussian enough” in quotes because this is a nonrigorous and ill-defined notion:
we have not invoked any precise method of determining which of two datasets is “closer” to Gaussian!
We do not attempt to give a precise definition here. This seems like a worthwhile direction for future
exploration, especially from the statistics community.
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Figure 12: The HEA breaks when kernel width is too narrow. We repeat the experiment of

712
Figure 2 with the Gaussian kernel function K (z, 2’) = e~z l==='[" and synthetic Gaussian data.
The data is generated as  ~ N'(0,T), where T has eigenvalues ; o« i~3 fori = 1...30, with
~v1 ~ 0.83 after normalization. As the kernel width ¢ shrinks to o < 1, the HEA breaks: eigenvalue
prediction fails with higher-order modes dominating predictions, and the clear eigenspace overlap
present at large width evaporates.
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Figure 13: With the Laplace kernel, the HEA requires high effective data dimension... We
repeat the experiment of Figure 12 with two modifications: first, the kernel function is Laplace
(i + 3)~* with
(EL 'Yi)2
D
20 is usually hlgh

K(z,2') = 67%||m7w/” with width o = 81/2, and second, the eigenvalues are 7; o

variable exponent c. As « increases (moving left to right), the effective dimension deg =

decreases, and agreement with the HEA degrades. Empirically, we find that deg =~
enough to see good agreement.
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Figure 14: ...but with the Gaussian kernel, it does not need high effective dimension. We repeat
the experiment of Figure 13 exactly, but use a Gaussian kernel with width 0 = 3. Thanks to the
smoothness of the Gaussian kernel, we see little degradation of the theory-experiment match of the
HEA.
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Figure 15: Different datasets have different degrees of Gaussianity in their early principal
components. For four natural datasets — CIFAR-10, SVHN, MNIST, and the UCI Mushrooms
tabular dataset — we compute the first four normalized principal coordinates (z;)?_; and plot their
distributions as histograms. We find that the first few principal coordinates for CIFAR-10 are fairly
close to Gaussian, this is less true for SVHN, yet less true for MNIST, and not at all true for the
Mushrooms dataset.
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Figure 16: The HEA works better with complex high-dimensional datasets and worse with
simpler datasets. We repeat the experiment of Figure 2 with a Gaussian kernel of width 0 = 3 on
8000 samples from four datasets of increasing non-Gaussianity: CIFAR-10, SVHN, MNIST, and the
UCI Mushrooms tabular dataset. As the dataset becomes simpler, the HEA works worse and worse,
though the predicted trend is still roughly present, if quantitatively wrong, even for the tabular dataset.

First PCA coordinate Second PCA coordinate Third PCA coordinate Fourth PCA coordinate

a"k
S H AN
0121%] 2

Figure 17: Visualization of the first four PCA directions for the CIFAR-10, SVHN, and MNIST
datasets.
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F MLP EXPERIMENTS: DETAILS AND FURTHER DISCUSSION

As the HEA requires level coefficients to predict Ao, level coefficients for MLP experiments are
computed with the ReLU NTK with both bias and weight variances of 1 which match the empirical
variances of our MLP networks at initialization.

Unless otherwise stated, all experiments were performed using a feature-learning (xP) MLP with the
following data hyperparameters:

vi=(i+6)""
a=17

and MLP hyperparameters,

width w = 8192

depth (hidden layers+1) L = 3
learning rate = 102
batch size bsz = 1024

¢=1

where ( is the richness parameter (defined by a rescaling of the network’s output f — f/¢ and either
learning rate 7max — Mmax - ¢ 2/L for ¢ > 10r Pmax = Mmax - ¢ 2for¢ < 1) allowing a network to
scale between an ultra-rich and a lazy/NTK regime (Atanasov et al., 2024). In order to avoid network
outputs exploding for v >> 1, we have all MLPs output the difference f(x; 6;) — f(; 6p) for network
parameters at gradient step ¢ being 6.

Mode 3 Mode x
0
2
4
6
8
Mode zox; Mode ziz3

0
2
4
6
8
0 2 4 6 8 0 2 4 6 8

Figure 18: Validation of MLPs being feature-learning. We investigate the Gram matrix of the
first weight matrix, WIWl. We train MLPs with v = 1 on d = 10 Gaussian synthetic data for 1000
GD steps. Yellow denotes higher entries, while blue denotes near-0 entries. The Gram matrices are
heavily weighted to modes present in the target function, confirming the feature learning regime.
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All experiments were carried out in an online setting, with nj., being the number of SGD steps it took
to reach a train error MSEg < 0.1. Random samplings of n=bsz Gaussian datapoints produce variance
in high-order Hermite polynomials, so an exponential moving average (EMA) for MSE; is used with
decay constant 0.9: (EMAy, 1 = 0.9MSEy, { + 0.1EMA, ;—. This corresponds with a half-life for
the train error of 6.58 steps: MSEy,  ~ 0.0MSEy;. .¢.58. This ensures high-variance random samplings
do not cause the effective optimization time 7 - njr to be skewed in favor of higher order modes.
We varied the EMA constant and found values less than 0.9 to underestimate high order modes’
optimization time, and values greater than 0.9 to overestimate lower order modes’ optimization time.
One could subtract the half-life from an empirically found nj,, with any EMA constant to get a more
EMA-unbiased estimate for when the test error goes below the set cutoff, although we do not perform
such a procedure. We additionally varied what the cutoff in MSE,, < cutoff was, although we found
no large changes in findings for reasonable cutoff values.

This network is empirically validated to be in the feature learning regime by looking at the Gram
matrix W] W1, with W; € R¥dhxdim initialized with Gaussian entries. A lazy network has this
Gram matrix constant throughout training, whereas feature learning allows for ©(1) changes to the
spectral norm of the W1, producing ©(1) changes to W| W, (Yang et al., 2023). We train vy = 1
networks on simple PCA-mode target functions, and find significantly more power in the Gram matrix
entries corresponding to the target function, validating the feature-learning regime Figure 18.

3
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Figure 19: Hyperparameter choices are largely arbitrary. We train MLPs on synthetic Gaussian
data, with one hyperparameter being motified. The base case is shown in the (top left) for reference.

Apart from the (top center), all modifications produce no notable changes to our expected )\;1/ 2o
7 - Niger scaling. (Top center). The 1 hidden layer case is only different than the rest by a change in
eigenvalue-independent prefactor, the scaling law still holding.

We check if our hyperparameter choices were simply lucky, or if our )\;1/ 2 7 - Niter scaling is real
and reproducible. We take our base case, and vary all hyperparameters (depth, width, learning rate,
batch size, data covariances) we don’t expect to affect the scaling, finding that none do; the only
change we observe is an eigenvalue-independent rise of effective optimization time when going to a
more shallow network. Results are summarized in Figure 19.

The only hyperparameter we know will change the exponent of Ag" ~ 1 - N, is the richness
parameter (; with ( < 1 being known to have exponent —1. What is unknown is the scaling exponent
as ¢ > 1, which we find to be lower than the baseline 1/2. Lastly, our effective optimization time’s
7 is defined as the base, (-independent learning rate. Our findings are shown in Figure 20.

Lastly, we would like to note that the base synthetic case and the CIFAR-5m case were averaged over
3 trials, and upon finding a remarkably small standard deviation in effective optimization time, all
further validation experiments were completed with only a single trial.
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Figure 20: Sweeping the richness parameter changes the slope. (Left) We validate taking ( < 1
to bring us into the lazy/NTK regime, where we know the eigenvalue to be inversely proportional
to the effective optimization time. (Right) We investigate the so-called "ultra-rich” regime ¢ > 1

and find there to be a )\;2/ L 7 - Niter Telationship. We have no expectation the 2/5 factor for the
ultra-rich regime holding for other hyperparameter choices, especially under a change of depth.

G REVIEW OF HILBERT SPACE THEORY
In this section we review the basics of Hilbert space theory, which would be very useful in proving
theorems in the next few appendices.

Naively, a Hilbert space is just R™ or C", where n is allowed to go to infinity. In the standard notation,
it is written as (#, (-|-)), where # is the set of vectors, and the angular brackets (-|-) is the inner

product on pairs of vectors in the set.
G.1 DIRAC NOTATION
We use the standard Dirac notation.
* Vectors are written as |v) € H.
* The duals of vectors on # are written as (v|, defined via the inner product: (v| : |w) —
(v|w).
* Linear operators are written as capital letters: A.
* Linear operators act on the right: (v|Ajw) := (v|(|Aw)).

For example, the Euclidean space R? is a Hilbert space. Its inner product is the dot-product (v|w) =
v T w. Write column vectors as kets and row conjugates as bras:

W=l =T =l v, (lw) = (0] fw) = oTw.

Vd

For a matrix A € R?*9, it acts on vectors by multiplication on the right. Rank-one operators are of
the form |v) (w|, with action |z) — |v){w]|z).

G.2 OPERATORS

In a Euclidean space, such as R?, the geometry is defined by its lengths and angles. A linear

operator on R? preserves lengths and angles, and therefore preserves its geometry, iff it preserves
the dot-product between vectors. Such geometry-preserving linear operators are called orthogonal

operators.
Generalized to Hilbert spaces, geometry-preserving linear operators are called unitary. An operator
V :H — K is unitary iff

(VolVw) = (vlw), Vo)l = [l[v)]-
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For example, a unitary V' : R™ — R" is just an orthogonal matrix. Unitary maps preserve all
geometric relationships, such as angles between vectors, lengths of vectors, and orthonormal bases.

The rank of an operator is the dimension of its range. By the analog of singular value decomposition
in Hilbert space, if an operator has finite rank r, then it can be written in the form of Y, _; vy ) (ug]|.

In a Euclidean space, operators have transposes. The transposition of operators satisfies (A" w) v =
w' (Av). Generalized to Hilbert space, operators have adjoints. The adjoint of an operator A is
written as A*, and satisfies

(w|Av) = (A"w|v)
In a Euclidean space, symmetric operators are operators such that A = AT. In a Hilbert space,
self-adjoint operators are operators such that A = A*.

Just like how symmetric operators on R? are of the form ZZ:1 aRVk v,;r, self-adjoint operators are of
the form ), ay|vy)(vk|, although the summation may be infinite.

The operator norm is a norm defined on operators. It is defined by [A],,, := sup,cy jz=1 | Az].

An operator is positive definite, written as A > 0, iff it is self-adjoint, and (v|AJv) > 0 for all
nonzero |v). Similarly, an operator is positive semidefinite, written as A > 0, iff it is self-adjoint,
and (v| A|v)geqO for all |v).

G.3 COMPACT OPERATORS

In infinite dimensions, some finite-dimensional intuitions break. A finite-rank operator, by virtue of
being finite-rank, behaves essentially the same as a linear operator between two finite-dimensional
spaces. However, they are somewhat too trivial. Compact operators are a compromise. They can
have infinite rank, but still allow some finite-dimensional intuitions to apply.

An operator K : ‘H — H is compact iff it is the operator-norm limit of a sequence of finite-rank
operators.

Symmetric matrices are diagonalizable. Similarly, if an operator is compact and self-adjoint, then it
is diagonalizable: There exists an orthonormal basis of eigenvectors {|e;) } jc.; and real eigenvalues
{)\ j } jeJ with
K=Y Xlej)esl, A eR, A —0.
jeJ
Nonzero eigenvalues have finite multiplicity, and the eigenvalues can only accumulate at zero.
We will only study operators of a very specific form that arises naturally from kernel regression.

Let {|vp) }n>0 be an orthonormal set in 7 and let a,, > 0 with ) a, < co. Define

K = Z an|Vn) (Vs
n=0

Then:
» K is self-adjoint, positive, has finite trace, and compact.
* K has eigenpairs {(ay, [v,)) : n > 0}, counting multiplicities of repeated a, .
* |K|| = sup, an, Tr [K] =), an.

G.4 FUNCTION SPACES

Generally, the vector space of functions is infinite-dimensional. Hilbert space theory shows that
certain geometric intuitions honed from low-dimensional Euclidean spaces are still useful even in an
infinite-dimensional function space.

As a basic example, consider L2(d33), the set of square-integrable functions on R — R, with inner
product

(flg) = / f(@)g(x)dz
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This generalizes to L?(dPx), the space of square-integrable functions on R” — RP. It has inner
product

o) = [, f@a(@)’a

Let 1 be a probability measure on RY. Then L?(u) is the space of functions f such that
Jga |f(@)?(da). That is, the space of functions f, such that if X ~ 4, then f(X) has finite
second-moment.

The inner product (f|g) = Ex~.[f(X)g(X)].

In this formalism, the expectation operator is simply taking the inner product by the constant-1 vector:

Exoulf (X)] =Ex~pull f(X)] = (1]f)

We will mostly study L?(y) in the case where j is a Gaussian distribution A/(0, X2). Those cases are
called Gaussian spaces.

We will concern ourselves mainly with integral kernel operators over L?(j). An integral kernel
operator is a linear operator of the type K : L?(u) — L?(u). It is defined using a kernel function
K : R4 x R? — R, such that

Kl) = [w) :  w(z) = o K(z,y)o(y)pu(dy)

Solving for the eigensystem of K is equivalent to diagonalizing the kernel operator, such that

K= Z A [wn ) (W]
n=0

for some orthonormal basis |w, ).

As an example, the dot-product kernel in R' is

In operator form, it is equivalent to

= cn(2n — 1N
K = Z 0 [Un) (V|
n=0

where we define the vectors corresponding to the monomial functions:

xn

[Un),  vn(z) = m

The factor of 1/(2n — 1)!! is necessary to make sure the vectors are unit-length: (v, |v,,) = 1.

The problem with the representation
2 cn(2n — 1!
K= ) o
n=0

is that, while it looks like a diagonalization, it is not, because the vectors are unit-length, but not
orthogonal to each other. Diagonalizing the kernel is impossible in general, but it is possible in certain
limiting cases. Our main theoretical work in this paper is just working out these cases.
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G.5 1D GAUSSIAN SPACE

Let pu(dz) = (27)~'/2e=%"/2dz be the standard Gaussian distribution on R!. We have the 1D
Gaussian space L?(11).

The differentiation operator D, maps f(x) to f’(x), and by integration-by-parts, has adjoint
D;=-D,+zx
Therefore, we can define the Ornstein—Uhlenbeck (OU) operator
L:=-D?+zD, = (D:D,).
Then L is self-adjoint and positive semidefinite on L?(1).
The eigenvector equation for L is
Livy) = Mplvn) = vl (x) — zv),(x) + AMon(z) =0

This is just Hermite’s differential equation, with solutions being the probabilist’s Hermite polynomials
He,,. They are orthogonal in L?(y) with

E,[He,, (X)He, (X)] = n!dp,.
but not normalized. They are normalized by
He, (x)
= N

Thus we see that the normalized Hermite polynomials is the eigensystem for the OU operator in
Gaussian space:

hn(x) : |hy) € L ().

Lihy) =nlhy), L= Z n|hp) (b
n=0

Since the OU operator is the simplest way to make a self-adjoint operator out of the differentiation
operator D,, it is a natural object to consider.
G.6 MULTIDIMENSIONAL GAUSSIAN SPACE

The gaussian space over R! can be generalized to multiple dimensions. Let pg = N(0, 1) be the
standard gaussian distribution on R?. The corresponding OU operator is

d
L=-A+2-V=Y -0 +10,,

i=1

That is, we can write L as a sum of 1-dimensional OU operators, as L = Zle L;. Note that the
operator operates on the dimensions x1, . . ., x4 without interfering with each other:

L(fi(z1) -+ fa(wa)) = (Lo fr)(w1) fa(z2) - - fa(@a) + -+ fr(z1) - - fa—1(za—1)(Lafa)(za)

Because of this, the eigensystem of L is obtained directly by taking the product of the eigensystem of
Ly,...,Lg.

For a multiindex @ = (o, ..., aq) € N¥ set
d
Hea, (.%‘l)
Heq(z) := HHeai (), ha(z) = H —— o] := Zai.
i=1 i Vol i
Then, L is diagonalized as
L= |a|lha){hal

aeNd
Foreachn =0,1,2,..., the eigenspace
&y = span{|hq) : |a| = n}
has multiplicity
d—1

dimé&, = #{a e N4 : |a| =n} = (TH_d_l).
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This degeneracy is due to symmetry. For any orthogonal transformation M : R¢ — R? and any
smooth f : RY — R, we have L(f o M) = (Lf) o M. Consequently, if |v,,) is a solution to the
eigenvector equation L|v,) = A,|v,,), so would its spherical rotations, and any vector sum of them
would have the same eigenvalue \,,.

This is similar to the case of solid harmonics in R?. In that case, A is also spherically symmetric, and
its eigenspaces accordingly are degenerate.

G.7 UNITARY TRANSFORMATIONS OF GAUSSIAN SPACES

Consider two Gaussian spaces L?(N(0, 1)), L?(N(0,X)). One of them is standardized, the other is
not. Since many properties of the Hermite polynomials are derived over the standard Gaussian space,
we would like to translate statements in L?(N(0, 1)) to statements in L?(A(0, X)).

By the geometric view point, as long as a statement is cast in the language of Hilbert space geometry,
the statement will continue to hold true after any unitary transformation.

Now, suppose we have a matrix M such that MM " = ¥, then
Ex a0 [ (X)g(X)] = Ezono, 1 [f (LZ)g(LZ)]
Thus, we have a unitary transformation V' : L?(N(0,X)) — L*(N(0, 1)), defined by

(V@) = f(Mz), (V*f)(@)=f(M"2)

Note that the matrix M has an ambiguity: If MM " = ¥, then given any orthogonal matrix O, we
also have (OM)(OM)T = X. Thus, we can obtain an entire family of unitary transformations, one
per orthogonal matrix O. We will exploit this degree of ambiguity later.

Vectors can be transformed. So can operators. An operator A is transformed to VAV™*, so that
(VAV")(V]v)) = V(Alv)).

LAN(0,%)) —= LA(N(0,))

v] v

L2(N(0, 1)) vt L2(N(0, I4))

If an operator is represented as ) ay|wy)(vy,|, then its transformed operator is represented as
> anV|wy) (v, |V*. In particular, diagonalized operators stay diagonalized:

A= Z Anlon)(v,| = VAV* = Z A V]vp Yo, |[V*

Kernels are transformed in the same way as functions, since

Exn0,5) [Ey~no,s) [f(X)K(X,Y)g(Y)]]
=Exn0,12)) [Ey 0,1, [f (MX)K(MX, MY )g(MY)]]

G.8 SOME USEFUL PROPERTIES OF HERMITE POLYNOMIALS

Let i be the standard normal distribution on R!. For each n € N, define the normalized monomial
vector |vy,,) by the function “——, and define the normalized probabilist’s Hermite polynomial

v/ (2n—1)!
vector |h,,) = \/% He, (z).

They are both sequences of unit vectors in L?(;). However, the sequence |hq), |h1), . .. is orthonor-
mal, but the sequence |vg), |v1), ... is not orthonormal, and in fact, is increasingly ill-conditioned.

By looking up a standard reference table, we have the following basic properties:

1. |ho), |ho),|h4),... are obtained by Gram-Schmidt orthonormalization of
[vo), |va), [va), - ...

2. |h1),|h3), |hs),... are obtained by Gram-Schmidt orthonormalization —of
[v1), [vs), |us), . ...
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|5] .
h) = V! i (=1)™/(2n —4m — 1)
m=0

2mml(n — 2m)! [vn—2m)

4. |vp) =300 My |hum) where M is an invertible lower-triangular matrix satisfying

n! 1
M _ p—
n2m Vv (2n =D 2mml/(n — 2m)!
_ —(~1)™\/(@n — 4m — )I!
My n—zm = V1 2mml(n — 2m)!

for0 < 2m < n.

— dm-DM =y mod 2
<Un|vm> — @Cn-1)1(2m—-1)!
else

In particular,

V@2n—1)2n —3)(2n —5)(2n —T7)

(vnlvn—a) = (2n—1)(2n — 3) ’
(onlon_s) = Vv (2n —1)(2n - 3)
n n— 2n _ 1 b
<U7L|Un> =1,
2n+1

(vnfvn+2) = Ven+1)(2n+3)

(2n+1)(2n + 3)
2n+1)(2n+3)2n+5)(2n+7)

(Un|vnta) = \/(

A useful operator is M, the multiply-by-z operator, which, using the multiplication formula
zHe,, = He, 41 + nHe,

gives

M, = Z V4 Uhni1) (hnl + Vo4 ) (A
n

It is equivalently expressed as M, = a+a*, where a = > +/n + 1|hy,)(hn41] is the lowering ladder
operator. Furthermore, because He’n = nHe,,_1, the lowering ladder operator is the differentiation
operator D,. Therefore, a* = D} = M, —a = M, — D,.
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H PROOF OF THEOREM 1

In this appendix, we prove Theorem 1, which states that the eigensystem of a Gaussian kernel

1 0|2
Ky(x,x') = e~ 57 l2=2"[" on a multidimensional anisotropic Gaussian measure p = AN (0, X)
approaches the Hermite eigenstructure given in Definition 4 as ¢ — oo. To show this, we will obtain
exact expressions for the kernel eigensystem, then simply show that the eigenvalues and eigenvectors
are those predicted by the HEA up to terms that vanish as o grows.

We will proceed in three stages of successive generality:

1. We solve the problem for L?(p), where = N(0, 1) is the standard Gaussian. This is the
hardest stage.

2. We take an outer product of measures to solve the problem for L2 (1), where = N(0, I7).

3. We solve the problem for L?(u), where 1 = N(0, %), by taking an opportune unitary
transformation from L?(N(0,~)) to L2(N(0, 1)).

H.1 PART 1: THE 1D UNIT GAUSSIAN

We solve the problem for L?(11), where . = N(0, 1) is the standard Gaussian. Our approach here is
essentially the one used by (Zhu et al., 1997).

We first quote the Mehler formula (Mehler, 1866):
L ( p*(z* +y?) —2p:cy>
<p | —
V1= p? 2(1 - p?)

for any p € [0,+1). where Ay, is the normalized Hermite polynomial.

= Z pn hn (33) hn (y)

n=0

We multiply by (1 — p), and substitute with p = ™%, to make the form more beautiful:

v/ tanh(t/2) exp (— C 4—is_irzih)t_ 2xy> = Z(l —e e " hy () hn(y)

n=0

Define an integral kernel operator K; : L?(11) — L?(p) using the expression on the left:

o) = [ Vit e (-2 futay)

4sinht

The Mehler formula then states that K; is diagonalized as:

oo
Ke=Y (1=e e |hy)(hl.
n=0
Thus, we have successfully obtained a one-parameter family of integral kernel operators, all diagonal-
ized in the Hermite basis. Each operator has a Gaussian kernel. However, none of them matches the
form that we want: . ,
K(r,y) = ¢ 7=

In order to reach such a form, we need to construct {7 : 7 € R}, a one-parameter family of unitary
transformations L? (1). Then we will solve for 7, t, such that T ; V* has the desired kernel form.

For any 7 € R, define the squeezing operator T, : L?(11) — L?(p) by
27

(T f) () = ™27 7 f(eTa)

This is unitary by direct integration and change of variables. It is a one-parameter family, and it
satisfies

T::T—T? TTloTT2 B
We can interpret this one-parameter family as a continuous “rotation” in L?(y). Except that, because
L?(11) has infinitely many dimensions, the rotation need not return to the starting point. Concretely,
consider what happens when the Oth Hermite vector |hg) is rotated. The family of vectors T’ |ho)
would not turn back towards |hg) again. Instead, it continues to rotate further and further away, with

1
ho|Tr|hg) = —— — 0
<0| ‘0) m
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as 7 — co. Such behavior is possible, because there are infinitely many dimensions to rotate to.

The one-parameter family 7). can be written as T, = e™“, where A is the infinitesimal generator of
the family:

1 1
5(1 —2%) = He; D, + EHGQ

Using the multiplication and differentiation formulas of the Hermite polynomials, we have

A= 8‘1"7':01—'7' — xDm +

1
AHe,, = —i(Hen+2 —n(n —1)He,_2),

1
A%He,, = Z(HenH —2(n?* +n+ 1)He, +n(n —1)(n — 2)(n — 3)He,_4)
Thus,
n?+n+1

2
Therefore, the angle between |h,,) and T |hy,), at the limit of small 7, is

2 1
arccos(hy|e™ | h,) = 1/ %T +0(7?)
Equivalently, since

A|hn> - _% V (n + 1)(7’l + 2)|hn+2> + %\/ n(n — 1)|hn—2>

we see that the operator rotates |h,,) in the direction of |h,,42) and |h,_2) simultaneously. This
explains our previous statement that €7 rotates |h,,) further and further away, towards |h ).

<hn‘A|hn> =0, <hn|A2|hn> =

Now, for any two function f, g, we have
(fIT, K T?|g) = / / (T £) (@)K (2, y) (T ) (9) ()l )
- / / F ) K 7 (11, 0) g (0) o) (o)

where the transformed kernel is

27 _ 4

K (z,y)=¢ee” "7 (12+y2)K(eTx,eTy)

Consider the previously solved case of K = K. Plugging it in, we find that 7 KT’ is an integral
kernel operator with kernel function

27-_1 —t,27

Kt,r(x,y)ZeT\/mexp(—(e — = )@+ y?) + o~ )

4sinht 2sinht
To match the target form K (x,y) = exp(—(z — y)?/(202?)),

e’r 1 2T —1  ete? 1

2sinht o2’ 1 T dsmnt 207

Eliminate 2™ and solve for ¢, we have 02 = et + ¢t — 1, that is,

02 = 4sinh?(t/2), t = 2arsinh (c/2)

Plug it back,
-~ 2sinht _ 4
e?m = o tanh(t/2)" " =4/1+ o
So the prefactor simplifies to e™/tanh(¢/2) = 1, hence
—y)? 1 4
(T-K:T7)(x,y) = exp (_(55202?;)) , t=2arsinh(c/2), 7= 1 In <1 + 02)
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The diagonalization of T KT is
T KT = (1= e e ™Iy hy) (hn| T
n=0
Thus, the eigensystem is
eigensystem(u, K) = {(1 — e ")e ™, Ty|h,) :n=0,1,2,...}
At the 0 — oo limit, we have
t=2Ino+2/c>+0(c™?), 7=02-20""4+0(c79
)2

Now, the Hermite eigensystem corresponding to e~ 202
that the HEA is proven:

(1 _ e—t)e—nt

Cn

2 1
arccos (hn |[Tr|hn) = 1/ %0_2 +0(c™)

We also see that, for any fixed n, the rate of convergence is on the order of no =2 = ncyy1/c,. We
will show in the next few sections that this is a generic phenomenon.

is HE(1, (cp,)) with ¢, = 072", we see

=1-2n+2)0 2+ 0(c™?),

In general, if a kernel has coefficients ¢, decaying at a rate of ¢, then the n-th entry in the kernel’s
eigensystem converges to the corresponding n-th entry in the Hermite eigensystem, at a rate of O(e).
The constant in O(e) increases with n, so that the convergence is not uniform. The higher-order
entries converge slower.

H.2 PART 1 BONUS

We can diagonalize K (z,y) = /7" in the same way:
1
K(z,y) = (1—-2/0*)"Y2K, .(z,y), t=arcosh (6%/2), 7= 1 In (1 - )

Thus, its eigensystem is
eigensystem(p, K) = {(1 —2/0%)"2(1 — e H)e™, Ty|hy) :n=0,1,2,...}
At the 0 — oo limit,
t=2lno—0*+0( %), 7=-0"1+0("%

yielding
1— —t\,—nt
% =14+t +0(?),
2 1
arccos (hp|Tr|hn) = —4/ %074 +0(c78)

4

This case is special, in that the convergence is on the order of no~* = n(cy1/c¢)?, which is faster

by one order of magnitude than the generic case.

To understand this, we directly expand the operators. The operator for exp(—(z — y)?/20?) has
expansion

Kexp(f(zfy)z/Zo'z) =TI+ 0-_2(|h1><h1‘ - Mg) + 0(0_4)
where we note that the multiplication operator M, is self-adjoint, with expression

M, = Z vn + 1|hn+1><hn‘ +vn+ 1|hn><hn+1|

Because M2 is not diagonal in the Hermite basis, the operator K oxp(—(x—y)? /202) 18 not diagonal at
the o2 order, and perturbation occurs at that order.

In contrast, the operator for exp(zy/c?) has expansion
Kexp(ay/o®) = 1+ 0 2[ha){h] + 074 (|ha) + 2712 |ho)) ((ha| +27/*{ho|) + O(c %)

Therefore, it is not diagonal at the o~* order, and perturbation occurs at that order.
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H.3 PART2
We take its product, to solve the problem for L?(u1), where p = N(0, I).

=~y
The kernel K (x,y) = e~ 200 decomposes into a product of kernels:

K=K

Z ®(1 —e e " Ty ha,) (ha, | T7

aeNd i=1

Y (= )l T ha) (ha|(TF)"

aeN?

So, its eigensystem is
{1 —eHdelelt T®|py) : a € NYY

At the 0 — oo limit, using the previous result, each eigenvalue converges as

(1 _ eft)def|a|t

Clo

=1-(2lal+2d)07 2 +0(c™?)

and each eigenvector converges as

d 2
; . i+ 1
arccos(he | T4 he) = \/21—1(% 2+ @it )072 +0(c™)
H.4 PART3
We solve the problem for L?(p), where 1 = N(0, 3), by taking an opportune unitary transformation
V: L2(N(0,X)) — L2(N(0, 1)).
As previously stated, if MM T = X, then V : L2(N(0, X)) — L2(N(0, 1)) defined by

(V)(@) = f(Mz), (V" f)(z) = f(M"2)
is unitary.

le—

. . B .
Now, define the operator using the kernel function K (x,y) = ¢~ 2.2 . With the unitary transfor-
mation, its kernel becomes

_(m—y)TMT M(z—y)

(VKV*)(x,y) = K(Mx, My) =e 252
Therefore, the kernel decomposes if M " M is diagonalized. This can be solved by taking the SVD of
the covariance matrix as ¥ = UT'U T, where I' = diag (71, . . ., 74), then we can set
M =Ur'/?
so that V KV™ has kernel J
_ (=i—yy)?
H e 2(o/y77)?
i=1

Thus, VKV* diagonalizes as

d
VEV = Y [0 e e @l Ty |ha, ) (@4, Ty,

aeN?di=1

hai))*
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where t;, 7; are defined by

1 4ry;
t; = 2arsinh (0/2\/%;), 7 = Zln (1 + 22 )
Now, we convert this back to K to obtain
d
K=Y [0 —e™e V" @, Trlha)(V* QL Trilha)®
aeNd i=1

At the limit of ¢ — o0, the eigenvalues converge to

d

[Ja—e et = <02'a' HW) (1— (2le| +2d)o™% + O(c™ %))

i=1
at a rate of o~ 2.

As before, the eigenvectors converge to V*|hy ) at a rate of 4/ waﬁ. Since
(V*ha)(®) = ha(T 72U T2) = B ()

the theorem is proven fully.

Similarly to the case in Appendix H.2, the kernel K (x,y) = e® v/’ converges to the Hermite
eigensystem at a rate of O(o~*), one order of magnitude faster.
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I PROOF OF THEOREM 2 IN ONE DIMENSION

In this appendix, we prove Theorem 2 in the special case of one dimension. The general case is proven
in Appendix J. The proof of this case is easier than the general case since there is no multiplicity. The
ideas in the proof would be reused in the general case.

Appendix 1.1 is a reference sheet quoting several theorems we need for the proofs. The reader can
skip it and refer back when needed. Appendix .2 states Theorem 2 rigorously as Theorem 5, then
shows that it is a special case of a more general theorem (Theorem 6). The next section proves
the general case. Appendix [.3.1 shows that the eigenvalues of the kernel converge to the desired
form with relative error decaying at a rate of O(e). Appendix 1.3.2 leverages this to show that the
eigenvectors also converge to the desired form at a rate of O(e).

I.1 SETUP
We need to quote some big-name theorems for later use.

We will need to cut up the spectrum of an operator into segments, each falling within an interval. The
following theorem allows us to construct tight enough bounds on the intervals. It is a special case of
the general Courant—Fischer—Weyl min-max principle, strong enough for our purpose. Our special
case avoids the part about essential spectrum, which makes the general statement inconvenient to use.

Theorem 3 (Courant-Fischer—Weyl min-max principle). Let A be a compact, positive semidefinite
operator over a Hilbert space H. Let its eigenvalues be enumerated as \y > Ao > -+ > 0. They
can be finite or infinite. Then,

A= max min (z|Afe) (46)
dim M=k [|z]/=1
min, ;giﬁKw\lx> (47)

M=F=1z]=1

Proof. The second equation is (Teschl, 2009, Theorem 4.10). The first equation is proven by
essentially the same technique as the finite-dimensional case.

Let v1, v, ... be its eigenvectors. If we set M to be the span of {v1] ..., vy}, then we have
Ar = min (z, Ax
k TEM < ) >
llzll=1
So it remains to prove the other half.

For any subspace with dim M = k, it must have a nontrivial intersection with {vg, vgy1,...},
therefore, there exists some unit vector 2 € M, such that it has decomposition z = 3 i>k @iv;. With

that, we have
(@lAz) = lailXi <D lail* Ak = Ay
i>k i>k

O

The min-max principle has a corollary that we will use, more convenient than quoting the full
min-max principle.

Corollary 1 (Cauchy interlacing law). For any n x n Hermitian matrix A,, with top leftn—1xn—1

minor A,,_1, then
Ait1 (An) <A (An—1) <A (4y)

forall1 <i <n. (Tao, 2012, Eq. 1.75)

After bounding the eigenvalues, we will use the second theorem to bound the eigenvectors. However,
we need something more, because we need to bound the eigenvector rotations of segments of the
spectrum, and the segment may be badly separated within, even though it is well-separated from
other segments.
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Therefore, we need to handle the rotations reducing subspaces. A reducing subspace for an operator
A is a closed subspace V, such that A(V') C V. For self-adjoint operators, the reducing subspaces
are direct sums of eigenspaces. In particular, the span of an eigenvector is a reducing subspace.

Given a segment of the spectrum, A C o(A), we define V, as the reducing space of A. For example,
if A = {E}, then V} is the closed span of all eigenvectors with eigenvalue F. We also define Py as
the orthogonal projector to V.

The following theorem shows that, if a segment of the operator spectrum is separated by (1) from
the rest of the spectrum, then its corresponding reducing subspaces would only rotate by O(¢) under
an operator perturbation by O(e).

Theorem 4 (Davis—Kahan sin © theorem (Davis & Kahan, 1970)). Let A, B be self-adjoint
operators such that

* o(A) is partitioned into Ao, A1

* o(B) is partitioned into T, T

* The spaces V,, Vr, are of the same dimension. Similarly for V., Vr,.

* Ay is contained in an interval |z, y).

* Ty is disjoint from the enlarged interval (xz — 6,y + 9).
Then there exists a self-adjoint “angle” operator ©, such that the rotation operator
[ cos® sin©

. rotates V. to V. for i = 0, 1. Furthermore, the angle operator satisfies
—sin® cos @} Vi, to V1, f 0, ’ ste op i

lsin©] < |4 - Bl (48)

for any unitarily invariant norm |-|.

Intuitively, the operator © is just a diagonal matrix of angles, in a suitable orthonormal basis. The

cos® sin® . . . .
—sin® cosO performs simultaneous rotation in many (potentially infinitely many) 2-

dimensional planes, such that the two reducing subspaces of A are rotated to two reducing subspaces
of B.

operator

1.2 REDUCTION TO A GENERAL CASE

We clean up the form of Theorem 2 by performing a few WLOGs and reductions into Theorem 5, so
that we can deduce the theorem as a corollary of a more general Theorem 6. Alternatively, the theorem
can be proven by proving the more general, multidimensional case. This is done in Appendix J.
However, it may be worthwhile to study the following special case before reading the more general
case, since most of the proof ideas are present.

We begin with a convenient definition.

Definition 5 (fast-decay). A real-valued sequence cg, cq,... is fast-decaying iff there exists a
number € € [0, 1), such that ¢,,+; < ec,, foralln € N.

As in the proof of Theorem 1 in Appendix H, we can perform a unitary transform of L?(N(0,7)) to

L2(N(0,1)).

Next, we define a,, = WCTL so that
K = Zan|vn><vn|
n

By Stirling’s approximation,
(2n — 1! 1 /2n 2m
—_ = — =—(140(1
n! 2\ n \/7m( +0(1/n))

Therefore, if ¢, is fast-decaying with parameter €, then a,, is fast-decaying with parameters
2€, 810w,n/ /1. So, we can study the kernel >, ay,|vy,) (vy, |, with the fast-decaying condition directly
imposed on a,,. This makes the notation cleaner.
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Because (v, |hy,) = @n"f'l),, (see Appendix G.8), convergence to c,, is equivalent to convergence

10 ap | (v |hn) |2

With that, we can we restate the theorem we wish to prove, more rigorously:

Theorem 5 (The HEA holds for a fast-decaying kernel on 1D Gaussian measure). Let p = N'(0,1)
be the standard Gaussian measure, and let

K= Z an|vn) (Un]
n=0

be a dot-product kernel with fast-decaying coefficients a.,, with parameters €, then for any n € N,

there exists an eigensystem of K, written as (Ao (K), |vo(K))), (A1 (K), |v1(K))), ..., such that
()
an|(vn|hn )2

[£(lon(K)); [hn))] = Oe)

=14 O(e)

as € — 0. Furthermore, the scaling factor in O(€) depends only on the Gram matrix of the vectors
|’U0>, ceey ‘Un>

The above statement may seem oddly convoluted with “for any n € N, there exists...”, but this is
necessary, because the rate of convergence is not uniform over the sequence. In general, higher-order
eigenvectors converge slower than lower-order eigenvectors, which means the constant in the O(¢)
terms is larger for larger n, and no uniform-convergence rate exists.

The scaling factor in O(e) measures the speed of convergence for the n-th eigenpair. It is slower if
the Gram matrix of the vectors |vg), . . ., |v,,) is ill-conditioned, because in this case, the vectors are
almost linearly dependent.

Indeed, the Hankel moment matrices of most commonly used probability distributions, including the
uniform distribution, the gaussian distribution, and the exponential distribution, are exponentially
ill-conditioned (Chen & Lawrence, 1999). Therefore, we should expect the constant in O(e) to grow
exponentially with n.

Also, take note of the phrasing “there exists an eigensystem of K denoted as (A, (K), |vr(K)))r”,
because we allow K to suffer multiplicity. In these cases, the corresponding eigenspace would have
more than 1 dimension, and therefore there is freedom in choosing any orthonormal basis of the
eigenspace as “the eigenvectors”. The theorem states that, despite the multiplicity, there exists a good
choice of eigenvectors, such that they make a small angle with the canonical eigenvectors |0,,). This
will become especially relevant in the proof of the multidimensional generalization in Appendix J.

Because the orthonormal basis |hg), |h1),. .. is obtained by Gram—Schmidt orthonormalization on
|vo), |v1), - .., we can generalize it, this time with all epsilons and deltas in place for maximal rigor:
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Theorem 6. Let:
1. |vg),|v1),... be a sequence of linearly independent unit vectors in a Hilbert space, such
that their closed span is the whole space;
2. |00),|01), ... be the sequence obtained by performing Gram—Schmidt process on the
sequence;
Then, there exists a sequence of constants Cy,C1,...,> 0 and €y, €1,--- > 0, such that for all
neN, e€|0,¢e,], and all ag,ay,... fast-decaying sequences with parameters €, there exists an
eigensystem of the kernel K := 3 ay|vy)(vy|, denoted as (A, (K), [k (K)))k, such that

A (K) € an|{(On]vn) 2 (1 £ Cyre)

and
|£(Jvn (K)), [0n))] < Cre

Furthermore, the scaling factor C,, and the bound €,, depend on only on the Gram matrix of the
vectors |vg), ..., |Un).

Intuitively restated, the theorem says that as ¢ — 0, the eigensystem of the fast-decaying kernel
>0 o @nlvn) (v, rotates towards the canonical eigensystem at a rate of e.

The proof has two parts. The first part uses the min-max principle and lowest-order operator
perturbation (commonly used in quantum mechanics), to segment the spectrum of K into small
intervals of the form

An(K) € an|(0nlvn)[*(1 + O(e))
In particular, since a,, are fast-decaying, it shows that the eigenvalues are exponentially separated.

The second part applies Davis—Kahan twice, using this exponential separation of eigenvalues, to
show that | sin Z(|v, (K)), |K))| = O(e) and | sin Z(|v,(K)), |0n))| = O(e), for a cleverly-chosen
operator K.

Before we launch into the proof, we should look at a simple case that explains why this should be
true.

Consider the case of two dimensions. We only have |vg),|v1). In this case, the kernel K =
aplvo) (vo| + a1 |v1)(v1|. Diagonalizing the kernel is equivalent to finding the major and minor axes
of the contour ellipse defined by {|z) : (x| K|z) = 1}. This ellipse is the unique ellipse tangent to
the 4 lines defined by ag|(vo|z)|? = 1, a1|(vi|z)]? = 1.

Suppose we fix ag, and let a; — 0. Then, the lines of ag|(vg|7)|?> = 1 remain constant, but the
lines of ay|(vi|z)|? = 1 diverge to infinity. The ellipse degenerates to two parallel lines. Its minor
semiaxis rotates to become perpendicular to the two parallel lines, i.e. parallel to |vg). Therefore, the
eigenpair converges to (ao|{o|vo)|?, |90)).

Suppose we fix a; and let ag — oo. Then, the lines of a;|(v;|z)|? = 1 remain constant, but the
lines of ag|{vo|z)|?> = 1 converge to the origin. The ellipse degenerates to two line segments. Its
major semiaxis rotates to become the same as that line segment, i.e. parallel to ag|(vo|z)|?> = 1, i.e.
perpendicular to |vg). Therefore, the eigenpair converges to (a1 |(d1|v1)|?, |01)).

Intuitively, we see that for a given n, the effect of all @y, 41, an+2, ... terms in the kernel is a small
perturbation on the n-th eigenspace, and negligible because the parallel planes diverge to infinity.
The effect of all a,,—1,a,—2,...,aq is a large but fixed perturbation, forcing the n-th eigenspace
to be perpendicular to all of |v,—1), ..., |vg), but once that is done, their effects are also negligible
because the parallel planes converge to the origin.
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(a) The case of constant ag, and a1 — 0. The (b) The case of constant a;, and ag — oo.
ellipse degenerates to two parallel lines. The ellipse degenerates to two repeated line
segments.

Figure 21: Diagonalizing the kernel in 2 dimensions at the a; /ag — 0 limit.

1.3 PROOF OF THEOREM 6
1.3.1 PART 1
To show: A, (K) = an|{9n|v,)[2(1 4+ O(e)).

Proof. If a,, = 0, then all \,;, \,,1+1,--- = 0, and the kernel K becomes finite-ranked, with range
Span (|vg.n—1)). So the theorem becomes is trivial. Otherwise, we assume a,, > 0, which means
that all ag, . .., a, > 0.

We apply the min-max principle to obtain an upper bound of the form \,,(K) < ay,|{,|v,)]?(1 +
O(e)) and a lower bound of the form \,, (K) > ay,|(9,|v,)|[?(14+O(€)), thus completing the estimate.

For the upper bound, we use V' = Span(|vg.,—1)), then

W< s (oK)

z€Span(|voin—1))~"
[lz|l=1

sup > ag| (o) ?
)7 k=0

zeSpan(|vo:n—1
llzll=1

oo

= sup Z ay|(z|vg)|?

z€Span(|tn:c0)) k—n

lzll=1
[o ]
< sup  apl(zlv,)*+  sup > akl(wlon)]?
z€Span(|dn:00)) zeSpan(|in:co)) .yt 1
llzll=1 llzll=1
o0
= an|(On|vn)]?* + Amax ( > ak|Uk><Uk|)
k=n+1
oo
< ap|(Op|vg)[* + Tr ( > akvk><vk|>
k=n+1

o0
= an|(Onlvn) >+ )

k=n-+1
= ap|(n|vn)]? + anO(e)
= an|(Bnlvn)|*(1 + O(e))
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where the step Ajyax < Tr is because all a;, > 0.
Though unnecessary, we can concretely write down the upper bound as
An < an|<{)n‘vn>|2(1 + Ce)

where
o0

1 Qg 1 1
C=—"— — < -
|(On |vn) 2 k:zn;‘_l ane = [(On|vn)? 1 — €

For the lower bound, we use V' = Span(|vo.,,)), then

An > inf (x| K|z)
z€Span(|vo:n))
llzll=1

= inf Zak| (x| )|?

a:ESpdn(|v0 n))
llzll=

> Zak| (x| )|?

mESpan(|v0 7,))
llzl|=

The quantity is a standard problem in quadratic programming, with exact solution Apin (GY/2AG/2),

where A = diag(ao, . . .,an) and G = ((vi|v;));;— is the Gram matrix.
To see this, write z = > (., ¢;v;, then
|z||? = ¢! Ge, Zak\ z|vp)|? = (Ge)T A(Ge) = "G AGe.
c GAGc

So the constrained minimum of
Rayleigh—Ritz principle.

equals the smallest eigenvalue of G'/2AG'/? by the

Let M = G'/2AG"/?. We invert the matrix to use standard operator perturbation theory:

n—1
-1 1 T T
M~ = —unu,, + Z Pl
n =0 k

where uy = G~1/2¢y, is the k -th column of G—1/2. The perturbation Y7} a-uguf is order O(e)

compared to the unperturbed part iunuz

The unperturbed operator has maximal eigenvalue H H

perturbed operator has maximal eigenvalue:

1
”unH2 +a7 nz:iukuT i +O(€2)
an " ar k "

k=0

with eigenvector i, := u,/||uy|. The

Inverting the eigenvalue,

a’ﬂ an an— ~
Amin (G1/2AGY?) = N <1— / 1|u£1un|2+0(62)) ” n”2(1+0( €))

[[un?

Now, ||u,||? = e G~ e, and G~ is the Gram matrix of the dual basis of |vg.,,) in Span(|vo.,)).

In particular, because |0,,) is perpendicular to all of |vg), ..., |v,—1), the n-th dual vector is just
k)
<Un ‘i’n> :

[On)
(U |On)

2
Therefore ||u,||? = ’ =T |1{) IR and we obtain the desired lower bound

An > ap|{Bn|0n)* (1 4 O(€))
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Some comments on the constants in O(e).

In the above proof, we constructed an upper bound a,|(9,,|v,,)|?(1 + O(e)) and a lower bound
an |(n]on) (1 — O(e)).
The constant in the upper bound is
1 1

[(Onlon)|? 1 — €
which depends on | {2y, |v,,)|? = sin? 6, where 6 is the angle between |v,,) and Span(|vg.,_1)). We
see that the bound is pushed wider when either the coefficients become less strictly exponentially-
decaying, or the vector |v,,) leans into Span(|vg.,—1)), and thus becomes less orthonormal.

| 2

The constant in the lower bound is

1 R 1
a2 il = gt

= <Un|ﬁn>‘4‘ug—1un|2

= [{wnlon)*(Gr 11 0)?

n—1,n

Similarly to the previous case, G,ﬁlm gets larger as the vectors |vg), . . ., |v,) get less orthonormal,
which worsens eigenvalue convergence.

[.3.2 PART 2

Proof. If a,, = 0, then we can trivially select the n-th eigenvector to be |0,,). Otherwise, we have
ag, - .-, an > 0.

By the eigenvalue bound (that is, Part 1 of the theorem), the spectral gap around A, (K) is
min A, (K) = A (K| = an|(Bnvn) (1 + O(e))

Define the truncated operator K = > o @k|vk) (vg|. By Davis—Kahan,
- 2 .
| sin Z(vn (K), vn (K))| < —= 1K — Kl
an|(On|vn)[*(1+ O(€)) 8
2

= @l o P+ 09)

Tr [K—f(}

2 (oo}
B an‘<ﬁn|vn>|2(1 + 0(6)) k:zng-l o
= O(e)

Thus, we need only bound | sin Z (v, (K), 0,,)].
Because K lives inside Span(|vg.,)), we thenceforth restrict the Hilbert space to just Span(|vo.)).

Define the twice-truncated operator K = Zz;é ax|vi)(vk|. The eigenvalue bound applies to its first
n eigenvalues, and its (n + 1)-th eigenstate is the ground state, with eigenvalue 0 and eigenvector
[On)-
Thus, the spectral gap around its ground state eigenvalue is

min (A (K) = X5 (K)] = Au-a(K) = @t (Bt [0a-2) (1 + O(€)

By Davis—Kahan again,
|sin Z (v, (K), )| = | sin Z(v,(K), v, (K))]
< i 2
an—1|<vn—1|vn—1>|2(1 + O(G))
2
A~ a’ﬂ,
An—1{On—1]vn—1)*(1 + O(¢))
= O(e)

1K — Kllop
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O

There are two occurrences of O(¢) in the proof. Both can be bounded explicitly, to show that they
only depend on the Gram matrix of |vg), ..., |v,), as in Part 1.

The first O(e) has explicit upper bound constant

2 G 2 1 1
<
B P 000) 2, = o P 1= 1500

where the remaining O(¢) in ﬁ()(e) came from Part 1, which as we showed in Part 1, only depends

on the Gram matrix of |vg), ..., |vp).

The second O(e) has explicit upper bound constant

2
[(On—1lon-1)[*(1 + O(e))

where the remaining O(¢€) only depends on the Gram matrix of |vg), ..., |Up_1).
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J PROOF OF THEOREM 2 IN THE GENERAL CASE

In this appendix, we prove Theorem 2 completely. The general idea is to modify the proof given in
Appendix I to account for multiplicity.

Appendix J.1 presents the overall plan of the proof. Appendix J.2 sets up all the machinery needed to
handle multiplicity in eigenvalues and eigenvectors, which is a new occurrence in multiple dimensions.
Appendix J.3 states the theorem in full rigor as Theorem 7. The next two subsections prove two
lemmas that apply to generic operators, not just an integral kernel operator: Appendix J.4 shows
that the eigenvalues of a generic fast-decaying kernel splits into segments that are exponentially
separated, and Appendix J.5 sharpens this separation into proving that the eigenvalues in the N-th
segment are only slightly perturbed by all the other segments. Appendix J.6 specializes to the case of
a dot-product kernel, showing convergence of the eigenvalues, and then leverages that convergence
into the convergence of eigenspaces.

J.1 PLAN OF THE PROOF

Let K(z,y) = > oo, < (x "y)" be a dot-product kernel with fast-decaying coefficients c;,.

As in Appendix H.4, to study a spherically symmetric dot-product kernel over a nonstandard Gaussian
distribution AV (0, 3), we construct a whitening unitary transform V' : L*(N(0, X)) — L?(N(0, 1)),
thus converting the problem to solving for the eigenstructure of a spherically asymmetric kernel over
the standard Gaussian distribution.

Let the SVD of X be UTU ", where I' = diag (71, ...,v4) With v1,...,74 > 0. Define V by
(Vf)(x) = f(Mz). This then converts the operator K to V K'V*. The operator VKV* is a kernel
operator with kernel function satisfying

oo

Cp, n
(VKV™)(z,y) = Z E(lelyl + 0+ YaTaya)

n=0

We will prove that the eigensystem of VK'V* converges to

d
{ <qa| ITe ha>> forall o € Ng}
i=1

as € — 0. Then, by reversing the V' transform, we find that the eigensystem of K converges to

d
{ <C|a| H»YZ‘%’ h(f))) forall « € Ng}
i=1

as desired.

We eliminate a pesky special case: one or more of 71, ..., 74 may be equal to zero. In this case,
VKV* may not be positive definite, but merely positive semidefinite, which is annoying. For
example, what if y5 = 4 = 0? Then the operator V K'V* splits to two halves. It is the zero operator
on Span (ea, e4), and it is positive definite on Span (e1, es, e5,. .., eq). Then we can separately
prove the eigensystem convergence on the two halves, and take their tensor product. The case of zero
operator is obviously trivial, since its eigensystem is just

{(0,R(as,01)))) forall (as,as) € NG}
Thus, WLOG, we need only consider the case where 71, ...,v4 > 0.

We note that, at least in one case, the theorem has been proven: If ¢,, = 02" for some o, then it is
just a minor variant of Theorem 1, which has been proven in Appendix H.2.

Thus, if we prove that the difference between the eigensystem of V K'V* and the eigensystem of
ce® ¥/7% vanishes at € — 0, for some well-chosen values of o, ¢, we are done.

This cannot be done directly, once again due to nonuniform convergence: The higher-order parts of
the eigensystem is wilder, and harder to control. To bypass this difficulty, we divide and conquer.

We prove that the eigensystem of VK V* is “segmented” into exponentially separated intervals, such
that each segment is e-insensitive to perturbations in all other segments. This allows us to show
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that, for any fixed n € Ny, the n-th segment of eigensystem(V K'V*) — corresponding to the term
cn(z TTy)™ — converges to the n-th segment of eigensystem(K . ,7r,, ), Where ¢ = c,,e ™. Since

ce
the n-th segment of eigensystem(K ., 7ry,) converges to

d
{ (;;%H Qa ha>> forall @ € Ng, loe| = n}
i=1

the theorem is proven.

J.2  MACHINERY FOR MULTIPLICITY

The main difficulty, compared to the one-dimensional case, is that we must directly handle the
multiplicity of eigensystems. By this, we mean that in R, the Hermite basis is no longer of form
{|hn) }nen, but rather, {|ha)}aene. This creates degeneracy, that is, if Y. o; = >, a;, then
|ha)s |has) belong to the same eigenspace.

Concretely, define the Ornstein—Uhlenbeck operator V2 — 2 - V on L?(j14). In the d = 1 case,
its eigenvalues have no multiplicity, and its eigenvectors are precisely the normalized Hermite
polynomials {|hy) }neco.00- In the d > 1 case, its eigenvalues suffer multiplicity. Its n-th eigenspace

is {|ha) : || = n}aena, with (”;szl) dimensions.

This multiplicity is inescapable, because the Ornstein—Uhlenbeck operator is spherically symmet-
ric, and spherical symmetry inevitably leads to multiplicity. In our case, the dot-product kernel
Don (2 "T'y)" may have some entries of I" equal, which leads to (partial) spherical symmetry, and
thus multiplicity.

As a more famous example, the spherical harmonics in L?(R?) are the eigenvectors of the Laplacian
operator V2. Due to spherical symmetry of the operator, its eigenvalues have multiplicity, thus
it splits L?(R?) into eigenspaces. The n-th eigenspace is spanned by W degree-n
homogeneous polynomials.

Let’s consider the prototypical case that we want to study: the convergence of dot-product kernels
to the Hermite eigensystem. In RY, there are ("} %,") degree-n monomials, and ("}?") degree-n
Hermite polynomials. To obtain the Hermite polynomials, we cannot simply apply the Gram—
Schmidt process on the monomials individually. Instead, we need to apply the Gram—Schmidt process
simultaneously on each segment of ("/*!) monomials, to obtain the dimension-("}%7") subspace

spanned by the degree-n Hermite polynomials.

To count the multiplicity, we use a function m : N — N U {oo}. It should be interpreted as saying
that the n-th eigenspace has dimension m(n). For example, the multiplicity counting function for the

Ornstein-Uhlenbeck operator over L?(ug) is m(n) = (”Ziizl).

Note that m does not need to be strictly positive. That is, we allow m(k) = 0 for some k. We even
allow ), m(k) to be finite, in the case that the Hilbert space under consideration is finite-dimensional,
although we require ), m(k) > 0, for otherwise it would be completely trivial.

For convenience, we will from now on assume that either m (k) > 0 for all k, since we do not need
more generality. The reader who needs this generality can read the next few sections and mentally
generalize the constructions.

The most important condition on the multiplicity counting function is:
Definition 6 (polynomially bounded multiplicity). A multiplicity counting function is polynomially
bounded iff there exists some A, d > 0 such that m(n) < An forall n € N.

This is satisfied by the Hermite basis in any dimension, since its m(n) = O(n?~1).

Given a multiplicity counting function, we define a system of vectors that it counts:
Definition 7 (vector systems with multiplicity). Given a multiplicity counting function m, a vector
system with multiplicity m is an indexed set of vectors of form {vy; : k € N, 1 € [1: m(k)]}.

As in the last few sections, we will only consider vector systems that consists of linearly independent
unit vectors, and such that the closure of their span is the entire Hilbert space.

Similarly, we define a system of coefficient it counts:
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Definition 8 (coefficient systems with multiplicity). Given a multiplicity counting function m, a
coefficient system with multiplicity m is an indexed set of real numbers of form {vy; : k € N,l €

[1:m(k)]}.

We next generalize the Gram—Schmidt process to handle multiplicity.

Definition 9 (Gram—Schmidt process on vector systems). Given a multiplicity counting function m,
and a linearly independent vector system {v,; : k € N, € [1 : m(k)]}, we define the Gram—Schmidt
process on the vector system by the following algorithm:

1. Construct an arbitrary orthonormal basis of Span(|vo 1), ..., |vgm())). Call them
[00,1), - -+ [00,m(0))-

2. Select the next smallest k& such that m(k) > 0, and project each of |vy 1), ..., |V m(x))
to Span (|9o,1), - - -, |ﬁ0,m(0)>)L, to obtain [v, 1), .- [V ()} then construct an arbitrary
orthonormal basis of their span. Call them |05, 1), ..., [0k m(k))-

3. Continue this way inductively.

Note that the Gram—Schmidt process is not uniquely defined, due to the steps where ar-
bitrary orthonormal bases are chosen. However, it constructs a sequence of subspaces
{Span (|0k,1), - - -, [0k m(x))) }eco:00, Which are uniquely defined.

Also note that even the traditional Gram—Schmidt process, without multiplicity, still is not uniquely
defined, because each ¥y, could have been —9y, instead. That is, there is a {—1, +1} ambiguity per
step. Now, note that {—1,+1} is just O(1), the orthogonal group on R!, and we see that it is a
general phenomenon: In general, the Gram—Schmidt process with multiplicity m creates an O(m/(k))
amount of ambiguity at step k.

Each vector system defines a positive semi-definite kernel

oo m(k)

K= Z Z ke 1 |Vk1) (k1]

k=0 l=1

for any indexed set of non-negative scalars {vy; : k € N, € [1: m(k)]}, provided that all aj; > 0,
and Ek,l Qg1 < 0.

To handle the multiplicity of eigensystem(K), we need to make four changes.

1. Generalize the definition of “fast-decaying coefficients” to fast-decaying segments of coeffi-
cients.

2. Prove that segments of adjacent eigenvalues are exponentially separated.

3. Prove the convergence of reducing subspaces (i.e. direct sums of eigenspaces), rather than
eigenvectors.

4. Prove the convergence of whole segments of eigensystem(K), rather than individual entries
like (A, (K), |vn(K))).

A fast-decaying sequence of coefficient segments with the specified multiplicity m is obtained by
slightly loosening a fast-decaying sequence of coefficients, so that instead of individual coefficients,
it is segments of coefficients that are now decaying exponentially. This will force segments of the
eigenvalues to be well-separated as well, and thus their corresponding reducing subspaces.
Definition 10 (fast-decay with multiplicity). A coefficient system cy, ; is fast-decaying iff there exists
a sequence of numbers ;o € (0,1], and a number € € [0, 1), and a sequence of numbers ¢,,, such
that

Cn,l € [Enélow,'ruE'nL Cn+1 < €cp, Vn € N
We say that such a system is a fast-decaying coefficient system with parameters (€, 610 n,, Cn)-

For example, a fast-decaying sequence is a fast-decaying system where the multiplicity counting
function is m(k) = 1, and all 6;,,, = 1. We will show that the coefficient system of a dot-product
kernel ) %(mTFy)” is fast-decaying in Appendix J.6.
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Given a polynomially bounded multiplicity m, a vector system for m, and a fast-decaying coefficient

system, define
K=Y anilvk) (vl
ko1

It is positive semidefinite and has finite trace. Therefore, its spectrum is discrete, and except for
zero, each of its eigenvalue is positive and has only finite multiplicity. Therefore, its eigensystem is
well-defined.

Definition 11 (eigensegment). Given K, a positive semidefinite operator with finite trace, enumerate
its eigenvalues as A\g; > .-+ > )\O’m(o) > A1,1 = -+ > 0, counting eigenvalue multiplicity.
Construct a corresponding orthonormal eigenbasis |vy ;).

If all Ap1,..., Ay m(n) are distinct, then the n-th eigensegment of eigensystem(K') is the set
{(An1,Span (|vp))) : 1 € [1 : m(n)]}. Otherwise, if A\, 1 = Ay 2, and all others are distinct,
then the n-th eigensegment of eigensystem(K) is the set

{ (A1, 8pan ([vn,1), [vn,2))), (An,2, Span ([vn.1), [vn,2))) H{ (An 1, Span ([vn,1))) = 1 € [3 - m(n)]}
In general, the eigensegment is obtained by merging degenerate eigenspaces.

Despite the valiant effort in removing ambiguity, the above definition still has some residual ambiguity:
If unluckily, Ay (k) = Ak41,1. then the reducing subspaces of the k-th and (k + 1)-th eigensegments
are not uniquely defined, since we can rotate the eigenvector pair [vx41,1), |V m(k)) arbitrarily.

Fortunately, we will demonstrate that the residual ambiguity disappears in the ¢ — 0 limit for
fast-decaying kernels.

Finally, we need to define what it means for two eigensegments to be close together:
Definition 12 (eigensegment bulk closeness). Given two eigensegments of equal length, let
An,1s -+ Anm(n) be the eigenvalues from the first segment, and A}, ..., A m(n) from the second.

n,1»
We say that they are e-close in bulk if
Ani — )\;17l| < emin(\, g, )‘;171) VI € [1:m(n)

In bulk? Indeed, due to the annoyances of degeneracy, we would first show that the eigenvalues
converge as O(e). After that is done, we can set e small enough so that it will force the eigenspaces
to match up as well, and thus does bulk closeness resolve into detailed closeness.

Definition 13 (eigensegment detailed closeness). Given two eigensegments of equal length, we say
that the two eigensegments are e-close in detail if they are e-close in bulk, and for each eigenspace
V" in the second eigensegment, there exists one or more eigenspaces V7, . .., V5 in the first, such that
cos® sin®

there exists a unitary angle operator O, such that [ §in® cosO

} rotates V1 @ - -- @ Vs to V/, and
[|sin©||op < €.

See Appendix I.1 and (Davis & Kahan, 1970) for details on the meaning of the angle operator.

o cos® sin®
Intuitively, the operator {_ sn® cosO
Hilbert space. It performs simultaneous rotation in many (potentially infinitely many) 2-dimensional
planes. To say that || sin ©|],, < ¢ means that in every single one of these planes, the angle of rotation
is < arcsin(e).

} is the generalization of multidimensional rotation to a

The definition is by design asymmetric, because we will show that if one source eigensegment (think
of the dot-product kernel’s eigensystem) is always O(¢)-close to a target eigensegment (think of the
Hermite eigensystem) in the coarse sense, then as e — 0, the source eigensegment will be forced to
be O(e)-close to the target eigensegment in the detailed sense. We would rather not hit a moving
target with a static gun, but hit a static target with a moving gun.

We point out that even “convergence in detail” does not imply convergence of every and each
eigenvector, because a degeneracy in the target eigensegment may stubbornly remain broken in the
source segment. For example, it is possible that \, ; = Ay, exactly in the target eigensegment, but
An,1 7 Ap,2 in the source eigensegment. In this case, the eigenvectors corresponding to Ay, 1, Ap 2

may be rotated by 45° compared to the chosen eigenvectors for Aj, 1, A7, 5.
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Concretely for our case of the dot-product kernels, this means that the kernel may have no degenerate
eigenvectors, but the Hermite eigensystem has degenerate eigenvectors. In such a case, the best we
can possibly do is proving that each eigenspace of the Hermite eigensystem corresponds to a direct
sum of the kernel’s eigensystem that is a small angle’s rotation away.

Concretely, suppose that we have ; = 72, then the Hermite eigensystem is degenerate, but we may
find that the kernel’s eigensystem stubbornly remains both nondegenerate and rotated by 45° askew
of the Hermite basis. For example, it might stubbornly insist on containing two non-degenerate

eigenvectors close to \/g(|h(0,1)> + |h(1,0y)) and \/g(|h(0,1)) — |h(1,0y))- This is fine, since their

direct sum does converge to Span (|h(0,1)), |h(1,0))), and that is the best that can be proven. One
cannot expect more to be proven given such degeneracy in the target eigensystem.

In the case of Theorem 2, before proving it, we saw why it should be true using a 2-dimensional
picture with ellipses (Figure 21). Here, we can also see why it should be true using a 3-dimensional
picture with ellipsoids.

Consider the case of three dimensions. We only have |vg 1), [v1.1), |v1,2). In this case, the kernel
K = ag1|vo1)(vo1] + a1,1|v1,1){v1.1] + a1.2|v1 2) (v1 2|. Diagonalizing the kernel is equivalent to
finding the principal axes of the contour ellipsoid defined by {|z) : (x|K|z) = 1}. This ellipsoid
is the unique ellipse tangent to the 6 planes defined by ag 1|vo.1){vo,1] = 1,a11|vi,1){v11] =
1, ay2|v1,2)(v1,2] = 1.

Suppose we fix aji,a12, and let ap; — 0. Then, the planes of aq1|v1,1){(v11
1, a1 2|v1,2)(v1,2] = 1 remain constant, but the planes of ag 1|vo,1){vo,1] = 1 diverge to infin-
ity. The ellipsoid degenerates to a parallelogram prism defined by the 4 planes. Two of its principal
axes rotate to become perpendicular to the 2 pairs of parallel planes, and essentially ignore ag ;.

Suppose we fix ai1,a12, and let apqy — oo. Then, the planes of aj 1|vi1){vi1
1,a1,2|v1,2)(v1,2] = 1 remain constant, but the planes of ag 1|vo,1)(vo,1| = 1 converge to the
origin. The ellipsoid degenerates to two flat parallelograms. Two of its principal axes rotate to fall
within the parallelogram, perpendicular to its 2 edges.

Intuitively, we see that for a given n, the effect of all an41,1,- -, Gnp1,m(nt1), Gnt2,1,. .. terms
in the kernel is a small perturbation on the n-th eigenspace, and negligible because the parallel
planes diverge to infinity. The effect of all a,,_1 m(n—1); @n—1,m(n-1)~1,- - -, @0,1 is a large but fixed
perturbation, forcing the n-th eigenspace to be perpendicular to all of |v,_1,m(n —1)),. .., |vo0),
but once that is done, their effects are also negligible because the parallel planes converge to the
origin.

(a) The case of constant ai,1,a1,2, and (b) The case of constant ai,1,a1,2, and
ao,1 — 0. The ellipsoid degenerates to a aog,1 — oo. The ellipsoid degenerates to
parallelogram prism. two repeated parallelograms.

Figure 22: Diagonalizing the kernel in 3 dimensions at two limits.
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Figure 23 shows the eigenstructure of K. On the coarse level, it is divided into exponentially separated
segments. The N-th segment contains m (V) eigenvalues clustered within an interval with order of
magnitude O(ay). As € — 0, the segments become ever cleanly separated, and also converging
closer and closer to the N-th segment of a target eigenstructure. The target eigensegment may contain
multiple eigenvalues with varying multiplicity. If a target eigenvalue A has multiplicity 3, then there
will be precisely 3 eigenvalues (counting multiplicity) falling within A(1 & O(¢)).

Notably, these 3 eigenvalues may be degenerate, or not degenerate. In either case, the direct sum of
their eigenspaces will have the same dimension as the eigenspace corresponding to A, and it will
make an angle of size O(e).

spectrum of K

0-th segment  1-st segment N-th segment

~ O(a) ~ O(a1) T ~e(an) T
AN AN, m(N)
] | 14| 1Y L]
ITTT | L I L
—
O(&Ne)
multiplicity = 3 1 4 3 )

target eigensegment

Figure 23: Structure of the kernel spectrum, zooming into one particular N-th segment. They
converge to a segment of the target spectrum according to multiplicity of the target spectrum.

J.3 STATEMENT OF THE THEOREM
The statement of the theorem is really unwieldy, so we write it out in a separate section.

A dot-product kernel

o0

Cn, T
Kay)= 3 2Ty
n=0
is defined by its level-coefficients ¢y, c1,- - - > 0. Given € > 0, it is e-fast-decaying if ¢,,+1 < ec,, for

alln € N.

The multiplicity counting function for it is m(n) = ("%, "). It is polynomially bounded.

We enumerate the eigensystem of K as

(>\O,1a V0,1)7
()\1,1a Vl,l)a vy (Al,da Vl,d)a
()\2,1, ‘/271), RN ()\27(01;1), ‘/é’(d;»l)),

An1s Vi) ooos (A, reamnys Vi, naasny),
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where the eigenvalues are arranged in decreasing order:
Aol > A >

In case of multiplicity, the same eigenvalue is written repeatedly. For example, if A has multiplicity 2,
then it is written out twice.

Each V},; is the eigenspace of Ay ;. In case of eigenvalue multiplicity, repeat the eigenspace. For
example, if A; 1 = A1 2 is an eigenvalue of multiplicity 2, then it corresponds to a 2-dimensional
eigenspace V. In this case, define Vi1 = Vi o = V.

We also need to perform a similar “merging” on the Hermite eigensystem:

d
{ (cn H’yf‘",Span (|ha>(2)>> :neN/|al = n}

=1

This merging is, unfortunately, nor exactly the same, because we can’t just say that if ¢,, Hle v =

Cn/ Hle ’yia ¢, then merge their eigenspaces, because we must not merge if n # n’, even if the
eigenvalues happen to be the same in this case. This is because, as € — 0, eventually ¢,, and c,,» will
differ so greatly, that this accidental degeneracy is broken. We must only merge eigenspaces that are
non-accidentally degenerate.

So why didn’t we do this for K7 Because K is much harder to control for! We know everything there
could be known about the Hermite eigenstructure, but K is a big unknown that we must laborously
control. One thing that is a big unknown about K is that we don’t know which eigenvalues are
accidentally the same, and which eigenvalues are non-accidentally the same. So we treat them
without special considerations. We know which are accidental and which are not for the Hermite
eigenstructure, so we treat them differently.

So, we perform a non-accidental merge of the Hermite eigensystem. For each n € N, we say that the
n-th segment of the Hermite eigensystem is

{ (cn ﬁ’yfi,Span (|ha>(2)>> el = n}
i=1

and within each segment, we merge the degenerate eigenspaces. For example, if it happens that
Hle v = Hle v; for |a] = |&/| = n, but no other & with || = n, then replace both
Span (\hg?)) and Span <|h(az,:)>> by their direct sum Span (\h,(xz)>, |h£§)>>

With all this set up, we can now state Theorem 2, this time with full rigor.

Theorem 7 (The HEA holds for a fast-decaying dot-product kernel on Gaussian measure). Let

1. X be a covariance matrix;

2. X =UTUT beits SVD, with T = diag (71, . ..,74);

3. p=N(0,%);
For any N € N, there exists constants Cy, Dy, ey, such that if € € [0, en], and K is an e-fast-
decaying dot-product kernel, the following happens.
For any element (\, V') within the merged N-th segment of the Hermite eigenstructure, there
exists exactly diim V' eigenvalues (counting multiplicity) of K that are in the interval \(1 +

Cne). Let their corresponding eigenspaces be V1, . .., Vaim v, then there exists a unitary operator
cos® sin® .
[_ SO  cos 9} that rotates Vi @ - - - @ Vaim v 1o V, such that || sin ©||,, < Dye.

J.4 PART 1: EXPONENTIAL SEPARATION OF EIGENSYSTEM SEGMENTS

For each segment N, we use the min-max principle to construct upper and lower bounds on its
eigenvalues.
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Lemma 1 (exponential separation of eigensystem segments). Given

1. a polynomially bounded multiplicity counting function m,

2. afast-decaying coefficient system cy; with parameters (€, 010w n, Gn ),
3. a linearly independent vector system |vy, 1),
4

. operator
oo m(l)

K = Zzakﬂvkl ) (Vi

k=0 1=1
then for any n, there exists constants €, C,, Dy, > 0, such that

)‘n,la ey Anﬂn(n) S [Cnafnv Dnan]

foralle € [0,¢€,].
The constants €, Cy,, D,, depend only on 0;64,0; - - - Oiow,n and the Gram matrix of the vectors

|U0,1>a ey |Un,m(n)>

We bound the entire eigensegment A 1 (K) > -+ > Ay () (K) by the min-max principle. This
is analogous to what we did in Appendix [.3.1, but simplified, because we do not need to produce
sharp bounds. That comes later.

For the lower bound, we use V' = Span (|v071>, cee |vN,m(N)>)
AN m(n) () > min (z|K|z)
z€Span(|v0,1),-, VN, m(n)))
l=ll=1
oo m(k)
oSS
‘TGSPan("’JO,l)amv‘”N,m(N)> k=0 l=1
l=|l=1
N m(k)
> min ak,i|(
II/’ESPaH(\f’oA)ww\ﬁN,m(N))) ];) ;
llzl|=1
a N m(k)
N .
> = min SN Kafora)?
min,N a:ESpan(hA)o,l), ,|17N‘m(N)>) =0 =1
lzll=1
an
= 5 )\min(G)
min,N
=Q(an)
where G is the Gram matrix of the vectors [vo,1), - . ., [Un m(n)). By assumption, these vectors are

linearly independent, so the Gram matrix is positive definite.

For the upper bound, we use V' = Span (|vo,1), - - -, [UN—1,m(n—-1)))-
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Ava(K) < sup (2] K o)

zESpan(|vo,1>,..‘,|vN_1‘m(N_1)>)L
l=]l=1
= sup (x| K|z)
z€Span(|on,1),.-.)
llzll=1
m) oo m(k)
- o Z an{efona) Onile) + Amax Z Z ke, [ VK1) (VR 1|
zeSpan(|on,1),...) =1 Mo
llzll=1
m) o m(k)
< sup Z an{zlon ) {(vnz) + Tr Z Z i [ve) (o
a:ESPanU’f)N,l>«,~~;|'DN1m(N)>) =1 W =
l=ll=1
m(N) m(N) o mik)
= Amax Z an i {(On,ilvn) (VN |0, ;) + Z Z oy
= i,j=1 k=N+1 I=1
use polynomial multiplicity
m(N) m(N)
<Tr Z an,1{(Oni|vn) (VN DN 5) + O(aye)
=1 i
m(N) m(N)
= > > anilinlon) (wnalin) + O(ave)
=1 i=1
m(N) m(N)
<an 33 (owalvna) (onalén) + Ofae)
=1 i=1
= O(an)

J.5 PART 2: CONVERGENCE IN BULK

Now that the spectrum is divided into exponentially separated segments, we can perform a surgical
extraction of each N-th segment of the spectrum, to cut off both the “head” part < N, and the “tail”
part > N.

Lemma 2 (bulk insensitivity of eigensystem segments). Under the same assumptions as Ap-
pendix J.4, for any n, there exists constants €, > 0, such that the N-th eigensegment is O(¢)-close
in bulk to the spectrum of the matrix

m(N) m(N)
Z an, i (On,i|vn) (VN ON )
=1 ij=1

foralle € [0,¢,].
The constant €, and the constant in O(€) depend only on dlow,05 Olow,n and the Gram matrix of the
vectors |vo,1), - - - [V, m(n))-

Intuitively, the lemma states that the eigensystem segments separate very cleanly. First, relative to the
N-th eigensegment, all the higher-order segments are O(¢)-small, and thus ignorable. Second, relative
to the IV-th segment, the only effect of the lower-order segments is to force the N-th eigensegment
into a safe subspace very close to the orthogonal subspace Span (\@N71>, cee \ﬁNm(N))), within
which the lower-order terms ao,1|vo,1) (Vo] -+ N —1,m(N=1) [UN=1,m(N=1)){UN—1,m(n—1)| all
vanish.

Stated in another way, the lemma states that the N-th segment of the spectrum of K is O(e)-close in
bulk to K. To obtain K, we first remove its tail D> e N1 E;i(ln) an,1|Vn 1) (vn 1|, then project to the
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space orthogonal to [vo,1), . . ., [Un—1,m(n—1)) to remove its head, to obtain

m(N) m(N)

K= Z Z an,i|on,:) (On,ilow) (un o ;) (O]

ij=1 1=1
The key of the proof is to ensure that each cut perturbs the eigenvalues by O(aye€), so that we would
extract something that is O(€)-close in bulk to the original eigensegment.

J.5.1 CUTTING OFF THE TAIL
We need:

Theorem 8 (Wielandt—Hoffman inequality (Kato, 1987)). Let A, B be self-adjoint operators, such
that C := B — A is a trace-class operator, then we can enumerate the eigenvalues of A, B, C as
@, Bi, i (including eigenvalue multiplicity) such that

> i =il <> il (49)

The tail of the operator K is the part that comes after the a,; coefficients. It is bounded in trace
norm:

o m(k) oo m(k)
Tr Z Zak,l|vk,l><vk,l| = Z Zak,z

k=N+1 I=1 k=N+1 I=1

where we use the polynomial bound m(k) < AkP.

Thus, by Wielandt-Hoffman, removing the tail perturbs the spectrum by only O(aye). Note
particularly:

1. all segments from the 0-th to the /N-th remain exponentially separated,;
2. the perturbed N-th segment is O(¢)-close in bulk to the original N-th segment.

J.5.2 CUTTING OFF THE HEAD
Cutting off the head is simply cutting off the inverted tail.

Having cut off the tail, we have a finite-rank operator

N m(k)
K= analvei) (vl
k=0 =1
that splits into two reducing subspaces V, V+, where V = Span (|0, 1), ..., |N,m(N))). It is zero

on V+ and positive-definite on V. Therefore, we drop down from the full Hilbert space to just V/,
where we can reason with matrices.

We express K in matrix form in the orthonormal basis |y ;), ordered so that [0y 1), . . ., |ON m(N))
come before |09,1), ..., [On_1,m(n=1)):
~ A B
K] = [BT C+ D]
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where the four matrices are:

A= 1" ana(dnilon ) (vnlon ;) ;

L =1 ij=1

[m(N)

B=| Y ani{oniloni)(onlon;)

L =1 iel:m(N), (n,j)€[0:N—1,1:m)]

_m(N)
C= Z an,i(On,jlvng) (vn

B 1)

(n,4),(n’,3")E[0: N—1,1:m]

L =1
[N—1m(N)

D=|>">" anilinlvns) Wnalin ;)
_n=0 =1

(n,5),(n’,5")€E[0:N—1,1:m)]

For a symmetric matrix in block form,

A B 1" [A! 0], [A'BSIBTA"l —A-l1BS-!
BT c+D| ~|0 o0 —S§-1BT A1 5-1

where S = D 4+ C — BT A~' B. We need several crude bounds on A, B, C, D, to prove that the first
term really is the bulk term, and the second term really is an order O(¢) perturbation upon the bulk
term, and thus we can safely cut it off according to the Wielandt—Hoffman inequality.

1. For each of A, B, C, their entries are all bounded in absolute values by O(ay ). Thus, their
spectral radii are bounded by O(ay ).

2. By Cauchy interlacing 1aw, Amin(A) > Amin([K]) = Q(ay). Thus, the spectrum of A is
O(ay), and the spectrum of A~ is O(ay').

3. Notice that the matrix D is constructed similarly to the matrix [K], except with one
more truncation. Therefore, by the same argument, its least eigenvalue is on the order
of Q(d]vfl) = Q(@N/G).

4. Therefore, BT A=, A~1 B have entries bounded in order O(1), and BT A~! B has entries
bounded in order O(ay).

5. Therefore, S has the same spectrum as D with an order O(ay) perturbation. Since D
has smallest eigenvalue Q(ay_1), so does S. Therefore, S~! has largest eigenvalue

O(l/d}vfl) = O(G/d}v).

Thus, the N-th segment of the eigenstructure of K, inverted, is O (€)-close in bulk to the eigenstructure
of A~L. Inverting again, we find that it is O(€)-close in bulk to the eigenstructure of A.

J.6  PART 3: THE SPECIAL CASE OF DOT-PRODUCT KERNELS

Recall, we need to show that, in the standard Gaussian space L?(N(0, 1)), an operator K defined
by kernel ), <+ (" I'y)™ converges to the Hermite eigensystem. Here, I' = diag (71, . . ., 7a) with

Y15y > 0.

Before applying the two generic lemmas. We need to first show that the kernel does have a fast-
decaying coefficient system. This is because, even though c,, is a fast-decaying coefficient sequence,
it does not automatically imply that K has a fast-decaying coefficient system if we express it in the
monomial vector system.

Once this is done, we apply Appendix J.4 to conclude that the kernel’s spectrum is divided into
exponentially separated segments. Then, we “hopscotch” through several eigenstructures, until we
show that the N-th eigensegment of K is O(e)-close in bulk to the N-th eigensegment of a stretched

dot-product kernel ce€@ TY)  This argument is nearly the same as the proof of Appendix J.5, with a
small extension to account for the special structure of dot-product kernels. Finally, we hopscotch
again, applying Davis—Kahan at every step, to prove that the eigenspaces also converge as O(e).
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J.6.1 COMBINATORICS WITH THE MONOMIAL BASIS
In analogy with the multidimensional Hermite vector system

d d
= ® |hai> = Hhaz (-751)

we define the multidimensional normalized monomial vector system, by taking the tensor product of
the single-dimensional normalized monomial vectors:

d a
[va) = ®|Uai> = Hm

Both of them are vector systems over the polynomially bounded multiplicity counting function

o (134)

The n-th segment of the monomial vector system consists of {|va) : || = n}, and similarly, for
Hermite, {|hq) : || = n}.

The Hermite vector system is obtained by the Gram—Schmidt process on the monomial vector system.

Now, consider the form of the dot-product kernel function:

K(z,y) : Z (Zw;;) Z Zal (Hvx y)

" lal=n

In bra-ket notation, the operator is

k=3 Y wlT () e

n=0 a:|a|=n i=1

Since ¢, is a fast-decaying sequence, it remains to show that the quantity

d o
(9, — 1)1
max <% (20 ) )
o¢:|oc|:7’LZ_:1 ;!

grows at most exponentially with n. Once we show that, we know that the coefficient system is also
fast-decaying. Equivalently, we need to show that

d
200
r‘na‘ux (ai In(v;/2) +1n ( al))
a:|la|=n Q;
i=1

grows at most linearly with n. Note that, because such a bound on does not depend on the choice of
the fast-decaying sequence c,, it allows us to change ¢, to any other ¢/, with the same decay rate ¢,
and still get a fast-decaying coefficient system.

First term is trivial:
Zaz In(~;/2) € [n mln]ln(%/Z) n m[?x] 1n('yl/2)} O(n)
€

f(k+1)
f(k)
strictly monotonically increasing. Therefore, f is strictly log-convex. Therefore, o +—

To bound the second term, we do some combinatorics. Let ay := (%) then we have

4- k+1
Zi:l In f(ay) is strictly Schur-convex. Thus,

d
Z In f(ag)
i=1
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achieves its upper bound at (n,0,...,0), and lower bound when all «y, are as close to equal as
possible.

Upper bound:
2n 1
In f(n) =1In ( n) =2nln2— 5 In(mn) + O(1/n) = B(n)
Lower bound:

dln f(n/d) = dIn <2://j

In fact, we have shown that the coefficient block is very tightly clustered:

) =2nln2 — %IH(FN/CZ) +0(1/n) = O(n)

d
;ln flag) =2nIn2 — %ln(wn) + [~ InVd, 0] + O(1/n)

for all v satisfying || = n.
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J.6.2 CONVERGENCE IN BULK

Like the general case, the proof has multiple parts. First, we apply Appendix J.4 to conclude that
K has exponentially separated eigensegments. Then, we hopscotch through multiple eigensystem
segments to show eigensegment convergence in bulk, as in Appendix J.5.

oo

CTL n
N-th segment of K(x,y) = Z E(’ylmlyl + o 4 VaTayd)
n=0
o
N
i Cn n
N-th segment of K (x,y) = Z E('ylxlyl + o 4 VaTaya)
n=0 "

(0-th segment of [K]~*)~!

(eigensystem of just the a part of [K]~1) ™!
provided that ¢y = cx
(eigensystem of just the ay part of [K']~1) ™!
O(e)

(0-th segment of [K']71)~?

/
i,(’lel’yl + o+ varaya)”

Dﬂaz

N-th segment of K’ (x,y) =

Il
o

n

o

n

N-th segment of K'(x,y) = , (mziyr + - + vaxaya)"

WE
3 |

3
I
o

H set K’(a:,y) — Cee(mTFy), where ¢ = CN/eN
N-th segment of K'(z,y) = c%eﬁ(wTFy)
€
low@
. d
N-th segment of { <xe°‘ H%_ai’
¢ i=1
d
{<CN ITe |ha>> forall a € N§, |a = N}
i=1

ha)) forall @ € Ng}

Figure 24: Hopscotching through eigensystems.

The new trick here is that we avoid solving for the /N-th eigensegment of K, by going down then up
again, arriving at a previously solved kernel as if taking a subway.
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J.6.3 CONVERGENCE IN DETAIL

We have successfully proven the source eigensegment converges in bulk to the target eigensegment.
It remains to prove convergence in detail. This requires breaking degeneracies in the source eigenseg-
ment whenever the degeneracy is broken in the target eigensegment (but not vice versa), followed by
applying Davis—Kahan once per target eigenspace.

Fix some N. The IN-th target eigensegment is

d
{ (CN H’yfhv
i=1

Some of the eigenvalues in it may be equal, because {In1, ..., In v;} may be N-linearly dependent.'?
Therefore, merge the eigenvectors with equal eigenvalue into eigenspaces. The eigenspaces have
distinct eigenvalues. Note in particular that this constitutes a static target: The coefficients cg, c1, . . .

ha>> forall @ € N, |a| = N}

@

i =cN H?Zl fy? ¢ for one choice of the coefficients, then it is so for

may change, but if ¢y H?Zl o
all choices.

Now, fix one such eigenspace V' and its corresponding eigenvalue ¢y (. Let the N-th segment of K

be

{(enCn 1 (K), luna(K))), -5 (enCnmvy (K, [unmvy (K))) }
where we do not yet demand that the eigenvalues are all distinct. If some of the eigenvalues are
unluckily degenerate, we just tolerate an arbitrary choice of the eigenvectors for now.

As previously argued, it is O(e)-close to the target eigensegment in bulk. Therefore, for small
enough e, the source eigenvalues cy(n,1(K), ..., cNCn,m(n) (K) will be corralled around their
corresponding target eigenvalues, like iron filings around magnets. Because there are only m(N)
source eigenvalues to go around, each target eigenvalue can only grab exactly as many source
eigenvalues as its multiplicity. In particular, this means that these “herds” of eigenvalues may be
highly degenerate together, they are separated from other herds by ax©(1).

In particular, this means ¢ ¢ will be able to grab exactly dim V' source eigenvalues, so that they
are all stuck within an interval ¢ (¢ & O(€)). Enumerate these as cnCn iy (K), - . ., eNCN g v ().
Let their eigenvecters be |vn 4, (K)), ..., [UNigm (K)), and let the vector space spanned by them
be V. This is a reducing subspace of K, and one that we wish to show as O(¢)-close to V.

Follow through the hopscotching diagram again. At each step in the hopscotching, either there is an
exact equality, in which case the reducing subspace is unchanged, or there is a perturbation on the
operator that is O(e) relative to the operator, in which case, by Davis—Kahan, the reducing subspace
is perturbed by an angle of only O(e).

We spell this out explicitly for the top half of the diagram.
At the first step, K = " < (x " T'y)™ is perturbed by truncating the tail >~ \ . | < (x Ty)"™.

n=0 n!
This has operator norm O(cye). Since the gap between cnCn iy (K), ..., CNCN igs v (1) and all
other eigenvalues of K is on the order of any ©(1). Thus, by Davis—Kahan, truncating the tail only

perturbs the reducing subspace Vi by an angle O(e).

The second step is an exact identity. Under a matrix inverse, the eigenspaces are preserved, even
though the eigenvalues are inverted.

In the third step, the inverted head is truncated. The inverted head has operator norm on the order of
O(e/an), while the remaining operator has operator norm on the order of O(1/ay ). Now, since the

gap between (cxCyi, (K)) ™Y, ..., (eNCN.ig v ()" and all other inverted eigenvalues of [K]~*
is on the order %@(1), truncating the inverted head only perturbs the reducing subspace by another
angle O(e).

O

3Even if they are N-linearly independent, the gaps between successive eigenvalues will get smaller for larger
N if d > 3. By the standard counting argument in Diophantine approximation theory, the gap decays at least as
fastas N~(4=2),
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