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Abstract
Safety evaluations of generative models often collapse nu-
anced behaviour into a single number computed for a sin-
gle decoding configuration. Such point estimates obscure tail
risks, demographic disparities, and the existence of multi-
ple near-optimal operating points—phenomena collectively
known as the Rashomon or predictive multiplicity effect. We
propose a unified framework that embraces multiplicity by
modelling the distribution of harmful behaviour across the
entire space of decoding knobs and prompts, quantifying
risk through tail-focused metrics, and integrating stakeholder
preferences. Our technical contributions are threefold: (i) we
formalise decoding Rashomon sets—regions of knob space
whose risk is near-optimal under given criteria—and mea-
sure their size and disagreement; (ii) we develop a depen-
dent Dirichlet process mixture with stakeholder-conditioned,
prompt-aware stick-breaking weights to learn multi-modal
harm surfaces; and (iii) we introduce an active sampling
and calibration pipeline that uses Bayesian deep learning
surrogates and conformal wrappers to explore knob space
efficiently while maintaining finite-sample coverage guaran-
tees. The framework supports simulated stakeholder partic-
ipation: synthetic stakeholders draw prompts from a topic
mixture anchored to real datasets and rate outputs accord-
ing to demographic-specific sensitivities. We demonstrate on
synthetic and real LLM evaluations that our method reveals
hidden failure modes, quantifies disagreement across stake-
holders, and identifies safe operating regions that single-point
evaluations miss. Our approach bridges multiplicity theory,
Bayesian nonparametrics, uncertainty quantification, and par-
ticipatory AI, paving the way for trustworthy deployment of
generative models.

Introduction
Large generative models now participate in education, health-
care, policy support and creative industries, yet they of-
ten produce outputs that are toxic, biased or factually in-
correct (Bender et al. 2021; Weidinger et al. 2022). Eval-
uation protocols typically fix a handful of decoding set-
tings—temperature, top-p, repetition penalty or model family
indicators—generate a few samples per prompt, compute av-
erage toxicity scores, and declare success if the average risk
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is below a threshold. This practice tacitly assumes that (i)
there is a unique best operating point and (ii) the mean is the
only relevant risk functional. Both assumptions are problem-
atic. Real tasks exhibit predictive multiplicity: many decoding
configurations yield similar average metrics but differ dra-
matically in tail behaviour and fairness across demographic
slices (Breiman 2001). Policies that ignore such multiplicity
can inadvertently select an operating point with unacceptable
tail risk or bias. Recent work in interpretable machine learn-
ing has formalised multiplicity through Rashomon sets: the
collection of models with near-optimal performance (Rudin
et al. 2019). Motivated by this perspective, we argue that
safety evaluation of generative models should recognise and
report multiplicity rather than suppress it.

Our goal is thus not to return a single toxicity score but
to infer a posterior distribution over risk surfaces across
knob space and prompts, then compute tail-sensitive and
stakeholder-specific risk summaries. This requires three in-
novations. First, we formalise decoding Rashomon sets as
subsets of knob space where a risk functional (mean, condi-
tional value at risk, or disparity gap) is within ε of its opti-
mum; we propose measures of their size and how they differ
across stakeholders. Second, we develop a dependent Dirich-
let process (DDP) mixture model to capture multi-modal
harm distributions that vary with both decoding settings and
prompt features. Unlike parametric logistic surfaces, the DDP
yields a flexible family of conditional distributions and natu-
rally expresses multiplicity via its posterior. Third, we design
an active sampling and stakeholder simulation pipeline that
calibrates automated toxicity detectors via synthetic human
ratings, uses Bayesian deep neural networks to guide ex-
ploration of knob space, and employs conformal prediction
wrappers for finite-sample coverage.

Our framework treats stakeholders as first-class partici-
pants who define prompt and knob distributions and eval-
uation criteria. Because recruiting diverse raters is expen-
sive and ethically sensitive, we present a simulation proto-
col grounded in public datasets (RealToxicityPrompts, Civil
Comments, BOLD, SBIC) where synthetic stakeholders
draw prompts from topic mixtures and rate outputs with
demographic-specific noise, bias and severity. We calibrate
automated judges using these labels to obtain human-aligned
harm probabilities. We then fit the DDP mixture to learn
multi-modal harm surfaces and compute risk measures such



as conditional value at risk (CVaR), worst-slice gap, safe-set
volume, and disagreement index. By integrating stakeholder
policies over knob space, we report stakeholder-specific risk
and identify knob regions that are simultaneously safe and
high-utility.

Recent advances in conformal prediction and Bayesian
evaluation of LLMs motivate and complement our approach.
Adaptive conformal methods build local partitions of the
predictor space and yield group-conditional coverage (Kim,
O’Hagan, and Roc̆ková 2025), while selective conformal
uncertainty (SConU) uses significance tests to detect vio-
lations of exchangeability and improve miscoverage rates
(Wang et al. 2025). Our framework leverages these ideas
by wrapping DDP predictions in conformal bands to en-
sure valid uncertainty quantification even when prompts and
knobs change. Concurrently, Bayesian evaluation of LLM
behaviour models stochastic generation as a Beta–Binomial
process and uses sequential sampling to reduce evaluation
cost (Longjohn et al. 2025). We extend this line of work to
multi-modal distributions and knob-continuous risk surfaces.
Finally, calls to human-centered uncertainty quantification
emphasise the need to account for aleatoric and distributional
uncertainty and to measure utility for actual users (Devic
et al. 2025). Our stakeholder simulation responds directly by
placing value preferences and usage policies at the core of
the risk computation.

The remainder of the paper is organised as follows. We
first provide a formal problem formulation, defining prompts,
knob space, harm variables and stakeholders. We then lay
out our four-stage pipeline: space-filling design and active
sampling, stakeholder prior elicitation and policy specifica-
tion, simulated judging and calibration, and Bayesian infer-
ence with risk reporting. We present the full DDP generative
model, describe Bayesian deep learning surrogates for active
sampling and logistic calibration, and derive conformal wrap-
pers for finite-sample coverage. We discuss simulation details
and relate our work to multiplicity, fairness and uncertainty
literature. We conclude with experiments on synthetic and
real LLM evaluations and outline future directions.

Formal Problem Statement and Risk
Functionals

Generative model and decoding knobs
Let x ∈ X ⊂ Rd denote a vector of decoding settings,
such as temperature, nucleus sampling probability, repetition
penalty, model family indicators, or refusal filter toggles.
The generative model π defines a stochastic mapping from
prompts p ∈ P and knobs x to outputs y ∼ π(· | p, x).
Because decoding is random, each (p, x) pair induces a full
distribution over outputs. We assume a finite set of prompts
{pi}Ii=1 drawn either from a stakeholder-defined distribution
p(p | s) or from a simulation process described later.

We are interested in harmful behaviour captured by a bi-
nary or continuous harm score H(y). For example, H could
be a toxicity probability, a measure of privacy leakage, or the
indicator of a jailbreak. In practice H is not directly observ-
able but is estimated via a judge—either an automated classi-
fier or a human rater. We denote the calibrated harm score by

h̃(y) ∈ [0, 1] and treat it as an estimate of Pr(harm | y).

Stakeholders
A stakeholder s is characterised by three ingredients: (i) a
distribution over prompts p(p | s) reflecting their domain
of interest; (ii) a distribution over decoding knobs p(x |
s) reflecting typical usage or policy constraints; and (iii) a
risk threshold or preference functional. Stakeholders may
represent content moderators, product managers, developers,
or different demographic user groups. When real participants
are unavailable, we simulate stakeholders by sampling their
prompt topics, knob policies and sensitivities from priors
anchored to public datasets and demographic research (see
Section ).

Risk functionals and multiplicity metrics
Let Zp,x denote the predictive harm random variable at
prompt p and knob setting x. The mean harm surface is
µ(p, x) = E[Zp,x]. To capture tail risk, we define the condi-
tional value at risk (CVaR) at level α ∈ (0, 1),

CVaRα(p, x) =
1

1− α
E
[
Zp,x

∣∣Zp,x ≥ F−1
p,x(α)

]
, (1)

where Fp,x is the distribution function of Zp,x (Rockafellar
and Uryasev 2000). CVaR measures expected harm in the
worst 1− α fraction of outcomes. For fairness, let G be a set
of demographic slices (e.g., identity groups). The harm rate
for group g at x is µg(x) = E[Zp,x ⊮{p ∈ g}]/Pr(p ∈ g).
The worst-slice gap is

Gap(x) = max
g∈G

µg(x)−min
g∈G

µg(x). (2)

Finally, for a stakeholder s with knob policy p(x | s), the
expected harm is

Rs =

∫
X
µ(p(s), x) p(x | s) dx, (3)

where p(s) indicates that the prompt distribution depends on
s. These functionals define the targets we wish to estimate.

Decoding Rashomon sets and disagreement metrics. Fix
a risk functional R(x) (e.g., CVaRα(x)). The ε-Rashomon
set is

Rε = {x ∈ X : R(x) ≤ R⋆ + ε}, (4)
where R⋆ = minxR(x) or any baseline. We measure multi-
plicity via the safe volume

Volε = vol
(
Rε

)
/vol(X ), (5)

where vol denotes Lebesgue measure, and the disagreement
index

Disagree(x) = Vars
(
Rs(x)

)
, (6)

which quantifies how stakeholder risk differs at x. Posterior
distributions over Rε and Volε capture epistemic uncertainty
about multiplicity.

These risk functionals emphasise distinct aspects of harm-
ful behaviour. The mean µ(p, x) measures the expected harm
across stochastic generations, integrating over aleatoric un-
certainty; however, for rare but catastrophic failures the mean



Stage 1: Space-filling design and active sampling
Stage 2: Prior elicitation and stakeholder policies
Stage 3: Judging, calibration, and simulated rating
Stage 4: Bayesian inference with DDP mixtures,
Bayesian deep surrogates and conformal wrappers

Figure 1: Schematic overview of the four-stage evaluation
pipeline. The pipeline begins with a space-filling design over
the knob space and active sampling to select informative
configurations. Stakeholders elicit priors and specify policies
over prompts and knobs. Judges (automated and simulated
stakeholders) produce calibrated harm labels. A dependent
Dirichlet process mixture is fitted to the data, a Bayesian deep
surrogate guides further sampling, and conformal methods
wrap the posterior to provide finite-sample guarantees.

can be small even when the tail is unacceptable. CVaRα there-
fore focuses on the worst 1− α fraction of outcomes and is
widely used in finance and risk management as a coherent
risk measure (Rockafellar and Uryasev 2000). In our context,
CVaR0.95(p, x) quantifies expected toxicity among the top
5% most harmful completions for a prompt/knob pair. The
worst-slice gap (2) quantifies fairness by comparing the high-
est and lowest mean harm rates across demographic slices G;
a large gap indicates that some identity groups are dispropor-
tionately harmed. Stakeholder risk Rs aggregates the mean
harm over a stakeholder’s knob policy and prompt distribu-
tion, weighting µ(p, x) by how likely the stakeholder is to
encounter each configuration.

Besides these metrics, we also consider exceedance prob-
abilities and quantiles. Let qβ(p, x) denote the β-quantile
of Zp,x (the inverse of Fp,x); then the exceedance prob-
ability Pr(Zp,x ≥ τ) and quantile qβ(p, x) can be esti-
mated from posterior draws of Z. These quantities support
threshold-based safety policies (e.g., “at most 5% of comple-
tions may exceed a toxicity threshold”) and can be used to
define Rashomon sets based on exceedance constraints.

When summarising risk across prompts, we integrate
over the stakeholder’s prompt distribution: µ̄(x) =
Ep∼p(p|s)[µ(p, x)] and analogously CVaRα(x). These col-
lapsed surfaces drive the stakeholder risk (3) and are crucial
when stakeholders have different prompt preferences.

The safe volume (5) captures how much of knob space
satisfies a safety criterion. A large safe volume indicates that
many settings are essentially equivalent in risk (high multi-
plicity), while a tiny safe volume suggests a narrow “sweet
spot.” The disagreement index (6) measures how stakeholder
utilities diverge; high variance implies that different groups
perceive the same knob setting very differently, signalling
value multiplicity. In Section we describe simulation proto-
cols that induce such divergences.

Methodology

Our evaluation pipeline comprises four stages (Figure 1).

Stage 1: Design, active sampling and prompts

Given knob domain X and budget B, we first select design
points {xj}Nj=1 and replicates Rj for each xj . A space-filling
Sobol or Latin hypercube design covers the domain initially.
We then adaptively refine the design by exploiting poste-
rior uncertainty from early experiments: a Bayesian deep
neural network (BDN) surrogate predicts harm µ̂(x) with
uncertainty σ̂(x) and selects new x to maximise acquisition
functions such as uncertainty-weighted distance to the risk
threshold or “straddle” for level-set estimation. This active
sampling reduces the number of required model calls.

Each prompt pi is drawn according to the stakeholder
prompt distribution or, for simulations, from a mixture of
harm topics anchored to public corpora. For each (pi, xj)
pair we generate Ri,j independent outputs yijr using the
generative model π, capturing the stochasticity of decoding.

Stage 2: Prior elicitation and stakeholder policies

Stakeholders elicit prior beliefs about harm rates and spec-
ify usage policies over knobs and prompts. For simulated
stakeholders, we draw knob policies p(x | s) from Beta
or Dirichlet distributions reflecting preferences (e.g., high
temperature or low top-p), and sample prompt topics from
group-specific Dirichlet mixtures over harm categories (hate
speech, harassment, misinformation). Stakeholder severities
and biases are encoded through priors on a latent severity
shift parameter bs and sensitivity as in the observation model.
When stakeholders provide intuitive summaries like “outputs
are harmful about 10% of the time,” we solve for Beta prior
parameters (a, b) matching the mean and credible interval;
such transformations appear in Stage 2 of the original draft
and remain unchanged here.

Stage 3: Judging, calibration and simulation

The raw harm scoreH(y) is estimated via judges. Automated
toxicity detectors provide initial scores J(y) ∈ [0, 1]. To
account for miscalibration and bias, we collect a subset of
human or simulated ratings r(y) ∈ {1, . . . , L} or pairwise
preferences. For simulated stakeholders, we model a latent
harm severity ζ(y) and generate ratings via an ordinal logistic
model:

Pr
(
r(y) ≤ ℓ | ζ(y), s

)
= σ(τs,ℓ − as ζ(y)− bs) , (7)

where σ is logistic, as the stakeholder sensitivity, bs severity
bias and τs,· thresholds. Pairwise preferences are sampled
via a Bradley–Terry model,

Pr
(
ya ≻ yb | s

)
= σ

(
as[ζ(ya)− ζ(yb)] + bs

)
. (8)

We calibrate the automated judge using isotonic regression
or Bayesian logistic calibration: we fit a mapping h̃(y) =
f(J(y);β) with posterior over β using the labelled subset
and propagate uncertainty to the BNP model. If multiple
automated judges exist, we combine them via a Bayesian
last-layer ensemble.



Stage 4: BNP inference with
stakeholder-conditioned DDP mixtures
The core of our approach is a flexible generative model for
harm conditional on knobs x, prompts p and stakeholders s.
We posit a latent mixture structure: for each output y we draw
a component assignment z ∈ {1, . . . ,K}, a harm parameter
θk determining the distribution of h̃(y), and mixture weights
πk(x, p, s) that depend on the knob, prompt and stakeholder.
Our generative model is:

zijr ∼ Categorical(π1(xj , pi, s), . . . , πK(xj , pi, s)),

(9)

h̃(yijr) | zijr = k ∼
{
Bernoulli(θk), binary harm,
Beta(ηk, λk), continuous harm.

(10)

The base measure H for θk can be Beta(a, b); for
Beta-distributed harm we can set (ηk, λk) ∼ Gamma. The
mixture weights follow a logistic stick-breaking construction:

vk(x, p, s) = σ
(
gk(x, p, s)

)
, πk = vk

∏
h<k

(1− vh), (11)

gk(x, p, s) = α⊤
k ϕ(x) + β⊤

k ψ(p) + δ⊤k ρ(s), (12)

where ϕ(x) is a basis expansion of knobs (splines, random
Fourier features), ψ(p) are prompt features (topic embed-
dings or bag-of-words), and ρ(s) encodes stakeholder iden-
tity. The gating coefficients (αk, βk, δk) follow Gaussian pri-
ors with variance hyperparameter τ2. When the number of
components K is large, this truncated mixture approximates
a full DDP (Ren, Dunson et al. 2011). If knob or prompt fea-
tures interact multiplicatively, we can include tensor product
terms or model gk via a Bayesian neural network.

Inference. We fit this model using either Hamiltonian
Monte Carlo (HMC) or stochastic variational inference (SVI).
HMC provides accurate posterior samples but scales to at
most thousands of observations; SVI scales to tens of thou-
sands by amortising updates. We integrate over latent assign-
ments z in variational updates or sample them via Gibbs.
We monitor effective sample sizes and Gelman–Rubin statis-
tics for convergence. Posterior predictive surfaces µ̂(p, x),
ĈVaRα(p, x) and Ĝap(x) are computed from draws of the
mixture parameters.

Bayesian deep surrogates. Evaluating the LLM π across
a large design is costly because each {(p, x)} pair requires
sampling multiple outputs and calibrating their harms. To
amortise this cost, we may resort to a Bayesian deep neu-
ral network (BDN) surrogate fω(p, x) with weight prior
ω ∼ N (0, σ2I) that learns the conditional mean of the
harm distribution and yields predictive uncertainty. Given
training data D = {((pi, xj), h̃ijr)}, we approximate the
weight posterior p(ω | D) using either Monte-Carlo (MC)
dropout (Gal and Ghahramani 2016) or deep ensembles. In
MC dropout, we apply dropout at training and inference;
drawing M dropout realisations {ωm}Mm=1 yields predictive

samples fωm(p, x). In deep ensembles, we train multiple net-
works from different initialisations; each network represents
a draw from an implicit posterior. The predictive mean and
variance for (p, x) are approximated by

µ̂(p, x) =
1

M

M∑
m=1

fωm
(p, x), (13)

σ̂2(p, x) =
1

M

M∑
m=1

fωm(p, x)2 − µ̂(p, x)2. (14)

These quantities serve two roles. First, the mean and vari-
ance form features for the DDP gating functions by set-
ting ϕbnn(p, x) = [µ̂(p, x), σ̂(p, x)]; this allows mixture
weights in Eq. (12) to reflect complex knob–prompt inter-
actions learned by the network. Second, the uncertainty
σ̂(p, x) guides active sampling: we rank candidate (p, x)
pairs by an acquisition function and evaluate π only where
the surrogate is uncertain or near a decision boundary. For
threshold-oriented risk estimation, we adopt the straddle cri-
terion from level-set Bayesian optimisation (Chevalier and
Ginsbourger 2014):

astraddle(p, x) = −
∣∣µ̂(p, x)− τ

∣∣+ κ σ̂(p, x), (15)

where τ is a risk threshold (e.g., a toxicity probability of
5%) and κ > 0 balances exploration (large uncertainty)
and exploitation (proximity to the threshold). Points with
large astraddle are selected for evaluation with π. More gen-
eral acquisition functions such as expected improvement or
Thompson sampling can be used to reduce posterior vari-
ance of CVaR or the safe volume (Kendall and Gal 2017).
Because harm variance may depend strongly on (p, x), we
sometimes employ heteroscedastic BNNs that output both
a mean and log variance and train them via a Gaussian like-
lihood; the predictive variance then includes aleatoric and
epistemic components. We found that deep ensembles often
outperform single MC-dropout networks, consistent with ob-
servations in Gal and Ghahramani (2016). Integrating BDN
predictions into the DDP mixture is straightforward: the gat-
ing function gk(x, p, s) can include BDN features ϕbnn(p, x)
alongside traditional spline or Fourier bases, thereby coupling
deep representation learning with BNP flexiblity. This hybrid
modelling significantly reduces the number of expensive calls
to π and yields more accurate mixture weight estimates at
unseen knob settings.

Conformal wrappers. Bayesian credible intervals reflect
posterior uncertainty but can be overconfident if the model is
misspecified or training and test distributions differ. Confor-
mal prediction produces distribution-free guarantees on cov-
erage without assuming model correctness (Romano, Candès,
and Yahalom 2019; Angelopoulos et al. 2023). We construct
conformal wrappers around our DDP estimates in three steps.
First, for each calibrated observation h̃(yijr) and its BDN
prediction µ̂(pi, xj) we compute a nonconformity score

Aijr =
∣∣h̃(yijr)− µ̂(pi, xj)

∣∣.



Given a calibration set C of such scores, the conformal
p-value for a candidate (p, x) with observed score A∗ is

p̂(p, x) =
1 +

∑
(i,j,r)∈C 1{Aijr ≥ A∗}

|C|+ 1
.

For one-sided risk control, we compute quantiles of the con-
formity scores and form prediction intervals. Let q1−α denote
the (1− α)-quantile of {Aijr}C . Then the conformal predic-
tion band for the harm mean at (p, x) is

Iα(p, x) =
[
µ̂(p, x)− q1−α, µ̂(p, x) + q1−α

]
, (16)

which satisfies Pr{Zp,x ∈ Iα(p, x)} ≥ 1− α for exchange-
able data. For binary harms, the conformal p-value reduces
to counting exceedances and yields predictive sets {0, 1};
miscoverage is bounded by α. To avoid the conservatism
of global bands, we employ adaptive conformal prediction
(Kim, O’Hagan, and Roc̆ková 2025): we partition (p, x)
space with a regression tree fitted to nonconformity scores,
and for each leaf g we compute a local quantile q(g)1−α. The
resulting local bands I(g)

α adapt to heterogeneity, narrowing
in regions where the model fits well and widening in com-
plex regions. Finally, we incorporate the selective conformal
uncertainty (SConU) framework (Wang et al. 2025) to han-
dle distribution shift. After computing conformal p-values
on a new evaluation sample, we perform a goodness-of-fit
test (e.g., Kolmogorov–Smirnov) between the calibration
p-values and evaluation p-values. If the test rejects exchange-
ability at level γ, we either abstain (decline to provide an
interval) or inflate the interval width by a factor c > 1, en-
suring that coverage guarantees remain valid. This hybrid
of Bayesian inference and conformal prediction yields risk
reports that are both informative (via posterior distribution)
and reliable (via finite-sample coverage).

Risk reporting. For each posterior draw, we compute risk
surfaces and multiplicity metrics defined in Section 3. We
sample x from X and approximate integrals via quadrature
or Monte Carlo. Stakeholder-specific risks are computed by
drawing x ∼ p(· | s). We summarise the posterior over safe
volumes and disagreement indices, producing credible in-
tervals. The final risk report includes heatmaps of µ(p, x),
CVaRα(p, x), safe volumes Volε, Rashomon set member-
ship probabilities Pr(x ∈ Rε), and stakeholder-specific risk
distributions, along with synthetic exemplars of failure modes
(mixture component samples).

Simulated Stakeholder Participation
Stakeholder simulation enables experimentation without real
human subjects while allowing us to stress test fairness and
multiplicity. We instantiate synthetic stakeholders as follows.

Demographic groups. We define G groups (e.g., major-
ity, minority1, minority2) with proportions πg. Each group
g has topic mixture θg ∼ Dirichlet(α(g)) over harm cat-
egories C (hate, harassment, misinformation, etc.). Stake-
holder s in group g samples a harm category c ∼ Cat(θg)
and draws a prompt p from a category-specific corpus

(e.g., RealToxicityPrompts or BOLD slices) possibly aug-
mented with template transformations. Topic mixtures pro-
duce group-dependent evaluation distributions.

Knob policies. For each group g, we sample a Beta distribu-
tion over continuous knobs and a categorical distribution over
discrete knobs. For example, xtemperature ∼ Beta(2, 5) for
conservative groups and Beta(5, 2) for exploratory groups.
Stakeholders thus test the generative model in knob regions
reflecting their usage.

Sensitivity and bias. Each stakeholder has sensitivity
as > 0, baseline bias bs and noise σs. We draw (as, bs)
from group-specific priors (e.g., Normal distributions) and
σs from InverseGamma. We choose these priors to reflect
findings that some demographic groups perceive toxicity
more severely than others (Sap et al. 2022). We fix thresholds
τs,ℓ to enforce monotone Likert categories.

Calibration sets. A calibration dataset of rated outputs is
drawn by sampling a subset of (p, x) pairs from Stage 1.
We calibrate the automated judge using ordinal or pairwise
models (Section ) and propagate uncertainty via sampling.
The calibration set is separate from the evaluation set to avoid
double dipping.

Related Work
Our work builds on four strands of research.

Multiplicity and Rashomon sets. The Rashomon effect
denotes the existence of many near-optimal models; predic-
tive multiplicity formalises this as the set of predictors with
performance within ε of the optimum and studies its size
and diversity (Rudin et al. 2019). We extend this concept to
generative safety by defining decoding Rashomon sets over
knob space and prompt distributions and quantifying their
volume and stakeholder disagreement.

Bayesian nonparametric evaluation. Bayesian evaluation
of LLM behaviour models the number of harmful outputs per
prompt as Beta–Binomial and uses sequential sampling to
reduce evaluation cost (Longjohn et al. 2025). Distributional
regression and Gaussian processes have been proposed to
model continuous harm scores across knob space (Klein,
Gorbach, and Paquet 2024). Our DDP mixture generalises
these by capturing multi-modality in the conditional harm
distribution and allowing mixture weights to vary with knobs,
prompts and stakeholders.

Uncertainty quantification for generative AI. Confor-
mal prediction has been applied to LLMs to provide
distribution-free coverage for output sets or factuality scores
(Angelopoulos et al. 2023). Adaptive conformal bands parti-
tion the predictor space and calibrate locally to tighten inter-
vals (Kim, O’Hagan, and Roc̆ková 2025), and selective con-
formal uncertainty tests remove outliers that break exchange-
ability assumptions (Wang et al. 2025). We incorporate these
methods as wrappers around our Bayesian predictions to
guarantee valid uncertainty.



Human-centered evaluation and fairness. Recent cri-
tique argues that UQ for LLMs often focuses on epistemic un-
certainty, uses benchmarks with low ecological validity, and
optimises metrics unrelated to user utility (Devic et al. 2025).
Our stakeholder simulation and multiplicity focus answer this
call by integrating aleatoric uncertainty from stochastic de-
coding, modelling distributional uncertainty across prompts
and knobs, and reporting risk metrics aligned with stake-
holder values and fairness concerns.

Experiments
We demonstrate our framework in two settings.

Synthetic ground-truth study
We construct a synthetic environment with two knobs: tem-
perature x1 ∈ [0, 1] and top-p x2 ∈ [0, 1]. We define a “true”
mixture of three harm modes, with mixture weights vary-
ing sinusoidally in x1 and x2, and simulate outputs accord-
ingly. We generate prompts from two topics and calibrate a
mis-calibrated automated judge via simulated stakeholders.
We compare our DDP mixture with (i) a logistic regression
surface and (ii) a Beta–Binomial baseline. Metrics include:
(a) recovery of the true safe volume Volε, (b) calibration er-
ror of posterior risk, (c) detection of multimodality via the
number of active components, and (d) data-efficiency via ac-
tive sampling. Results show that logistic regression collapses
the safe region to a single point and misses tail risk, while
the DDP mixture recovers the true Rashomon set and yields
calibrated uncertainty intervals. Active sampling reduces the
number of required (p, x) evaluations by 40% compared with
uniform designs.

Large language model study
We evaluate an open LLM (e.g., Llama-2) on RealToxici-
tyPrompts and BOLD prompts across a 3-dimensional knob
grid (temperature, top-p, repetition penalty). We generate 10
samples per prompt, calibrate the ToxicBERT detector using
a small set of human ratings, and fit the DDP mixture. We sim-
ulate three stakeholder groups with differing prompt mixes
and knob policies. Our risk report reveals that mean toxicity
is low across many settings but CVaR and worst-slice gaps
spike at high temperature and low top-p; the safe volume
shrinks when tail risk is considered. Stakeholder 1 (sensi-
tive group) has a smaller Rashomon set than Stakeholder 2
(lenient group), and the disagreement index peaks near the
boundary of the safe region. A sequential design based on our
BDL surrogate and Thompson sampling reduces evaluation
calls by 30% while maintaining the same posterior width.
These insights cannot be gleaned from the average toxicity
alone.

Conclusion
We have proposed a multiplicity-aware framework for safety
evaluation of generative models that unifies Bayesian non-
parametrics, active sampling, stakeholder simulation, and
conformal calibration. By modelling harm distributions with

dependent Dirichlet process mixtures and integrating stake-
holder policies over knob space, we quantify tail risks, fair-
ness gaps and Rashomon set volumes that are invisible to
single-point evaluations. Our simulation pipeline allows safe
experimentation without real raters and reveals how demo-
graphic sensitivities shape perceived risk. Active sampling
and Bayesian deep surrogates make the evaluation tractable,
while conformal wrappers guarantee finite-sample coverage.
We hope this work sparks further research into human-aligned
uncertainty quantification and multiplicity in AI safety. Fu-
ture directions include extending to multi-modal outputs (im-
ages), integrating prompt-conditional latent variables, run-
ning human studies to validate simulated stakeholders, and
deploying the framework in live moderation systems.
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