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ABSTRACT

EEG-based emotion recognition offers an objective method for diagnosing
emotion-related health issues, but the inherent complexity of emotions often leads
to annotation errors and noisy labels. To simulate this labeling process in emo-
tion recognition, we propose a semantic-based candidate label generation method
leveraging the GloVe vectors, which considers the semantic relationships be-
tween emotions. Under the Partial Label Learning (PLL) scenario, we introduce a
novel model called PGNA-PL (Prototype-Guided Noise-Augmented Partial Label
Learning). This model learns inter-class relationships of emotions using proto-
types, and uses a self-distillation mechanism to iteratively guide the classifier’s
disambiguation process. To address the low signal-to-noise ratio (SNR) of EEG,
we introduce a noise augmentation strategy inspired by the mixup method, incor-
porating controllable noise to enhance model robustness. Experiments on three
public datasets (SEED, SEED-IV, SEED-V) show that our approach achieves
state-of-the-art performance, surpassing existing PLL baselines across different
candidate label generation modes. Our method effectively disambiguates com-
plex emotions and shows promising results in assisting in the recognition of fear-
related disorders.

1 INTRODUCTION

The interplay between human emotions and overall health, both psychological and physiological, is
profound, with evidence showing a strong linkage between negative emotional states and conditions
like phobias (Apicella et al., 2024). Physiological signals, due to their difficult-to-disguise nature,
are suitable for the objective assessment of emotional responses (Liu et al., 2024; Li et al., 2022b;
Shen et al., 2022). Research has demonstrated the viability of extracting emotion-related features
from various physiological signals, including electroencephalogram (EEG) (Wang et al., 2024a), eye
movements (Zheng et al., 2018), and peripheral physiological signals (Koelstra et al., 2011). Among
these, EEG due to its precision and high temporal resolution, has already been extensively studied
(Zhang et al., 2022b; Liu et al., 2024; Ding et al., 2022).

To obtain high-quality EEG-based emotion datasets, auditory and visual stimuli are typically em-
ployed to induce emotional responses in participants, with EEG signals recorded through specialized
equipment. While the labeling of EEG signals generally relies on expert annotations (Zheng & Lu,
2015) or participants’ self-reports (Koelstra et al., 2011), the inherent complexity of emotions of-
ten leads to ambiguities, resulting in annotation errors (Jiang et al., 2024). This challenge is nearly
unavoidable. For example, as shown in Plutchik’s wheel of emotions (Plutchik, 1980), the emotion
“remorse” encompasses both “disgust” and “sadness”. When participants experience such complex,
overlapping emotions, the labeling process becomes difficult. This is especially prevalent when
dealing with rich emotional expressions in audiovisual stimuli.

Partial label learning (PLL) (Cour et al., 2011) offers a more flexible approach by allowing multiple
potential labels to be assigned simultaneously, with the assumption that only one label is correct.
In this context, the labeled tags are referred to as candidate labels, while the unlabeled ones are
considered non-candidate labels (Wen et al., 2021). Under this assumption, the goal during training
is to disambiguate the multiple candidate labels, enabling the model to learn how to correctly identify
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the true label from the ambiguous annotations. The introduction of this method can significantly
mitigate the impact of labeling errors in EEG-based emotion recognition tasks Zhang & Etemad
(2023) .

However, in emotion classification tasks, different emotions often share latent relationships, mak-
ing the traditional PLL assumption (Wang et al., 2022; Xia et al., 2023) of uniformly distributed
candidate labels unsuitable. Furthermore, other methods like Zhang & Etemad (2023) overlook the
semantic relations between emotions. To address this challenge for the first time, we propose a
novel semantic-based candidate label generation method that explicitly incorporates semantic rela-
tionships between emotions. By leveraging the GloVe vectors (Pennington et al., 2014) (detailed in
Appendix A.2.1), which is extensively used in natural language processing (NLP) to capture contex-
tual word relationships, we obtain semantic vectors for various emotions. These vectors represent
emotions in a multi-dimensional space, reflecting their contextual relationships based on large text
corpora. We then use cosine similarity to calculate the distances between these emotion vectors,
which are instrumental in computing the probability of each emotion being selected as a candidate
label. This method helps in quantitatively assessing the similarity or dissimilarity between emotional
states, thereby enabling more accurate candidate label generation.

PLL algorithms have been extensively studied in computer vision (Tian et al., 2023), yet their po-
tential in EEG-based emotion recognition has not been fully exploited. A key challenge is un-
derstanding and utilizing the inter-class relationships of emotions to aid in label disambiguation.
Additionally, the inherently low SNR of EEG signals (Ye et al., 2022; Huang et al., 2024; Li et al.,
2024b), exacerbated by issues like electrode displacement due to head movements (Wang et al.,
2024b), further complicates the analysis.

To solve these challenges, we introduce the PGNA-PL model (Prototype-Guided Noise-Augmented
Partial Label Learning). This model stabilizes emotion relationships using prototypes and employs
a self-distillation approach (Zhang et al., 2019; Li et al., 2024c) to guide the classifier’s disambigua-
tion process among emotions. To mitigate low SNR issues, we incorporate a controllable noise
augmentation technique inspired by the mixup method (Zhang et al., 2018). This method mixes
features from a small number of other samples to create perturbations closer to the distribution of
EEG signals without altering the label, thereby enhancing the robustness of the model.

We evaluate our method on three publicly available datasets: SEED (Zheng & Lu, 2015), SEED-IV
(Zheng et al., 2018), and SEED-V (Liu et al., 2021), under two different candidate label generation
strategies, including our proposed Semantic Distribution and the real-world experimental framework
Zhang & Etemad (2023) referred to as Russell Distribution in this paper for simplicity (detailed
in Appendix A.2.2). PGNA-PL achieves state-of-the-art (SOTA) performance across all datasets.
Analysis of the confusion matrix suggests that our method shows potential advantages in assisting
in the recognition of fear-related disorders..

By enhancing the accuracy and robustness of emotion recognition from EEG signals and effectively
addressing labeling errors through partial label learning, our proposed methods have the potential to
transform applications in mental health diagnostics, adaptive user interfaces, and affective comput-
ing, providing more reliable and objective assessments of emotional states.

Our contributions are threefold:

1. We introduce a novel semantic-based candidate label generation method for PLL that, for
the first time, incorporates the semantic relationships of emotions. This method not only ad-
dresses the limitations of previous approaches but also establishes a new evaluation frame-
work applicable to emotion recognition tasks.

2. We propose the PGNA-PL model, an advanced approach utilizing prototypes to decode
emotional relationships between classes and self-distillation for enhanced classification ac-
curacy. This model is further augmented with a unique noise augmentation technique,
improving its robustness.

3. Through comprehensive evaluations on three public datasets, the PGNA-PL model demon-
strates superior performance over existing methods. Notably, the model shows exceptional
efficacy in detecting fear emotion, which could have significant implications for advance-
ments in mental health assessments.
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2 METHODS

2.1 OVERVIEW

To more accurately reflect the inter-class relationships of emotions in the candidate labels used for
evaluation, this section first discusses how to generate candidate labels with an understanding of
emotional semantics. Subsequently, we introduce a novel EEG-based emotion recognition model
PGNA-PL that employs prototypical representations to construct inter-emotional category relation-
ships and enhances the classifier’s emotional classification capabilities through self-distillation. Ad-
ditionally, we propose a tailored noise augmentation strategy for EEG signals to enhance the model’s
robustness. The pseudo-code of PGNA-PL is shown in Algorithm 1.

2.2 GENERATING EMOTIONALLY SEMANTIC CANDIDATE LABELS

Human understanding of emotions is inherently based on their semantic relationships, which can
be captured from large textual corpora. To model these semantics, we represent each emotion label
using GloVe vectors (Pennington et al., 2014). Let vi denote the GloVe vector for emotion category
ei, where i indexes the emotion vocabulary.

To quantify the semantic similarity between two emotions ei and ej , we compute the cosine simi-
larity between their corresponding vectors:

sij =
vi · vj

∥vi∥ ∥vj∥
(1)

This similarity score sij reflects how closely related the two emotions are in semantic space.

In generating candidate labels for emotion classification, we leverage these semantic similarities. For
a given primary emotion category ei, we use the cosine similarities sij to probabilistically assign
additional emotion labels. Inspired by (Zhang & Etemad, 2023), for each emotion category ej , we
generate a binary label Ŷ [j] by sampling from a Bernoulli distribution parameterized by sij :

Ŷ [j] ∼ Bernoulli(sij) (2)

Here, Ŷ is the candidate label vector for the current sample, and Ŷ [j] indicates whether emotion ej
is included as a candidate label.

After generating the binary labels, we normalize Ŷ to form a probability distribution, where k is the
number of emotion categories:

Ŷ =
Ŷ∑k

j=1 Ŷ [j]
(3)

This normalization ensures that the candidate labels sum to one, facilitating their use in probabilistic
models.

Equations (2) and (3) are applied sequentially to the emotion labels of each sample. As a result,
samples with the same true label may be assigned different candidate labels.

By incorporating semantic similarities between emotions, this method better simulates the occur-
rence of label errors in partial label scenarios, improving the representation of the labeling process.

2.3 PROTOTYPE-GUIDED NOISE-AUGMENTED PARTIAL LABEL LEARNING MODEL

We utilize the differential entropy (DE) features of EEG signals (Duan et al., 2013) as input to our
model. Let X denote the input feature space, and Y = {1, 2, . . . , k} represent the set of possible
emotion labels. Our dataset D consists of n samples and is defined as D = {(xi, yi)}ni=1, where
xi ∈ X is an EEG sample, and yi ∈ Y is the corresponding one-hot encoded candidate label set
generated as described in Section 2.2.

As illustrated in Figure 1, the PGNA-PL model comprises an encoder E and a classifier C, parame-
terized by θ and δ, respectively. The encoder E extracts high-level features from the input data, and
the classifier C assigns these features to specific emotion categories. The functions of E and C are
denoted by fθ and Fδ .

3
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Figure 1: The PGNA-PL model, use the Prototype-Guided Module and the Noise Augmentation
Module to improve the model’s disambiguation capability and robustness, respectively.

When an input sample xi is processed through the encoder, it generates a high-level feature repre-
sentation pi:

pi = fθ(xi). (4)
This high-level feature is then fed into the classifier to obtain the predicted logits ŷi:

ŷi = Fδ(pi). (5)

Under the supervision of the candidate emotion labels, ŷi represents the probability distribution of
the classifier’s predictions across different emotion categories.

To enhance the model’s emotion recognition capabilities, we introduce a prototype-guided module
and a noise augmentation module, resulting in the proposed Prototype-Guided Noise-Augmented
Partial Label Learning (PGNA-PL) model.

2.3.1 PROTOTYPE-GUIDED MODULE

In PLL, the classifier’s predictions may be unreliable due to label ambiguity. To address this issue,
we propose a prototype-guided approach that constructs emotion prototypes, with the goal of cap-
turing inter-class relationships. Unlike the PiCO method (Wang et al., 2022), which updates candi-
date labels using prototypes and may suffer from instability due to frequent changes in the training
objective, our method avoids such instability by maintaining a fixed learning objective while still
leveraging prototypes to guide the classifier’s learning process.

We define emotion prototypes µk ∈ Rd, where d is the feature dimensionality of each emotion
category, and k is the number of emotion categories. Initially, each prototype is set to the zero
vector of dimension d. During training, we select the emotion category corresponding to the highest
predicted probability in the logits ŷi, and update its associated prototype using a moving average
mechanism in (Wang et al., 2022). This allows the prototype to evolve over time, reflecting the input
data distribution. Formally, the prototype update rule is given by:

µk = Normalize (ξµk + (1− ξ)pi) , if k = argmax
k

(ŷi) (6)

Here, ξ is a hyperparameter controlling the rate of prototype update, typically set close to 1 to ensure
small, incremental changes. The feature vector pi is the output of the encoder for the i-th training
sample, and normalization ensures that the prototype vector remains within a consistent scale.

Over time, these prototypes represent the various emotion categories, and the distances between
them capture the relationships between different emotions. As a result, the classifier can more easily
distinguish between similar emotions based on the evolving prototypes.

Once the prototypes have been updated, we use them to compute a probability distribution ŷµ that
represents the likelihood of an input belonging to each emotion category. This is done by calculating
the similarity between the feature vector pi and each of the prototypes µk. Specifically, we compute
the similarity between the feature vector and each prototype:

ŷµ = pi · µT
k (7)
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Here, pi ·µT
k denotes the dot product between the feature vector pi and the transpose of the prototype.

To guide the classifier’s learning, we employ self-distillation. This involves aligning the classifier’s
logits ŷi with the probability distribution ŷµ derived from the prototypes. Specifically, we minimize
the Kullback-Leibler (KL) divergence between these two distributions, which helps the classifier
learn the inter-class relationships encoded in the prototypes. The Prototype Guidance loss LPG is
computed as:

LPG =
1

m

m∑
i=1

KL
(

softmax
(
ŷi
τ

)
, softmax

(
ŷµ
τ

))
(8)

Here, τ is a temperature parameter that softens the probability distributions, and m represents the
batch size. By minimizing this loss, the classifier is guided to produce output distributions that are
consistent with the inter-class relationships learned from the prototypes.

In summary, the Prototype-Guided Module introduces emotion prototypes that evolve over time,
helping the classifier to better understand and differentiate between emotion categories. Through
self-distillation, the classifier learns to align its predictions with the relationships captured by the
prototypes, thereby improving its ability to handle label ambiguity and inter-class similarity. This
approach avoids the instability associated with directly updating candidate labels and enhances the
model’s overall performance in emotion classification tasks.

2.3.2 NOISE AUGMENTATION MODULE

In EEG signal processing, one of the key challenges is the low signal-to-noise ratio (SNR), which
can significantly hinder the model’s performance. To address this, we propose a noise augmentation
method inspired by consistency regularization (Yan & Li, 2021; Wu et al., 2022), which adds con-
trolled noise perturbations to the input EEG signals without changing their candidate labels. The
goal is to force the model to produce consistent outputs despite the noise.

However, due to the continuous and time-series nature of EEG signals, traditional data augmentation
techniques, such as cropping or scaling, are not applicable (Li et al., 2022a). Moreover, generating
new signals using complex models like Generative Adversarial Networks (GANs) would dramat-
ically increase the model’s complexity. Instead, we draw inspiration from the mixup technique
(Zhang et al., 2018), which is commonly used for data augmentation. In mixup, two samples from
the same batch are randomly mixed, and the corresponding labels are also interpolated. This helps
the model generalize better. However, unlike the traditional mixup, our approach focuses on adding
noise by blending two EEG signals, thus maintaining the structure of the signal while introducing
perturbations that simulate noise.

To begin, we sample a mixing coefficient λ from a Beta distribution, as described in Equation equa-
tion 9. The Beta distribution is parameterized by a hyperparameter βp, which determines the range
of λ. For simplicity, we use equal values for both parameters for the Beta distribution. If βp is small,
λ will be close to 0 or 1, leading to a higher contribution from one of the signals. Conversely, larger
values of βp make λ closer to 0.5, promoting a more balanced mix of the two signals.

λ = Beta(βp, βp) (9)

Next, we apply a scaling factor σ to constrain the mixing coefficient λ. This ensures that the mixed
sample retains more of the original signal’s features. Specifically, σ is sampled from the range
(0.5, 1] to ensure that the perturbations do not distort the original sample too much. The final mixing
coefficient λ′ is computed as:

λ′ = σ + (1− σ) · λ (10)

With the mixing coefficient λ′ determined, we mix two EEG signals, xi and xj , sampled from the
same batch. The new noise-augmented signal is given by:

x′
i = λ′ · xi + (1− λ′) · xj (11)

This mixed signal x′
i is then used as the input to the model. The key advantage of this approach is

that it allows us to simulate noise without altering the candidate labels, maintaining the integrity of
the original classification task while adding perturbations that improve generalization.

5
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After conducting a coarse grid search over different values of λ′, we found that values in the range
of [0.8, 0.9] yield optimal performance. This indicates that maintaining a higher proportion of the
original sample helps preserve its features, making the noise perturbations more controlled and
stabilizing the training process.

While similar interpolation methods have been explored in the context of data augmentation, such as
in PaPi (Xia et al., 2023), our approach differs in its primary goal: adding noise rather than augment-
ing data purely for label interpolation. In PaPi, candidate labels are updated using the classifier’s
predictions on new interpolated samples, but the focus is on generating diverse data rather than in-
troducing noise. In contrast, our method ensures that the candidate labels remain unchanged, while
the noise addition process is controlled via the scaling of λ, as described in Equation equation 10.
This helps maintain the utility of the original labels for disambiguation.

In summary, the noise augmentation module addresses the low SNR in EEG signals by adding
controlled noise perturbations. Using a mixup-based method, we blend two EEG signals from the
same batch, adjusting the mixing ratio through a scaling factor that ensures the original sample is
preserved while adding noise. This method stabilizes training by forcing the model to be consistent
in the presence of noise, without altering the candidate labels, thereby improving robustness.

2.3.3 CLASSIFICATION LOSS AND OVERALL LOSS

To train the model with partial labels, we use the naive loss function from DNPL (Seo & Huh, 2021),
which keeps the candidate labels fixed. The classification loss LCLS is computed as follows:

LCLS = − 1

m

m∑
i=1

log

(
υ

(
k∑

class=1

Softmax(ŷi) · yi

))
(12)

Here, ŷi represents the logits for the i-th sample, and yi denotes the corresponding candidate label.
First, we apply the softmax function to the logits to obtain the probability distribution over the
k possible emotion categories. Then, the probabilities corresponding to the candidate labels are
summed, yielding the total probability of correct recognition for each sample. This value is passed
through the operation υ, which clamps the result between 0 and 1 to stabilize the output. The
logarithmic function log is then used to compute the loss. The batch size m is used to average the
loss across the batch.

The overall loss Loverall integrates the emotion classification loss LCLS and the Prototype Guidance
loss LPG through the balancing hyperparameters α, as follows:

Loverall = LCLS + α · LPG (13)

2.3.4 ARCHITECTURE DETAILS

The architecture of the encoder and classifier is derived from (Zhang et al., 2022a; Zhang & Etemad,
2023), as they have been demonstrated to be superior in the task of EEG emotion recognition. The
encoder consists of two CNN modules; each includes a 1-D convolutional layer, batch normalization,
and a LeakyReLU activation function. The output is then transformed to the desired dimensions
d through a flattening operation and a linear layer. The classifier comprises a single linear layer
designed for emotion recognition. Further details can be found in Appendix A.3.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Our experiments are conducted on three publicly accessible EEG emotion datasets: SEED, SEED-
IV, and SEED-V, using the DE features provided by the official sources. The datasets include 3
(positive, negative, neutral), 4 (happy, sad, neutral, fear), and 5 (happy, sad, disgust, neutral, fear)
emotional categories, respectively. Each dataset consists of three sessions, which means that each
subject participates in three separate full experiments under varying visual stimuli. Detailed descrip-
tions of the datasets can be found in Appendix A.4.
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Algorithm 1 PGNA-PL method

1: Input: iteration T , dataset D = {(xi, yi)}ni=1
2: Output: optimized PGNA-PL model
3: The Training Phase:
4: Randomly initialize θ and δ. Initialize µ as all-zero vectors.
5: for t = 1 to T do
6: Sample a mini-batch of training data.
7: Obtain p and the prediction logits ŷi for the batch data by Equation (4) and (5).
8: Add noise to the batch data by Equation (9-11). ▷ Noise augmentation
9: Obtain ŷµ by Equation (7) for the batch data.

10: Update µ by Equation (6) using the batch data. ▷ Update the prototype
11: Compute LPG by Equation (8). ▷ Prototype guidance
12: Compute LCLS by Equation (12). ▷ Emotion recognition
13: Compute Loverall by Equation (13). ▷ Compute the overall loss
14: Update θ and δ by backpropagation.
15: end for
16: Return θ and δ.

To ensure robust evaluation across different datasets, we account for their distinct characteristics by
splitting them into train, validation, and test sets. Specifically, in the SEED dataset, each session
consists of 15 emotion-specific EEG trials. We follow traditional protocols by using the first nine
trials for the training set and the remaining six for the test set. The final results are reported as the
average performance across the test sets of the three sessions. The SEED-IV dataset, with 24 trials
per session, employs a unique approach due to the random order of trials. We evenly divide these
trials into three parts by category, taking one part from each session (8 trials) to form a fold in a three-
fold cross-validation process, with a 36:18 split of training set to test set trials. The SEED-V dataset
adopts a similar design to SEED-IV for cross-validation without the need for sample balancing, since
five videos of different emotions always appear sequentially, leading to a 30:15 ratio of training set
to test set trials. We randomly select 20% of the training set to serve as the validation dataset, with
the remaining data used for training the model. Our evaluation metrics include accuracy (standard
deviation), macro F1, and micro F1 to ensure balanced assessment under multi-class conditions.
Details on the settings of the hyperparameters can be found in Appendix A.5.

Notably, semantic-based candidate labels for the datasets are standardized by mapping original emo-
tion categories to adjectives for uniformity, such as mapping SEED-V categories to (happy, sad, dis-
gusted, neutral, fearful). In the SEED dataset, where videos primarily induce happy or sad emotions,
we refine these categories to “happy” and “sad” for clearer semantic resonance, retrieving emotion
semantic vectors from GloVe based on these terms. Additionally, we evaluate all methods using the
Russell Distribution to validate model generalizability.

3.2 RESULTS

3.2.1 COMPARISON WITH BASELINES AND ABLATION STUDIES

Our method, PGNA-PL, along with various baselines, was evaluated across three datasets, as de-
tailed in the upper sections of Tables 1-3. For each dataset, performance comparisons are provided
based on two different candidate label generation approaches, namely Semantic Distribution and
Russell Distribution. We compare leading algorithms in both PLL methodologies, including the IBS
algorithms CR (Wu et al., 2022), CAVL (Zhang et al., 2021), PRODEN (Lv et al., 2020), LW (Wen
et al., 2021), PiCO (Wang et al., 2022), and PaPi (Xia et al., 2023), and a special algorithm DNPL
(Seo & Huh, 2021) . Descriptions of the baselines are available in Appendix A.6.

According to these tables, our method consistently achieves state-of-the-art results on all datasets.
Notably, recent research has focused on IBS methods. For instance, PiCO updates candidate labels
using a moving average of prototypes, while PaPi aligns the classification capabilities of updated
candidate labels and prototypes based on classifier outputs. While these approaches also leverage
prototypes to bolster model performance, their frequent updates to candidate labels can result in
unstable training. In contrast, DNPL consistently achieves high performance across all three datasets

7
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Table 1: Performance evaluation on the SEED dataset (%)

Semantic Distribution Russel Distribution
Method Accuracy Macro F1 Micro F1 Accuracy Macro F1 Micro F1
CR (Wu et al., 2022) 54.69(±13.29) 49.04(±17.07) 55.07(±13.18) 53.62(±12.86) 47.34(±16.47) 53.87(±12.91)
CAVL (Zhang et al., 2021) 59.66(±19.05) 51.5(±24.3) 59.53(±18.92) 56.29(±20.48) 46.27(±26.5) 55.67(±20.46)
PRODEN (Lv et al., 2020) 78.04(±12.44) 76.09(±14.1) 77.63(±12.67) 75.5(±13.46) 73.1(±15.41) 74.98(±13.72)
LW (Wen et al., 2021) 78.36(±12.31) 76.64(±13.77) 78.02(±12.52) 78.2(±12.54) 76.39(±14.03) 77.77(±12.77)
PiCO (Wang et al., 2022) 78.0(±12.28) 76.28(±13.67) 77.61(±12.46) 78.2(±12.32) 76.65(±13.39) 77.81(±12.48)
PaPi (Xia et al., 2023) 77.18(±12.5) 75.19(±14.01) 76.76(±12.7) 75.5(±13.12) 72.93(±15.25) 74.93(±13.4)
DNPL (Seo & Huh, 2021) 78.27(±12.39) 76.38(±14.05) 77.87(±12.62) 77.63(±12.95) 75.75(±14.38) 77.21(±13.14)
PGNA-PL 79.69(±11.86) 78.11(±13.11) 79.31(±12.07) 79.86(±12.3) 77.76(±14.24) 79.33(±12.6)
w/o PG 78.3(±12.41) 76.51(±13.76) 77.88(±12.64) 78.98(±11.98) 77.27(±13.35) 78.56(±12.23)
w/o NA 79.09(±12.52) 77.43(±13.9) 78.71(±12.73) 79.54(±12.6) 77.53(±14.27) 79.02(±12.84)

Table 2: Performance evaluation on the SEED-IV dataset (%)

Semantic Distribution Russel Distribution
Method Accuracy Macro F1 Micro F1 Accuracy Macro F1 Micro F1
CR (Wu et al., 2022) 47.63(±13.41) 40.12(±16.16) 46.31(±13.11) 46.94(±12.34) 37.92(±15.23) 45.47(±12.03)
CAVL (Zhang et al., 2021) 44.14(±14.7) 30.6(±17.65) 41.68(±14.41) 43.29(±15.75) 31.96(±20.14) 42.0(±16.14)
PRODEN (Lv et al., 2020) 63.81(±14.0) 61.26(±15.19) 62.98(±13.89) 60.92(±14.7) 57.49(±16.99) 60.11(±14.72)
LW (Wen et al., 2021) 64.11(±15.21) 61.86(±16.69) 63.45(±15.17) 64.13(±15.33) 61.38(±17.54) 63.55(±15.25)
PICO (Wang et al., 2022) 66.15(±13.4) 64.63(±13.83) 65.67(±13.07) 65.33(±13.19) 63.9(±13.34) 64.97(±12.84)
PaPi (Xia et al., 2023) 67.65(±12.5) 65.9(±12.81) 67.04(±12.24) 65.96(±11.97) 63.73(±12.46) 65.18(±11.63)
DNPL (Seo & Huh, 2021) 67.24(±12.7) 66.01(±13.08) 66.9(±12.54) 67.1(±11.98) 65.86(±12.45) 66.88(±11.77)
PGNA-PL 68.31(±12.55) 67.02(±12.69) 67.86(±12.11) 67.25(±11.73) 65.15(±12.39) 66.6(±11.43)
w/o PG 67.74(±12.69) 66.59(±12.89) 67.37(±12.5) 68.01(±12.32) 66.74(±12.65) 67.76(±11.82)
w/o NA 67.1(±12.8) 65.71(±13.15) 66.66(±12.42) 65.85(±12.46) 63.53(±13.39) 65.1(±12.26)

with a straightforward classification loss. PGNA-PL further improves the performance through its
novel prototype-guided and noise augmentation techniques.

In the sections below the horizontal lines of the three tables, we ablated two key optimization el-
ements: prototype guidance (w/o PG) and noise augmentation methods (w/o NA). We observed a
decrease in model performance across the majority of datasets and experimental configurations when
either of these modules was removed. When both modules were ablated simultaneously, the model
reverted to its baseline form, DNPL, thereby validating the effectiveness of the proposed enhance-
ments. However, an outlier was observed in Russell Distribution on the SEED-IV dataset, as detailed
in Table 2. Here, our approach did not significantly surpass DNPL, and performance actually im-
proved upon the removal of the PG module. The likely reason is that the Russell Distribution fails
to accurately reflect the true semantic and physiological relationships between specific emotions in
the SEED-IV dataset, leading to biased calculations of label similarity. During the self-distillation
process, these biases misdirect the learning trajectory of the classifier, resulting in decreased per-
formance. In contrast, Semantic Distribution methods such as GloVe vectors capture the semantic
relationships between emotions more accurately, thereby enhancing classification results.

Additionally, to validate the advantages of our method under fully supervised conditions, relevant
experiments are described in Appendix A.7. To verify our advantages over other encoders com-
monly used for EEG-based emotion recognition, we have provided comparative experiments with
the MLP encoder, as shown in the Appendix A.8. To demonstrate the effectiveness of the proposed
noise augmentation method, a comparison of the performance of PGNA-PL with related noise aug-
mentation methods and the original mixup approach is provided in the Appendix A.9.

3.2.2 CONFUSION MATRICES STUDIES

To further examine the differences in how the PGNA-PL model recognizes various emotions, we
analyzed the confusion matrices, as depicted in Figure 2. Subfigures (a), (b), and (c) represent
the performance across three datasets under Semantic Distribution, while subfigures (d), (e), and
(f) reflect performance under Russell Distribution. Across both distributions, the PGNA-PL model
demonstrated exceptional ability to recognize fear, notably achieving over 70% accuracy on the
SEED-V dataset, underscoring the high potential applicability in assisting in the recognition of fear-
related disorders.
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Table 3: Performance evaluation on the SEED-V dataset (%)

Semantic Distribution Russel Distribution
Method Accuracy Macro F1 Micro F1 Accuracy Macro F1 Micro F1
CR (Wu et al., 2022) 39.21(±12.42) 28.95(±12.84) 37.51(±10.95) 38.29(±12.39) 28.07(±12.72) 36.75(±10.59)
CAVL (Zhang et al., 2021) 44.17(±18.31) 34.66(±20.99) 42.47(±17.91) 38.56(±17.81) 31.41(±19.72) 40.26(±16.8)
PRODEN (Lv et al., 2020) 54.61(±15.98) 50.21(±16.25) 53.67(±15.31) 51.41(±16.22) 48.13(±16.06) 51.82(±14.92)
LW (Wen et al., 2021) 57.59(±16.39) 54.64(±16.7) 57.57(±15.26) 55.77(±17.48) 53.84(±17.31) 56.47(±16.03)
PiCO (Wang et al., 2022) 58.92(±15.73) 57.18(±15.29) 59.37(±14.31) 55.79(±16.51) 54.35(±15.68) 56.81(±14.65)
PaPi (Xia et al., 2023) 59.59(±14.92) 56.86(±14.81) 59.49(±13.54) 54.13(±15.44) 51.87(±15.03) 55.01(±13.87)
DNPL (Seo & Huh, 2021) 59.16(±16.19) 57.34(±15.96) 59.64(±14.96) 58.61(±16.22) 57.29(±16.05) 59.54(±15.0)
PGNA-PL 60.11(±16.42) 58.02(±16.32) 60.4(±15.24) 58.97(±16.15) 57.23(±16.26) 59.78(±14.9)
w/o PG 58.11(±16.28) 56.17(±16.15) 58.69(±15.15) 58.26(±16.29) 56.95(±15.99) 59.26(±14.88)
w/o NA 59.18(±16.31) 56.6(±16.47) 59.14(±15.49) 57.49(±16.85) 55.41(±16.91) 58.12(±15.56)

(a) Under Semantic Distribution on
the SEED dataset

(b) Under Semantic Distribution on
the SEED-IV dataset

(c) Under Semantic Distribution on
the SEED-V dataset

(d) Under Russel Distribution on
the SEED dataset

(e) Under Russel Distribution on
the SEED-IV dataset

(f) Under Russel Distribution on
the SEED-V dataset

Figure 2: Confusion matrix for PGNA-PL across SEED, SEED-IV, and SEED-V datasets under
Semantic Distribution and Russell Distribution.

A comparative analysis of the two distributions revealed that the recognition accuracy for sad was
significantly better under Semantic Distribution than under Russell Distribution. This improvement
can likely be attributed to the semantic-based candidate label generation method, which more accu-
rately captures the nuances of sad, in contrast to Russell’s distribution, where the proximity of sad
and happy is zero—unrealistically extreme. Therefore, we propose that Semantic Distribution offers
a more valid approach for evaluating scenarios with partial labels.

3.2.3 VISUALIZATION OF PROTOTYPE-GUIDED CAPABILITIES

Given that SEED-V is a dataset with five categories, including three distinct negative emotions, it
is well-suited for the visual evaluation of prototype-guided effects. To visually assess the guiding
capability of prototypes, we represent the similarities based on the cosine distances between emotion
label features generated from two distributions on the SEED-V dataset in subfigures (a) and (b) of
Figure 3, respectively. Furthermore, we employ Principal Component Analysis (PCA) (Maćkiewicz
& Ratajczak, 1993) to depict the similarity between different emotion category prototypes in two
scenarios, as illustrated in subfigures (c) and (d). The numbers on the line segments represent the
distances between emotion categories, with greater distances indicating lower similarity.

Initially, subfigures (c) and (d) reveal common patterns between the two distributions: the three
negative emotions—fear, sad, and disgust—are closely clustered, with fear and sad being the furthest
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(a) Inter-class similarity of Semantic Distribution (b) Inter-class similarity of Russell Distribution

(c) Prototype visualization of Semantic Distribution (d) Prototype visualization of Russell Distribution

Figure 3: Inter-class similarity and generated prototypes of two distributions on the SEED-V dataset.

apart, while disgust is approximately equidistant from the other two. However, distinct differences
are evident in the Semantic Distribution, as shown in subfigure (c), where compared to neutral, the
other four emotion-laden categories are closer together, reflecting stronger relationships between
categories with strong emotional expressions, which is characteristic of the Semantic Distribution’s
inter-emotional distances. Jiang et al. (2024) noted that EEG responses to positive and negative
emotions are more pronounced in the frontal and parietal lobes, while responses to neutral emotions
are less intense. This suggests that physiologically, the EEG responses to emotional states are more
closely aligned than those to neutral states, consistent with the similarity between emotions in the
Semantic Distribution. In contrast, in the Russell Distribution depicted in subfigure (d), neutral
is closer from other emotions, but happy and sad are significantly farther apart, aligning with the
setup of emotional similarities in subfigure (d). Overall, the prototypes effectively approximate
the hypothesized distances between emotion categories under different distributions, thus suitably
guiding classifiers in learning inter-class relationships and enhancing interpretability.

4 CONCLUSION

To address the challenges of PLL in EEG-based emotion recognition, we introduced a semantic-
based method for generating candidate labels. Leveraging the GloVe vectors, this approach enhances
the clarification of semantic relationships between different emotions, closely mirroring real-world
scenarios of partial labeling. We also developed the PGNA-PL model, specifically designed for EEG
emotion recognition. This model incorporates a self-distillation strategy, using prototypes to guide
the classifier’s disambiguation efforts by tapping into the inter-class distance recognition capabili-
ties. Moreover, we crafted a tailored noise augmentation technique to address the low signal-to-noise
ratio inherent in EEG data. Experiments on the SEED, SEED-IV, and SEED-V datasets, employing
two distinct candidate label generation methods, confirmed that our approach achieves SOTA results.
The confusion matrix suggests our method’s potential superiority in helping to identify fear-related
disorders.
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A APPENDIX

A.1 RELATED WORK

EEG-based emotion recognition is a promising field. With advancements in basic problems such
as feature extraction (Duan et al., 2013) and cross-subject emotion transfer (Wang et al., 2024a),
partial label scenarios in EEG emotion recognition have gained attention. Zhang & Etemad (2023)
compared classical PLL methods on the SEED-V dataset. However, how to simulate reasonable
candidate labels to evaluate different PLL models in emotion recognition scenarios, and how to
customize EEG emotion recognition models under PLL settings, remain areas worth exploring.
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Constructing partial-label datasets in real-world scenarios is challenging, as it requires both a train-
ing set with uncertain labels and a test set with fully certain labels (Cour et al., 2011). Current
methods (Wen et al., 2021; Wang et al., 2022) typically simulate candidate labels in the training set
by introducing known erroneous labels into standard datasets (e.g., using a uniform distribution to
assign candidate labels), but they neglect the correlations between labels. Zhang & Etemad (2023)
addressed this for emotion labels by using the Russell’s circumplex emotion model (Russell, 1980)
to compute relationships among emotions for generating candidate labels, yet their method did not
fully exploit semantic relationships between emotion categories.

PLL models, particularly identification-based strategies (IBS) (Lv et al., 2023) that optimize candi-
date labels during training, have been well explored in recent years (Lv et al., 2020; Wen et al., 2021;
Zhang et al., 2021; Wu et al., 2022; Wang et al., 2022; Xia et al., 2023). such as PiCO (Wang et al.,
2022) and PaPi (Xia et al., 2023), enhance model predictions by iteratively updating candidate labels
with the help of the prediction results of prototypes. DNPL (Seo & Huh, 2021), distinct from tradi-
tional IBS, dynamically adjusts both candidate and non-candidate label probabilities in response to
model predictions, enhancing learning accuracy and robustness without optimize candidate labels.
This approach helps DNPL avoid overfitting to incorrect labels, making it a unique method within
the PLL framework. However, further exploration of model enhancement techniques for EEG-based
emotion recognition, including self-distillation (Zhang et al., 2019) and noise augmentation (Wang
et al., 2024b), remains an evolving area of research.

Self-distillation leverages a single-step approach that focuses its training efforts directly on the stu-
dent model (Zhang et al., 2019), unlike traditional knowledge distillation (Hinton, 2015) which re-
quires a pre-trained teacher model to guide the student. For PLL in EEG-based emotion recognition,
Li et al. (2024a) replicate an identical model as the teacher, which, while effective, greatly increases
parameters. In contrast, we use a single prototype as the teacher, avoiding this overhead. Moreover,
although noise augmentation techniques have been explored to some extent in EEG-based emotion
recognition, such as the time steps shuffling method proposed by Wang et al. (2024b) to introduce
perturbations within the features of a time window, there is still no well-established approach for
applying noise augmentation to the fusion of individual EEG features.

A.2 INTRODUCTION TO RELEVANT CONCEPTS

A.2.1 DESCRIPTION OF GLOVE VECTORS (840B TOKENS, 2.2M VOCABULARY VERSION)

Global Vectors for Word Representation (GloVe) is a widely utilized resource in the field of natu-
ral language processing. It encodes words into numerical vectors using an unsupervised learning
algorithm that leverages global word-word co-occurrence statistics from a corpus.

The version used in this study is the largest available, encompassing data derived from 840 billion
tokens. It contains a vocabulary of 2.2 million unique, case-sensitive words and provides pre-trained
vectors of 300 dimensions for each word. The vectors capture not only the distributional semantics
of words but also subtle semantic relationships and patterns in the data. These vectors, totaling 2.03
GB, are instrumental in various applications, including but not limited to text analysis, affective
computing, and machine learning models that rely on robust word representations.

A.2.2 DESCRIPTION OF RUSSEL DISTRIBUTION

The real-world experimental framework referred to as the Russell Distribution in this paper, intro-
duces a novel candidate label generation technique in partial label learning tailored for emotion
recognition tasks. This method leverages Russell’s circumplex model, where emotions are mapped
on a circular layout according to arousal and valence. Each emotion is defined by its polar coordi-
nates—radius and angle.

To generate candidate labels, the method calculates these polar coordinates for each emotion. It then
uses them to determine a normalized similarity score between emotions based on the cosine of their
angular differences and their Euclidean distances on the wheel.

Instead of using a fixed probability for a class to become a candidate label, this approach dynamically
adjusts the probabilities based on the similarity scores. Emotions closer to the true label on the wheel
are more likely to be chosen as candidate labels.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

This method offers a more realistic way of generating candidate labels by acknowledging the natural
similarities between emotions, thus minimizing the risk of confusing similar emotions and enhanc-
ing the learning effectiveness.

A.3 MODEL ARCHITECTURE

As shown in Table 4, the encoder consists of four blocks: convolutional layer 1, convolutional layer
2, Transition, and the fully connected block, concatenated in the order described. The classifier is a
fully connected network that maps the features to the number of emotion classes, thereby outputting
the probability distribution for emotion recognition.

Table 4: Model architecture overview

Basic Module Block Layer Description/Hyperparameters

Encoder

Conv Layer 1
Conv1D In channels=1, Out channels=5, Kernel size=3, Stride=1
BatchNorm Normalize across 5 feature channels
LeakyReLU Activation with Negative slope=0.3

Conv Layer 2
Conv1D In channels=5, Out channels=10, Kernel size=3, Stride=1
BatchNorm Normalize across 10 feature channels
LeakyReLU Activation with Negative slope=0.3

Transition Flatten Flattens output for fully connected layers

Fully Connected Block
Linear In features=3060, Out features=64
ReLU Fully connected activation
Dropout Dropout with p=0.5

Classifier Final Fully Connected Layer Linear In features=64, Out features=number of emotions

A.4 DATASETS

SEED Dataset. The SEED dataset introduces three distinct emotions (positive, neutral, and nega-
tive), represented by 15 film clips. A total of 15 participants (7 males and 8 females) engaged in
the experiment, completing three trials for each emotion across three sessions, with the same stimuli
presented in each session. The primary goal of this dataset is to investigate emotional responses,
making it suitable for studies focused on binary or ternary emotion classification. The limited num-
ber of emotion categories and film clips allows for simpler yet effective emotion analysis. In this
work we use all three emotion categories for evaluation.

SEED-IV Dataset. The SEED-IV dataset introduces four distinct emotions (happy, sad, neutral,
and fear), represented by 72 film clips. This dataset includes 15 participants, each completing 24
trials (6 per emotion) across three sessions. SEED-IV allows for the exploration of a broader emo-
tional spectrum compared to the SEED dataset, providing a richer dataset for multi-class emotion
classification.

SEED-V Dataset. The SEED-V dataset introduces five distinct emotions (happy, neutral, sad, fear,
and disgust), represented by 45 short films. A total of 16 participants (10 females and 6 males)
took part in the experiment, each completing three trials for each emotion over three sessions, with
entirely new stimuli presented in each session. The addition of the disgust emotion extends the
emotional granularity of the dataset, making SEED-V particularly suitable for nuanced emotion
recognition tasks and enabling more complex models to classify a wider range of emotions.

For all datasets (SEED, SEED-IV, SEED-V), EEG recordings were collected using a 62-channel
ESI NeuroScan System. The EEG data were divided into non-overlapping 4-second segments for
analysis. Differential Entropy (DE) features were extracted from five EEG frequency bands: δ (1-4
Hz), θ (4-8 Hz), α (8-14 Hz), β (14-31 Hz), and γ (31-50 Hz). A total of 310 dimensions of DE
features were obtained for each segment across all channels. To prepare for model training, we
normalized the vector of each DE feature using the Min-Max normalization method (Patro, 2015),
applied across the entire dataset, to scale all feature values to fall between specified minimum and
maximum values, which in this text are 0 and 1. As shown in the formula below, where max(X) is
the maximum value and min(X) is the minimum value, and X ′ is the normalized data.

X ′ =
X −min(X)

max(X)−min(X)
(14)
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A.5 HYPERPARAMETER SETTINGS

To ensure fair alignment with baseline methods, we fixed the common hyperparameters across dif-
ferent models. Table 5 lists the common hyperparameters between models and the hyperparameters
specific to our model’s unique modules. We determined the optimal values of βp for various distri-
butions across different datasets through a grid search method. The values of βp were taken from the
range [0.5, 4], with an interval of 0.5 between points. The corresponding hyperparameters are also
listed in Table 5. All evaluations are performed over five independent runs with 5 different random
seeds, with results averaged. Experiments are executed on a single NVIDIA Tesla V100 GPU using
PyTorch.

Table 5: Hyperparameters description

Hyperparameters Category Hyperparameter Value

Common

Batch size 8
Number of epochs 30
Learning rate 0.01
Dimensionality (d) 64
Optimizer SGD
SGD momentum 0.9
SGD decay rate 0.0001

PGNA-PL

Prototype optimization (ξ) 0.99
Self-distillation temperature (τ ) 2
Balance parameter (α) 0.5
Controlled noise augmentation (σ) 0.8

βp for PGNA-PL

under Semantic Distribution on the SEED dataset 3
under Russel Distribution on the SEED dataset 3
under Semantic Distribution on the SEED-IV dataset 2
under Russel Distribution on the SEED-IV dataset 0.5
under Semantic Distribution on the SEED-V dataset 3.5
under Russel Distribution on the SEED-V dataset 3

A.6 BASELINES METHODS

We provide a detailed overview of classical IBS methods and the DNPL approach as follows:

A.6.1 IBS METHODS

• PRODEN (Lv et al., 2020): PROgressive iDENtification (PRODEN) updates the label sets
based on their compatibility with model predictions, iteratively refining this relationship.
By directly adjusting the labels in response to prediction accuracy, the method fosters model
convergence on the correct labels amid noisy or partial label information.

• LW (Wen et al., 2021): Leveraged Weighted (LW) loss introduces a novel approach in
partial label learning by incorporating a leverage parameter β, which allows for a strategic
balance between losses on candidate and non-candidate labels. LW loss not only provides a
method to adjust the influence of different types of labels dynamically, but it is also backed
by a theoretical framework that assures risk consistency under relatively weak assump-
tions. The theoretical foundations of LW loss offer guidance on the optimal choice of β,
enhancing the method’s effectiveness and adaptability in diverse learning environments.

• CAVL (Zhang et al., 2021): Class Activation Value Learning (CAVL) is a novel method
in partial-label learning that eschews the usual assumptions about data collection that can
limit the performance of traditional models. CAVL uses a technique called Class Acti-
vation Value (CAV), which adapts the principles of Class Activation Maps (CAM) from
image-based neural networks to be applicable across various input types and models. This
approach allows CAVL to identify the true label from a set of candidates by selecting the
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class with the highest CAV, thereby promoting accurate model training without relying on
predefined data assumptions.

• CR (Wu et al., 2022) : The method leverages a novel training framework combining super-
vised learning on non-candidate labels with consistency regularization on candidate labels,
addressing the challenge of PLL. By integrating consistency regularization, the method
aligns predictions across multiple augmented versions of the same instance to infer a re-
liable label distribution. This alignment ensures the model learns robust representations
while preserving consistency in predictions under different input perturbations. The in-
ferred label distribution is adaptively optimized using a closed-form solution, enabling an
efficient and effective approach to guide the model towards the true label distributions. This
framework enhances the learning process by utilizing non-candidate labels to refine model
predictions while maintaining stability and adaptability through regularization, distinguish-
ing it from traditional methods reliant on self-training or contrastive learning.

• PiCO (Wang et al., 2022): Partial label learning with COntrastive label disambiguation
(PiCO) leverages class prototypes to effectively address two fundamental challenges in
partial label learning (PLL): representation learning and label disambiguation. By using the
classification outcomes of prototypes, it refines the candidate labels through a prototype-
based disambiguation process, aligning the label prediction with the most likely true class.
To enhance representation learning, the method incorporates a contrastive learning module
that combines MoCo (He et al., 2020) and SupCon (Khosla et al., 2020) approaches. This
module promotes closely aligned representations for examples within the same class while
maintaining separation between different classes. The integration of these components into
a unified framework not only facilitates better disambiguation of ambiguous labels but also
boosts the encoder’s ability to generate high-quality representations. The method can be
rigorously explained from an expectation-maximization (EM) perspective, underscoring
the mutual reinforcement between representation learning and label disambiguation.

• PaPi (Xia et al., 2023): Partial-label learning with a guided Prototypical classifier (PaPi)
directly employs classifier results for disambiguation and aligns prototype classifications
with candidate label distributions using KL divergence, showcasing several notable charac-
teristics. By leveraging a shared feature encoder between a linear classifier and prototypical
representations, the approach effectively encourages the feature space to reflect the intrinsic
similarities between categories. This alignment enhances the model’s ability to distinguish
between candidate labels by explicitly guiding prototype optimization through the predic-
tive results of the classifier. Unlike methods relying on contrastive learning, which can
introduce noise and require significant computational resources, this approach avoids such
dependencies, providing a more streamlined and computationally efficient framework for
partial-label learning. By focusing on directly aligning prototype classifications with can-
didate label distributions, the method not only simplifies the disambiguation process but
also strengthens representation learning in ambiguous label scenarios.

A.6.2 THE DNPL METHOD

• DNPL (Seo & Huh, 2021): Deep Naive Partial label Learning (DNPL) revolutionizes
traditional PLL approaches by dynamically integrating both candidate and non-candidate
label probabilities into the model training process. Unlike standard PLL methods that rely
on static label disambiguation, DNPL leverages a sophisticated algorithm to dynamically
adjust the influence of each label based on its correlation with model predictions. This
method effectively minimizes overfitting to incorrect candidate labels, enhances the ro-
bustness of learning, and allows the model to better discern the true label within noisy or
ambiguous candidate sets.

A.7 EFFECTIVENESS UNDER FULL SUPERVISION

This paper introduces two modules, prototype-guided (PG) and noise augmentation (NA), designed
for learning inter-class relationships and enhancing the noise resistance of EEG classifiers, respec-
tively. These issues are extended to scenarios under full supervision, where authentic labels are used
as classification targets. To demonstrate the advantages of our proposed PGNA-PL method under
full supervision, we provide a comparative analysis in Table 6 of the performances between PGNA-
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PL under full supervision and the results obtained using only the backbone and classifier described
in this paper. Specifically, under full supervision, both PGNA-PL and the comparative method em-
ploy cross-entropy loss for the classification loss LCLS . In terms of hyperparameters, consistent
hyperparameters were applied across the experiments under the condition of Semantic Distribution.

Table 6: Comparison of performance metrics under full supervision on the SEED, SEED-IV, and
SEED-V datasets

Method SEED SEED-IV SEED-V

Accuracy Macro F1 Micro F1 Accuracy Macro F1 Micro F1 Accuracy Macro F1 Micro F1

Backbone (full
supervision)

78.05
(±12.68)

76.22
(±14.05)

77.63
(±12.91)

67.67
(±11.8)

66.37
(±12.08)

67.44
(±11.47)

59.29
(±15.49)

59.35
(±14.57)

60.06
(±14.39)

PGNA-PL (full
supervision)

80.11
(±12.02)

78.47
(±13.4)

79.7
(±12.25)

68.8
(±12.08)

67.49
(±12.29)

68.36
(±11.75)

61.02
(±16.14)

59.4
(±16.04)

61.62
(±14.77)

The data from Table 6 indicates that under full supervision conditions, PGNA-PL outperforms the
backbone across all three datasets. This suggests that the two proposed modules are generalizable
to the broader problem of EEG emotion recognition.

A.8 COMPARISON OF ENCODER REPLACEMENT WITH MLP

To further validate our method, we compared the effect of replacing the encoder with a commonly
used alternative multilayer perceptron (MLP) (Li et al., 2024a; Zhou et al., 2023; Li et al., 2018;
Chen et al., 2021; Li et al., 2021) against our method and the baselines. This encoder follows a
structure similar to that used by Li et al. (2024a), with input, hidden, and output dimensions of
310, 256, and 64 respectively, and employs the ReLU activation function. Our comparisons were
conducted on the SEED, SEED-IV, and SEED-V datasets, keeping most hyperparameters consistent
while performing a re-grid search for βp within the range of [0.5-4], as detailed in Table 7. The
evaluation metrics remained consistent with those used in our study. Results are detailed in Tables
8-10.

Table 7: Optimal βp across Different Datasets and Distributions

Dataset Semantic Distribution Russel Distribution
SEED 4 1
SEED-IV 1 1
SEED-V 2.5 4

Table 8: Performance evaluation using an MLP encoder on the SEED dataset (%)

Semantic Distribution Russel Distribution
Method Accuracy Macro F1 Micro F1 Accuracy Macro F1 Micro F1
CR (Wu et al., 2022) 52.57(±13.51) 45.45(±17.13) 53.03(±13.42) 52.83(±14.62) 45.26(±18.71) 53.04(±14.68)
CAVL (Zhang et al., 2021) 77.78(±12.84) 75.61(±14.72) 77.38(±13.07) 77.6(±12.89) 75.61(±14.64) 77.23(±13.08)
PRODEN (Lv et al., 2020) 78.26(±12.17) 75.94(±14.21) 77.82(±12.42) 75.97(±13.11) 73.41(±15.21) 75.46(±13.32)
LW (Wen et al., 2021) 77.84(±12.92) 75.54(±14.95) 77.4(±13.17) 77.89(±12.62) 75.58(±14.61) 77.43(±12.84)
PiCO (Wang et al., 2022) 78.6(±12.02) 76.41(±14.19) 78.22(±12.26) 77.97(±12.23) 75.83(±14.14) 77.54(±12.46)
PaPi (Xia et al., 2023) 75.85(±12.64) 73.08(±15.09) 75.38(±12.85) 72.18(±13.94) 68.48(±16.86) 71.54(±14.16)
DNPL (Seo & Huh, 2021) 77.21(±13.0) 74.87(±15.2) 76.77(±13.25) 77.42(±13.09) 75.27(±14.93) 77.0(±13.28)
PGNA-PL 77.92(±13.08) 75.85(±14.9) 77.54(±13.27) 78.35(±12.93) 75.96(±15.19) 77.85(±13.19)
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Table 9: Performance evaluation using an MLP encoder on the SEED-IV dataset (%)

Semantic Distribution Russel Distribution
Method Accuracy Macro F1 Micro F1 Accuracy Macro F1 Micro F1
CR (Wu et al., 2022) 45.34(±12.34) 36.83(±14.82) 44.18(±11.99) 46.92(±12.72) 37.8(±15.78) 45.57(±12.78)
CAVL (Zhang et al., 2021) 59.19(±16.92) 51.76(±21.26) 57.46(±17.1) 57.07(±17.84) 50.7(±22.23) 56.02(±17.93)
PRODEN (Lv et al., 2020) 69.48(±12.3) 67.76(±12.79) 68.84(±12.01) 68.23(±12.35) 66.77(±12.59) 67.75(±11.91)
LW (Wen et al., 2021) 69.31(±12.3) 67.92(±12.65) 68.92(±11.92) 69.31(±12.3) 68.26(±12.15) 69.04(±11.69)
PiCO (Wang et al., 2022) 69.23(±11.91) 67.65(±12.32) 68.79(±11.5) 68.26(±12.4) 67.03(±12.61) 67.91(±11.88)
PaPi (Xia et al., 2023) 67.89(±11.65) 66.08(±12.2) 67.39(±11.37) 65.28(±12.67) 63.64(±12.91) 64.8(±12.12)
DNPL (Seo & Huh, 2021) 66.99(±12.67) 65.65(±12.97) 66.54(±12.27) 67.11(±12.94) 65.77(±13.33) 66.66(±12.53)
PGNA-PL 69.63(±11.54) 68.54(±11.67) 69.31(±11.17) 69.61(±11.3) 68.5(±11.25) 69.26(±10.73)

Table 10: Performance evaluation using an MLP encoder on the SEED-V dataset (%)

Semantic Distribution Russel Distribution
Method Accuracy Macro F1 Micro F1 Accuracy Macro F1 Micro F1
CR (Wu et al., 2022) 37.67(±12.26) 26.56(±12.79) 35.85(±11.12) 36.87(±12.22) 26.23(±12.55) 35.42(±10.96)
CAVL (Zhang et al., 2021) 57.28(±16.45) 53.65(±17.63) 57.29(±15.87) 52.59(±16.73) 50.11(±17.2) 54.39(±14.86)
PRODEN (Lv et al., 2020) 61.09(±15.87) 59.43(±15.83) 61.84(±14.49) 57.54(±16.61) 55.64(±16.17) 58.94(±14.79)
LW (Wen et al., 2021) 61.9(±16.24) 60.42(±16.06) 62.86(±14.82) 60.06(±17.44) 58.45(±17.24) 61.28(±15.88)
PiCO (Wang et al., 2022) 61.04(±16.93) 59.5(±16.68) 61.88(±15.48) 58.65(±16.95) 57.58(±16.38) 60.1(±15.29)
PaPi (Xia et al., 2023) 58.78(±15.96) 56.68(±15.68) 59.4(±14.45) 54.72(±16.72) 52.63(±16.11) 55.97(±15.08)
DNPL (Seo & Huh, 2021) 60.05(±16.66) 58.78(±16.47) 61.35(±15.07) 60.13(±16.6) 58.81(±16.23) 61.36(±15.1)
PGNA-PL 62.38(±16.43) 60.82(±16.32) 63.22(±14.85) 60.28(±16.62) 58.72(±16.5) 61.4(±15.24)

As shown in Tables 8-10, our proposed PGNA-PL method achieves state-of-the-art (SOTA) results
across most datasets and various distributions, with only suboptimal performance on the SEED
dataset under the Semantic Distribution. Compared to the CNN encoder used in the main text
of this paper, the MLP encoder performs poorly on the SEED dataset but shows better results on
the other two datasets. Despite the varied performance of different encoders on different datasets,
our method consistently achieves SOTA in most experiments, demonstrating good generalizability
across different encoders.

A.9 COMPARISON WITH OTHER NOISE AUGMENTATION METHODS

We further compare the effects of our proposed noise augmentation method with other noise aug-
mentation methods. The experimental results on the three datasets are shown in Tables 11-13. Here,
“w/o NA” refers to the scenario without noise augmentation. Since the PGNA-PL constraint retains
at least 80% of the original features, similarly, “Add Gauss noise” involves adding Gaussian noise
with a standard deviation of 20%, and “Mask Features” randomly sets 20% of the features to zero.
The term “Mixup” refers to the mixup method (Zhang et al., 2018), a data augmentation technique
that, unlike our method, also interpolates partial labels. Across different datasets, when interpolating
various samples, it utilizes the same hyperparameters as our method, such as βp and σ in Equation
9-10, to ensure a fair comparison. Moreover, partial labels are interpolated in a manner similar to
that described in Equation 11.

Table 11: Comparing different noise augmentation methods on the SEED dataset

Method Semantic Distribution Russel Distribution
Accuracy Macro F1 Micro F1 Accuracy Macro F1 Micro F1

w/o NA 79.09(±12.52) 77.43(±13.9) 78.71(±12.73) 79.54(±12.6) 77.53(±14.27) 79.02(±12.84)
Add Gauss Noise (20%) 79.52(±11.93) 77.66(±13.6) 79.14(±12.18) 80.11(±12.01) 78.1(±13.83) 79.63(±12.29)
Mask 20% Features 77.41(±12.27) 75.4(±13.95) 77.01(±12.49) 78.4(±11.97) 76.21(±13.77) 77.9(±12.24)
Mixup 79.36(±12.01) 77.69(±13.44) 78.98(±12.25) 79.3(±12.45) 77.08(±14.48) 78.75(±12.75)
PGNA-PL 79.69(±11.86) 78.11(±13.11) 79.31(±12.07) 79.86(±12.3) 77.76(±14.24) 79.33(±12.6)
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Table 12: Comparing different noise augmentation methods on the SEED-IV dataset

Method Semantic Distribution Russel Distribution
Accuracy Macro F1 Micro F1 Accuracy Macro F1 Micro F1

w/o NA 67.1(±12.8) 65.71(±13.15) 66.66(±12.42) 65.85(±12.46) 63.53(±13.39) 65.1(±12.26)
Gauss Noise (20%) 64.22(±14.68) 62.09(±15.71) 63.52(±14.43) 63.68(±15.13) 60.73(±16.8) 62.91(±14.92)
Mask 20% Features 64.66(±12.26) 63.27(±12.45) 64.44(±11.77) 64.4(±12.2) 62.36(±12.96) 64.02(±11.9)
Mixup 68.29(±11.98) 66.95(±12.19) 67.82(±11.68) 66.92(±11.89) 64.77(±12.77) 66.32(±11.61)
PGNA-PL 68.31(±12.55) 67.02(±12.69) 67.86(±12.11) 67.25(±11.73) 65.15(±12.39) 66.6(±11.43)

Table 13: Comparing different noise augmentation methods on the SEED-V dataset

Method Semantic Distribution Russel Distribution
Accuracy Macro F1 Micro F1 Accuracy Macro F1 Micro F1

w/o NA 59.18(±16.31) 56.6(±16.47) 59.14(±15.49) 57.49(±16.85) 55.41(±16.91) 58.12(±15.56)
Gauss Noise (20%) 57.36(±17.94) 55.39(±17.24) 57.85(±16.34) 56.21(±17.27) 54.34(±16.96) 56.99(±16.0)
Mask 20% Features 56.41(±17.94) 54.24(±17.15) 56.98(±16.44) 54.69(±17.25) 52.94(±16.63) 55.5(±15.87)
Mixup 59.58(±17.09) 57.39(±16.93) 59.93(±15.81) 59.46(±16.57) 57.92(±16.78) 60.38(±15.33)
PGNA-PL 60.11(±16.42) 58.02(±16.32) 60.4(±15.24) 58.97(±16.15) 57.23(±16.26) 59.78(±14.9)

As can be seen from the table, in the vast majority of cases, our PGNA-PL method performs op-
timally. The effects of Gaussian noise are lower than those without noise addition, presumably
because they deviate from the noise distribution of EEG signals. The Mask Features method re-
sults in feature loss, thus also leading to decreased performance. In contrast, our controllable noise
injection method provides a noise distribution similar to that of EEG signals, thus improving perfor-
mance under both Semantic and Russell distributions. The Mixup method achieved results close to
ours because it also applied controllable noise techniques proposed by us. However, in most cases,
PGNA-PL performs better, presumably because the interpolation of partial labels by the Mixup
method increases their confusion.
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