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Abstract

Large language models (LLMs) have demon-001
strated significant advancements in code gen-002
eration, yet they still face challenges when003
tackling tasks that extend beyond their basic004
capabilities. Recently, the concept of self-005
debugging has been proposed as a way to en-006
hance code generation performance by lever-007
aging execution feedback from tests. However,008
the availability of high-quality tests in real-009
world scenarios is often limited. In this con-010
text, self-debugging with self-generated tests011
emerges as a promising solution, though its lim-012
itations and practical potential have not been013
fully explored. To address this gap, we inves-014
tigate the efficacy of self-debugging in code015
generation tasks. We propose and analyze016
two distinct paradigms for the self-debugging017
process: post-execution and in-execution self-018
debugging. Our findings reveal that post-019
execution self-debugging struggles with the test020
bias introduced by self-generated tests, which021
can lead to misleading feedback. In contrast, in-022
execution self-debugging enables LLMs to mit-023
igate this bias and leverage intermediate states024
during program execution. By focusing on run-025
time information rather than relying solely on026
potentially flawed self-generated tests, this ap-027
proach demonstrates significant promise for im-028
proving the robustness and accuracy of LLMs029
in code generation tasks.030

1 Introduction031

Large language models (LLMs) have made signif-032

icant strides in the field of code generation, but033

still face challenges to perform complex program-034

ming tasks beyond their basic capabilities (Jain035

et al., 2024). Such tasks demand LLMs to compre-036

hend requirements in natural language and produce037

programs that behave as expected. Recently, Self-038

Debugging has emerged as a promising method to039

boost the performance of LLMs in code genera-040

tion (Chen et al., 2024b; Jiang et al., 2023; Zhong041

et al., 2024), which allows models to iteratively 042

refine their outputs through execution with pre- 043

defined oracle tests. A critical limitation arises in 044

real-world software development scenarios: those 045

oracle tests are not readily available for each pro- 046

gramming task, posing a significant challenge for 047

the practical application of this method. 048

To address this challenge, recent studies have 049

introduced self-generated tests into the self- 050

debugging process (Shinn et al., 2023; Huang et al., 051

2023; Ridnik et al., 2024). Beyond leveraging in- 052

trinsic capabilities (Huang et al., 2024; Madaan 053

et al., 2023; Chen et al., 2024b), execution feed- 054

back from self-generated tests could also serve as 055

additional signals to help LLMs identify defects 056

in their code generation. This approach helps re- 057

duce reliance on external feedback from humans 058

or stronger models. However, it remains unclear 059

whether self-debugging using self-generated tests 060

is a reliable and scalable solution to enhance code 061

generation. Reflexion (Shinn et al., 2023) leverages 062

feedback from generated tests to debug the code 063

but triggers the repair using hidden oracle tests. 064

AlphaCodium (Ridnik et al., 2024) allows LLMs 065

to generate tests with supervision of public oracle 066

tests. The improvements observed using oracle 067

tests do not accurately demonstrate the true self- 068

debugging capabilities of LLMs. This highlights 069

the need for a more comprehensive and transparent 070

evaluation to better understand the inherent debug- 071

ging potential with execution feedback from tests. 072

In this work, we formally define two distinct 073

paradigms for doing this: post-execution and in- 074

execution self-debugging. The conventional post- 075

execution method operates binary feedback from 076

self-testing—pass or fail labels obtained through 077

testing with self-generated tests, susceptible to test 078

bias as models must infer defects solely from po- 079

tentially flawed tests. We propose in-execution self- 080

debugging, a novel paradigm that allows models to 081

analyze intermediate states during program execu- 082
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Post-Execution	Self-Debugging:

In-Execution	Self-Debugging:

Test	Input	𝑿𝒊
e.g., (12345, 6)

Test	Output	𝒀𝒊
e.g., “51234”

Execution	Output	#𝒀𝒊
e.g., “54321”

Program	𝑷
circular_shift(x, shift)

Intermediate	States	
𝑺𝒊 = 𝑽𝒊𝟎, 𝑼𝟏, … , 𝑼𝑲, 𝑽𝒊𝑲

[BLOCK-0]    
    # x = 12345 shift = 6
    x_str = str(x)
    num_digits = len(x_str)
    # … x_str = '12345' 
num_digits = 5
[BLOCK-1]
...

Test	Input	𝑿𝒊
e.g., (12345, 6)

Match?

Problem	Description:	
Circular shift the digits of the integer x, 
shift the digits right by shift and return 
the result as a string. If shift > number of 
digits, return digits reversed.

LLM

Program	Generation	->	𝑷
def circular_shift(x, shift):
    x_str = str(x)
    num_digits = len(x_str)
    if shift >= num_digits:
        return x_str[::-1]
    shift = shift % num_digits 
    return x_str[-shift:] + x_str[:-shift]

Test	Generation	->	{(𝑿𝒊, 𝒀𝒊)}𝒊%𝟏𝑵

assert circular_shift(12345, 0) == “12345”
assert circular_shift(12345, 6) == “51234”
assert circular_shift(12345, 2) == “45123”
...

Execution	Feedback:
(𝑿𝒊, 𝒀𝒊,	#𝒀𝒊)	:	Given a test, your code failed …
(𝑿𝒊, 𝑺𝒊):	Given an input…, here is the trace …

(3)

Executor

(2)

(2)

(3)

(1)

(1)

Program	𝑷
circular_shift(x, shift)

Correct?

Figure 1: Overview of self-debugging with execution feedback from self-generated tests. (1) The model
generates an initial program along with a suite of tests, based on the problem description. (2) The program is
executed by an executor on the self-generated tests. (3) The feedback from execution is then utilized by the model
to produce a revised version of the program.

tion without dependency on post-execution signals.083

This highlights a key gap: existing methods con-084

flate in-execution traces with post-execution feed-085

back (Zhong et al., 2024; Ni et al., 2024; Bouzenia086

et al., 2023), potentially failing to isolate the model087

from unreliable test verdicts.088

We investigate the efficacy of both paradigms089

with self-generated tests applied to four frontier090

LLMs. Experimental results across both basic and091

competitive code generation tasks reveal key in-092

sights. We find that the post-execution method093

struggles with simpler tasks but shows potential094

for improvement on more challenging ones. The095

inconsistency across problem levels is attributed to096

the bias introduced by self-generated tests, which097

refers to the misalignment between self-testing098

labels and true labels of the programs, result-099

ing in a critical bottleneck for the post-execution100

method. In-execution self-debugging transcends101

this limitation by solely focusing on the intermedi-102

ate states during the program execution, reducing103

bias susceptibility. It consistently outperforms post-104

execution method, demonstrating its promise for105

advancing self-debugging capabilities in LLMs.106

Our work is the first to systematically dissect the107

self-testing bias in self-debugging and propose a108

paradigm shift from post-execution label validation109

to in-execution state reasoning, thereby reducing110

dependency on unreliable test outputs. We summa-111

rize our contributions as follows:112

• We formally define and evaluate two distinct113

paradigms: post-execution and in-execution114

self-debugging, providing a comprehensive 115

analysis of their strengths and limitations. 116

• We identify the critical issue of test bias in 117

self-generated tests, demonstrating how it un- 118

dermines post-execution methods. 119

• We propose in-execution self-debugging as 120

a robust alternative, leveraging intermediate 121

runtime states to reduce bias and improve de- 122

bugging accuracy. 123

Through our study, we aim to shed light on the 124

practicality of self-debugging with self-generated 125

tests, contributing valuable insights into the future 126

development of LLMs in code generation tasks. 127

2 Self-Debugging with Self-Generated 128

Tests 129

We focus on evaluating the self-debugging capa- 130

bilities of LLMs through execution on their self- 131

generated tests. Figure 1 provides a comprehen- 132

sive overview of this process. Given a problem 133

with a natural language specification, the language 134

model (denoted as M) generates an initial program 135

P along with a suite of tests {(Xi, Yi)}Ni=1, where 136

Xi represents the input and Yi represents the ex- 137

pected output for the i-th test. To enhance the 138

model’s debugging performance beyond its intrin- 139

sic reasoning capability, we utilize execution feed- 140

back as an additional signal to help the model iden- 141

tify defects in its generated program according to 142

the problem description. Specifically, we employ 143
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an executor (denoted as E) to run the program on144

the test suite and collect execution information as145

feedback. This feedback is then used to guide the146

model in refining the program.147

There are various implementations for utiliz-148

ing execution feedback, which we categorize into149

two distinct paradigms: post-execution and in-150

execution self-debugging. These paradigms differ151

in the type of information employed during the152

self-debugging process. Post-execution informa-153

tion refers to content obtained after the program’s154

execution, such as execution outputs or error mes-155

sages. In contrast, in-execution information refers156

to content observed during the program’s execution,157

providing finer-grained insights into its behavior.158

We now formally define these paradigms.159

Post-Execution Self-Debugging. The paradigm160

leverages information obtained after the actual ex-161

ecution of the program. A widely adopted imple-162

mentation involves comparing the execution output163

with the expected output (Olausson et al., 2024;164

Wang et al., 2024; Dong et al., 2023; Madaan et al.,165

2023; Zhang et al., 2023a; Chen et al., 2024b; Jiang166

et al., 2024), as illustrated in Figure 1. Given167

an initial program P and a set of generated tests168

{(Xi, Yi)}Ni=1, an executor E processes each input169

Xi, yielding the corresponding execution output:170

Ỹi = E(P,Xi), i ∈ [1, N ] (1)171

The executor automatically assesses whether the172

execution output Ỹi aligns with the expected output173

Yi to determine the success of the i-th test. If a174

discrepancy or error is detected, the test is marked175

as failed. The system then utilizes the failed test176

(Xi, Yi), the execution output Ỹi, and any associ-177

ated error messages to repair the program. This178

process encourages the model M to generate a re-179

vised version of the program, denoted as:180

P̃ = M(P,Xi, Yi, Ỹi) (2)181

In-Execution Self-Debugging. Post-execution182

self-debugging typically overlooks the runtime183

information of the program, which can provide184

valuable insights for program repair and enhance-185

ment. To address this limitation, in-execution self-186

debugging leverages feedback from the interme-187

diate states during program execution (Nye et al.,188

2021; Ni et al., 2024; Bouzenia et al., 2023). For-189

mally, a program’s execution trace Ti can be di-190

vided into multiple basic units, denoted as Ti =191

[U1, U2, ..., UK ], where Uk represents the k-th 192

unit and K is the total number of units in the ex- 193

ecution trace. Each unit is defined as a sequence 194

of statements and expressions with a single en- 195

try and a single exit point. Given an input Xi, 196

i ∈ [1, N ], the executor E initializes the input as 197

the variable set V 0
i = Xi and passes it through the 198

first unit U1. The execution updates the variable 199

set to V 1
i = E(U1, V 0

i ), where V 1
i denotes the set 200

of variables after executing unit U1. This process 201

is repeated iteratively, with the executor traversing 202

each subsequent unit Uk until the program execu- 203

tion is complete: 204

V k
i = E(Uk, V k−1

i ), k ∈ [1,K] (3) 205

The sequence of intermediate states represented 206

as Si = [V 0
i , U

1, V 1
i , ..., U

K , V K
i ], provides a de- 207

tailed view of how the program behaves over time. 208

By analyzing this runtime information, the model 209

M is able to identify potential issues within spe- 210

cific units and refine the program accordingly. No- 211

tably, in-execution self-debugging excludes any 212

post-execution signals (e.g., negative labels and 213

corresponding test outputs), focusing solely on the 214

dynamic behavior of the program during execution. 215

This process results in the revised version of the 216

program, denoted as: 217

P̃ = M(P,Xi, Si) (4) 218

3 Experiments 219

In this section, we comprehensively evaluate the 220

self-debugging capabilities of a wide range of 221

LLMs using self-generated tests on code gener- 222

ation benchmarks covering diverse levels of pro- 223

gramming problems. We carry out experiments to 224

answer the following research questions: 225

RQ1: Are model-generated tests reliable enough? 226

How does self-debugging perform leveraging post- 227

execution information from these tests? 228

RQ2: Is the performance of post-execution self- 229

debugging consistent on more complex tasks? If 230

not, what factors contribute to the discrepancy? 231

RQ3: How does in-execution self-debugging per- 232

form compared with the post-execution method? 233

3.1 Experimental Setup 234

Producing high-quality tests poses significant chal- 235

lenges for LLMs, as it necessitates a comprehensive 236

understanding of natural language specifications 237

and advanced code reasoning capabilities (Gu et al., 238
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2024; Chen et al., 2024a). Therefore, we investi-239

gate the research questions with four advanced chat240

models: LLaMA-3-70B-Instruct (Dubey et al.,241

2024), Qwen2.5-Coder-7B-Instruct (Hui et al.,242

2024), the API-served GPT-4o-2024-05-13 and243

Claude-3.5-Sonnet. We select three code gen-244

eration benchmarks—HumanEval+ (Chen et al.,245

2021; Liu et al., 2023), MBPP+ (Austin et al.,246

2021; Liu et al., 2023), and LiveCodeBench (Jain247

et al., 2024), covering both basic and competitive1248

programming problems to comprehensively evalu-249

ate the efficacy of self-debugging.250

We employ a greedy decoding strategy (with a251

temperature of zero) across all generation phases252

of self-debugging to ensure deterministic and con-253

sistent results. We design prompts for the initial254

program generation to ensure that no additional255

information is introduced by subsequent prompts256

for program repair. This premise is crucial for257

us to concentrate on investigating the true self-258

debugging capabilities of LLMs (Huang et al.,259

2024). To generate a test suite for each problem,260

we prompt the model to produce n = 10 diverse261

and extensive tests based on the corresponding nat-262

ural language specification in a zero-shot manner.263

We discuss the effect of the varying n in Appendix264

D. For a detailed overview of the prompts used in265

our experiments, please refer to Appendix G.266

3.2 RQ1: Post-Execution Self-Debugging267

Struggles with Potentially Flawed Tests268

In this subsection, we evaluate the model-generated269

tests on basic tasks, and then examine the perfor-270

mance of self-debugging utilizing post-execution271

information from these tests, which is consistent272

with the conventional implementations. The cor-273

rectness of a program is determined by comparing274

the actual output with the expected output for each275

test case. If the generated program manages to pass276

all tests, the iterative process terminates, and no277

further debugging is conducted.278

LLMs Cannot Yet Produce Reliable Test Suites279

Even for Basic Tasks. To better understand the280

reliability of tests generated by the model itself, we281

employ program contracts and canonical solutions282

provided by HumanEval and MBPP to evaluate the283

validity of test inputs and outputs respectively. For284

detailed illustration for the validation, please refer285

1In this work, we regard problems in HumanEval, MBPP
as basic programming problems, and those in LiveCodeBench
as competitive ones according to overall complexity and diffi-
culty.
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Figure 2: Accuracy of self-generated tests on Hu-
manEval and MBPP. Test input & output are evaluated
case-by-case; A test suite is deemed valid if all outputs
within the suite are correct.

to Appendix C. We also calculate the overall accu- 286

racy for the test suites. Figure 2 summarizes the re- 287

sults. GPT-4o and Claude-3.5-Sonnet demonstrate 288

superior capability in producing high-quality tests 289

compared to others, yet they remain prone to gen- 290

erating flawed tests. While models can often gen- 291

erate plausible inputs, they struggle to accurately 292

predict the corresponding outputs, which are criti- 293

cal for validating program behavior. Notably, there 294

is a significant gap between the accuracy of the 295

test suites and the accuracy when we consider the 296

tests individually. This suggests that post-execution 297

information from self-generated tests has a high 298

chance of providing unreliable feedback to the self- 299

debugging process. 300

Post-Execution Self-Debugging Struggles on Ba- 301

sic Tasks. To assess the impact of the potentially 302

flawed tests, we consider two different types of 303

feedback derived from post-execution results. The 304

first type is the binary correct label, which simply 305

indicates the correctness of the previous program. 306

If the program is incorrect, an instruction for re- 307

pair is provided to the model. The second type 308

is the detail of the failure, which includes the test 309

input, expected output, and execution output. In 310

cases where the program raises an exception dur- 311

ing execution, the error message is incorporated 312

into the detail in place of the execution output. We 313

conduct experiments on problems from the Hu- 314
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Table 1: Results of post-execution self-debugging (post-exec.) with self-generated tests. The values highlighted in
red are declines while those in green are increases relative to the initial generation (w/o self-debug).

Model Method #Iter HumanEval+ MBPP+ LiveCodeBench

easy medium hard overall

GPT-4o-2024-05-13

w/o self-debug 0 87.8 76.5 89.3 33.1 6.0 46.0

post-exec. w/ label 1 87.2−0.6 76.7+0.2 89.9+0.6 41.1+8.0 6.0+0.0 49.3+3.3

2 86.6−1.2 77.5+1.0 89.9+0.6 40.0+6.9 6.9+0.9 49.1+3.1

post-exec. w/ detail 1 84.1−3.7 76.2−0.3 85.5−3.8 36.0+2.9 8.6+2.6 46.4+0.4

2 85.4−2.4 76.5+0.0 87.4−1.9 38.3+5.2 8.6+2.6 48.0+2.0

Claude-3.5-Sonnet

w/o self-debug 0 89.0 77.0 93.1 48.0 16.4 55.8

post-exec. w/ label 1 88.4−0.6 77.8+0.8 89.9−3.2 49.1+1.1 17.2+0.8 55.3−0.5

2 86.6−2.4 76.2−0.8 91.2−1.9 49.7+1.7 16.4+0.0 55.8+0.0

post-exec. w/ detail 1 81.1−7.9 72.8−4.2 89.9−3.2 49.1+1.1 13.8−2.6 54.4−1.2

2 79.3−9.7 75.4−1.6 85.5−7.6 43.3−4.7 8.6−7.8 49.3−6.5

LLaMA-3-70B-Ins

w/o self-debug 0 73.8 71.2 72.3 10.3 2.6 30.2

post-exec. w/ label 1 65.2−8.6 68.3−2.9 66.0−6.3 9.1−1.2 3.4+0.8 27.8−2.4

2 69.5−4.3 68.3−2.9 64.8−7.5 10.9+0.6 2.6+0.0 27.8−2.4

post-exec. w/ detail 1 66.5−7.3 64.8−6.4 56.6−15.7 10.9+0.6 4.3+1.7 25.3−4.9

2 67.1−6.7 63.8−7.4 63.5−8.8 12.0+1.7 2.6+0.0 27.8−2.4

Qwen2.5-Coder-7B-Ins

w/o self-debug 0 81.7 70.6 74.8 23.4 8.6 35.8

post-exec. w/ label 1 78.0−3.7 69.8−0.8 69.8−5.0 24.0+0.6 8.6+0.0 34.2−1.6

2 79.3−2.4 69.8−0.8 71.7−3.1 23.4+0.0 8.6+0.0 34.7−1.1

post-exec. w/ detail 1 76.2−5.5 68.0−2.6 69.2−5.6 20.0−3.4 8.6+0.0 32.4−3.4

2 75.6−6.1 69.0−1.6 66.7−8.1 21.1−2.3 8.6+0.0 32.0−3.8

manEval and MBPP benchmarks. Table 1 presents315

the pass rates achieved through post-execution self-316

debugging, showcasing notable declines in perfor-317

mance on both benchmarks for LLaMA-3-70B-318

Instruct and Qwen2.5-Coder-7B-Instruct. For GPT-319

4o and Claude-3.5-Sonnet, a consistent decrease is320

observed on HumanEval. While the performance321

on MBPP may show initial improvement, the use322

of more detailed feedback ultimately leads to worse323

outcomes compared to the initial generation. The324

results highlight the challenges and limitations of325

the post-execution method with self-generated tests,326

even for state-of-the-art models.327

Failure Case Study In post-execution settings,328

erroneous test outputs introduce ambiguity into the329

self-debugging process. We illustrate this chal-330

lenge with an example from HumanEval using331

GPT-4o in Figure 7 in Appendix F. When a test332

fails, the model is expected to determine whether333

the failure stems from defects in the program or334

errors in the test itself. This uncertainty compli-335

cates the self-debugging process and necessitates336

a further investigation into the effects of testing337

on self-generated tests. While post-execution in-338

formation with self-generated tests is leveraged,339

self-debugging remains a bottleneck, limiting im-340

provements beyond initial generation. 341

3.3 RQ2: Bias from Self-Testing Leads to 342

Inconsistency Across Levels of Tasks 343

To investigate the performance of self-debugging 344

on more challenging tasks, we further conduct 345

post-execution self-debugging experiments using 346

problems from LiveCodeBench. The problems are 347

classified into three distinct difficulty levels: easy, 348

medium, and hard. We report the pass rate achieved 349

at each level of difficulty, as well as the overall per- 350

formance across the benchmark. 351

Label Feedback Provides Some Relief on More 352

Challenging Tasks. Table 1 also summarizes the 353

results of post-execution self-debugging on Live- 354

CodeBench. We find that self-debugging using 355

label feedback generally leads to improvements on 356

medium and hard-level problems. This is notably 357

in contrast to their performance on basic and easy 358

problems. All models except GPT-4o experience 359

a decrease in overall performance, primarily due 360

to significant declines in easy problems. Despite 361

incorporating more post-execution results, the over- 362

all performance with detailed feedback remains 363

inferior to that achieved with label feedback. 364
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Figure 3: Test bias in labels when evaluating the pro-
grams with self-generated tests on different difficulty
levels of problems in LiveCodeBench.

Self-Testing Bias Analysis To investigate the rea-365

sons behind the inconsistent results across different366

levels of problems, we delve into the impact on367

testing programs with self-generated tests. We ac-368

knowledge that even advanced LLMs are likely to369

generate inaccurate tests (Gu et al., 2024). As a370

result, a program that is actually correct might fail371

some of the generated tests, resulting in a false372

negative label (FN). Conversely, a flawed program373

might pass all the test cases, leading to a false posi-374

tive label (FP), which could prevent necessary up-375

dates and prematurely present a buggy program as376

correct. The misalignment between self-testing la-377

bels and true labels highlights the bias introduced378

by self-generated tests in program evaluation.379

We present an analysis of test bias in labels at380

the first iteration of self-debugging, as illustrated381

in Figure 3. Given the implementation of self-382

debugging, only programs identified with negative383

labels during the iteration would perform further384

repair. Therefore, our focus is primarily on the385

distribution of different negative labels. We ob-386

served that testing on self-generated tests is more387

likely to result in false negative labels than true neg-388

ative ones on easy problems. However, a different389

pattern emerges on medium and hard ones, where390

false negatives outnumber true negatives2. This 391

discrepancy is primarily attributed to lower per- 392

formance on more complex and challenging tasks, 393

where negative labels from self-testing are more 394

likely to align with the actual labels of the gen- 395

erated programs. Relying solely on label feed- 396

back during self-debugging inadvertently reduces 397

the bias from self-testing, thereby increasing the 398

prevalence of true negative labels. However, when 399

incorrect details are included in feedback, the per- 400

formance declines compared to using only label 401

feedback. 402

Moreover, when self-testing results in a false 403

negative, it is crucial for the model to accurately 404

identify the errors within the feedback and pre- 405

serve the original answers. The efficacy of post- 406

execution self-debugging, depends not only on the 407

model’s ability to identify the defects in its own pro- 408

grams when presented with true negative labels but 409

also on its ability to recognize the faulty execution 410

feedback in the case of false negatives. 411

3.4 RQ3: In-Execution Reasoning Helps 412

Self-Debugging 413

Despite the conditional utility of post-execution 414

self-debugging in challenging tasks, its dependency 415

on potentially unreliable test labels remains a fun- 416

damental fragility. We therefore explore in this sub- 417

section whether the in-execution method—by de- 418

bugging through intermediate states—can achieve 419

consistent gains across different levels of tasks. 420

Drawing inspiration from the implementation 421

presented in LDB (Zhong et al., 2024), we divide 422

an execution trace into several units based on ba- 423

sic blocks in the program’s control flow graph and 424

collect the variables before and after these units 425

during program execution to facilitate in-execution 426

self-debugging. Please refer to Appendix E for 427

a detailed illustration. Different from existing 428

works that utilize runtime information for debug- 429

ging (Zhong et al., 2024; Ni et al., 2024; Ding et al., 430

2024), we decouple post-execution signals from 431

these methods, which means the labels and details 432

from post-execution results are not accessible for 433

the models. Therefore, the models must determine 434

program correctness merely based on the test input 435

and corresponding intermediate states. 436

In-Execution Self-Debugging Shows Significant 437

Potential for Improvement. The results of in- 438

2We also present an analysis of test bias on HumanEval
and MBPP in Figure 6.
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Table 2: Results of in-execution self-debugging (in-exec.) with self-generated tests. The values in red are declines
while those in green are increases compared to the initial generation (w/o self-debug).

Model Method #Iter HumanEval+ MBPP+ LiveCodeBench

easy medium hard overall

GPT-4o-2024-05-13
w/o self-debug 0 87.8 76.5 89.3 33.1 6.0 46.0

in-exec. w/ trace 1 89.0+1.2 77.8+1.3 91.2+1.9 34.9+1.8 6.0+0.0 47.3+1.3

2 88.4+0.6 79.1+2.6 91.8+2.5 34.9+1.8 6.0+0.0 47.6+1.6

Claude-3.5-Sonnet
w/o self-debug 0 89.0 77.0 93.1 48.0 16.4 55.8

in-exec. w/ trace 1 89.6+0.6 77.2+0.2 95.0+1.9 49.1+1.1 17.2+0.8 57.1+1.3

2 87.2−1.8 76.2−0.8 93.7+0.6 48.6+0.6 17.2+0.8 56.4+0.6

LLaMA-3-70B-Ins
w/o self-debug 0 73.8 71.2 72.3 10.3 2.6 30.2

in-exec. w/ trace 1 70.1−3.7 69.6−1.6 73.0+0.7 11.4+1.1 3.4+0.8 31.1+0.9

2 74.4+0.6 69.6−1.6 71.1−1.2 12.0+1.7 3.4+0.8 30.7+0.5

Qwen2.5-Coder-7B-Ins
w/o self-debug 0 81.7 70.6 74.8 23.4 8.6 35.8

in-exec. w/ trace 1 82.3+0.6 71.4+0.8 75.5+0.7 24.0+0.6 8.6+0.0 36.2+0.4

2 82.3+0.6 72.0+1.4 76.1+1.3 24.0+0.6 8.6+0.0 36.4+0.6
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Figure 4: Average accuracy of both post-execution and in-execution self-debugging across three benchmarks over
two iterations. In-execution self-debugging, which only leverages intermediate runtime information, consistently
outperforms the post-execution approach.

execution self-debugging are detailed in Table 2.439

For basic problems from HumanEval and MBPP,440

we observe that self-debugging gains notable im-441

provement for GPT-4o and Qwen2.5-Coder-7B-442

Instruct when utilizing in-execution information.443

Claude-3.5-Sonnet also shows performance im-444

provements at the first iteration on both bench-445

marks. For LLaMA-3-70B-Instruct, the perfor-446

mance on HumanEval surpasses the baseline at the447

second iteration. However, there is a slight degrada-448

tion in performance for certain tasks and iterations449

compared to the initial generation. For compet-450

itive problems from LiveCodeBench, the results451

demonstrate the efficacy of the in-execution self-452

debugging across all models. The results indicate453

that in-execution self-debugging is a potentially454

effective approach for improving performance on455

diverse programming problems.456

How In-Execution Works Compared to Post-457

Execution Method We present the average accu-458

racy of both post-execution and in-execution meth- 459

ods over two iterations in Figure 4. Since the debug- 460

ging process is triggered using self-generated tests 461

rather than ground truth oracle tests, performance 462

does not necessarily improve with successive itera- 463

tions. This differs from other existing debugging 464

methods (Chen et al., 2024b; Shinn et al., 2023; 465

Zhong et al., 2024), where the set of positive pro- 466

grams in the current iteration is typically a superset 467

of those in the previous iteration. The results sug- 468

gest that in-execution self-debugging, which only 469

leverages intermediate runtime information, con- 470

sistently outperforms the post-execution approach. 471

Moreover, in most cases, it shows improvements 472

compared to the initial generation, indicating sig- 473

nificant potential for future development. To further 474

illustrate how the in-execution method works, we 475

provide a comparison with an example from Hu- 476

manEval using GPT-4o in Appendix F. 477
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Strengths and Weaknesses of In-Execution Self-478

Debugging To conclude, post-execution self-479

debugging utilizes final execution results to reflect480

upon and debug programs. However, the unreliabil-481

ity of the self-generated tests could bias the model482

away from the correct answer. Although this can483

provide some relief on challenging tasks, it is not484

a long-term solution, especially when those hard485

tasks can also be solved well over time. On the486

contrary, in-execution self-debugging allows the487

models to perform fine-grained feedback solely on488

the intermediate states during the execution pro-489

cess, mitigating the test bias introduced by poten-490

tially flawed tests. It shows the potential to better491

align the programs with the requirements in real-492

world scenarios. Nonetheless, self-debugging with493

in-execution information depends heavily on the494

LLMs’ code reasoning capabilities and lacks for-495

mal guarantees of success, as the pass rate drops for496

LLaMA-3-70B-Instruct on MBPP. We expect that497

improvements in LLM capabilities will enhance498

the efficacy of this paradigm. Based on our find-499

ings, we deliver a detailed discussion on directions500

for future work in Appendix A.501

4 Related Work502

LLM-Based Code Generation. Code generation503

is the automatic production of source code based504

on natural language descriptions. Researchers have505

proposed various approaches to enhance the quality506

of code generated by these models. Some works,507

like LLaMA (Touvron et al., 2023a,b; Dubey et al.,508

2024) and DeepSeek (DeepSeek-AI et al., 2024b,a)509

series, focus on optimizing model training, while510

others aim to improve code quality through post-511

processing techniques (Chen et al., 2023; Zhang512

et al., 2023b; Inala et al., 2022). Among these513

post-processing techniques, methods that involve514

self-debugging have gained considerable attention.515

Through feedback from execution results, self-516

debugging allows models to autonomously debug517

and refine previously generated code, enhancing518

the final output. Self-debugging has been inte-519

grated into various LLM-based code generation520

methods (Yang et al., 2024; Zhang et al., 2024;521

Dong et al., 2023; Huang et al., 2023). In this522

work, we revisit these techniques, evaluating self-523

debugging with self-generated tests on both basic524

and competitive tasks.525

Self-Debugging with LLMs. As LLMs have526

evolved, the idea of using models to refine their527

own output has become more popular. Most of 528

these methods rely on prompting LLMs with exe- 529

cution results to improve the code. These methods 530

often rely on pre-existing or generated tests to exe- 531

cute the code, capturing execution information that 532

is then used to refine the output code ((Olausson 533

et al., 2024; Wang et al., 2024; Dong et al., 2023; 534

Madaan et al., 2023; Zhang et al., 2023a; Jiang 535

et al., 2024)). Self-Refine (Madaan et al., 2023) 536

conducts a broad evaluation of self-debugging in 537

code models, highlighting that performance can 538

be improved with higher-quality feedback or hu- 539

man intervention. Self-Debugging (Chen et al., 540

2024b) and Self-Edit (Zhang et al., 2023a) use the 541

framework in which LLMs can iteratively debug 542

their own generated code by utilizing execution 543

results. LDB (Zhong et al., 2024) utilizes runtime 544

execution information to help debug generated pro- 545

grams. To enhance the execution understanding 546

capability of LLMs, SemCoder (Ding et al., 2024) 547

trains models to simulate execution, enabling ab- 548

stract reasoning and debugging. NExT (Ni et al., 549

2024) trains LLMs to generate NL rationales based 550

on execution traces for accurate runtime reasoning. 551

These methods leverage both post and in-execution 552

information for self-debugging since there are pre- 553

defined oracle tests, which is an idealized setup in 554

real-world scenarios. In this work, we aim to inves- 555

tigate the effect of post-execution and in-execution 556

information respectively, particularly with self- 557

generated tests. We propose a unified framework 558

and provide a detailed analysis of these methods. 559

5 Conclusion 560

In this work, we explore self-debugging with self- 561

generated tests to enhance the code generation capa- 562

bilities of large language models (LLMs). We intro- 563

duce and evaluate two paradigms: post-execution 564

and in-execution self-debugging. While post- 565

execution methods struggle with simpler tasks due 566

to bias from self-generated tests, in-execution self- 567

debugging leverages intermediate runtime states 568

to mitigate this bias and consistently outperforms 569

post-execution approaches. Our findings highlight 570

the importance of reducing reliance on flawed self- 571

generated tests and incorporating richer runtime 572

feedback for more accurate and robust program 573

refinement. This work underscores the potential 574

of in-execution self-debugging to advance LLMs 575

in code generation, paving the way for more au- 576

tonomous and reliable code generation systems. 577
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Limitations578

We evaluate the efficacy of the proposed self-579

debugging paradigms on a wide range of LLMs and580

across three benchmarks covering both basic and581

competitive programming problems. While our ex-582

periments could provide valuable insights into self-583

debugging for real-world applications, it remains584

unclear whether these findings would directly trans-585

late to more complex software engineering scenar-586

ios. For instance, consider repository-level debug-587

ging: a model analyzing intermediate API call se-588

quences or variable propagation across modules589

could mirror the in-execution paradigm. However,590

questions such as how to efficiently capture and591

structure runtime data across interconnected mod-592

ules, or how to handle dependencies and interac-593

tions between components, remain open. These594

complexities highlight the need for further research595

to adapt self-debugging techniques to large-scale,596

real-world software systems.597

We leave these challenges for future work, as598

they represent an important next step in advanc-599

ing the applicability of self-debugging paradigms600

beyond self-contained programming tasks. By ad-601

dressing these issues, we can move closer to de-602

veloping autonomous and self-evolving systems603

capable of handling the intricacies of modern soft-604

ware engineering.605
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A Directions for Future Work916

High-Quality Test Generation. In this work,917

we demonstrate that post-execution self-debugging918

with self-generated tests struggles on basic prob-919

lems due to biased evaluations, despite the signif-920

icant potential shown by LLMs in automated test921

generation. This highlights the necessity for the re-922

search community to focus on the quality of LLM-923

generated tests before utilizing execution feedback924

derived from them. Developing techniques that925

enhance high-quality test synthesis is crucial to926

mitigate bias for post-execution self-debugging. It927

could be beneficial to implement an iterative re-928

finement process wherein execution information929

is leveraged to improve the tests. This could in-930

volve using techniques like test-driven develop-931

ment where tests are continuously updated based932

on code changes and debugging outcomes.933

More Deliberate Runtime Information. As934

demonstrated in Section 3.4, leveraging enriched935

runtime information from execution is a promis-936

ing avenue for self-debugging. In particular, in-937

execution self-debugging has shown superior per-938

formance compared to post-execution in certain939

tasks, suggesting that more nuanced and reliable940

feedback leads to better performance. Designing941

more sophisticated methods for collecting and ana-942

lyzing runtime information is a promising direction943

for further enhancing self-debugging capabilities.944

For instance, improving the intelligibility of exe-945

cution trace representations for LLMs may prove946

beneficial (Ni et al., 2024). Additionally, beyond947

variables, other types of runtime information, such948

as code coverage, execution paths, and memory us-949

age, could be effectively utilized to provide a more950

comprehensive view of program behavior (Chen951

et al., 2024a).952

Training for More Advanced Capabilities953

of LLMs. Effective self-debugging with self-954

generated tests hinges on several core capabilities955

of LLMs. In terms of refinement, the model should956

be capable of accurately recognizing and localizing957

faults within the program. This requires not only958

an understanding of the code’s syntax but also its959

semantic logic and runtime behavior. Additionally,960

more advanced reasoning capabilities are needed to961

thoroughly analyze execution feedback. The model962

should comprehend the relationship between the963

code logic and the feedback, thereby deducing the964

runtime structure of program statements and vari-965

ables. Training LLMs with diverse debugging sce- 966

narios (Ni et al., 2024) and incorporating multi-step 967

reasoning frameworks could further enhance their 968

ability to diagnose and fix errors autonomously. 969

Self-Evolution of Code LLMs. Self-debugging 970

opens up possibilities for developing more ad- 971

vanced LLMs without reliance on human super- 972

vision or guidance from stronger models (Burns 973

et al., 2024). Traditionally, human-generated test 974

cases serve as a strong supervisory signal for align- 975

ing code generation, but the collection of such 976

tests is labor-intensive, leading to a sparsity of 977

labeled data for effective code refinement. Self- 978

generated tests, by contrast, offer a viable path for 979

self-improvement (Tao et al., 2024). They alleviate 980

the burden of manual test generation and pave the 981

way toward truly autonomous self-correcting code 982

generation systems (Chen et al., 2024b). By itera- 983

tively refining both the code and the tests, LLMs 984

can evolve into more robust and reliable systems 985

capable of handling increasingly complex program- 986

ming tasks. This self-evolution paradigm could 987

revolutionize the development of code generation 988

models, making them more adaptable and scalable 989

for real-world applications. 990

These directions highlight the potential for ad- 991

vancing self-debugging techniques, ultimately lead- 992

ing to more autonomous, accurate, and efficient 993

code generation systems. By addressing these chal- 994

lenges, the research community can unlock new 995

possibilities for LLMs in software development 996

and beyond. 997

B Benchmark 998

We utilize HumanEval (Chen et al., 2021), MBPP 999

(Austin et al., 2021) and LiveCodeBench (Jain 1000

et al., 2024) covering basic and competitive pro- 1001

gramming problems to comprehensively evaluate 1002

the efficacy of self-debugging: 1003

• HumanEval and MBPP HumanEval (Chen 1004

et al., 2021) consists of 164 programming prob- 1005

lems written by humans. Each problem provides 1006

a Python function signature and a docstring as 1007

its specification. MBPP (Austin et al., 2021) in- 1008

cludes 974 programming problems written by 1009

contributors through crowdsourcing. Each of 1010

these problems features a problem statement, a 1011

function signature, and three example tests. To 1012

enhance the reliability and accuracy of evalua- 1013

tions, EvalPlus (Liu et al., 2023) extends Hu- 1014

manEval into a more comprehensive version 1015
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known as HumanEval+ with 80 times more tests1016

than the original HumanEval. Similarly, MBPP+1017

is an augmentation of the original MBPP, offer-1018

ing 35 times more tests. In our experiments, we1019

use the latest version of MBPP+, which consists1020

of 378 programming problems.1021

• LiveCodeBench LiveCodeBench (Jain et al.,1022

2024) is a contamination-free benchmark that1023

continuously collects new problems from promi-1024

nent competitive programming platforms. As1025

of now, LiveCodeBench features a collection of1026

over 600 high-quality programming problems.1027

These problems encompass a wide range of dif-1028

ficulty levels and topics, providing a compre-1029

hensive evaluation for the coding capabilities1030

of LLMs. In our experiments, we select 4501031

problems that were published between Septem-1032

ber 2023 and September 2024.1033

C Validation of Generated Tests1034

In Section 3.2, we leverage program contracts and1035

canonical solutions to evaluate the reliability of the1036

generated tests for problems in HumanEval and1037

MBPP3. Program contracts ensure that the gener-1038

ated test inputs adhere to the preconditions spec-1039

ified for each problem, while canonical solutions1040

serve as the ground truth to verify the correctness1041

of the test outputs. We present examples for both1042

benchmarks in Figure 5.1043

To validate test inputs, we place contracts at the1044

beginning of the function and pass the test input1045

to it. If no assertion error occurs, the test input is1046

considered valid. Some functions have additional1047

requirements for inputs beyond just type, so the1048

contracts check for both type mismatches and any1049

other specified constraints. For test output vali-1050

dation, we use canonical solutions to collect the1051

execution output for a given valid input and com-1052

pare it with the generated test output to confirm1053

correctness.1054

D Varying Number of Generated Tests1055

To investigate the effect of the number of self-1056

generated tests, we employ GPT-4o-2024-05-13 to1057

generate varying number of tests N = [10, 15, 20]1058

for each programming problem in HumanEval and1059

MBPP. Following Section 3.2, we calculate the1060

accuracy of these generated tests and the results1061

3Neither program contracts nor canonical solutions are
provided by LiveCodeBench.

Table 3: Results for increasing number of self-generated
tests using GPT-4o-2024-05-13 on HumanEval and
MBPP.

(a) HumanEval
#Num of Tests Input Output Suite

10 97.63% 89.77% 59.15%
15 97.89% 88.86% 52.44% (-6.71%)
20 98.11% 86.01% 48.17% (-10.98%)

(b) MBPP
#Num of Tests Input Output Suite

10 94.81% 85.60% 58.73%
15 94.96% 85.27% 53.70% (-5.03%)
20 95.10% 82.94% 50.53% (-8.20%)

Table 4: Results of post-execution self-debugging with
detailed feedback and in-execution self-debugging on
HumanEval and MBPP when using different sizes of the
self-generated test suite. The values highlighted in red
or green are changes relative to the initial generation.

Method #N HumanEval+ MBPP+

w/o self-debug 0 87.8 76.5

post-exec. w/ detail
10 84.1−3.7 76.2−0.3

15 84.1−3.7 75.9−0.6

20 83.5−4.3 75.9−0.6

in-exec. w/ trace
10 89.0+1.2 77.8+1.3

15 88.4+0.6 78.0+1.5

20 88.4+0.6 77.2+0.7

are summarized in Table 3. As the number of self- 1062

generated tests increases, the presence of more chal- 1063

lenging edge cases also rises, leading to a reduction 1064

in the overall accuracy of the test suites. Specifi- 1065

cally, when the model generates up to 20 tests per 1066

problem, the accuracy of the test suite decreases 1067

from 59.15% to 48.17% for HumanEval and from 1068

58.73% to 50.53% for MBPP. 1069

We further evaluate the performance of both post- 1070

execution self-debugging with detailed feedback 1071

and in-execution self-debugging. The results in 1072

Table 4 indicate that with an increased number 1073

of self-generated tests, the performance of post- 1074

execution self-debugging experiences a slight de- 1075

cline on both HumanEval and MBPP. This de- 1076

cline is attributed to the lower accuracy of the 1077

test suites, which increases the rate of false neg- 1078

atives and thereby hinders the efficacy of post- 1079

execution self-debugging. In contrast, in-execution 1080

self-debugging, which leverages intermediate run- 1081

time traces, demonstrates consistent improvement 1082

over the initial generation. 1083

These findings highlight the robustness of in- 1084
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# HumanEval/21

def rescale_to_unit(numbers: List[float]) -> List[float]:
    """ Given list of numbers (of at least two elements), apply a linear transform to 
that list, such that the smallest number will become 0 and the largest will become 1
    >>> rescale_to_unit([1.0, 2.0, 3.0, 4.0, 5.0])
    [0.0, 0.25, 0.5, 0.75, 1.0]
    """
    
    assert all(type(x) in [int, float] for x in numbers), "invalid inputs” # 
$_CONTRACT_$
    assert len(numbers) >= 2, "invalid inputs" # $_CONTRACT_$
    assert max(numbers) > min(numbers), "invalid inputs” # $_CONTRACT_$
    
    ma, mi = max(numbers), min(numbers)
    k = 1 / (ma - mi)
    return list(map(lambda x: (x - mi) * k, numbers))

# MBPP/439

"""
Write a function to join a list of multiple integers into a single integer.
assert multiple_to_single([11, 33, 50])==113350
"""

def multiple_to_single(L):
    
    assert isinstance(L, list), "invalid inputs" # $_CONTRACT_$
    assert len(L) > 0, "invalid inputs" # $_CONTRACT_$
    assert all(isinstance(item, int) for item in L), "invalid inputs" # $_CONTRACT_$
    assert all(item > 0 for item in L[1:]), "invalid inputs" # $_CONTRACT_$
    
    return int(''.join(map(str,L)))

Figure 5: Examples of program contracts in HumanEval and MBPP. Program contracts consist of assertions that
specify conditions necessary for a valid input.

execution self-debugging in handling the chal-1085

lenges posed by less accurate test suites, as it relies1086

on precise runtime information rather than poten-1087

tially flawed self-generated tests. They also under-1088

score the importance of balancing the quantity and1089

quality of self-generated tests to ensure their ef-1090

fectiveness in evaluating and debugging programs.1091

By leveraging runtime insights, in-execution self-1092

debugging provides a more reliable approach to1093

program repair and enhancement, particularly in1094

scenarios where test accuracy is compromised.1095

E Collection of In-Execution Information1096

In this work, we partition a program into basic1097

blocks based on the nodes within its control flow1098

graph (CFG) (Gold, 2010; Zhong et al., 2024). A1099

control flow graph is a representation of the differ-1100

ent blocks of code in a program and various exe-1101

cution paths that an executor can take through the1102

code. Each block represents a maximal sequence1103

of statements and expressions without any jumps 1104

or jump targets. Directed edges in the graph reflect 1105

the possible execution order among the blocks. 1106

We simply use variables as the key indicators 1107

of intermediate states during the execution. To 1108

facilitate the visibility of necessary variables, we 1109

strategically insert specific lines of code before and 1110

after these basic blocks. Given a test input, the 1111

program subsequently outputs the variables in ex- 1112

ecution order. We then organize the content of 1113

each reachable basic block and its corresponding 1114

variables into execution trace blocks in sequence, 1115

which are integrated into the debugging prompt 1116

as shown in Figure 10. We provide an example 1117

illustrating the representation of in-execution infor- 1118

mation in Figure 7. For programs containing loops, 1119

we are able to capture the change of the intermedi- 1120

ate states within each loop iteration. Additionally, 1121

in cases where the number of trace blocks exceeds 1122

a predefined threshold N , we adopt a strategy to 1123
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Figure 6: Test bias in labels when evaluating the pro-
grams with self-generated tests for HumanEval and
MBPP.

retain the first N/2 blocks and the last N/2 blocks1124

of the trace. It ensures that both the initial and final1125

segments of the trace, which may contain essen-1126

tial information, are preserved for analysis while1127

maintaining a manageable context length.1128

F Case Study1129

In our experiments, we observe that in-execution1130

self-debugging, which leverages runtime informa-1131

tion, consistently outperforms post-execution one1132

across various levels of programming tasks. To bet-1133

ter understand the unique strengths and weaknesses1134

of these two paradigms, we provide an example in-1135

volving GPT-4o in Figure 7.1136

This example illustrates different outcomes of1137

post-execution self-debugging with detailed test1138

feedback and in-execution self-debugging with1139

execution traces. The initial completion for the1140

can_arrange function is correct. However, it1141

is evaluated against an erroneous self-generated1142

test that, according to the specification, should re-1143

turn 4 instead of 1. This discrepancy causes the1144

model to misinterpret the condition in the prob-1145

lem, thereby leading to an incorrect revision of1146

the program. Feedback from post-execution self-1147

debugging, when based on flawed self-generated1148

tests, biases the model away from the problem’s1149

specification, resulting in a faulty program.1150

In contrast, in-execution self-debugging lever-1151

ages test inputs and their corresponding runtime1152

information to assess program correctness. As de-1153

picted in Figure 7, this approach enables the model1154

to perform a fine-grained analysis on the execution 1155

trace block by block without being influenced by 1156

the potential bias introduced by self-generated tests. 1157

By examining the intermediate states in execution 1158

order, the model confirms that the trace aligns with 1159

the expected behavior of the function, ultimately 1160

preserving the correctness of the original program. 1161

This example highlights the critical advantage 1162

of in-execution self-debugging: its ability to rely 1163

on precise runtime information rather than poten- 1164

tially flawed self-generated tests. By avoiding the 1165

test bias, in-execution self-debugging provides a 1166

more reliable and effective approach to program 1167

repair and enhancement. These findings under- 1168

score the importance of leveraging runtime insights 1169

to improve the robustness and accuracy of self- 1170

debugging methods. 1171

G Prompts 1172

G.1 Prompts for Initial Code Generation 1173

The prompts for initial program generation are pro- 1174

vided in Figure 8. 1175

G.2 Prompts for Test Generation 1176

The prompts for test case generation are provided 1177

in Figure 9. 1178

G.3 Prompts for Debugging 1179

The prompts for post-execution and in-execution 1180

self-debugging are provided in Figure 10 and Fig- 1181

ure 11. 1182
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======================================== SYSTEM ========================================
You are an expert programming assistant.

========================================= USER =========================================
Here is the given code to do completion:
```python

def can_arrange(arr):
    """Create a function which returns the largest index of an element which
    is not greater than or equal to the element immediately preceding it. If
    no such element exists then return -1. The given array will not contain
    duplicate values.

    Examples:
    can_arrange([1,2,4,3,5]) = 3
    can_arrange([1,2,3]) = -1
    """

```
Please complete the `can_arrange` function and make sure that it matches the 
specification and passes all tests. You are not allowed to modify the given function 
signature. Think step by step and provide all completed codes in one code block.

==================================== ASSISTANT =====================================
Sure, let's complete the `can_arrange` function step by step.

1. We need to iterate through the array from the second element to the last element.
2. For each element, we need to check if it is not greater than or equal to the element 
immediately preceding it.
3. If such an element is found, we return its index.
4. If no such element is found by the end of the loop, we return -1.

Here is the completed code:

```python
def can_arrange(arr):
    """Create a function which returns the largest index of an element which
    is not greater than or equal to the element immediately preceding it. If
    no such element exists then return -1. The given array will not contain
    duplicate values.

    Examples:
    can_arrange([1,2,4,3,5]) = 3
    can_arrange([1,2,3]) = -1
    """
    for i in range(len(arr) - 1, 0, -1):
        if arr[i] < arr[i - 1]:
            return i
    return -1
```

This function iterates through the array from the end to the beginning, checking if the 
current element is less than the previous element. If it finds such an element, it 
returns the index of that element. If no such element is found, it returns -1.

Initial Generation (w/o self-debug)
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======================================= USER =======================================
Given an input for the function `can_arrange([5, 4, 3, 2, 1])`, here is the code 
execution trace block by block with the intermediate variable values:
[BLOCK-0]
    # arr = [5, 4, 3, 2, 1]
    for i in range(len(arr) - 1, 0, -1):
    # arr = [5, 4, 3, 2, 1] i = 4
[BLOCK-1]
        # arr = [5, 4, 3, 2, 1] i = 4
        if arr[i] < arr[i - 1]:
        # arr = [5, 4, 3, 2, 1] i = 4
[BLOCK-2]
            # arr = [5, 4, 3, 2, 1] i = 4
            return i
            # arr = [5, 4, 3, 2, 1] i = 4 _ret = 4

Please explain the execution FOR EACH BLOCK and answer whether this block is correct or 
not based on the specifications and given samples in the problem.

==================================== ASSISTANT =====================================
Let's go through the execution trace block by block and explain the intermediate 
variable values and the correctness of each block.

### [BLOCK-0]
```python
# arr = [5, 4, 3, 2, 1]
for i in range(len(arr) - 1, 0, -1):
# arr = [5, 4, 3, 2, 1] i = 4
```
**Explanation:**
- The array `arr` is `[5, 4, 3, 2, 1]`.
- The `for` loop is set to iterate from the last index (`len(arr) - 1`, which is 4) to 
the first index (1), decrementing by 1 each time.
- In the first iteration, `i` is initialized to 4.

**Correctness:**
- This block is correct. The loop is set up properly to iterate from the end of the 
array to the beginning.

### [BLOCK-1]
```python
# arr = [5, 4, 3, 2, 1] i = 4
if arr[i] < arr[i - 1]:
# arr = [5, 4, 3, 2, 1] i = 4
```
**Explanation:**
- The condition `if arr[i] < arr[i - 1]` is checked.
- For `i = 4`, `arr[4]` is 1 and `arr[3]` is 2.
- The condition `1 < 2` is true.

**Correctness:**
- This block is correct. The condition correctly checks if the current element is less 
than the previous element.

In-Execution Self-Debugging w/ trace
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### [BLOCK-2]
```python
# arr = [5, 4, 3, 2, 1] i = 4
return i
# arr = [5, 4, 3, 2, 1] i = 4 _ret = 4
```
**Explanation:**
- Since the condition in [BLOCK-1] is true, the function returns the current index `i`, 
which is 4.

**Correctness:**
- This block is correct. The function correctly returns the index of the element that is 
not greater than or equal to the element immediately preceding it.

### Conclusion
The execution trace is correct and matches the expected behavior of the function based 
on the given specifications and samples. The function correctly identifies that the 
element at index 4 (value 1) is less than the element at index 3 (value 2) and returns 
the index 4.

======================================= USER =======================================
But it failed in the following test case:
assert can_arrange([5, 4, 3, 2, 1]) == 1, "Test Case 3: Descending order array”
# Real Execution Output: 4

Please fix the bug in the `can_arrange` function and make sure that the fixed code 
matches the specification and passes all tests. Provide the fixed code in one code block. 
If there is no bug in your previous code, repeat the code in a code block again. You are 
not allowed to modify the given function signature. Think step by step.

==================================== ASSISTANT =====================================
I see the issue. The function should return the largest index of an element which is not 
greater than or equal to the element immediately preceding it. In the case of a 
descending order array, the function should return the first index where this condition 
is met, which is `1` in the given test case.

To fix this, we need to iterate from the beginning of the array to the end, and return 
the first index where the condition is met. Here is the corrected code:

```python
def can_arrange(arr):
    """Create a function which returns the largest index of an element which
    is not greater than or equal to the element immediately preceding it. If
    no such element exists then return -1. The given array will not contain
    duplicate values.

    Examples:
    can_arrange([1,2,4,3,5]) = 3
    can_arrange([1,2,3]) = -1
    """
    for i in range(1, len(arr)):
        if arr[i] < arr[i - 1]:
            return i
    return -1
```

This function now correctly iterates from the beginning of the array to the end, and 
returns the first index where the current element is less than the previous element. 
This should pass all the given test cases.

Post-Execution Self-Debugging w/ detail

Figure 7: An example with GPT-4o performing both post and in-execution self-debugging on a problem from
HumanEval (HumanEval/135) respectively. Post-execution self-debugging wrongly corrects the program while
in-execution self-debugging manages to keep the original answer.
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Here is the given code to do completion:
```python
{prompt}
```
Please complete the `{entry_point}` function and make sure that it matches the 
specification and passes all tests. You are not allowed to modify the given function 
signature. Think step by step and provide all completed codes in one code block.

Code Generation Prompt for HumanEval

Here is the given problem to solve:
```python
{prompt}
```
Please implement the `{entry_point}` function and make sure that it matches the 
specification and passes all tests. You are not allowed to modify the given function 
name and arguments in the test examples. Think step by step and provide all completed 
codes in one code block.

Code Generation Prompt for MBPP

Here is the given programming problem to solve:
{content}

Please generate a correct python program that matches the specification and passes all 
tests. Think step by step. You will use the following starter code to write the solution 
to the problem and enclose your code within delimiters.
```python
{starter_code}
```

Code Generation Prompt for Functional-Input Question in LiveCodeBench

Here is the given programming problem to solve:
{content}

Please generate a correct python program that matches the specification and passes all 
tests. Read the inputs from stdin solve the problem and write the answer to stdout (do 
not directly test on the sample inputs). Think step by step and enclose your code within 
delimiters as follows:
```python
# YOUR CODE HERE
```

Code Generation Prompt for Stdin-Input Question in LiveCodeBench

Figure 8: Prompts for initial code generation (w/o self-debug).

Here is the given code to do completion:
```python
{prompt}
```
Please provide ten comprehensive and valid test cases to verify whether the 
`{entry_point}` function correctly solves the problem. You are not allowed to implement 
the function. Think step by step and provide all test cases in one code block.

The format of test cases should be:
```python
assert {entry_point}(input) == expected_output, "Test Case Description"
```

Test Generation Prompt for HumanEval
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Here is the given problem to solve:
```python
{prompt}
```
Please provide ten comprehensive and valid test cases to verify whether the 
`{entry_point}` function correctly solves the problem. You are not allowed to implement 
the function. Think step by step and provide all test cases in one code block.

The format of test cases should be:
```python
assert {entry_point}(input) == expected_output, "Test Case Description"
```

Test Generation Prompt for MBPP

Here is the given programming problem to solve:
{content}

Please provide ten comprehensive test samples based on the specification and follow the 
format of the given sample.

Your response should be organized like below and no extra information is allowed 
(including explanation):
[Input]
<your input here>
[Output]
<your output here>
[Input]
...

Test Generation Prompt for LiveCodeBench

Figure 9: Prompts for test generation.

{error}

Please fix the bug in the `{entry_point}` function and make sure that the fixed code 
matches the specification and passes all tests. Provide the fixed code in one code block.
If there is no bug in your previous code, repeat the code in a code block again. You are
not allowed to modify the given function signature. Think step by step.

Post-Execution Debugging Prompt for HumanEval

{error}

Please fix the bug in the `{entry_point}` function and make sure that the fixed code 
matches the specification and passes all tests. Provide the fixed code in one code block.
If there is no bug in your previous code, repeat the code in a code block again. You are 
not allowed to modify the given function name and arguments in the test examples. Think 
step by step.

Post-Execution Debugging Prompt for MBPP
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{error}

Please fix the bug in the code and make sure that the fixed code matches the 
specification and passes all tests. 
You will use the following starter code to write the solution to the problem and enclose 
your code within delimiters.
```python
{starter_code}
```

Post-Exec. Debugging Prompt for Functional-Input Questions in LiveCodeBench

{error}

Please fix the bug in the code and make sure that the fixed code matches the 
specification and passes all tests. 
Read the inputs from stdin solve the problem and write the answer to stdout (do not 
directly test on the sample inputs). Enclose your code within delimiters as follows.
```python
# YOUR CODE HERE
```

Post-Exec. Debugging Prompt for Stdin-Input Questions in LiveCodeBench

Figure 10: Prompts for post-execution debugging.

Given an input for the function `{test}`, here is the code execution trace block by 
block with the intermediate variable:
{trace}

Please explain the execution FOR EACH BLOCK and answer whether this block is correct or 
not based on the specifications and given samples in the problem. If the program is 
correct, please restate it in one python code block. If it is incorrect, please fix the 
bug and provide the fixed code in a code block.

In-Execution Debugging Prompt

Figure 11: Prompt for in-execution self-debugging.
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