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ABSTRACT
Real-time semantic segmentation is essential for many practical ap-
plications, which utilizes attention-based feature aggregation into
lightweight structures to improve accuracy and efficiency. However,
existing attention-based methods ignore 1) high-level and low-level
feature augmentation guided by spatial information, and 2) low-
level feature augmentation guided by semantic context, so that
feature gaps between multi-level features and noise of low-level
spatial details still exist. To address these problems, a new real-time
semantic segmentation network, called MvFSeg, is proposed. In
MvFSeg, parallel convolution with multiple depths is designed as
a context head to generate and integrate multi-view features with
larger receptive fields. Moreover, MvFSeg designs multiple views
feature augmentation strategies that exploit spatial and semantic
guidance for shallow and deep feature augmentation in an inter-
layer and intra-layer manner. These strategies eliminate feature
gaps between multi-level features, filter out the noise of spatial
details, and provide spatial and semantic guidance for multi-level
features. By combining multi-view features and augmented features
from the lightweight networks with progressive dense aggregation
structures, MvFSeg effectively captures invariance at various scales
and generates high-quality segmentation results. Experiments con-
ducted on Cityscapes and CamVid benchmark show that MvFSeg
outperforms the existing state-of-the-art methods.
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Figure 1: Speed-accuracy comparison on the Cityscapes test
set. The proposed MvFSeg achieves the highest accuracy and
possesses real-time inference speed.
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1 INTRODUCTION
Semantic segmentation is a crucial task closely related to vision
and multimedia applications [6–10, 16, 35, 44–46], which detects
and delineates each object of interest appearing in an image by
assigning each pixel a class label [12, 24, 26, 29, 42]. With the de-
velopment of deep learning technologies, semantic segmentation
achieves great progress. However, objects of interest in the real
world are often difficult to be identified due to complex backgrounds,
inconsistent scales, and diverse visual appearances, which bring
great difficulties to semantic segmentation, especially for real-time
segmentation. To achieve effective real-time performance, many
approaches have been explored to restrict the input image size [47],
migrate lightweight network [42] and prune the redundant chan-
nels [32] to improve efficiency. Unfortunately, these lightweight
designs borrowed from other tasks such as image classification
suffer from limitations in segmentation and lead to dramatic per-
formance degradation due to insufficient task-specific designs [12].
It remains a challenging task to develop an effective method for
real-time semantic segmentation.

https://doi.org/10.1145/3503161.3547786
https://doi.org/10.1145/3503161.3547786
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Figure 2: The framework of the proposed MvFSeg is composed of the lightweight backbone network, parallel multiple depths
convolution (PMDC), multi-level feature augmentation (MFA), and progressive dense feature aggregation (PDFA).

For the purpose of real-time processing, many semantic seg-
mentation approaches usually adopt lightweight backbones. Un-
fortunately, due to the limited parameters for learning complex
relations, the pixels of the final prediction map get insufficient per-
ceptual regions and thus often achieve suboptimal performance.
Typically, FCN [26] network with a lightweight backbone has insuf-
ficient receptive fields on large objects, but has oversized receptive
fields on small objects. This will lead to incomplete segmentation
of large objects and coarse segmentation of small objects. To al-
leviate such condition, different strategies are adopted, including
attention mechanisms [12, 42] and aggregation structures [23, 37]
for feature augmentation. However, existing attention-based strate-
gies in real-time methods [12, 42] focus on the semantic context
guided high-level feature augmentation, while the semantic con-
text guided low-level feature augmentation tends to be ignored.
Moreover, spatial information guided high-level and low-level fea-
ture augmentation is not investigated in real-time segmentation.
Accordingly, feature gaps among multi-level features and noise
of spatial details in shallow features still exist. Therefore, the in-
vestigation of multi-view feature augmentation is limited and the
aggregation structure usually receives features with insufficient
spatial information and semantic context, resulting in limited fusion
results.

To alleviate the problem of lack of sufficient spatial information
and semantic context, this paper proposes a new real-time semantic
segmentation network, MvFSeg, which fully utilizes hierarchical
spatial information and high-level semantic context for multi-view
feature enhancement and aggregation. As can be seen in Figure 2, it
consists of four components: 1) light-weight backbone network, 2)
parallel multiple depths convolution (PMDC), 3) multi-level feature
augmentation (MFA), and 4) progressive dense feature aggregation
(PDFA). The structure of MvFSeg is described as follows:

• First, four stages of features are generated with the lightweight
backbone, where the first three stages correspond to low-level
features that are used for localization, while the last stage repre-
sents the high-level features that are exploited for classification.

• Second, the high-level features from stage 4 are fed to PMDC to
integrate long-range context and generate higher-level features
(𝐹32), which constructs multiple convolution paths with different

depths to capture features with different receptive fields. By com-
bining features from these different paths, multi-scale receptive
fields are integrated.

• Third, multi-level features (𝐹4, 𝐹8, 𝐹16 and 𝐹32) are fed to semantic
and spatial augmentation branches to capture and utilize seman-
tic context and spatial information, which potentially boosts the
capability of classification and localization. In order to integrate
these complemented semantic context and spatial information
for multi-level feature augmentation, inter-layer and intra-layer
feature augmentation strategies are designed. The inter-layer
feature augmentation bridges feature gaps between higher-level
and low-level features by capturing long-range semantic and
spatial guidance and conducting cross-layer feature augmenta-
tion. The intra-layer feature augmentation acquires short-range
semantic and spatial guidance from shallow and deep features,
which refines features from the same layer.

• Finally, these augmented features (𝑅 𝑗

𝑖,32) as well as the multi-
level features (𝐹4, 𝐹8, 𝐹16 and 𝐹32) are passed to sequential fusion
blocks for effective dense feature aggregation, which aims to in-
tegrate multi-view features. In addition, higher-level features are
connected to each fusion block in a residual manner to preserve
higher-level semantics. Moreover, each fusion block is composed
of stacked compression and integration structure, which guaran-
tees efficiency. Therefore, high-resolution segmentation maps are
efficiently reconstructed with a progressive increase in semantics
and spatial information.

MvFSeg integrates hierarchical spatial information and high-
level semantic context from features of all layers, which acts as
a general framework, so that it can be applied to different back-
bone networks for real-time semantic segmentation. To verify the
efficiency and effectiveness of MvFSeg, extensive experiments are
conducted on two datasets and the state-of-the-art performance is
obtained, as shown in Figure 1.

The contributions are summarized as follows:

• A real-time segmentation approach called MvFSeg is proposed,
which is designed with parallel multiple views feature augmen-
tation structure to generate high-quality features that contain
sufficient spatial information and semantic context, and is a gen-
eral framework for different lightweight backbone networks.
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• Parallel multiple depths convolution is designed as context head,
which constructs multiple convolutional learning paths with
different depths to capture long-range information and generates
higher-level features with multi-scale and larger receptive fields.

• Multi-level feature augmentation with inter-layer and intra-layer
feature augmentation strategies is designed by integrating the
spatial information and semantic context of the network to bridge
feature gaps among cross-layer features and conduct intra-layer
feature self-reinforcement, which improves semantic classifica-
tion ability and spatial localization capability.

• Progressive dense feature aggregation is proposed to combine
augmented and multi-view features in an efficient progressive
manner for stepwise high-resolution segmentation map recon-
struction, with the effective residual structure to preserve seman-
tics and dense connections for multi-view feature aggregation.

• MvFSeg achieves the state-of-the-art performance on the Cityscapes
[11] and CamVid [2] datasets in terms of accuracy and efficiency
with the well-designed structure.

2 RELATEDWORKS
2.1 Semantic Segmentation
With the prosperity of deep learning, convolutional neural net-
works [18, 33, 34, 38–40] are applied to semantic segmentation.
FCN [26] first adopts fully convolutional networks for image seg-
mentation and hits a new peak on segmentation task. Based on
FCN, methods of different designs [4, 31] are proposed and achieve
impressive progress. Approach like UNet [36] is constructed in U-
shape structure, which bridges the information transmission gap be-
tween the encoder and decoder with skip-connections [26]. Deeplab
series [4, 5, 25] perform high-resolution feature map learning by
conducting dilated convolution operation and exploit multi-scale
information with astrous spatial pyramid pooling (ASPP). PSPNet
[48] devises pyramid pooling module (PPM) to model multi-scale
contexts. In [21], a depth-adaptive network consisting of adaptive
perception neurons and in-layer multi-scale neurons is proposed to
adjust the receptive field. In [14], the depth information of training
images is treated as the privileged information to mine the hard
pixels in semantic segmentation. Recently, transformer [49] is de-
veloped for scene parsing and makes impressive efficacy. SETR [49]
treats semantic segmentation as a sequence-to-sequence prediction
task and models global context in every layer of the transformer to
achieve powerful performance.

2.2 Real-time Semantic Segmentation
In pursuit of real-time performance for real-world applications,
more and more attention is drawn to fast segmentation [1, 24, 28,
32, 47]. ENet [32] drops the redundant channels for light-weight
segmentation structure. SegNet [1] constructs U-shape structure
with small networks and pooling indices reused for segmentation.
ICNet [47] provides original and decreased resolution as inputs to
generate spatial details and high-level context for fast and effective
segmentation. ESPNet [28] decomposes standard convolution into
point-wise convolution and spatial pyramid of dilated convolutions
to save computation. SFNet [24] learns semantic context between
featuremaps of adjacent levels and propagates high-level features to
high-resolution features effectively. HyperSeg [30] devises dynamic

patch-wise convolution with weights that vary both per input and
per spatial location, under the nested U-shape structure.

2.3 Attention and Feature Aggregation
Attention strategy [12, 17, 42] and feature aggregation [23, 37] are
usually adopted for efficient and effective segmentation. DANet
[13] adaptively generates and integrates local features and global
dependencies for fine-grained features, with dual-attention mecha-
nism. But the inference speed of DANet is non-real-time. CCNet
[20] proposes criss-cross attention to harvest the fine-grained con-
textual information of all the pixels in an efficient way. BiSeNet
[42] takes multi-branch structure to generate deep and shallow fea-
tures for attention refinement and feature aggregation. STDC-Seg
[12] refines deep features with channel attention [19]. MGSeg [17]
designs light-weight channel attention to extract dominant visual
characteristics and fuses multi-granularity features. DFANet [23]
efficiently incorporates high-level context into encoded features
with multiple times, achieving promising trade-off efficacy between
speed and accuracy. MSFNet [37] fuses all feature maps of different
scales to enlarge the receptive field and recover spatial information.

3 PARALLEL MULTIPLE VIEWS FEATURE
AUGMENTATION

3.1 Framework
The framework of MvFSeg is illustrated in Figure 2, which con-
sists of four components: 1) light-weight backbone network, 2)
parallel multiple depths convolution (PMDC), 3) multi-level feature
augmentation (MFA) and 4) progressive dense feature aggregation
(PDFA). First, to preserve high efficiency in real-time processing,
the lightweight backbone network, e.g., ResNet18 [18] is chosen as
the backbone network for 4-stage hierarchical shallow and deep
features. Second, high-level features are fed to multiple convolu-
tion paths with different depths to get features with different and
larger receptive fields. By integrating features from these different
convolution paths, higher-level features with multi-view receptive
fields are generated. Third, low-level features (𝐹4, 𝐹8 and 𝐹16) and
higher-level features (𝐹32) from PMDC are fed to MFA for inter-
layer and intra-layer feature augmentation. In inter-layer feature
augmentation, low-level and higher-level features are combined
in pairs to produce cross-layer spatial and semantic guidance and
conduct coarse-to-fine semantic context and spatial information
guided feature augmentation. In intra-layer augmentation, shallow
and deep features are independently sent to semantic and spatial
augmentation branches for intra-layer feature self-reinforcement.
By providing spatial information and semantic context to features at
all levels, MFA generates augmented features (𝑅 𝑗

𝑖,32). Fourth, these
complemented features, including the original multi-level features
(𝐹4, 𝐹8, 𝐹16 and 𝐹32) and the refined features (𝑅 𝑗

𝑖,32) are combined
with effective dense connections and residual structure to integrate
multi-view features. Specifically, they are connected to each ag-
gregation block of PDFA for effective dense feature aggregation.
In addition, higher-level features (𝐹32) are fed to each fusion step
of PDFA in a residual manner to preserve semantic context. With
PDFA, high-quality aggregation results are progressively generated,
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Figure 3: The structure of multi-level feature augmentation.

with step-by-step reconstruction of feature map resolution and step-
wise increase of semantic context as well as spatial information.

3.2 Parallel Multiple Depths Convolution
The outputs of light-weight backbone networks have small recep-
tive fields due to the depth of the network, resulting in limited
performance. To solve this problem, parallel multiple depths con-
volution (PMDC) is proposed. In PMDC, extra convolution path is
built to generate higher-level features with larger receptive fields.
In addition, to generate higher-level features with multi-view re-
ceptive fields, the single convolution path is expanded to multiple
paths. These convolution paths have different depths, which aim to
generate features with multi-scale receptive fields. By combining
features from these paths, higher-level features with multi-view
receptive fields are generated.

As can be seen in Figure 2, the high-level features from stage 4
of backbone network are fed to PMDC. To reduce the parameters
and preserve efficiency, a Neck operation is conducted to compress
the channel number, which is a 1×1 convolution. The compressed
features are fed to multiple convolution paths with different depths
for higher-level features with multi-scale receptive fields. Finally,
the output of these convolution paths as well as the compressed
high-level features are fused with a concatenation operation and a
Neck operation to integrate and compress features with multi-scale
receptive fields. Therefore, higher-level features with multi-view
receptive fields are generated. The process is formulated as follows:

𝐹
′
32 = 𝑁𝑒𝑐𝑘 (𝑂𝐹32) (1)

𝐹32 = 𝑁𝑒𝑐𝑘 (𝐶𝑎𝑡 (𝐹
′
32, 𝜃1 (𝐹

′
32), 𝜃2 (𝐹

′
32), 𝜃3 (𝐹

′
32), 𝜃4 (𝐹

′
32))) (2)

where 𝜃𝑧 (𝐹
′
32) denotes the output of the 𝑧𝑡ℎ convolution path of

PMDC. 𝑂𝐹32 and 𝐹
′
32 refer to the high-level features from stage 4

of the light-weight backbone and the compressed features, respec-
tively. 𝐶𝑎𝑡 denotes concatenation operation.

3.3 Multi-level Feature Augmentation
In previous methods, feature gaps existing in features from different
levels (e.g., 𝐹4 and 𝐹32) restrict the fusion quality. In addition, the
noise of spatial details in low-level features damages the feature rep-
resentation ability. To diminish the feature gaps, including semantic
gaps and spatial gaps of different features, e.g., 𝐹4 and 𝐹32, MFA is
proposed to augment multi-view features. The inter-layer feature
augmentation strategy is designed to handle these complementary
multi-level features and make multi-view feature augmentation.

With MFA, both shallow and deep features obtain sufficient se-
mantic context and spatial information, which eliminates the gaps
among multi-level features. The second problem is that the noise
in low-level features will reduce the effectiveness of feature fusion.
To alleviate this problem, a feature selection structure is designed
in MFA, which can select important spatial information and filter
out the noise of spatial details with a max-pooling operation and
convolutional learning layers. Max pooling is used to obtain salient
features that contain abundant spatial information while convo-
lutional learning layers are exploited to learn pixel-level relations
among these salient features.

As can be seen in Figure 3, MFA is composed of four inter-layer
and intra-layer feature augmentation (I2FA) components. For each
I2FA component, paired higher-level and low-level features, e.g.,
𝐹32 and 𝐹4 are exploited to produce short-range and long-range
semantic guidance 𝐴𝑖,32 and 𝐴∗

𝑖,32, as well as short-range and long-
range spatial guidance 𝐵𝑖,32 and 𝐵∗𝑖,32. The semantic guidance from
higher-level features is used to provide semantic context to both
shallow and deep features. With this, the network pays more atten-
tion to the identification of categories. The spatial guidance from
different layers aims to provide spatial information to both higher-
level and low-level features. In this way, the network can focus on
local details such as boundaries and small objects. With the spatial
and semantic guidance, MFA devises inter-layer and intra-layer
feature augmentation strategies to conduct a coarse-to-fine pro-
cess and produce the augmented features 𝑅 𝑗

𝑖,32, 𝑗 ∈ {1, 2, 3, 4}. With
the I2FA structure, semantic and spatial gaps among multi-level
features are eliminated by providing semantic context and spatial
information at all levels.

Multi-level feature augmentation with semantic guidance.
Inspired by the previous attention mechanism [19], semantic guid-
ance is generated with channel attention. In the attention structure,
the Neck operation aims to reduce channel number by a 1×1 con-
volution layer. Adaptive max pooling layer is used to generate high
response values, which refer to activated semantics. The first con-
volutional learning block generates short-range semantic guidance
𝐴𝑖,32 to conduct feature self-reinforcement, while the extra learning
block (ExtraLB) produces long-range semantic guidance 𝐴∗

𝑖,32 to
eliminate semantic gaps among cross-layer features. Then sigmoid
operation models interdependencies between channels and gen-
erates semantic guidance. Different from the previous methods,
the designed structure is more efficient with Neck. In addition, the
generated short-range and long-range semantic guidance will not
only be exploited for higher-level feature refinement, but also for
low-level feature augmentation. With the semantic guidance, two
operations are conducted to augment features: 1) enhancing the
representation ability of higher-level features with short-range se-
mantic guidance 𝐴𝑖,32, and 2) guiding low-level features for classifi-
cation with semantic information provided by long-range semantic
guidance 𝐴∗

𝑖,32. The formulations are written as follows:

𝑅1𝑖,32 = 𝐹32 ⊙ 𝐴𝑖,32;𝑅2𝑖,32 = 𝐹𝑖 ⊙ 𝐴∗
𝑖,32 (3)

where ⊙ denotes element-wise multiplication.
Multi-level feature augmentation with spatial guidance.

To get spatial guidance, the sigmoid activation is adopted to gen-
erate pixel-level spatial details. The max-pooling and upsampling
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operations are utilized to select important spatial structures, filter
out the noise of spatial details and restore the map resolution. The
first learning block is 1×1 convolution followed by batch normal-
ization that learns spatial dependencies of pixels to get short-range
spatial guidance 𝐵𝑖,32. When generating spatial information as guid-
ance of higher-level features, an extra convolutional learning block
(ExtraLB) is used to construct a long learning path, which gener-
ates long-range spatial guidance 𝐵∗

𝑖,32 to eliminate spatial gaps in
multi-level features. With the spatial guidance, two operations are
conducted to augment features: 1) improving the representation
ability of low-level features with short-range spatial guidance 𝐵𝑖,32,
and 2) providing spatial information to higher-level features for lo-
calization with long-range spatial guidance 𝐵∗

𝑖,32. The augmentation
process is formulated as follows:

𝑅3𝑖,32 = 𝐹𝑖 ⊙ 𝐵𝑖,32;𝑅4𝑖,32 = 𝐹32 ⊙ 𝐵∗𝑖,32 (4)

3.4 Progressive Dense Feature Aggregation
To effectively and efficiently combine the augmented features as
well as the original features and generate high-quality prediction
map with multi-view features, progressive dense feature aggrega-
tion (PDFA) is designed. It consists of sequential fusion blocks with
dense and residual connections, which effectively integrates these
complemented features. In this way, the multi-level spatial informa-
tion and semantic context are progressively integrated along the
fusion path. Consequently, high-resolution maps are reconstructed
in progressive manner with stepwise increase of semantic context,
spatial information and images resolution. With the stacked chan-
nel compression and integration structure, the computational cost
is saved.

Compared to directly combining all features, PDFA has three
advantages. First, PDFA makes the network trainable. There are
many features, including 14 refined features (brown lines in Figure
4) and 8 original features (blue and red lines in Figure 4). Besides,
these features need to be resized to 1/4 of the original image size for
fusion. Therefore, directly combining these features will produce
huge parameters and the network will be extremely difficult to
train. Second, the computational cost is greatly reduced. PDFA is

divided into different steps, and at the front and end of each fusion
step, channel compression is conducted to reduce parameters and
computation. Third, the accuracy of combination result is further
improved. PDFA designs dense and residual connection structure,
which progressively propagates the previous fusion results 𝑂𝑘 , the
original phased features 𝐹𝑖 , as well as the next fine-grained feature
group 𝑅

𝑗

𝑖,32 to the following fusion step. In this way, multi-view
features are integrated, which is of great importance in complex
scene segmentation.

The structure of PDFA is illustrated in Figure 4, which combines
the original higher-level and low-level features 𝐹𝑖 , as well as the re-
fined features 𝑅 𝑗

𝑖,32 with a 4-step structure to generate fusion results
𝑂𝑘 , 𝑘 ∈ {1, 2, 3, 4}. The fusion results𝑂𝑘 are fed into classifiers that
are composed of Conv-BN-ReLU-Conv for prediction. The integra-
tion structure in Figure 4 denotes the operation of concatenation.
Neck is used for channel compression, with which the number of
output channels is reduced.

3.5 Network Efficiency
Efficiency is indispensable for real-time semantic segmentation. In
MvFSeg, a series of lightweight strategies such as adopting light-
weight backbone networks and learning low-resolution feature
map are adopted to achieve high efficiency. Light-weight backbone
networks such as ResNet18 [18], GhostNet [15] are exploited in
MvFSeg for feature extraction. These efficient lightweight backbone
networks are important to achieve real-time performance. In addi-
tion, the resolution of multi-level features generated by backbone
network is smaller than the original image size, which dramatically
reduces the computational complexity.

In MvFSeg structure, most of the operations such as 1×1 convo-
lution and concatenation in PMDC, MFA and PDFA are efficient,
which guarantees efficiency. Moreover, except for these lightweight
operations, the efficiency of MvFSeg can be controlled by a hyper-
parameter. This hyperparameter is exploited to control the channel
number in PMDC, MFA, PDFA, and four values are set for it: 𝑂 , 32,
64, 128. When it is set to 𝑂 , PMDC and PDFA use 128 as the basic
channel number for series operations. MFA adopts the original
channel number of features from different layers for inter-layer and
intra-layer feature augmentation. When it is set to 32, 64, or 128,
all PMDC, MFA and PDFA utilize the same channel number of 32,
64 or 128 as the basic channel number.

3.6 Loss Function
In MvFSeg, features from the progressive dense feature aggregation
(PDFA) are exploited for loss computation and optimization. PDFA
has four blocks and the output𝑂𝑘 , 𝑘 ∈ {1, 2, 3, 4} of each block will
be used to calculate the cross entropy loss with the ground truth.
Online hard example mining (OHEM) [37] is adopted to select the
hard pixels having large loss values. With OHEM, the errors of
the selected pixels are back-propagated in the top-V positions. In
this way, losses of the four blocks are obtained. The summation of
the four losses is the final loss that would be optimized. The loss
function [17] is formulated as follows:

L = − 1
𝑉

4∑︁
𝑘=1

𝐿∑︁
𝑙=1

𝑦𝑙 · I(𝑝
𝑦𝑙
𝑙,𝑘

< 𝑡𝑉 ) · 𝑙𝑜𝑔𝑝
𝑦𝑙
𝑙,𝑘

(5)
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whereL denotes the final loss that is computed from feature𝑂𝑘 , 𝑘 ∈
{1, 2, 3, 4} and label 𝑦. 𝐿 denotes the number of pixels in 𝑂𝑘 . 𝑝

𝑦𝑙
𝑙,𝑘

is
the predicted posterior probability of pixel 𝑙 in 𝑂𝑘 . The threshold
𝑡𝑉 is set to select the pixels with the highest top-V losses. I(𝑥) = 1
if 𝑥 is true, and 0 otherwise.

4 EXPERIMENTS
4.1 Datasets
Cityscapes [11] is a scene parsing benchmark for urban roads with
image resolution of 1024×2048. The training, validation and test set
are 2975, 500 and 1525 images with fine annotations, respectively.
To fairly compare MvFSeg with the previous works [42, 47], 19
classes of Cityscapes are used for segmentation.
CamVid [2] contains images of urban roads and the size of every
image is 720×960. The training, test, and validation set are 367,
223, and 101 images, respectively. Similarly, MvFSeg follows the
previous works [23, 42, 47] and utilizes 11 classes of CamVid for
segmentation.

4.2 Evaluation Metrics
Mean Intersection over Union (mIoU) [26] is widely used in
semantic segmentation [4, 13, 26, 42, 43] for accuracy index, which
calculates the average ratio of the intersection over union of ground
truth and the predicted pixel regions. Frames Per Second (FPS)
and Parameters of Model (PM) are used for efficiency evaluation.

4.3 Implementation Details
MvFSeg is constructed by PyTorch, an open-source framework of
deep learning. Stochastic Gradient Descent (SGD) [22] is adopted
as optimizer with momentum set to 0.9, and weight decay set to
5e-4. Following the pioneering works [4, 13, 42, 43], MvFSeg adopts
the “poly” learning rate strategy 𝑙𝑟 = 𝑙𝑟𝑏𝑎𝑠𝑒 × (1 − 𝐶𝑖𝑡𝑒𝑟

𝑇𝑖𝑡𝑒𝑟
)𝑝𝑜𝑤𝑒𝑟 ,

where 𝑙𝑟 is current learning rate, 𝑙𝑟𝑏𝑎𝑠𝑒 is the base learning rate and
𝑝𝑜𝑤𝑒𝑟 = 0.9. 𝐶𝑖𝑡𝑒𝑟 and 𝑇𝑖𝑡𝑒𝑟 are the current iteration number and
the total iteration number, respectively. MvFSeg takes light-weight
network such as ResNet18 [18] as the backbone. For max-pooling
operation in MFA structure, the kernel size, stride and padding are
set to 3, 2, and 1, respectively. The final augmented outputs 𝑂1,
𝑂2 and 𝑂3 are utilized to compute auxiliary cross entropy loss. A
single RTX 2080Ti GPU is adopted to test the inference speed of
MvFSeg. The “profile” library of Python is adopted to compute the
model parameters.

Cityscapes and CamVid training details: The base learn-
ing rate is 0.01. Images of Cityscapes are randomly cropped to
1024×1024 for training with 80,000 iterations and batch size 24. For
CamVid, images are randomly cropped to 720×960, with iteration
number and batch size set to 8,000 and 32, respectively. Data aug-
mentation of random left-right flipping and random resizing with
the scale range of [0.75, 2.0] are utilized in the training process.
For Cityscapes and CamVid test set evaluation, the training and
validation set are combined for model training.

4.4 Comparison with State-of-the-Art Methods
In this subsection, experiments are conducted on the Cityscapes
and CamVid datasets to evaluate the effectiveness of the proposed

Table 1: Performance comparison with the state-of-the-art
methods. CiV and CiT denote Cityscapes validation set and
test set, respectively. CaT refers to CamVid test set.
Method InputSize PM FPS mIoU%

CiV CiT CaT
ENet [32] 360×640 0.4 135.4 - 58.3 51.3 / -
ICNet [47] 1024×2048 26.5 33 - 69.5 67.1 / -
DFANet [23] 1024×1024 7.8 100 71.9 71.3 64.7 / -
BiSeNet [42] 1080×1920 49.0 23 74.8 74.7 68.7 / -
SwiftNet [29] 1024×2048 11.8 39.9 75.5 75.4 - / -
BiSeNetV2-L [41] 512×1024 12.9 47.3 75.8 75.3 73.2 / 78.5
FC-HarDNet-70 [3] 1024×2048 16.1 53 - 75.9 67.7 / -
MSFNet [37] 1024×2048 - 41 77.2 77.1 75.4 / -
STDC2-Seg75 [12] 768×1536 - 97 77.0 76.8 73.9 / -
MGSeg [17] 1024×2048 13.3 50 - 77.8 72.7 / -
SFNet [24] 1024×2048 12.9 18 78.7 78.9 73.8 / -
HyperSeg [30] 768×1536 10.2 16.1 78.2 78.1 78.4 / -
MvFSeg (GhostNet [15]) 1024×2048 8.5 43 76.0 76.3 72.7 / 76.6
MvFSeg (MuxNet-m [27]) 1024×2048 7.6 42 77.5 76.7 72.8 / 77.0
MvFSeg (MuxNet-l [27]) 1024×2048 8.0 32 77.0 77.5 73.2 / 77.1
MvFSeg (ResNet18 [18]) 1024×2048 19.6 32 78.0 77.5 75.6 / 79.2
MvFSeg (ResNet18-D [18]) 1024×2048 19.0 24 78.8 78.4 75.2 / 78.4
MvFSeg (ResNet34 [18]) 1024×2048 28.7 25 79.4 78.9 76.2 / 80.1
MvFSeg-64 (ResNet18 [18]) 1024×2048 12.9 45 77.9 77.0 75.2 / 78.3
MvFSeg-64 (ResNet34 [18]) 1024×2048 23.0 31 79.3 78.2 75.4 / 79.1

method. The experiment results of the state-of-the-art methods and
MvFSeg are listed in Table 1. “-” denotes the corresponding result
is not provided by the listed method. For a fair comparison, the
specific input size of the image related to speed is listed. The highest
and second highest mIoU are highlighted. These methods only
use single image scale for evaluation. For the Cityscapes dataset,
methods trained with fine labels and using ImageNet for pretraining
are listed for fair comparison. For CamVid test set, the accuracy
of MvFSeg with ImageNet and Cityscapes pretraining are listed,
respectively.

Among the previous methods, SFNet [24] achieves the high-
est accuracy on Cityscapes, which refines high-level features with
semantic flow [24]. But it ignores shallow feature refinement, re-
sulting in poor ability in segmentation of small objects and has
limited accuracy on CamVid, which has a large portion of small
objects. Without Cityscapes pretraining, HyperSeg [30] achieves
the highest accuracy on CamVid with a nested UNet [36] to draw
higher level context features. But the large encoder-decoder struc-
ture limits the efficiency. Methods like MGSeg [17], STDC2-Seg75
[12] and MSFNet [37] achieve promising trade-off efficacy between
speed and accuracy. But without sufficient spatial information and
semantic context, they have limitations in segmentation of complex
scenes.

MvFSeg achieves the highest mIoU on Cityscapes validation and
test set, and the second highest (without Cityscapes pretraining)
mIoU on CamVid test set, with the well-designed parallel multi-
ple views feature augmentation structure. Despite SFNet achieves
the highest accuracy (78.9% mIoU) on Cityscapes test set, its infer-
ence speed is slow. Moreover, SFNet adopts PPM (Pyramid Pooling
Module) [48] as context head to achieve high result on Cityscapes
dataset. Without PPM, the accuracy of SFNet is only 77.2% mIoU
on Cityscapes validation set. The proposed MvFSeg only adopts
public light-weight backbone network and all of the other parts
are designed by MvFSeg itself. HyperSeg achieves the highest ac-
curacy on CamVid test set, but its inference speed is very slow.
With 768×1536 resolution, it only achieves 16 FPS. While the pro-
posedMvFSeg achieves the second highest accuracy on CamVid test
set and 25 FPS on larger image resolution (1024×2048). Compared
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Table 2: Performance of PDFA, MFA and PMDC.
Method PDFA MFA PMDC mIoU% FPS
Baseline 68.9 75 / 508
Baseline ✓ 73.2 39 / 310
Baseline ✓ ✓ 76.7 34 / 230
MvFSeg ✓ ✓ ✓ 78.0 32 / 221

to MvFSeg, MvFSeg-64 achieves better trade-off efficacy between
speed and accuracy, which has high accuracy on both Cityscapes
and CamVid datasets, and possesses faster speed. This is mainly
because MvFSeg-64 conducts the parallel multiple views feature
augmentation with smaller but effective channel number. The out-
standing performance proves the effectiveness and efficiency of
MvFSeg. Since MvFSeg fully exploits all level features from light-
weight backbone networks to construct high-quality segmentation
map with multi-view features, the deficiencies of light-weight back-
bone networks are addressed. Therefore, MvFSeg acts as a general
framework for different light-weight backbone networks. The com-
petitive experiment results of MvFSeg with six backbone networks,
including GhostNet [15], MuxNet-m [27], MuxNet-l [27], ResNet18
[18], ResNet18-D [18] and ResNet34 [18], prove that the proposed
method is appropriate for different light-weight backbone networks
and achieves efficient and effective results.

4.5 Ablation Studies
Effect of MFA, PDFA and PMDC. To verify the effect of the pro-
posed PDFA, MFA and PMDC, experiments are conducted with
different settings on Cityscapes dataset. FPS of MvFSeg is tested
on both 1024×2048 and 360×640 image resolution. The baseline
is a FCN [26] model with ResNet18 [18] backbone. As listed in
Table 2, the proposed method improves performance remarkably.
With PDFA adopted, the original multi-level features 𝐹4, 𝐹8, 𝐹16
and 𝐹32 are exploited for effective multi-level feature aggregation.
Compared with the baseline model, PDFA improves the accuracy
by 4.3%. With MFA, MvFSeg eliminates feature gaps among fea-
tures from different layers and passes spatial information as well as
semantic context to all level features, which improves the feature
quality and achieves more precise results with 7.8% mIoU improve-
ment to the baseline model. By adopting PMDC as context head
to integrate long-range context and generate higher-level features
with multi-view receptive fields, the accuracy is further improved.

Effect of MvFSeg with different feature levels. In this sub-
section, different number of feature levels are selected to verify the
effect of MvFSeg. The results on Cityscapes can be seen in Table 3.
To verify the effect of original multi-level features, PMDC module
that can generate higher-level features is not used. Therefore, 𝐹32 in
Table 3 is the same to𝑂𝐹32 that from the stage 4 of the light-weight
backbone network. The baseline model only exploits features of
the highest level (𝐹32) for segmentation. When more feature levels
are combined with MvFSeg structure to generate multi-view aug-
mented features, the performance is significantly improved. Such
result indicates the proposed feature augmentation structure is ef-
fective. Correspondingly, the consumption of computing resources
is also increased, but affordable.

Effect of MFA. The effects of spatial and semantic guidance are
reported in Table 4, and both of them boost the accuracy signifi-
cantly, especially the semantic guidance that provides high-level

Table 3: Performance of different feature levels.
Method 𝐹32 𝐹16 𝐹8 𝐹4 mIoU% FPS
Baseline ✓ 68.9 75 / 508
Baseline+PDFA+MFA ✓ 71.1 69 / 438
Baseline+PDFA+MFA ✓ ✓ 74.1 60 / 397
Baseline+PDFA+MFA ✓ ✓ ✓ 75.6 49 / 311
Baseline+PDFA+MFA ✓ ✓ ✓ ✓ 76.7 34 / 230

Table 4: Performance of MFA.
Method MFA mIoU% FPSSpatial Semantic Intra Inter
Baseline+PDFA 73.2 39 / 310
Baseline+PDFA ✓ ✓ ✓ 73.8 36 / 251
Baseline+PDFA ✓ ✓ ✓ 76.5 38 / 281
Baseline+PDFA ✓ ✓ ✓ 75.4 36 / 250
Baseline+PDFA ✓ ✓ ✓ 75.1 36 / 257
Baseline+PDFA ✓ ✓ ✓ ✓ 76.7 34 / 230

Table 5: Performance of PMDC.
Method PMDC mIoU% FPS24 20 − 23 21 − 24
Baseline+PDFA+MFA 76.7 34 / 230
Baseline+PDFA+MFA ✓ 77.3 33 / 224
Baseline+PDFA+MFA ✓ 77.3 33 / 225
Baseline+PDFA+MFA ✓ 78.0 32 / 221

Table 6: MvFSeg with different context heads.
Method Context Head mIoU% FPSPPM [48] ASPP [5] PMDC
MvFSeg 76.7 34 / 230
MvFSeg ✓ 76.9 33 / 226
MvFSeg ✓ 77.8 32 / 223
MvFSeg ✓ 78.0 32 / 221

semantics to all level features. The effects of inter-layer and intra-
layer augmentation are verified, respectively, with accuracy of 75.1%
and 75.4% mIoU. When spatial guidance and semantic guidance
are exploited with inter-layer and intra-layer feature augmentation
strategies, sufficient spatial information and semantics are inte-
grated to generate refined features, which boost the performance
and achieve 76.7% mIoU on the Cityscapes validation set.

Effect of PMDC. To verify the performance of parallel multiple
depths convolution, experiments of single path and multiple paths,
as well as multiple paths with different depths are conducted. As
can be seen in Table 5, compared to single path of 24 layers, multiple
paths of 21 to 24 layers achieve better performance by integrating
multi-view features. Multiple paths of 21 to 24 layers can produce
larger receptive fields compared to multiple paths of 20 to 23 layers,
thus better result is achieved.

MvFSeg with different context heads. To compare the perfor-
mance of parallel multiple depths convolution (PMDC) with other
context heads, experiments of MvFSeg with PMDC and Atrous
Spatial Pyramid Pooling (ASPP) [5] as well as Pyramid Pooling
Module (PPM) [48] are conducted. PPM and ASPP are famous and
effective context heads. Specifically, the output of the light-weight
backbone network is fed into PMDC, ASPP or PPM, and the output
of the context head is adopted to provide higher-level semantics for
features from the first three stages and features from the context
head itself. The results of MvFSeg with different context heads are
reported in Tabel 6. As the reported results, MvFSeg with PPM
and ASPP achieves improvement on accuracy and is efficient. This
mainly because both PPM and ASPP can capture multi-scale infor-
mation for precise segmentation. MvFSeg with PMDC achieves the
highest accuracy and also has real-time performance. Such result in-
dicates PMDC is more powerful than PPM and ASPP in lightweight
backbone networks, by generating multi-scale receptive fields and
solving the deficiencies of lightweight backbone networks.
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Image Baseline MvFSeg Ground Truth

Figure 5: Visualization of the segmentation results from
Cityscapes (first two rows) and CamVid (the last row).

Table 7: MvFSeg Efficiency.
Method Channel Number mIoU% FPS PM32 64 128 O
Baseline 68.9 75 / 508 11.7
MvFSeg-32 ✓ 75.6 54 / 396 11.8
MvFSeg-64 ✓ 77.9 45 / 322 12.9
MvFSeg-128 ✓ 77.8 30 / 207 17.3
MvFSeg-O ✓ 78.0 32 / 221 19.6

4.6 Network Parameters and Efficiency
The comparison of model parameters is listed in Table 1. As can be
seen from this table, ENet [32] reduces the image resolution at the
beginning of the network, having only 0.4M parameters. Methods
such as MGSeg [17], SFNet [24] and HyperSeg [30] have around
7 to 16M parameters with well-designed light-weight networks.
ICNet [47] and BiSeNet [42] have more than 26M parameters due
to their multi-branch structure, inducing additional computations.
Compared to the state-of-the-art methods, MvFSeg with GhostNet
[15], MuxNet-m [27] andMuxNet-l [27] has small number of param-
eters, around 8M, due to the small channel number and feature map
size. Taking ResNet18 [18] and ResNet18-D [18] as backbone, the
model parameters of MvFSeg is increased to 19M, because of larger
channel number and feature map size. MvFSeg with ResNet34 [18]
has 28.6M parameters since ResNet34 is the largest network among
the listed backbones. The model parameters of MvFSeg-64 are also
listed in Table 1 for comparison. In MvFSeg-O, multi-level features
from the backbone network are augmented and fused without re-
ducing the channel number. The multi-level features in MvFSeg-64
are augmented after reducing the channel number to 64. Taking
ResNet18 as backbone, MvFSeg-O has about 19.6M parameters,
while MvFSeg-64 is 12.9M. With ResNet34 as backbone, MvFSeg-O
has 28.7M parameters and MvFSeg-64 is 23.0M.

To verify the effect of the hyperparameter that is used to control
the efficiency, experiments of different settings are conducted. As
can be seen in Table 7, when the hyperparameter is set to 64, it
achieves the best trade-off efficacy between the efficiency and accu-
racy. When it is set to 32, MvFSeg achieves the highest speed and
induces only 0.1M extra parameters compared to the baseline model,
but the accuracy is dropped compared to otherMvFSegmodels. This
is because compressing channel number to 32 greatly decreases the
spatial information and semantic context in multi-view features.

4.7 Visualization Results
Figure 5 shows visualization results of MvFSeg (ResNet18). Com-
pared to the baseline (FCN [26] with ResNet18), the proposed

�4 �8 �16 �32

�4 �3 �2 �1

Original multi-level features

Augmented features with MvFSeg

Figure 6: Visualization of heat maps from MvFSeg.
method achieves more precise segmentation. The first row denotes
the proposed approach makes full use of spatial information and
has the ability of predicting details. The second row proves the
proposed feature augmentation and aggregation structure enlarges
the receptive field and large objects can be effectively predicted.
The third row indicates MvFSeg has robust pixel-level semantic
classification ability on small objects such as person in dark scenes
that with blurred boundaries. The visualization results demonstrate
the effectiveness of the proposed method.

Figure 6 shows the heat maps of multi-level features before and
after augmentation from MvFSeg (ResNet18). As illustrated, low-
level features such as 𝐹4 and 𝐹8 extremely lack high-level semantics
but have rich visual appearances such as edge and shape. While
deep features (𝐹32) contain high-level semantics but are short of
spatial information. With MvFSeg adopted, high-level and low-level
features are integrated for the enhanced features, e.g., 𝑂1 and 𝑂2,
which contain abundant spatial information for region localization
and high-level semantics for category classification.

5 CONCLUSION
In this paper, a novel real-time semantic segmentation network
called MvFSeg is proposed for real-world applications. It focuses
on complemented high-level and low-level features integration for
fine-grained multi-level feature generation, augmentation and ag-
gregation, which aims to integrate multi-view features and achieve
efficient and accurate performance. MvFSeg makes full use of all
level features, by eliminating feature gaps among different features,
filtering out noise of spatial details and refining all level features
with spatial information and semantic context. Experiments on
Cityscapes and CamVid demonstrate the effectiveness and effi-
ciency of the proposed method, which achieves state-of-the-art
performance on metrics of accuracy and efficiency. With the well-
designed structure, MvFSeg can be adopted to different lightweight
backbone networks for real-time semantic segmentation.
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