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Abstract

Machine learning models often perform well on
tabular data by optimizing average prediction
accuracy. However, they may underperform on
specific subsets due to inherent biases in the
training data, such as associations with non-
causal features like demographic information.
These biases lead to critical robustness issues as
models may inherit or amplify them, resulting
in poor performance where such misleading
correlations do not hold. Existing mitigation
methods have significant limitations: some
require prior group labels, which are often
unavailable, while others focus solely on the
conditional distribution P (Y |X), upweight-
ing misclassified samples without effectively
balancing the overall data distribution P (X).
To address these shortcomings, we propose a
latent score-based reweighting framework. It
leverages score-based models to capture the
joint data distribution P (X,Y ) without relying
on additional prior information. By estimating
sample density through the similarity of score
vectors with neighboring data points, our method
identifies underrepresented regions and upweights
samples accordingly. This approach directly
tackles inherent data imbalances, enhancing
robustness by ensuring a more uniform dataset
representation. Experiments on various tabular
datasets under distribution shifts demonstrate
that our method effectively improves perfor-
mance on imbalanced data. Code is available
at https://github.com/YunzeTong/
latent-score-based-reweighting.
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1. Introduction
Machine learning applied to tabular data has achieved sig-
nificant success in various practical domains (Tang et al.,
2024a; Yang et al., 2024; 2025b; Wu et al., 2025; Zhu et al.,
2025; Lin et al., 2025). While models trained using empiri-
cal risk minimization (ERM) often perform well on average,
achieving low test errors overall, they can still exhibit high
error rates on specific subsets of data (Vapnik, 1999; Tang
et al., 2024b; Lv et al., 2024). This inconsistency highlights
a critical robustness issue, stemming from inherent biases
in the data. For example, training data may exhibit spurious
correlations where target labels are statistically linked to
non-causal features like demographic information. As a
result, models trained on such biased data may inherit or
even amplify these biases, leading to poor performance on
data subsets where these correlations do not apply.

To tackle this issue, researchers have proposed various meth-
ods to mitigate biases in the training data. Some approaches
utilize additional prior information, such as group labels, to
reduce the impact of spurious correlations by resampling or
adding regularization terms (Arjovsky et al., 2019; Sagawa*
et al., 2020; Yang et al., 2025a). Unfortunately, in many
practical situations, such prior information is incomplete or
unavailable, limiting these methods’ usefulness. To over-
come this, other methods focus on automatically generating
proxy information for debiasing (Nam et al., 2020; Liu et al.,
2021; Qiu et al., 2023). A common strategy involves pre-
training a classification model on the training data and then
upweighting samples that the model classifies incorrectly.
Since these misclassifications are often determined by a sam-
ple’s proximity to the model’s decision boundary, we refer to
these as boundary-based methods (Liu et al., 2021; LaBonte
et al., 2023; Ghaznavi et al., 2024). While these methods
can enhance robustness by focusing on under-represented
training samples near the classification boundary, their effec-
tiveness is constrained as they may fail to achieve a globally
balanced distribution of training data.

To illustrate the limitations of boundary-based methods,
consider a binary classification problem with two features,
x0 and x1, where the true classification boundary follows
a sine curve (see Figure 1a). The training data is heavily
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training data
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(b) Weighted data
by JTT
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(c) Weighted data by la-
tent score
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(d) Unweighted
data density (clas-
sifier accuracy at
60.25%)
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(e) Weighted
density with JTT
(classifier accu-
racy at 69.50%)
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(f) Weighted density
with latent score
(classifier accuracy at
75.75%)

Figure 1. The comparison of weighted density plots on a synthetic
dataset. JTT upweights samples based on the model’s prediction
boundary, which is not assured to achieve balance. In contrast, our
weights could yield more balanced weighted density.
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resulting in a highly imbalanced dataset, as visualized in
Figure 1d. Ideally, reweighting should correct this bias,
yielding a more uniformly distributed dataset. Boundary-
based methods like JTT (Liu et al., 2021) try to achieve this
by assigning higher weights to samples with large classifica-
tion errors (Figure 1b). However, many reweighted samples
are still from high-density regions near the decision bound-
ary, rather than the low-density regions where the imbalance
is most severe. The resulting distribution (Figure 1e) shows
that the boundary-based method does not fully balance the
training data. Consequently, the accuracy improvement on
the balanced test set is modest, increasing from 60.25% to
only 69.50%.

The fundamental limitation of boundary-based methods is
their exclusive focus on the pre-trained classification bound-
ary, P (Y |X), neglecting the overall data distribution. This
oversight leads to ineffective data balancing. Motivated by
this observation, we aim to develop new approaches that not
only consider classification errors but also more effectively
address inherent data imbalances, ensuring a balanced and
uniform distribution across the dataset.

To more effectively address inherent data imbalances, we
propose leveraging score-based models, also known as diffu-
sion models (Song & Ermon, 2019; Ho et al., 2020). These
models can capture the joint data distribution P (X,Y ), pro-
viding a powerful tool for modeling the underlying data
structure. Our key idea is to use a score-based model to
estimate the density of samples in the dataset. By identi-
fying low-density regions—areas where data is underrep-
resented—we can upweight samples from these regions,
ensuring a more balanced and unbiased representation dur-
ing training. This approach moves beyond boundary-based
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Figure 2. The score fields of a mixture of two Gaussian.

methods by directly targeting data imbalance, aiming to
improve performance across diverse data subsets.

However, directly using density estimates from the score-
based model poses challenges due to potential extreme val-
ues, leading to “density explosions” for certain samples.
These extremes can overemphasize a few extremely high-
density points, making it difficult to distinguish between
other high- and low-density samples. To overcome this, we
propose using a proxy for density based on an important
observation. We demonstrate this observation using data
from a mixture of two Gaussians, as shown in Figure 2.
Regions with higher probability densities are represented by
warmer colors in Figure 2a. To achieve a balanced data dis-
tribution, these regions are expected to have lower weights,
as shown in Figure 2b. In Figure 2c, we illustrate that in
high-density regions (e.g., points B and D), the score vec-
tors (pink arrows) of neighboring samples tend to align with
the direction toward the high-density sample (e.g., cyan
arrows

−−→
BiB, where i = 1, 2, ...). In contrast, samples in

low-density regions (e.g., points A and C) do not exhibit
this similarity. Essentially, if sample B has higher density
than sample A, the similarity between the score vectors and
−−→
BiB will generally be greater than that for

−−→
AiA. This direc-

tional similarity serves as a proxy for density. By using this
proxy, we avoid instability from extreme values, enabling a
more stable and effective data reweighting approach.

Our method offers two key advantages. First, it requires
no additional prior information, such as group labels, mak-
ing it applicable in scenarios where such information is
unavailable or incomplete. This flexibility allows broad
adoption without relying on external data or assumptions.
Second, our approach faithfully represents the joint data dis-
tribution P (X,Y ). By leveraging score-based models, we
overcome the limitations of pre-trained classification bound-
aries P (Y |X), which often inherit biases from the training
process. This ensures that the final classification model
remains unbiased and accurately captures the underlying re-
lationships between features and labels, leading to improved
performance and robustness, as shown in Figure 1c and 1f.

In summary, our contributions are: (1) We recognize that
improving robustness requires modeling the joint data distri-
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bution, a gap in current boundary-based methods that do not
capture the true data distribution. (2) We introduce a new
framework that accurately reflects the joint data distribution,
detailed in Section 3. (3) We assess our method on vari-
ous tabular datasets under distribution shifts, demonstrating
through extensive experiments that our approach effectively
enhances robustness.

2. Related Works
Achieving robustness with prior information. Commonly,
researchers aim to train robust models towards distribution
shift. Some works train models with the help of given or self-
generated domain labels (Sagawa* et al., 2020; Arjovsky
et al., 2019; Sun & Saenko, 2016; Tong et al., 2023; Zhang
et al., 2024b; Yang et al., 2025a). Generally they expect
the model’s performance in the worst domain acceptable.
Therefore, they may add regularizer into training loss when
treating domain labels as extra supervised information. Pre-
defining the form of prior data distribution is also a common
approach (Shen et al., 2020; Duchi & Namkoong, 2021;
Shen et al., 2023; Gu et al., 2024).

Achieving robustness without prior information. Apart
from introducing the prior information, some other methods
turn to use the performance of models to guide the final
training process (Liu et al., 2021; Nam et al., 2020; Levy
et al., 2020; Qiu et al., 2023; LaBonte et al., 2023; Ghaznavi
et al., 2024). They typically contain two stages. In the
first stage, they identify some biased samples which will
make ERM-based models make false predictions. In the
second stage, they assign greater weights to these samples to
develop a more robust model. However, we notice that few
of the following methods model the joint data distribution,
which is not fit for seeking overall robustness.

Generative Models for Robustness. Through different
approaches, generative models could be deployed in vari-
ous scenarios with specific needs (Zhao et al., 2024; 2025;
Hu et al., 2025). In addition, generative models can pro-
duce novel and diverse data, enriching training datasets and
leading to models with a deeper understanding of semantic
content. Consequently, several studies have leveraged gener-
ative models to enhance robustness, primarily through data
augmentation techniques (Choi et al., 2021; Ilse et al., 2020;
Dendorfer et al., 2021; Zhang et al., 2022; 2024a). These
methods have also demonstrated promising performance
improvements.

3. Method
We present an unbiased learning framework that operates
without prior information or pre-trained classification bound-
aries. The model is designed to provide robust predictions
across a range of biased covariates. To address distributional

shifts, we employ score-based methods to faithfully capture
the joint distribution. The framework follows three steps: (1)
training diffusion models on latent representations to model
the data distribution, (2) sampling several timesteps and
estimating scores to align the probability density of training
data, and (3) reweighting samples based on data density to
ensure a balanced distribution. The detailed procedure is
provided in Algorithm 1.

3.1. Preliminary

We first introduce the background on score models (Song &
Ermon, 2019). Score models can model data distributions
by learning score (i.e., the gradients of probability density),
and have shown remarkable performance in generative tasks.
Song et al. proposed a unified framework based on Itô
stochastic differential equations (SDEs). Training a score
model typically involves an iterative forward and backward
process. In the forward pass, a complex data distribution
is gradually transformed into a Gaussian distribution by
progressively adding noise, described by the following SDE:

dx = f(x, t)dt+ g(t)dw, (1)

where x ∈ Rd with x0 ∼ p0 representing the data distribu-
tion, t ∈ [0, T ], f : Rd × [0, T ] → Rd, g : [0, T ] → R, and
w ∈ Rd is a standard Wiener process. The backward pro-
cess reconstructs the original data structure from noisy data.
Song et al. also introduced the corresponding “probability
flow” ordinary differential equation (ODE):

dx =

[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]
dt̄, (2)

where t̄ represents time flowing backward from T to 0. We
use a neural network, sθ(xt, t), to estimate the score of
the transformed data distribution at time t, ∇x log pt(x).
The training loss for sθ(xt, t) is defined through denoising
score-matching:

Et∼σ(t)λ(t)Ex0∼p0Ext∼pt|0(·|x0)

[
∥sθ(xt, t)−∇xt log pt|0(xt|x0)∥22

]
,

(3)
where σ(t) represents the time variable distribution, and
λ(t) is a positive weighting function that stabilizes the time-
dependent loss magnitude (Song et al., 2021). The diffusion
process generally employs Gaussian transition kernels, lead-
ing to pt|0(xt|x0) = N (µt, σ

2
t I).

In summary, score models aim to compute score at each
time scale with different noise, and finally reconstruct the
clean sample with the guidance of score (Karras et al., 2022;
Xu et al., 2022; 2023).

3.2. Training Distribution Modeling

To ensure robustness, we first train score models to approx-
imate the probability distribution. To enable training on
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limited computational resources, we adopt the approach of
latent diffusion (Rombach et al., 2022; Zhang et al., 2024c).
Specifically, we first train a variational autoencoder (VAE),
ϕZ = ϕEnc · ϕDec, using a β-VAE (Higgins et al., 2017),
where the coefficient β balances the reconstruction loss and
the KL-divergence loss:

LϕZ = ℓrecon(x, x̂) + βℓkl. (4)

We then obtain the latent representations using the trained
encoder ϕEnc. The subsequent diffusion process operates
on these latent representations, z = ϕEnc(x), rather than
the raw data. Leveraging the VAE allows us to model the
latent joint distribution of meaningful semantics, rather than
superficial features in the raw data.

After the VAE model is trained, we use score-based methods
to model the underlying distribution p(z) (Song et al., 2021;
Zhang et al., 2024c):

zt =z0 + σ(t)ε, ε ∼ N (0, I), (Forward Process)
(5)

dzt =− 2σ̇(t)σ(t)∇zt
log p(zt) dt

+
√
2σ̇(t)σ(t) dωt, (Reverse Process)

(6)

where z0 is the initial embedding from the encoder, zt is
the diffused embedding at time t, and σ(t) is the noise level.
In the reverse process (Eq. 6), ∇zt

log p(zt) represents the
score function of zt. Following Zhang et al., we set the
noise scale σ(t) = t, making it linear with respect to time.

Following the approach of EDM (Karras et al., 2022), we
train our neural network Fθ to directly predict the output
at a given timestep t, rather than a scaled unit variance
term σ(t)ε. The neural network is preconditioned with a
σ-dependent skip connection, defined as:

Dθ(z, σ) = cskip(σ)z + cout(σ)Fθ(cin(σ)z, cnoise(σ)),
(7)

where cskip(σ) modulates the skip connection between
timesteps, cin(σ) and cout(σ) scale the input and output
magnitudes, and cnoise(σ) maps the noise level σ into a
conditioning input for Fθ. The details of these scaling fac-
tors are listed in Appendix B.1. The final training loss is:

L(Dθ, σ) = Etλ(t)Ez∼p(z)∥Dθ(z + σ(t)ε, t)− z∥22. (8)

Here, λ(t) is a positive weighting function to maintain the
time-dependent loss at a consistent magnitude. The entire
process uses the covariates x as input. After obtaining the
latent representation z, we partition z by their corresponding
label y. For binary classification, two models are trained
separately on zy=0 and zy=1 using Eq. 8. This allows us to
model the joint training distribution for each class through
these score models. We demonstrate the advantages of class-
wise data separation and independent score model training
in Section 3.3.

3.3. Probability Density Proxy

At this stage, our goal is to estimate the probability den-
sity of each sample using the score models trained in Sec-
tion 3.2. We first address the limitations of computing exact
log-likelihood via the probability flow ordinary differential
equation (ODE) proposed in (Song et al., 2021). Based on
the insights from Figure 2, we introduce an approach to
estimate the relative probability density through a similarity
measure. The difference of score similarities acts as a proxy,
preserving the relative magnitudes of probability densities
among samples and offering a controllable numerical range
at the model level. This makes it well-suited for computing
weights, as described in Section 3.4.

3.3.1. EXACT LOG-LIKELIHOOD COMPUTATION VIA
PROBABILITY FLOW ODE

Since our goal is to distinguish data based on high or low
probability density, a natural approach is to compute the
exact log-likelihood using the trained score model from Sec-
tion 3.2. Song et al. have proposed an estimation method
for this. The forward diffusion process is represented by a
stochastic differential equation (SDE) that gradually trans-
forms a complex data distribution into a known prior distri-
bution by injecting noise, as described in Eq. 1. The corre-
sponding “probability flow” ordinary differential equation
(ODE) is given in Eq. 2. By replacing the score ∇x log pt(x)
with a neural network sθ(x, t), the probability flow ODE
takes the form:

dx =

[
f(x, t)− 1

2
g(t)2sθ(x, t)

]
︸ ︷︷ ︸

=:f̃θ(x,t)

dt̄. (9)

Using the instantaneous change of variables formula (Chen
et al., 2018), the log-likelihood of p0(x) can be computed
as:

log p0(x(0)) = log pT (x(T )) +

∫ T

0

∇ · f̃θ(x(t), t) dt,
(10)

where the random variable x(t) as a function of t is obtained
by solving the ODE in Eq. 9.

However, this estimation method has a limitation: extreme
differences in log-likelihood values lead to highly imbal-
anced sample weights, failing to reflect the relative mag-
nitudes of densities among different samples globally. Be-
cause the log-likelihood strictly follows the functional form
of the original data distribution, it leads to explicit numer-
ical differences. When only a few data points have sig-
nificantly high probability densities, their log-likelihoods
become much higher than those of other samples. Using
these likelihoods to compute sample weights causes high-
density samples to disproportionately overshadow others,
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whether those have low or moderately high densities. This
imbalance diminishes distinctions among samples outside
the highest-density regions, reducing the ultimate training
on the remaining samples to an unweighted process without
clear density differentiation. To validate this, we visualize
the probability density using log-likelihood on a synthetic
dataset in Section 4.6. In summary, although log-likelihood
faithfully reflects the original density, it does not meet the
requirement for global relative density comparison needed
for sample reweighting.

3.3.2. DATA DENSITY ESTIMATION VIA SIMILARITY
DIFFERENCE MEASURE

Because the exact log-likelihood is unsuitable for sample
reweighting, we adopt an alternative measure for global
density modeling. As discussed in Section 1, we estimate
the relative probability density by measuring similarities
between the scores of noisy points. According to the for-
ward process in Eq. 5, a clean point z0 transforms into a
noisy point zt by adding noise scaled by σ(t). This mirrors
the scenario depicted in Figure 2, where point A moves
to its noisy neighbor A′

i. The vector
−−→
AA′

i corresponds to
σ(t)ε, and its length |

−−→
AA′

i| represents the magnitude of the
added noise ∥σ(t)ε∥2. To sample a neighborhood of noisy
points around a data point zi, we select T fixed timesteps
t0, t1, . . . , tT−1 and add noise as per Eq. 5. Repeating this
process K times yields T × K noisy points. We then es-
timate the relative probability density using these points,
employing the squared error as the similarity metric. For
a sample zi and a preconditioned network Fθ, we compute
the aggregated similarity, i.e., the average similarity across
several noise scales, as:

Sim(zi;Fθ) =
1

K

K∑
k=1

Et

[
λ(t) ∥Dθ(zi + σ(t)ε, t)− zi∥22

]
.

(11)
The key difference between Eq. 8 and Eq. 11 is that
Sim(zi;Fθ) samples only from specific fixed and sparse
timesteps, accounting for different noise scales. Moreover,
we randomly sample these timesteps multiple times and
average the results to obtain a robust similarity measure.

Using Eq. 11, we compute the aggregated similarity across
all training data points to indicate their densities. How-
ever, in addition to shifts in latent covariates x, y-shift also
commonly occurs in real-world data. To address this, we
model the data distribution for each class separately (see
Section 3.2) and use the difference in aggregated similarities
as a proxy for the final relative probability density. For ex-
ample, for a data point zi with class label yzi , we compute
SimDiff(zi) as:

SimDiff(zi) = Sim(zi;Fy ̸=yzi
)− Sim(zi;Fy=yzi

). (12)

Sim(·) allows us to differentiate the densities of samples

within a specific class, where a larger Sim(·) indicates a
lower density. The SimDiff(·) measure further accounts
for distribution shifts in the label y while preserving the
properties of Sim(·) that reflect p(z). When the number of
training samples for a given class yk is small, Sim(·;Fy=yk

)
increases because the score model Fy=yk

is trained on a
narrower and less comprehensive data space. Consequently,
Fy=yk

finds it more challenging to guide noisy points back
to their original locations via score fields, leading to higher
estimation errors in Sim(·;Fy=yk

). The subtraction oper-
ation thus causes samples from the minority class to have
a lower SimDiff(·) compared to those from the majority
class. In this way, SimDiff captures both covariate distribu-
tion shifts in p(x) (p(z)) via Sim(·) and label distribution
shifts in p(y) through the subtraction operation, providing a
means to indicate relative probability density.

In summary, a lower SimDiff(·) indicates a lower probabil-
ity density. Whether the imbalance arises from covariates
x or labels y, SimDiff(·) consistently and faithfully reflects
the relative probability density. The whole computation pro-
cess requires no prior information or predefined boundaries.

3.4. Unbiased Learning on Distribution-balanced Data

Our ultimate goal is achieving the robustness for all sensi-
tive covariates x. The implicit joint distribution on latent
representation z has been modeled in Section 3.2 and Sec-
tion 3.3 through score models. Therefore, we could conduct
sample reweighting guided by Eq. 12 directly to acquire an
overall unbiased training distribution. Each zi is assigned a
weight wi through

wi =
exp(−SimDiff(zi)/τ)∑N−1

j=0 exp(−SimDiff(zj)/τ)
, (13)

where N is the number of all training samples and τ de-
notes a temperature which controls the scale of reweighting.
Finally, we train an unbiased classification model ψ as:

Lclassification = E(zi,yi)[wiℓ(ψ(zi), yi)], (14)

where ℓ stands for cross entropy loss. When testing, we only
use ϕEnc and ψ to make predictions.

4. Experiment
To evaluate the effectiveness of our method, we conduct
extensive experiments in various settings.

4.1. Datasets

To comprehensively validate our method, we selected six
diverse datasets that exhibit various types of distribution
shifts, including covariate shifts and concept shifts.

The details of our used datasets are as follows:
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• Adult (Becker & Kohavi, 1996): The goal is to predict
whether income exceeds $50K/yr based on census data.

• Bank (Moro et al., 2012): The data is related with direct
marketing campaigns of a Portuguese banking institu-
tion. The task is to predict if the client will subscribe a
term deposit.

• Default (Yeh, 2016): This dataset aims at the case of
customers’ default payments in Taiwan. The task is to
predict if the client will default payment next month.

• Shoppers (Sakar & Kastro, 2018): The task is to predict
if the user’s session ends with the shopping behavior.
The distribution shift mainly demonstrates as y-shift:
About 84.5% samples did not end with shopping, and
the rest were positive class samples.

• Taxi (Navas, 2018): This dataset collects some informa-
tion about the pickup and dropoff of taxi rides. The task
is to predict whether the total ride duration time exceeds
30 minutes. We choose the data collected in Mexican
City.

• US-Wide ACS PUMS Data (Ding et al., 2021): This
large dataset contains individual records from US Cen-
sus sources. We choose the task where the outcome is
whether an individual’s income exceeds 50k. The perfor-
mance is validated separately on three randomly chosen
states.

Specifically, for the Taxi and ACS datasets, we followed
the preprocessing guidelines outlined in the WhyShift
benchmark (Liu et al., 2024).

4.2. Evaluation Metrics

Our objective is to ensure that the model consistently makes
robust predictions across all non-causal covariates, rather
than focusing on a single one. For each dataset, we select
several deterministic non-causal attributes based on prior
knowledge—for example, sex and race in the ACS income
dataset. We then record the worst-case prediction results for
each feature and compute the average of the worst-group
accuracies across these features. Details of the selected
features are provided in Appendix B.2. Additionally, we
track the mean accuracy for these features. We aim for
our model to enhance the average worst-group performance
without significantly compromising mean accuracy.

4.3. Implementation Details

We conducted each experiment three times with different
random seeds and report the mean results in Table 1 and
Table 2. The corresponding standard deviations are pro-
vided in Appendix C.1. Our prediction model consists of

two components: a Variational AutoEncoder (VAE) for gen-
erating latent representations, and a MultiLayer Perceptron
(MLP) for classification. Both our method and the baseline
models utilize the same architecture. For training the VAE,
we followed the default settings described in TabSyn (Zhang
et al., 2024c).

In addition, our method involves training score models. Fol-
lowing the guidance from TabSyn, we use a 4-layer MLP
architecture as the backbone for our score models. We also
adopt the training paradigm from EDM (Karras et al., 2022),
which mitigates the influence of varying noise scales on
neural network training. The noise scale is set to increase
linearly with time, i.e., σ(t) = t, where t follows a log-
normal distribution, resulting in ln (σ(t)) ∼ N (Pmean, P

2
std).

The Pmean and Pstd are set to −1.2 and 1.2, respectively.
When computing aggregated similarity in Eq. 11, we choose
0.002 and 80 as the minimum and maximum values of t
and select T timesteps with equal intervals between them.
Regarding hyperparameter selection, we set T to 10 and τ
to 3 for all experiments.

4.4. Compared Baselines

As referred in Section 4.2, our goal is to enhance overall
robustness, with the accuracy on the worst group serving
as our main evaluation metric. Therefore, we compare our
method with several robust machine learning techniques,
including ERM (Vapnik, 1999), CVaR-DRO (Levy et al.,
2020), χ2-DRO (Levy et al., 2020), KL-DRO (Duchi &
Namkoong, 2021), JTT (Liu et al., 2021), EIIL (Creager
et al., 2021), FAM (Petzka et al., 2021; Zou et al., 2024)
and SRDO (Shen et al., 2020). Among these, CVaR-DRO,
χ2-DRO, KL-DRO, JTT, and SRDO employ reweighting
processes similar to ours, while EIIL and FAM enhance
robustness by adding regularization terms.

4.5. Classification Results

4.5.1. ROBUSTNESS ACROSS VARIOUS DISTRIBUTION
SHIFTS

We first demonstrate the effectiveness of our method under
various types of distribution shifts in Table 1. Our method
consistently achieves the highest worst-case accuracy across
all five datasets, with an average improvement of at least
3% in worst-case accuracy over all baseline methods. Addi-
tionally, it attains the best mean accuracy on two of the five
datasets, highlighting its ability to enhance robustness with-
out a significant reduction in overall prediction accuracy.

In contrast, DRO-based methods like KL-DRO perform
inconsistently on our datasets. For instance, while KL-DRO
achieves the second-best accuracy on the Shoppers dataset,
its performance deteriorates significantly on Default and
Taxi. This inconsistency stems from KL-DRO’s reliance on
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Table 1. The classification results on five datasets which exhibit various kinds of distribution shifts. The bold and underline denote the
best and the second best results respectively.

Methods Adult Bank Default Shoppers Taxi Average

Mean Worst Mean Worst Mean Worst Mean Worst Mean Worst Mean Worst

ERM 71.30 48.18 70.23 40.13 62.98 36.12 77.12 53.91 67.53 59.48 69.83 47.56
CVaR-DRO 71.95 49.02 68.93 38.71 62.43 34.60 76.65 51.26 65.55 54.51 69.10 45.62
χ2-DRO 71.85 50.09 70.88 40.04 62.03 34.16 76.95 52.40 68.27 62.43 70.00 47.83
KL-DRO 74.33 49.17 69.95 39.89 59.03 19.39 79.53 59.74 62.30 47.93 69.03 43.22
EIIL 69.37 38.97 61.85 21.69 65.05 28.91 74.82 46.18 69.52 58.00 68.12 38.75
JTT 71.46 49.93 68.78 37.77 62.47 35.51 78.10 52.59 67.47 60.01 69.65 47.16
FAM 72.85 49.59 71.03 41.09 62.50 37.12 76.60 53.51 67.90 62.24 70.18 48.71
SRDO 71.27 46.44 66.34 32.08 62.38 33.34 76.24 53.11 64.57 58.18 68.16 44.63

Ours 74.33 54.79 69.50 41.28 62.62 38.78 79.68 60.73 67.85 63.14 70.80 51.74

expanding the search space without adequately modeling
the underlying data distribution.

Another popular invariant learning-based method, EIIL
(Creager et al., 2021), achieves high mean accuracy. How-
ever, its worst-case accuracy is relatively disappointing com-
pared to other methods. EIIL divides samples into different
groups based on generated environment labels, which cre-
ates implicit boundaries based on data’s inherent character-
istics. While this boundary-based approach may improve
overall accuracy by exploiting data biases, it undermines
the balance and robustness required to handle sensitive non-
causal attributes.

Compared to the above methods which rely on either prior
information or boundaries, our method could achieve con-
sistent and stable robustness on these datasets. The results
demonstrate the benefit of modeling relative probability
density as referred in Section 1.

4.5.2. GENERALIZATION CAPABILITY UNDER
SELECTION BIAS

We further validate the generalization capability of our
method with the ACS Income dataset. The key objective is
to assess whether our model can learn a robust predictive
function from a single source environment that generalizes
well to others. We randomly select three geographically
distant states in the U.S. and train classification models
separately on data from each state.

The second to ninth columns of Table 2 show the results
when the model is tested on data from its source state. We
then evaluate each model on data from another state in a
round-robin manner, with the results recorded in the tenth
to last column. The observations are as follows:

• For the single-source data experiments (Columns 2 to
10), our method achieves both higher mean accuracy
and worst-case accuracy compared to most baselines.
This consistency with the results in Table 1 supports the

robustness of our approach.

• For the generalization experiment on different-source
data (Columns 11 to 19), our method does not achieve
the highest mean accuracy. This is due to the change
in causal mechanisms across states (Liu et al., 2024),
leading to variations in the predictive mechanism. How-
ever, our method still achieves strong worst-case accu-
racy, thanks to our modeled relative probability density.
Our training process ensures fair treatment of covariates
through score-based similarity, which is more reliable
than the boundaries employed by other methods.

4.5.3. INTEGRATION WITH TREE-BASED MODELS

Though our score-modeling process relies on neural net-
works, the resulting weights in Eq. 13 can be applied to
various model architectures during the training of the final
classification model. Prior studies have shown that tree-
based models perform particularly well on tabular data, es-
pecially in industrial settings (Grinsztajn et al., 2022; Liu
et al., 2024). Consequently, we apply our score-derived
weights to tree-based models to assess the generality of our
approach. As shown in Table 3, we evaluate three widely
used models—CatBoost (Prokhorenkova et al., 2018), Light-
GBM (Ke et al., 2017), and XGBoost (Chen & Guestrin,
2016)—with our weighting scheme. For a thorough com-
parison, we also integrate JTT, a boundary-based method in-
troduced in Section 1, into these tree-based models. Results
indicate that our method consistently enhances worst-group
accuracy across base models. In contrast, JTT performs well
only on certain models. This finding supports our earlier
observation of boundary-based methods in Section 1—they
rely solely on decision boundaries, which are disconnected
from training distributions, leading to unstable robustness
improvements. Conversely, our strategy effectively captures
distributional imbalance, generating reliable weights to en-
hance worst-group accuracy. These results further confirm
our method could work well with tree-based models.
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Table 2. The performance on ACS Income task. The bold and underline denote the best and the second best results respectively.

Methods AZ MA MI Average AZ → MA MA → MI MI → AZ Average

Mean Worst Mean Worst Mean Worst Mean Worst Mean Worst Mean Worst Mean Worst Mean Worst

ERM 76.95 64.07 78.18 74.05 73.70 62.42 75.83 66.04 73.05 57.82 74.28 67.78 72.38 56.77 73.23 60.79
CVaR-DRO 77.00 64.41 77.85 72.85 73.48 61.88 76.11 66.39 74.10 59.42 74.85 68.57 71.75 54.67 73.57 60.88
χ2-DRO 76.95 64.07 77.55 71.82 73.13 59.03 75.88 64.97 74.53 61.18 74.23 68.53 71.33 53.05 73.36 60.92
KL-DRO 75.68 60.98 78.23 71.22 76.10 62.88 76.67 65.03 74.20 57.78 75.35 68.72 74.73 57.20 74.76 61.23
EIIL 74.98 55.22 78.18 68.42 75.60 63.77 76.25 62.47 75.35 56.80 76.92 65.62 74.78 57.32 75.68 59.91
JTT 75.70 57.73 77.48 68.48 74.48 60.63 75.88 62.28 73.90 55.17 74.00 66.57 72.65 55.17 73.52 58.97
FAM 75.00 57.82 78.73 70.12 74.38 59.45 76.03 62.46 72.93 54.60 74.68 66.35 73.40 54.53 73.67 58.49
SRDO 75.17 60.03 77.85 69.52 73.30 54.63 75.44 61.39 74.00 58.37 74.78 61.77 73.83 60.05 74.39 60.07

Ours 76.28 66.42 78.35 73.33 75.53 67.10 76.72 68.95 75.00 62.85 74.75 68.75 74.73 64.10 74.83 65.23

4.6. Visualization of Score-similarity-based Weights

In this section, we provide the visualization results on a
synthetic dataset to directly explain the reweighting process
of our methods. In addition, we will explain why we use
our aggregated similarity difference measure in Eq. 12 in-
stead of running a sampler based on the probability flow
ordinary differential equation that allow for exact likelihood
computation proposed by Song et al..

Synthetic Data Generation. Our imbalanced synthetic
training data has been illustrated in Figure 1a. The data have
two features, x0 and x1. The perfect classification boundary
is a sine curve. We introduce the bias on training data by
sampling more points in regions where x0 ∈ [π4 ,

3π
4 ] ∪

[ 5π4 ,
7π
4 ]. We expect the reweighting process could make the

whole data distribution fairly balanced.

Exact Likelihood Computation by Probability Flow
ODE. As referred in Section 3.3, we can compute the exact
log-likelihood through a probability flow ODE in Eq. 10.
Following Song et al., we apply the Skilling-Hutchinson
trace estimator (Skilling, 1989; Hutchinson, 1990) to esti-
mate ∇ · f̃θ(x(t), t) and finally achieves the log-likelihood.

Extreme Value Problem Brought by Exact Likelihood.
The log-likelihood of p(x) represents the estimated probabil-
ity density at the feature level, making it useful for guiding
the reweighting process. We compute the mean of the es-
timated probabilities across all features to determine the
final sample-level probability density. In Figure 3a, color
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Figure 3. Our score similarity is a good proxy for density.

depth represents the log-likelihood of the predicted proba-
bility density. Points with higher density are shaded closer
to violet, while those with lower density appear more blue.
Interestingly, not all points in high-probability regions are
assigned warm colors. In fact, most points are blue, similar
to those in low-density regions. Only a few points located at
cluster centers exhibit significantly higher log-likelihoods.
Reweighting based on these estimates could lead to dispro-
portionate emphasis on a small number of extreme high-
density points, potentially obscuring the distinction between
other high- and low-probability regions.

Density-Aware Weights Computed from Our Similarity-
based Measure. We then visualize the unnormalized score
similarity in Figure 3b. Points with lower error, correspond-
ing to higher relative probability density, are shaded in blue
and are expected to be downweighted. The visualization
clearly distinguishes these points, with two regions of rela-
tively high probability density appearing in blue. In contrast,
points with truly low probability are represented by higher
aggregated error, shown in purple, and can be easily up-
weighted. Our similarity measure not only differentiates
density clearly but also maintains a consistent and stable
numerical range, making it suitable for sample reweighting.

In summary, compared to the exact log-likelihood calcula-
tion, our method more effectively captures relative probabil-
ity densities across the dataset. By computing similarity, any
two sample points with significantly different probability
densities are clearly distinguished and distinctly colored. In
contrast, the exact log-likelihood tends to overemphasize a
few high-density points, obscuring the distinction between
other high- and low-density samples.

4.7. Ablation Studies

We conduct the sensitivity analysis in this section. As re-
ferred in Algorithm 1, our method has three hyperparame-
ters. T denotes the number of selected timesteps for com-
puting aggregation similarity. τ controls the strength of
reweighting based on SimDiff(·). K represents the number
of repeated sampling iterations for computing scores. The
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Table 3. The experiments deploying tree-based models. Compared to JTT, our score-based weights could consistently improve the
worst-case performance with tree-based models.

Method Adult Default Phishing Taxi (NYC)

Worst Mean Worst Mean Worst Mean Worst Mean

CatBoost 50.10 ± 0.85 75.38 ± 0.15 31.79 ± 0.38 64.70 ± 0.33 97.18 ± 0.11 97.60 ± 0.12 66.95 ± 0.17 81.30 ± 0.40
CatBoost + JTT 48.94 ± 0.40 75.10 ± 0.15 31.44 ± 0.96 64.29 ± 0.07 95.88 ± 0.84 97.70 ± 0.52 67.32 ± 0.98 81.52 ± 0.70
CatBoost + ours 64.63 ± 0.29 79.26 ± 0.13 33.43 ± 0.29 65.22 ± 0.81 97.15 ± 0.20 98.10 ± 0.10 67.60 ± 1.03 81.23 ± 0.61
LightGBM 50.33 ± 0.66 75.79 ± 0.27 32.00 ± 0.38 64.98 ± 0.15 96.10 ± 0.07 97.20 ± 0.14 68.35 ± 1.00 81.67 ± 0.32
LightGBM + JTT 49.03 ± 1.01 75.26 ± 0.32 31.91 ± 0.94 65.03 ± 0.36 96.57 ± 0.32 98.07 ± 0.14 68.55 ± 1.55 81.88 ± 0.54
LightGBM + ours 60.32 ± 0.02 79.53 ± 0.07 34.94 ± 0.66 65.97 ± 0.48 96.57 ± 0.23 97.92 ± 0.08 69.77 ± 0.71 82.40 ± 0.80
XGBoost 50.76 ± 1.70 75.10 ± 0.44 31.90 ± 1.04 63.84 ± 0.78 96.73 ± 0.39 97.10 ± 0.42 69.28 ± 3.13 81.65 ± 1.20
XGBoost + JTT 49.42 ± 0.51 74.63 ± 0.06 32.04 ± 0.52 63.86 ± 0.30 96.33 ± 0.03 97.63 ± 0.12 69.28 ± 1.46 81.32 ± 2.36
XGBoost + ours 64.93 ± 0.39 78.93 ± 0.21 34.19 ± 0.25 64.83 ± 0.68 96.62 ± 0.38 97.98 ± 0.30 69.10 ± 1.70 81.47 ± 0.50

discussion on K is deferred to Appendix C.2, as it does not
functionally impact the score computation.

Table 4. Ablation studies of the number of chosen timesteps T on
Adult dataset.

T = 5 T = 10 T = 15 T = 20

Mean Worst Mean Worst Mean Worst Mean Worst

Acc. (%) 73.27 ±0.84 50.82 ±3.17 74.33 ±0.28 54.79 ±2.01 74.92 ±0.52 56.90 ±1.51 74.91 ±0.52 57.46 ±2.48

2.0 2.5 3.0 3.5 4.0 4.5 5.0
20

30

40

50

60

70

80

90
Acc(%)

Worst Acc ( =2)
Worst Acc ( =3)
Worst Acc ( =4)
Worst Acc ( =5)

Mean Acc ( =2)
Mean Acc ( =3)
Mean Acc ( =4)
Mean Acc ( =5)

Figure 4. Ablation study on tem-
perature of reweighting scale τ .

The ablation study results
of T on Adult are shown
in Table 4. There are two
main observations:

• The mean accuracy
shows minimal varia-
tion with changes in
T .

• The worst-case accu-
racy improves as T
increases. This is
because T indirectly
represents the number of aggregated noisy points in the
sampled neighborhood. A larger T leads to a more accu-
rate computation of aggregated similarity in Eq. 11. We
set the default value of T to 10, balancing fast computa-
tion with optimal performance.

In Figure 4, we show the classification results by using dif-
ferent τ . Our model performs consistently well with all the
values. The worst accuracies under different τ all surpass the
baseline methods in Table 1, which proves that our method
does not heavily rely on the values of hyperparameters.

5. Conclusion
In this paper, we tackle the challenge of improving model
robustness, measured across all non-causal covariates rather
than focusing on a single attribute. We observe that pre-
vious methods are limited by their inability to model the
original joint data distribution and apply effective balancing

strategies. To overcome these limitations, we propose using
score-based models to capture the latent data distribution.
Specifically, we estimate scores at several fixed timesteps
and use their similarity to model the relative probability
density of each sample. A score-based reweighting strat-
egy is then employed to train a robust classification model.
Our approach requires no prior information during training
and ensures that the reweighting process aligns with the
original data distribution. Experiments on seven datasets
demonstrate that our method effectively balances the origi-
nal training data globally and achieves robust performance
under distribution shifts.
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The supplementary materials are structured as follows:

• Appendix A provides the pseudocode of our method.

• Appendix B.1 details the default network preconditioning, following the practice of EDM (Karras et al., 2022).

• Appendix B.2 lists the selected non-causal attributes used for robustness evaluation.

• Appendix C.1 presents the standard deviations of our experiments.

• Appendix C.2 offers a sensitivity analysis of hyperparameter K.

• Appendix C.3 conducts the analysis on sample size’s influence on our method.

• Appendix C.4 investigates how our method balances the imbalanced real-world dataset.

• Appendix C.5 provides the visualization results of our score-based weights on real-world dataset.

• Appendix D.1 compares our method with stable learning-based methods.

• Appendix D.2 discusses the relation between mean and the worst-case accuracy on synthetic dataset.

• Appendix D.3 discusses the relation between mean and the worst-case accuracy on real dataset.

A. The pseudocode of our method

Algorithm 1 The pseudocode of our method in binary classification problem.

Input: Training dataset D = {x, y} = {xi, yi}N−1
i=0 , T fixed noises along with specific timesteps {σ(t)}T , the temperature

of the reweighting scale τ , the repeated sampling times K
Parameters to be optimized: a VAE ϕZ(·), two score-based models {sj(·, ·)}, j ∈ {0, 1}, a final classification model
ψ(·)

// Stage One: Training Distribution Modeling
Train a VAE ϕZ = ϕEnc · ϕDec with Eq. 4
Obtain latent representation with trained encoder: z = ϕEnc(x)
Separate z into zy=0 and zy=1 according to their labels, train score model sj with zj separately by Eq. 8
// Stage Two: Probability Density Aligning
For each latent zi ∈ z, compute the aggregated similarity with target class model Sim(zi; sy=yzi

) and with non-target
class model Sim(zi; sy ̸=yzi

) through Eq. 11
Compute SimDiff(zi) through Eq. 12 to indicate zi’s relative probability density
// Stage Three: Unbiased Learning on Distribution-balanced Data
Reflect SimDiff into weights wi through Eq. 13
Train the final unbiased classification model ψ with Eq. 14
Return ϕEnc and ψ for testing

B. Supplementary details of the setting in our experiments
B.1. The choice of network preconditioning

In our method, we follow the practice from EDM (Karras et al., 2022) to train our neural network. The key lies in using
preconditioning techniques to make the output of neural network stable, instead of varying with the scale of variance σ(t)ε.
We take the default choice of scaling factors from Karras et al.; Zhang et al.. The details are listed in Table 51.

1We set σdata = 0.5 in our experiment as TabSyn (Zhang et al., 2024c) did.
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Table 5. The choices of various scaling factors for denoiser Dθ(·, ·) in Eq. 7.

Skip scaling cskip(σ) σ2
data/(σ

2 + σ2
data)

Output scaling cout(σ) σ · σdata/
√
σ2

data + σ2

Input scaling cin(σ) 1/
√
σ2 + σ2

data
Noise cond. cnoise(σ)

1
4 ln(σ)

B.2. Details of the selected non-causal attributes for measuring overall robustness

As referred in Section 4.2, we measure overall robustness by selecting several non-causal attributes and recording their
worst-case prediction results. Here we provide the details of selected attributes.

• Adult (Becker & Kohavi, 1996): We select marital status, race, and sex as sensitive attributes.

• Bank (Moro et al., 2012): We select age, housing status, marital status, and the last contact duration as sensitive
attributes.

• Default (Yeh, 2016): We select age, sex, and the amount of the given credit as sensitive attributes.

• Shoppers (Sakar & Kastro, 2018): We select the traffic type, the visitor type as returning or new visitor, a Boolean
feature indicating whether the date of the visit is weekend as sensitive attributes.

• Taxi (Navas, 2018): We select the indicator for weekday, the month of picking up, and the direction as sensitive attributes.

• US-Wide ACS PUMS Data (Ding et al., 2021): We select race and sex as sensitive attributes.

We demonstrate the Pearson correlation coefficients between the attributes and target vairable in training and test data in
Table 6.

We select sensitive attributes for evaluation based on the following criteria:

• Weak linear correlation with the target variable: Selected covariates should not exhibit a strong correlation with the
target variable. For instance, in the Adult dataset, the attributes marital status, race, and sex were chosen because their
Pearson correlation coefficients with the target variable are relatively smaller compared to attributes like native country
and workclass.

• Divergent correlation statistics across training and test datasets: Selected attributes should show notable differences in
correlation coefficients between the training and test datasets. For example, in the Taxi dataset, the selected attributes
exhibit varying correlation coefficients in the training and test datasets, suggesting that these attributes are not direct
causes of the target variable in this context.

C. Further experiments
C.1. Details of the standard deviation of our experiments

We randomly conducted each experiment three times using different seeds and computed the mean classification results, as
shown in Tables 1 and 2. The standard deviation across these three runs is provided in Tables 7 and 8, respectively.

C.2. The ablation studies of repeated sampling times

In Section 4.7, we conduct sensitivity analysis on the number of selected timesteps T and the temperature τ , which controls
the reweighting scale. These two hyperparameters directly influence score computation. Additionally, we have another
hyperparameter, K, which governs the number of repeated sampling iterations. While K does not functionally affect score
computation, it impacts the robustness of our computed values. Therefore, we will analyze the effect of K independently in
this section to distinguish it from T and τ .
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Table 6. The Pearson correlation coefficients between our selected sensitive attributes (with regular font) and the target variable in training
and test data. For ease of comparison, we also show some typical attributes (with italic font) not selected for evaluation. We set attributes
that either (1) exhibit low correlation with the target variable across both training and test datasets, or (2) demonstrate significant variation
in correlation with the target variable between the training and test datasets as sensitive (non-causal) attributes. Then we evaluate the
model bias concerning these attributes.

Dataset Attribute Pearson Coefficient

train test

Adult
marital status -0.0345 -0.0287
race -0.0852 -0.0807
sex 0.0785 0.0700
native country 0.3872 0.3915
work class -0.2160 -0.2119

Default
age 0.0193 0.0224
sex -0.0396 -0.0430
given credit -0.0368 -0.0287
education -0.1407 -0.1365
payment 0.3297 0.2814

Shoppers
traffic type -0.0548 -0.0644
visitor type -0.0276 -0.0353
weekend 0.0277 0.0445
administrative 0.1422 0.1401
administrative duration -0.1042 -0.1030

ACS Income (MA) race -0.1030 -0.1486
sex 0.1435 0.1086
marital status 0.2925 0.2704
age 0.2748 0.2560

Dataset Attribute Pearson Coefficient

train test

Taxi
weekday 0.0200 -0.0169
month -0.0004 -0.0243
direction 0.0180 0.0754
distance 0.4501 0.4618
hour 0.0413 0.1220

Bank

age -0.0086 -0.0130
housing status -0.0690 -0.0607
marital status -0.0584 -0.0757
duration 0.0287 0.0263
job 0.2807 0.2718
loan -0.1395 -0.1368

ACS Income (AZ) race -0.1127 -0.1312
sex -0.1312 0.1205
marital status 0.2307 0.2472
age 0.2658 0.2713

ACS Income (MI) race -0.0620 -0.0324
sex 0.1806 0.2030
marital status 0.2518 0.2405
age 0.2469 0.2127

The experimental results are listed in Table 9. We could find larger K corresponds to a longer computation time and a more
stable performance. We choose 32 as the default value for K, which achieves a good trade-off between sampling time and
model performance.

C.3. The analysis on sample size’s influence on our method

Our method use score-based model to model the original data distribution, serving a purpose similar to traditional density
estimation methods such as Kernel Density Estimation (KDE). Traditional density estimation methods, such as KDE, often
require a large amount of background data. However, thanks to the advantages of diffusion models, our score-based density
estimation is not sensitive to sample size, as demonstrated in our subsequent experimental results.

In this section, we examine the impact of training samples’ size on our score-based proxy. We create subsets of varying sizes
from the original training dataset and use these subsets to train score models. The final classification model is trained on
the weights from new score models but tested on the original test data. We denote R as the ratio of the subset size relative
to the original dataset. The experimental results are listed in Table 10. It demonstrates that the weights generated from
our score-based proxy is insensitive to the sample size. The robustness of our method arises from score model’s ability
to construct the latent score field. As Kadkhodaie et al. (2024) stated, neural networks can memorize the score field even
when the number of training samples is finite. This property ensures that our score-based weights faithfully approximate
the original probability density, enabling robust classification model training even with reduced subsets (R = 0.5 and
R = 0.8). However, when R = 0.2, the number of training samples becomes insufficient to construct an accurate score
field, which makes the estimated weights less accurate. However, even when we used only one-fifth of the data for training,
the performance of our model still outperformed the results of the other baselines using the full dataset in Table 1.

In a word, our method could generate more effective weights due to the process of modeling implicit score field, which
only requires training a neural network. The process of predicting score for new samples does not require to calculate the
interaction with other given training samples like statistical density estimation methods. Therefore, the number of training
samples has minimal impact on this process, provided the dataset size remains relatively reasonable.
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Table 7. The standard deviation of the classification results across three runs on five datasets.

Methods Adult Bank Default Shoppers Taxi

Mean Worst Mean Worst Mean Worst Mean Worst Mean Worst

ERM 0.47 1.64 0.35 1.85 0.21 3.93 0.73 2.46 0.14 2.61
CVaR-DRO 0.68 2.63 1.52 3.59 0.33 2.44 0.31 2.01 2.00 5.93
χ2-DRO 0.73 1.78 0.81 3.56 0.19 2.12 1.72 3.60 0.99 1.08
KL-DRO 0.14 0.90 0.60 1.75 3.25 5.10 1.08 3.98 8.96 23.68
EIIL 2.50 8.15 2.49 6.91 1.06 7.55 7.04 15.02 0.07 4.43
JTT 1.89 3.65 0.67 1.50 0.90 1.58 0.75 3.35 0.42 2.60
FAM 1.65 1.95 3.89 5.25 0.19 2.07 0.09 2.05 0.75 0.63
SRDO 2.43 6.82 2.55 5.44 8.06 10.94 0.35 2.31 2.07 2.50
Ours 0.28 2.01 0.39 1.56 0.12 1.22 1.44 3.39 0.16 2.02

Table 8. The standard deviation of the classification results across three runs on ACS dataset.

Methods AZ MA MI AZ → MA MA → MI MI → AZ

Mean Worst Mean Worst Mean Worst Mean Worst Mean Worst Mean Worst

ERM 0.85 1.31 0.46 1.23 0.49 2.66 0.78 1.62 0.32 2.50 0.67 1.82
CVaR-DRO 0.14 3.70 1.27 1.88 0.74 4.97 0.35 2.51 0.14 0.65 0.28 2.55
χ2-DRO 0.14 4.60 0.92 1.58 1.38 2.06 0.25 1.15 0.18 0.67 0.60 1.76
KL-DRO 1.23 3.00 0.32 2.41 0.07 0.37 1.20 2.91 0.78 1.71 0.25 0.97
EIIL 1.80 6.65 0.67 5.86 0.49 3.19 1.70 5.52 1.59 5.88 1.51 4.95
JTT 1.06 2.49 0.25 2.70 0.53 1.84 0.78 3.14 0.28 2.33 0.35 0.62
FAM 0.57 2.17 0.03 3.33 2.09 6.29 0.53 2.45 0.11 2.44 1.27 5.24
SRDO 2.22 10.23 1.01 2.49 1.22 5.75 1.83 8.57 0.49 4.26 0.35 0.96
Ours 0.11 0.89 0.14 1.48 1.77 1.61 0.07 0.40 0.35 0.30 0.35 0.35

C.4. The balanced samples after deploying our weights

To intuitively demonstrate how our score-based weights balance the original dataset, we divide the samples into groups
based on the sensitive attribute and target label, then compute the sum of weights for each group. Without accounting for
training challenges caused by group-specific variance, we expect the weights to achieve a balanced distribution. Specifically,
the majority group is expected to have a lower weighted sum compared to its unweighted sum. Table 11 presents the results
for four groups after applying our score-based weights. For nearly all the listed non-causal attributes, the sum of weights for
the majority group decreases, while the sum for the minority group increases. This observation confirms that our weights
effectively balance the original distributional shift, offering a clear explanation of how our method operates on real-world
datasets.

C.5. The t-SNE visualization comparison with our score-based weights

We previously provided an intuition for how our score-based weights help balance datasets using a synthetic example in
Figure 1. In this section, we present a straightforward visualization on Default dataset to demonstrate how our method
balances the real-world dataset. To be specific, we use t-SNE (Van der Maaten & Hinton, 2008) to reduce the latent
representation to two dimensions for visualization. Note that in Table 11, the Default dataset predominantly exhibits label y
shift. Therefore, we divide the representations into a majority group (y = 0) and a minority group (y = 1). In Figure 5a,
points from the minority group (y = 1) are shaded in dark green, while the majority group (y = 0) is colored brown. We
could observe that minority samples are often situated in the marginal regions of clusters, indicating that they have low
probability densities. Correspondingly, we visualize these samples’ score-based weights in Figure 5b. Points with higher
weights are represented by warmer colors like purple. We expect that the points from the minority group in Figure 5a to be
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Table 9. Ablation studies of the repeated sampling iterations K on Adult dataset.

K Mean (%) Worst (%) Running Time (s)

8 73.97 ±0.50 52.47 ±0.71 7.35 ±0.01

16 74.13 ±0.67 54.18 ±1.90 14.28 ±1.50

32 74.33 ±0.28 54.79 ±2.01 25.32 ±0.01

48 75.29 ±0.40 56.28 ±1.46 38.48 ±2.33

Table 10. Experimental performance under different ratio R on Adult dataset. The number of original training and test samples is 32561
and 16281.

R = 0.2 R = 0.5 R = 0.8 R = 1, original

Mean Worst Mean Worst Mean Worst Mean Worst

Acc. (%) 73.81 ±1.03 54.24 ±5.48 74.23 ±0.25 54.57 ±1.98 74.78 ±0.62 54.64 ±1.90 74.33 ±0.28 54.79 ±2.01

assigned higher weights in Figure 5b. Comparing these two figures, we can observe that our method significantly increases
the weights for samples in the minority group. Almost all the dark green points in the left figure are shaded closer to purple
in the right figure, which validates the effectiveness of our score-based weights.
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Figure 5. The t-SNE visualization of the original latent representations and their corresponding weights in Default dataset.

D. Other discussions beyond our method
D.1. The comparison with stable learning

In this section, we provide a comprehensive comparison between our method and stable learning. Stable learning aims to
decorrelate features to achieve a uniform and balanced data distribution, which is similar to our approach. However, our
method offers three significant advantages over stable learning, as detailed below:

• Ability to handle potential Y -shift problems: Our method use a similarity difference measure to address implicit
Y -shift as discussed in Section 3.3. In contrast, stable learning focuses solely on the decorrelation of covariates without
differentiating the information carried by labels y.

• Balanced Distribution via Original Distribution Modeling vs. Feature Independence: Our method obtains a balanced
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Table 11. The number of samples divided into different groups originally as well as the weighted sum of these samples after deploying
our score-based weights. The reweighted samples of different groups are more balanced, which is conducive to subsequent unbiased
classification learning.

Default Shoppers

sensitive
attribute
x

age given credit sex traffic type visitor type weekend

original weighted original weighted original weighted original weighted original weighted original weighted

x=1, y=0 9144 6943.19 9834 7390.46 12902 9766.14 4635 2298.18 8221 3951.20 2120 1025.14
x=0, y=1 3236 5972.06 4180 7690.34 2586 4751.89 1004 3855.73 383 1413.91 1282 4930.48
x=1, y=1 2733 5061.28 1789 3343.00 3383 6281.44 725 2707.13 1346 5148.95 447 1632.38
x=0, y=0 11887 9023.47 11197 8576.20 8129 6200.52 4733 2235.96 1147 582.94 7248 3509

distribution by modeling the original distribution while stable learning achieves balance through feature independence.
The reweighting process in stable learning relies on feature decorrelation under a linear assumption. However, it is
important to note that a balanced distribution does not equate to feature independence, and feature decorrelation
does not necessarily achieve balance, particularly in non-linear cases.

Consider an example where feature decorrelation fails at the sample level but our method succeeds. Suppose there are
two features x0 and x1, with samples distributed such that 0 < x0 < 1 and x0 < x1 < x0+1. Suppose that original data
distribution is imbalanced, e.g., samples with x0 > 0.5 all share a same higher density than those with x0 < 0.5. Under
this circumstance, our method can transform the original data distribution p(x0, x1) into a uniform data distribution
U(x0, x1) at the sample level easily. This is achievable because the score model captures and recovers the original data
distribution p(x0, x1).

In contrast, stable learning, which enforces feature decorrelation to achieve independence, cannot produce a uniform
balanced distribution at the sample level while maintaining independence between x0 and x1. The geometry of the
sample space—a parallelogram region—dictates that x0 and x1 cannot be independent while maintaining a uniform
sample-level distribution, i.e., U(x0, x1) ̸= p(x0) ∩ p(x1). Thus, stable learning fails to balance the data distribution at
the sample level while simultaneously decorrelating features.

Decorrelating features to achieve feature independence is a good idea, but it is insufficient to ensure a balanced dataset
without the essential assumptions. In contrast, our method does not depend on the presence or absence of feature
correlations. Instead, it estimates the implicit score field to model the original distribution, enabling a robust balancing
operation based on the estimated distribution.

• Enhanced Experimental Outcomes Relative to Stable Learning: To facilitate a quantitative comparison between our
method and stable learning, we conducted experiments in Tables 1 and 2. Our approach shows a minimum improvement
of 5% in the worst group accuracy compared to the SRDO baseline across both tables. The superiority of our score-
based reweighting over stable learning stems from the accuracy of the weights derived from our score model
compared to the predicted probabilities generated by stable learning predictors. Stable learning methods typically
train a predictor to estimate probabilities, which involves the generation of synthetic samples. For instance, SRDO (Shen
et al., 2020) employs empty vectors to create samples, whereas StableNet (Zhang et al., 2021) uses a Random Fourier
Transformation. The quality of these synthetic samples crucially affects the training process of the predictor, thereby
making the estimated probabilities potentially unreliable. In contrast, the score in our method represents the gradient of
the log-likelihood of the original distribution p(x). This ensures that our reweighting process remains rigorously faithful
to the actual data distribution.

In a word, our method does not rely on any assumptions about the original data distribution. It utilizes the score, i.e., the
gradient of estimated log-likelihood of original data distribution, to perform sample reweighting, which is flexible and easy
to conduct. The additional experiments further confirm the effectiveness of our method.

D.2. Discussion about the relation between mean and the worst-case accuracy on synthetic dataset

The trade-off between mean accuracy and worst-group accuracy is a well-documented phenomenon. In many cases, a
specific optimization objective may prioritize either higher mean accuracy or higher worst-case accuracy. However, we
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Figure 6. The Pareto curve for the synthetic experiment in Section D.2.

want to emphasize that the trade-off is not always stable, even in synthetic data. To illustrate this point, we conducted a new
synthetic experiment inspired by Zhang et al..

We designed a binary classification task with explicit Y -shift. Data for each class were generated from two distinct
multivariate normal distributions with different means and covariance matrices as listed in Table 12. The sample size for
class y = 0 was fixed at 5000, while the number of class y = 1 samples varied incrementally from 3000 to 5000 in steps of
100. This variation mimicked the effect of reweighting, akin to our score-based balancing approach. Models were trained on
these mixtures, each representing a different proportion of y = 1 samples. Each experiment was repeated 500 times. The
results are visualized in Figure 6.

Table 12. Data generation parameters for the synthetic dataset.

Class Mean Covariance Matrix Number of Samples

y = 0 [−1, 0]

[
5 5
5 5

]
fixed at 5000

y = 1 [1, 0]

[
15 5
5 15

]
from 3000 to 5000

In Figure 6, we observe the following:

• Effect of Dataset Balance on Worst-Case Accuracy: As the dataset becomes more balanced, the worst-case accuracy
increases consistently, mirroring the trend observed with our score-based reweighting strategy. This observation suggests
that balancing the dataset is crucial for improving worst-case accuracy.

• Dynamic Interaction Between Mean and The Worst-Case Accuracy: When the number of class y = 1 samples
increases from 3000 to 4000, both mean accuracy and worst-case accuracy increase simultaneously, with no evident
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trade-off. However, as the number increases from 4000 to 5000, mean accuracy drops significantly. This phenomenon
highlights that the trade-off between mean accuracy and worst-case accuracy is not always persistent. Instead, their
interaction depends on how the optimization process influences the training trajectories.

D.3. Discussion about the relation between mean and the worst-case accuracy on real dataset

35.5 36.0 36.5 37.0 37.5 38.0 38.5 39.0
Worst Acc(%)

62.5

62.6

62.7

62.8

62.9

63.0
Mean Acc(%)

=0 (Pure ERM)
=0.2
=0.5
=0.8
=1 (Our Method)

(a) Default dataset

54 55 56 57 58 59 60 61
Worst Acc(%)

77.0

77.5

78.0

78.5

79.0

79.5

80.0
Mean Acc(%)

=0 (Pure ERM)
=0.2
=0.5
=0.8
=1 (Our Method)

(b) Shoppers dataset

57 58 59 60 61 62 63
Worst Acc(%)

73.0

73.5

74.0

74.5

75.0

75.5
Mean Acc(%)

=0 (Pure ERM)
=0.2
=0.5
=0.8
=1 (Our Method)

(c) ACS dataset from AZ to MA

Figure 7. The trade-off curve of our method between mean accuracy and worst-group accuracy on three settings which exhibit different
kinds of shift.

To better understand how the relationship between average accuracy and worst-group accuracy evolves when optimizing
with our score-based weights, we conducted a new experiment and present the Pareto curve in Figure 7.

In fact, by simply combining the loss functions of empirical risk minimization (ERM) and our method, we can achieve
a balance between both optimization objectives. Specifically, we defined a mixed optimization objective as Lmix =
αLweighted + (1 − α)LERM, where 0 ≤ α ≤ 1, and train classification models using Lmix with varying α values. Here,
Lweighted represents the loss computed with our score-based weights, while LERM corresponds to the standard ERM loss.
The parameter α controls the the influence of our weights in the optimization process. As α increases, the optimization
objective aligns more closely with our score-based balancing strategy, while a lower α gives greater weight to ERM. By
varying α, we can compare model performance and gain insights into how these two optimization objectives interact and
influence the performance.

We evaluate the trained models under three scenarios: (1) the Default dataset (Column 6-7 in Table 1), (2) the Shoppers
dataset (Column 8-9 in Table 1), and (3) training on data from AZ of the ACS income dataset while testing on data from MA
(Column 10-11 in Table 2).

Figure 7a reveals a clear trade-off curve between mean accuracy and worst-group accuracy. Notably, the overall trend of
the curves forms a near Pareto frontier, supporting the existence of a trade-off between these two accuracies. Furthermore,
compared to ERM’s standard optimization objective, our method more effectively improves worst-group accuracy.

In Figure 7b, the curve does not form an exact Pareto frontier. Within a certain range, both worst-case accuracy and mean
accuracy exhibit similar trends under the distribution shift present in the Shoppers dataset. This suggests that our method
can simultaneously enhance both accuracies.

Figure 7c exhibits a curve distinct from Figure 7a. Here, the trade-off between mean and worst-group accuracy is no longer
the sole dynamic at play. We attribute this phenomenon to changes in the causal mechanism, specifically Y |X-shift caused
by selection bias across different states as highlighted in previous studies. From the perspective of optimization, such shifts
violate the assumption of independent and identically distributed data, introducing challenges for ERM. Since our method
employs a reweighting strategy to balance the dataset, its optimization goal is better suited to this setting than ERM to some
extent, resulting in improvements to both mean and worst-group accuracy. However, when compared to methods explicitly
designed for scenarios involving causal mechanism changes, our score-based reweighting falls short in achieving the best
mean accuracy.

In summary, the relationship between mean accuracy and worst-group accuracy can take many forms. The trade-off between
these metrics plays a significant role in optimization, but how this trade-off quantitatively evolves is a complex problem. To
the best of our knowledge, there are currently no methods in the community capable of predicting this trend in advance.

20



Latent Score-Based Reweighting for Robust Classification on Imbalanced Tabular Data

However, in cases where a trade-off exists, such as in the Default dataset, we can construct a mixed optimization objective
combining our loss function and ERM. This allows for control over mean and worst-case accuracy values, as demonstrated in
Figure 7a, effectively serving as a “knob” for balancing these metrics. Ultimately, the optimization process determines how
mean and worst-case accuracy interact. Notably, a method can outperform another on both metrics if its optimization is better
suited to the specific distribution shifts present in the dataset. Our reweighting-based optimization objective is primarily
designed to globally optimize for the worst-group accuracy. It consistently achieves the best worst-case accuracy across
nearly all evaluated datasets. Additionally, since our method can address both X-shift and Y -shift through score-based
modeling, it performs better than some baselines in terms of mean accuracy under specific types of shifts. These factors
collectively contribute to the improved overall performance observed in Column 12-13 of Table 1 and Column 8-9 and 16-17
of Table 2.
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