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Abstract

In real-world Reinforcement Learning (RL) deployment, the deployed online RL
algorithms often need to collect datasets that enable offline policy evaluation for
any target policy. Many offline policy evaluation approaches, use the Action Sam-
pling Probabilities (ASPs), the conditional probabilities that the implemented RL
algorithm used to select a particular action given all the previously observed states,
actions and rewards. In the motivating digital health clinical trial, we originally
planned to use the online Randomized Least Squares Value Iteration (RLSVI) al-
gorithm for its robust empirical performance such settings. However RLSVI only
has implicit ASPs as it utilizes external sources of randomness for exploration.

To harness RLSVI’s effective exploration while providing explicit ASPs, we propose
to approximate the implicit ASPs of RLSVI, and sample actions directly using
these approximations during the online learning. Computing the implicit ASPs is
an exact Bayesian computation problem. We address this through Monte Carlo
integration with importance sampling. We call this method RLSVI-IS (Importance
Sampling). We evaluate RLSVI-IS on a simulation testbed built for the mobile
health clinical trial. Our results demonstrate that RLSVI-IS not only achieves
cumulative rewards comparable to those of RLSVI but also provides explicit ASPs.
Moreover, we propose a sufficient condition that enables rigorous control over the
distance between the explicit ASPs for RLSVI-IS and the implicit ASPs for RLSVI.

1 Introduction

Recent advancements in online Reinforcement Learning (RL) have emphasized the critical need for
after-study analyses, particularly when RL algorithms are deployed in fields like healthcare. In such
applications, RL can be considered a form of treatment, and RL is implemented during a clinical
trial, where the goal is to evaluate the treatment effects. Specifically, the treatment effect in an
episodic RL environment is the difference between the value of the deployed RL algorithm and a
baseline policy. This requires running offline policy evaluation (OPE) using datasets collected from
the online RL implementation.

An importance sampling (IS) estimator, which requires an explicit form of action sampling probabil-
ity (ASP), is used in almost all OPE approaches. To see this, let us consider an episodic MDP with
state space S, action space A and horizon H. The ASP of an online RL algorithm can be formally
defined as a deterministic mapping πb. This mapping takes current observations—comprising tuples
(s, a, s′, r) ∈ S × A × S × R– and outputs a distribution over the action space A. A typical IS
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estimator (Jiang & Li, 2016) of the value of a target Markovian policy π is represented by

VIS = 1
N

N∑
i=1

[(
H∏

h=1

π(ai,h | si,h)
πb(ai,h | Di,h)

)(
H∑

h=1
ri,h

)]
, (1)

where Di,h = {(sj,h′ , aj,h′ , sj,h′+1, rj,h′)H
h′=1}

i−1
j=1 ∪ {(si,h′ , ai,h′ , si,h′+1, ri,h′)h−1

h′=1} is all the observa-
tions up to the h-th step in episode i, and N is the total number of episodes. In (1), ASPs are
explicitly used in IS estimators.

Many online learning algorithms utilize external sources of randomness like posterior sampling algo-
rithms. These algorithms are shown to have better empirical performance in real-world applications
and they are commonly used in mobile health studies (Tomkins et al., 2021; Trella et al., 2022).
However, algorithms with external randomness often do not provide an explicit form of ASPs. We
take an example of RLSVI (Randomized Least Square Value Iteration) (Osband et al., 2016), a com-
mon choice (Li et al., 2023) for episodic RL. RLSVI samples parameters θi,h about the underlying
optimal Q-value function Q∗

h from their posterior distribution at the start of episode i, which is
used to make decisions throughout the episode. These randomness in sampling θi,h’s is introduced
for exploration, which is shown to help achieve minimax optimal regret guarantee (Agrawal et al.,
2021). However, these random θi,h’s hinder an explicit form of ASPs, as one will have to integrate
over θi,h’s according to its posterior. The posterior distribution given Di,h do not align with the
distribution RLSVI samples θi,h as shown in Figure 1. Thus, this integration, as an exact Bayesian
computation, is computationally infeasible for real-time applications.
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Figure 1: Direct acyclic graph (DAG) of one episode of RLSVI with horizon H = 2. The DAG shows
the conditional dependence between θi,2 (blue) and (Si,1, Ai,1, Si,2, Ri,1) (red) through θi,1 (green).

There are two directions in tackling the issue of no ASPs. First, one may simply run RLSVI and
approximate the ASPs based on the collected dataset after the online learning is finished. Second,
one may run an alternative online algorithm that provides explicit ASPs close to the implicit ASPs
of RLSVI at the each step, and directly samples actions based on these explicit ASPs. Compared to
the second choice, the first choice potentially results in better regret guarantees during the imple-
mentation but can result in after-implementation policy evaluation with greater bias/uncertainty.
The second choice, though leads to potentially higher regrets, guarantees the explicit ASPs, making
it the primary choice of this paper.

Our contribution. We introduce RLSVI-IS, a novel algorithm with explicit ASPs unlike RLSVI.
The ASPs of RLSVI-IS are approximations to the implicit ASPs of RLSVI through Monte Carlo
integration combined with an importance sampling estimator. We evaluate RLSVI-IS in a simulated
mobile health environment. Our findings demonstrate that:

• RLSVI-IS achieves cumulative rewards comparable to those of RLSVI in simulation.

• Furthermore, we establish a sufficient condition that ensures tight control the distance be-
tween ASPs for RLSVI-IS and the implicit ASPs for the underlying RLSVI. Our simulation
also demonstrates that the distance between ASPs of RLSVI-IS and these of RLSVI is
relatively small.
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2 Problem Formulation

We formally introduce our problem setup. We consider episodic MDPs with state space S, action
space A, rewards in [0, 1] and horizon H. Each MDP can be denoted by a tuple (S,A,P, R, H, s0),
where P = (Ph)H

h=1 is the collection of transition kernels with each Ph : S × A 7→ ∆(A), and
R = (Rh)H

h=1 is the collection of reward functions with each Rh : S×A 7→ [0, 1]. Here s0 is the initial
state of each episode. An agent interacts with the environment episodically. Within the i-th episode,
the RL agent interacts with the environment for H steps. At the each step h, the agent chooses
an action ai,h and the environment samples the next state si,h+1 ∼ Ph(· | si,h, ai,h) and reward
ri,h = Rh(si,h, ai,h). We denote by Di = {(Sj,h′ , Aj,h′ , Sj,h′+1, Rj,h′)H

h′=1}
i−1
j=1} all the observations

up to the i-th episode and by Di,h = Di ∪ {(Si,h′ , Ai,h′ , Si,h′+1, Ri,h′)h−1
h′=1} the observations up to

step h of the i-th episode.

2.1 Randomized Least Square Value Iteration

We formally introduce RLSVI (Osband et al., 2016). RLSVI assumes the existence of a feature
mapping ϕ : S × A 7→ Rd of the state and action pair and the underlying optimal Q-function can
be written as Q∗

h(s, a) = ⟨ϕ(s, a), θ∗
h⟩ for some θ∗

h ∈ Rd. This assumption is satisfied by linear MDP
class (Jin et al., 2020).

In the beginning of each episode i, RLSVI agent generates a random θi = (θi,h)d
h=1 that is the agent’s

current belief of the underlying true θ∗
i . Specifically, Algorithm 1 is called to generate θi. Each θi,h

is sampled from a Gaussian distribution in a backward manner according to their step index h. The
mean and variance of the Gaussian distributions are solved from Bayesian linear regression that
minimizes the square loss of the Bellman errors (line 5).

Algorithm 1 Randomized Least Squares Value Iteration (RLSVI)

1: Input: previous dataset Di,1 = {(sj,h, aj,h, sj,h+1, rj,h)H
h=1}

i−1
j=1, feature mapping ϕ, parameters

λ, σ > 0
2: Set θi,H+1 = 0⃗
3: for h = H, . . . , 1 do
4: Generate regression problem:

Xh = (ϕ(sj,h, aj,h))i−1
j=1, yh =

(
rj,h + maxα θ⊤

i,h+1ϕ(sj,h+1, α)
)i−1

j=1
5: Bayesian linear regression:

µi,h ←
1
σ2

(
1
σ2 X⊤

h Xh + λI

)−1
X⊤

h yh, Σi,h ←
(

1
σ2 X⊤

h Xh + λI

)−1
(2)

6: Sample θi,h ∼ N (µi,h, Σi,h), Gaussian posterior formed by previous data
7: end for
8: Output: θi = (θi,1, . . . θi,H)

Action sampling probability of RLSVI. Given the agent’s belief θi,h of θ∗
i,h and the current

state Si,h, the algorithm chooses a deterministic action

Ai,h = A∗(Si,h, θi,h) := arg max
α∈A

⟨ϕ(Si,h, α), θi,h⟩ . (3)

According to the definition of the ASP, we want to calculate

P(Ai,h = a | Di,h) =
∫

θ

1 {a = A∗(Si,h, θi,h)}P (θi,h = θ | Di,h) dθ, (4)

where P(θi,h = · | Di,h) is the density function for the conditional distribution of θi,h given Di,h. In
other words, one has to integrate sampling probability of each θi,h over their posterior distribution.
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One may simply verify that there is no closed form for the posterior distribution of θi,h given Di,h,
neither could we generate samples from it. Computing (4) is a Bayesian computation problem that is
computationally infeasible in general. Instead, we can generate θi,h from P(θi,h = · | Di) by running
Algorithm 1.

The two posterior distributions do not align in general

P(θi,h = · | Di) ̸= P(θi,h = · | Di,h) = P(θi,h = · | Di ∪ {(Si,h′ , Ai,h′ , Si,h′+1, Ri,h′)h−1
h′=1}),

because (Si,h′ , Ai,h′ , Si,h′+1, Ri,h′)h−1
h′=1 and θi,h are conditional dependent given Di.

This point is elucidated in Figure 1, a directed acyclic graph (DAG) of an episode with H = 2 steps.
The DAG shows the dependence between θi,2 (blue node) and (Si,1, Ai,1, Si,2, Ri,1) (red nodes)
conditioned on Di through the path of θi,1 (green nodes).

3 RLSVI-IS

We propose a new online learning algorithm, namely RLSVI-IS (Importance Sampling), that sam-
ples action Ai,h by approximating the implicit ASPs of the original RLSVI through Monte Carlo
integration combined with an importance sampling estimator.

To approximate ASPs in (4) we sample (θ̃(1)
i,h , . . . , θ̃

(M)
i,h ) by calling Algorithm 1 M times indepen-

dently. We compute the sampling probability given each θ̃
(m)
i,h by adding importance weights:

P̂i,h(a | Di,h) = 1
M

M∑
m=1

1

{
a = A∗(Si,h, θ̃

(m)
i,h )

} P(θi = θ̃
(m)
i | Di,h)

P(θi = θ̃
(m)
i | Di)

. (5)

We directly samples At ∼ P̂i,h(a | Di,h) during the course of online learning. It is well-known that
importance sampling estimator P̂i,h is an unbiased estimator of P(Ai,h = a | Di,h). RLSVI-IS reduces
to ensemble sampling (Lu & Van Roy, 2017) when the underlying environment is a bandit. Note that
the true ASP of RLSVI-IS is not P̂i,h(a | Di,h) as it introduces another source of randomness from
Monte Carlo sampling. However, the errors of Monte Carlo Integration can be controlled especially
when M →∞.

Calculation of importance weights. The importance weights are given by the ratio between
the conditional density P(θi = θ̃

(m)
i | Di,h)/P(θi = θ̃

(m)
i | Di). Proposition 1 indicates that the im-

portance weight is nonzero only when the sampled θ reproduces the exact same action sequence
Ai,1, . . . , Ai,h−1 that has been observed so far, given the observed state sequence Si,1, . . . , Si,h−1.
Note that their is at least one θ

(m)
i that is consistent with the current action selections. In the worst

case, it requires M = O(|A|H) many particles to ensure that there are more than one θ̃
(m)
i ’s with

non-zero importance weight. However, as we demonstrate later in simulation study that the ASPs
calculation converges for reasonable M = 200.
Proposition 1 (Importance Weight). The importance weight of a given θ = (θh)H

h=1 admits

P(θi = θ | Di,h)
P(θi = θ | Di)

∝
h−1∏
h′=1

1 {Ai,h′ = A∗(Si,h, θh)} , (6)

where ∝ hides terms that do not depend on θ.

Combined with (5), the sampling probability satisfies

P̂i,h(a | Di,h) ∝ 1
M

M∑
m=1

[
1

{
a = A∗(Si,h, θ̃

(m)
i,h )

} h−1∏
h′=1

1

{
Ai,h′ = A∗(Si,h′ , θ̃

(m)
i,h′ )

}]
, (7)
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which is in fact the average of the products of h indicator functions.

The form in (6) allows us to update importance weights incrementally. We maintain the current
set of θ’s that align with the actions selected so far. Whenever, a new action Ai,h is observed, we
eliminate these θ’s in the set that is not consistent with Ai,h. A pseudo code for this update is
described in Algorithm 2.

Algorithm 2 RLSVI-IS in the i-th episode
1: Input: Previous dataset Di

2: Compute (θ̃(m)
i )M

m=1 by running Algorithm 1
3: Initialize Di,1 = Di

4: Initialize importance weight w
(m)
1 = 1 for each m ∈ [M ]

5: for h = 1, . . . , H do
6: Calculate sampling probability P̂i,h(a | Di,h) =

(∑M
m=1 A∗(Si,h, θ̃

(m)
i,h )w(m)

h

)
/
∑M

m=1 w
(m)
h

7: Samples Ai,h ∼ P̂i,h(· | Di,h), and observes Si,h+1, Ri,h

8: Update Di,h+1 = Di,h ∪ {(Si,h, Ai,h, Si,h+1, Ri,h)}
9: Set w

(m)
h+1 = 0 for all m such that Ai,h /∈ arg maxα∈A⟨ϕ(Si,h, α), θ̃

(m)
i,h ⟩

10: end for

4 ASPs Distance Analysis

The goal of this section is to understand the distance between the explicitly calculated ASPs P̂ and
the implicit ASPs of RLSVI that RLSVI-IS tends to approximate. Define the squared distance as

Ei,h(Di,h) =
∑

a

(
P̂i,h(a | Di,h)− P(Ai,h = a | Di,h)

)2
, and Ei = EDi,H

[
H∑

h=1
Ei,h(Di,h) | Di

]
,

where the later is the expected sum of distance conditional on previous historyDi and the expectation
is taken over both the randomness of Di,h and the randomness in generating particles θ

(m)
i,h ’s.

The ASP distance for ensemble sampling in bandit is analyzed by Qin et al. (2022). For episodic
RL, since the posterior distribution of θi,h is shifted once new states and actions are observed, we
would not expect a strong worst-case control on per-step approximation error Ei,h. Instead, we show
that under mild conditions, the expected per-episode errors Ei can be controlled, and thus we can
show that the Bayesian regret of actions sampled from RLSVI-IS is similar to that of RLSVI. The
goal of the experimental results demonstrates the empirical performance if the actions are sampled
from RLSVI-IS, and an evaluation of the average approximation errors.

We denote by a(θ, s) = arg maxα⟨ϕ(s, α), θ⟩ the optimal action given fixed parameter θ and state
s. Let s⃗h = (s1, . . . , sh), a⃗h = (a1, . . . , ah) be a sequence of h states and actions, respectively. Let
a⃗h(θ, s⃗h) = (a(θ1, s1), . . . , a(θh, sh)). Let δ ∈ [0, 1]. We define

N(Di, δ) := min
A′∈A(Di,δ)

|A′|,

where A(Di, δ) is the set of all A′ ⊂ Ah that satisfy P(∃s⃗h such that a⃗h(θi, s⃗h) ∈ A′ | Di) ≥ 1− δ.

In words, N(Di, δ) is the cardinality of the largest subset of Ah that contains the possible action
sequence that could be generated by the random θi given previous dataset Di and any state sequence
s⃗h with a probability at least 1− δ.
Theorem 1. The per-step average approximate error can be upper bounded by

E[Ei,h(Di,h) | Di] = O
(

inf
δ

(δ + N(Di, δ)/M)
)

.
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Theorem 1 states that if the posterior of θi are highly concentrated in terms of the selected action
sequence, then the error can be better controlled. In the worst case, N(Di, δ) ≈ (1− δ)|A|h and to
control the distance, one has to set M ≈ |A|h.

5 Simulation Studies

In this section, we introduce the simulation environment we use to evaluate RLSVI-IS and empirical
results.

ADAPTS HCT simulation testbed. As we mentioned above, explicit action sampling prob-
ability is crucial for policy evaluation in the after-study analysis that is commonly conducted in
health care applications. In light of the health care applications, we evaluate RLSVI-IS under a sim-
ulation environment built for a mobile health clinical trial, called ADAPTS HCT (Li et al., 2023),
based on the real dataset Roadmap 2.0 (Rozwadowski et al., 2020). ADAPTS HCT provides digital
interventions to pairs of adolescents who undergone bone marrow transplantation and also to their
care-partners. The goal of ADAPTS HCT is to improve the medication adherence of adolescents
by leveraging the dyadic structure formed by the adolescents and their care-partners. This testbed
is an ideal environment to evaluate RLSVI-IS as it replicates the noise level and structure that is
typically encountered in practical health care applications.

We gave a brief overview of the simulation testbed and readers may find the details in Li et al. (2023).
The testbed interacts with N simulated dyads, each staying for 98 days. Each dyad is an episodic
MDP (Li et al., 2023) with in total T = 196 decision times. The agent makes twice-daily binary
decisions At ∈ {0, 1} for t ∈ [196]. The state St encompasses the past-24-hour Heart Rate, Sleep and
Step Count, and the past-week Mood measurements of both adolescent and their carepartner. The
state transitions P(St+1 | St, At) follow a linear model with AR(1) working correlation fitted from
Roadmap 2.0 dataset for each dyad individually. The reward is a binary version of the step count,
which is used as a proxy to medication adherence.

Experimental setups. We run RLSVI-IS and RLSVI over N = 100 dyads. Though each dyad is
in fact an MDP with long horizon 196, Li et al. (2023) observes that there is very weak dependence
across weeks and a more efficient learning is to treat each week as an independent MDP. Therefore,
we run RLSVI-IS and RLSVI with horizon H = 14 for 100× 14 episodes.

We first evaluate the difference in the sum of rewards for each dyad between RLSVI-IS and RLSVI.
The result is demonstrated in Figure 2a, where we observe no significant difference between RLSVI
and RLSVI-IS in terms of sum of rewards. We suspect that in the early episodes both the RLSVI
and RLSVI-IS have low rewards due to exploration, and RLSVI-IS still explores sufficiently due to
the stochastic nature of the digital health environment. In the later episodes, since the posterior
distribution of θi becomes more concentrated, the distance between ASPs of RLSVI and these
of RLSVI-IS becomes very small. Therefore, they both have similar rewards. This conjecture is
complimented by Figure 2c, where we observe that ASPs distance significantly decreases over the
number of dyads.

5.1 Evaluating ASP Distance

We evaluate the distance between ASPs of RLSVI and these of RLSVI-IS. The goal is to understand
how Monte Carlo integration approximates the implicit ASPs of RLSVI. Since there is no explicit
form of ASPs for RLSVI, we use ASPs of RLSVI with M = 1000 as a proxy. Figure 2 (b) summarizes
the average distance between ASPs with each of M = 100, 200, 500, 800 and ASPs with M = 1000.
Recall that M is the total number of Monte Carlo samples. We observe that the ASPs becomes
relatively small, less then 0.003, for M ≥ 200. This demonstrates that the ASPs distance can be
well-controlled for reasonable number of Monte Carlo samples.
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(b) Average ASP Distance between RLSVI with
M = 100, 200, 500, 800 and RLSVI with M = 1000.
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(c) Average ASP Distance grouped by dyad count
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(d) Average ASP Distance grouped by step count
h = 1, . . . , 14 within each week.

Figure 2: Results on RLSVI-IS under the simulation environment for ADAPTS HCT.

In Figure 2 (c) and (d), we study the average ASP distance between M = 200 and M = 1000
grouped by dyad counts i and step counts h, respectively. In Figure 2c, we observe an decreasing
trend in average distance when the number of dyads increases. As implied by Theorem 1, this may
due to the fact that the random θi generated from the posterior distribution is more consistent when
more data is observed, which leads to a smaller ASP distance.

Theorem 1 also implies that the ASP distance increases with the number of steps h per week. In
the worst-case, ASP distance scales with |A|h, because the posterior distribution P(θi,h | Di,h) can
potentially shift more significantly from P(θi,h | Di)–the distribution we use to generate Monte Carlo
samples. This is verified in Figure 2d, where we observe an increase in ASP distance for larger h
in a week. However, this effect appears to have a linear form, which may imply that the worst case
characterized in Theorem 1 does not always happen in practice.

6 Discussion

Enabling after-study policy evaluation is crucial for real-world RL deployment. This paper con-
tributes significantly to the field by adapting existing online RL algorithms to provide explicit action
sampling probabilities (ASPs). Despite these advancements, several challenges remain in optimizing
after-study OPE. Our analysis focuses on the discrepancy between the ASPs used by RLSVI-IS and
traditional RLSVI, and we have shown that they may scale exponentially with the horizon H. A
further importance question is to understand their impact on cumulative regrets in online learning.
Although the worst-case distances appear extensive, our results demonstrate comparable cumula-
tive regrets in the specific simulation tested. Identifying conditions where approximation distances
remain benign—ensuring similar regret guarantees between RLSVI-IS and RLSVI—is an important
ongoing challenge. Furthermore, ensuring that ASPs are strictly bounded away from 0 and 1 for
any action taken by the evaluation policy is essential. High variances can arise, as highlighted in
Equation (1), when the action sampling probabilities πb(a | Di,h) are low. A preliminary solution
involves clipping the ASPs with a constant γ, but the it is unclear how such adjustments may impact
the theoretical guarantees such as regret bounds. To approximate the implicit ASPs of RLSVI, we
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utilized a sequential Monte Carlo method with an importance weight estimator. However, the field of
approximate Bayesian computation is rich with alternative approaches, such as Variational Inference
and Markov chain Monte Carlo, which have proven effective in various applications. Future work
will explore these methods further, assessing their performance in typical mobile health scenarios to
determine the most effective approach.
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A Further Discussions on RLSVI-IS

One may argue that RLSVI-IS also introduces the external source of randomness in the process
of generating Monte Carlo samples. In this section, we discuss in depth how these randomness
are different in nature from that introduced for RLSVI and why we should condition on all these
randomness in the after-study analysis like OPE.

We first observe that one running RLSVI-IS could generate a whole set of particles from standard
normal distribution prior the online implementation, and conditioning on these particles, the Monte
Carlo samples θ

(m)
i,h , are simply deterministic mappings of the history.
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Generate particles and pseudo samples. Let M be the number of particles we use for each
approximation. Before running RLSVI-IS, we generate a set of particles (η(m)

i,h )m∈[M ]
i,h∈[N ]×[H] i.i.d from

the standard normal distribution N (0, Id). In the beginning of each episode i, we compute pseudo
samples θ̃

(1)
i , . . . , θ̃

(m)
i by running Algorithm 1 but replacing the random Gaussian sample in line 6

with the deterministic mapping θ̃
(m)
i,h = µi,h+Σ1/2

i,h η
(m)
i,h Σ1/2

i,h . The details can be found in Algorithm 3.
As we mentioned above, the pseudo sample θ̃

(m)
i is a deterministic mapping of particles (η(m)

i,h )h∈[H].

Algorithm 3 Generate pseudo samples with Particles

1: Input: particles (η(m)
i,h )m∈[M ], previous dataset Di,1 = {(sj,h, aj,h, sj,h+1, rj,h)H

h=1}
i−1
j=1, feature

mapping ϕ, parameters λ, σ > 0
2: for m = 1, . . . , M do
3: Set θ̃

(m)
i,H+1 = 0⃗

4: for h = H, . . . , 1 do
5: Generate regression problem:

Xh = (ϕ(sj,h, aj,h))i−1
j=1, yh =

(
rj,h + maxα(θ̃(m)

i,h+1)⊤ϕ(sj,h+1, α)
)i−1

j=1
6: Bayesian linear regression:

µi,h ←
1
σ2

(
1
σ2 X⊤

h Xh + λI

)−1
X⊤

h yh, Σi,h ←
(

1
σ2 X⊤

h Xh + λI

)−1
(8)

7: Compute θ̃
(m)
i,h = µi,h + Σ1/2

i,h η
(m)
i,h Σ1/2

i,h

8: Set θ̃
(m)
i = (θ̃(m)

i,h )h∈[H]
9: end for

10: Output: (θ̃(m)
i )m∈[M ]

11: end for

Conditional inference. All of our sampling probabilities and OPE will condition on the generated
set of particles (η(m)

i,h )m∈[M ]
i,h∈[N ]×[H]. These particles are ancillary random variables (independent of the

any parameter of interest), and an important principle of statistical inference is the conditionality on
ancillary variables (Ghosh et al., 2010; Reid & Cox, 2015). However, we should not think the same
way for RLSVI, who also generates random Gaussian variables in the beginning of each episode. On
one hand, if we had condition on these randomness, the ASPs of RLSVI becomes either 0 or 1. This
will extremely limit the OPE since the ASPs on the denominator being 0 can leads to large variance
in the estimator. Secondly, these randomness are introduced to do exploration, which should not be
considered ancillary especially when the evaluation policy is the deployed online learning algorithm.

B Proofs

B.1 Proof of Proposition 1

Proposition 1. [Importance Weight] The importance weight of a given θ = (θh)H
h=1 admits

P(θi = θ | Di,h)
P(θi = θ | Di)

∝
h−1∏
h′=1

1 {Ai,h′ = A∗(Si,h, θh)} ,

where ∝ hides terms that do not depend on θ.
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Proof. Denote by Oi,h = {(Si,h′,Ai,h′ ,Ri,h′ ,Si,h′+1)}h−1
h′=1.

P(θi = θ̃
(m)
i | Di,h)

P(θi = θ̃
(m)
i | Di)

= P(Oi,h | Di, θi = θ)
P(Oi,h | Di)

∝ P(Oi,h | Di, θi = θ)

To proceed,

P(Oi,h | Di, θi = θ) = P(Oi,h | θi = θ)

=
h−1∏
h′=1

P(Ai,h′ | Si,h′ , θ)P(Si,h′+1 | Si,h′ , Ai,h′)P(Ri,h′ | Si,h′ , Ai,h′)

∝
h−1∏
h′=1

P(Ai,h′ | Si,h′ , θ)

=
h−1∏
h′=1

PL(Ai,h′ | Si,h′ , θ)

B.2 Proof of Theorem 1

Theorem 1. The per-step average approximate error can be upper bounded by

E[Ei,h(Di,h) | Di] = O
(

inf
δ

(δ + N(Di, δ)/M)
)

.

Proof. We first focus on the analysis of the error Ei,h for a given episode and step. Define Oi,h =
{(Si,h′ , Ai,h′ , Si,h′+1, Ri,h′)h−1

h′=1} as the new observations received in the current episode up to step
h. Since we focus on a fixed i and h, we omit the subscript of i, h for a simpler notation. That is
Dh = Di,h and Eh = Ei,h, and P̂h = P̂i,h.

E[Eh(Dh)] =
∑

a

E
[(

P̂a
h(Dh)− P(Ah = a | Dh)

)2
]

(9)

=
∑

a

E[Var(P̂a
h(Dh) | Dh)], (10)

where the expectation in the second line is taken over the randomness of Dh.

Recall that we denote by a(θ, s) = arg maxα⟨ϕ(s, α), θ⟩ the optimal action given fixed parameter
θ and state s. Let s⃗h = (s1, . . . , sh), a⃗h = (a1, . . . , ah) be a sequence of h states and actions,
respectively. Let a⃗h(θ, s⃗h) = (a(θ1, s1), . . . , a(θh, sh)). Let δ ∈ [0, 1]. We define

N(Di, δ) := min
A′∈A(Di,δ)

|A′|,

where A(Di, δ) is the set of all A′ ⊂ Ah that satisfy P(∃s⃗h such that a⃗h(θi, s⃗h) ∈ A′ | Di) ≥ 1 − δ.
For any choice of δ ∈ [0, 1], let

A′(Di, δ) ∈ arg min
Ã∈A(Di,δ)

|Ã|.

We choose a subset Θ(Di, δ) ⊂ Rd such that

∀θ ∈ Θ(Di, δ),∃s⃗h, a⃗h(θ, s⃗h) ∈ A′(Di, δ),

and
P(θi ∈ Θ(Di, δ)) ≥ 1− δ.
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For the above conditional variance of a given action a, we have

Var(P̂a
h(Dh) | Dh) (11)

= 1
4P(θi /∈ Θ(Di, δ)) + 1

M

∫
θ∈Θ(Di,δ)

(
1{a = A∗(Sh, θh)}fθh|Dh

(θ,Dh)− P(Ah = a | Sh, θh)fθh
(θ)
)2

fθh
(θ) dθ

(12)

≤ δ

4
1

M

(∫
θ∈Θ(Di,δ)

P2(Ah = a | Sh, θh)fθh
(θ) dθ +

∫
θ∈Θ(Di,δ)

1{a = A∗(Sh, θh)}
f2

θh|Dh
(θ,Dh)

fθh
(θ) dθ

)
(13)

≤ δ

4 + 1
M

+ 1
M

∫
θ∈Θ(Di,δ)

f2
θh|Dh

(θ,Dh)
fθh

(θ) dθ (14)

To proceed, we further bound the third term

E

[∫
θ∈Θ(Di,δ)

f2
θh|Dh

(θ,Dh)
fθh

(θ) dθ

]
(15)

=
∫

D

∫
θ∈Θ(Di,δ)

f2
θh|Dh

(θ, D)
fθh

(θ) fDh
(D) dθ dD (16)

=
∫

D

∫
θ∈Θ(Di,δ)

f2
θh|Dh

(θ, D)
fθh

(θ) fDh
(D) dθ dD (17)

=
∫

D

∫
θ∈Θ(Di,δ)

fDh|θh
(D, θ)

fDh
(D) fDh|θh

(D, θ)fθh
(θ) dθ dD (18)

(Assuming they are both finite, so we can exchange) (19)

=
∫

θ∈Θ(Di,δ)

(∫
D

fDh|θh
(D, θ)

fDh
(D) fDh|θh

(D, θ) dD

)
fθh

(θ) dθ (20)

=
∫

θ∈Θ(Di,δ)

(∫
D

∏h
h′=1 1{ah = A∗(sh, θ)}∫

θ′∈Θ(Di,δ)
∏h

h′=1 1{ah = A∗(sh, θ′)}fθh
(θ′) dθ′

fDh|θh
(D, θ) dD

)
fθh

(θ) dθ (21)

≤N(Di, δ). (22)


