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Abstract

Recent works have shown that tackling offline re-
inforcement learning (RL) with a conditional pol-
icy produces promising results. Decision Trans-
formers (DT) have shown promising results in
offline reinforcement learning by leveraging se-
quence modeling. However, standard DT meth-
ods rely on return-to-go (RTG) tokens, which
are heuristically defined and often suboptimal for
goal-conditioned tasks. In this work, we intro-
duce Quasimetric Decision Transformer (QuaD),
a novel approach that replaces RTG with learned
quasimetric distances, providing a more struc-
tured and theoretically grounded guidance signal
for long-horizon decision-making. We explore
two quasimetric formulations: interval quasimet-
ric embeddings (IQE) and metric residual net-
works (MRN), and integrate them into DTs. Ex-
tensive evaluations on the AntMaze benchmark
demonstrate that QuaD outperforms standard De-
cision Transformers, achieving state-of-the-art
success rates and improved generalization to un-
seen goals. Our results suggest that quasimet-
ric guidance is a viable alternative to RTG,
opening new directions for learning structured
distance representations in offline RL.

1. Introduction

Reinforcement Learning (RL) has seen significant progress
in offline settings, where agents learn from static datasets
without online interactions (Levine et al., 2020). Recently,
sequence-based methods such as Decision Transformers
(DT) (Chen et al., 2021) have emerged as strong alternatives
to traditional RL approaches, formulating trajectory opti-
mization as an autoregressive sequence prediction task. DTs
utilize return-to-go (RTG) tokens to condition the agent on
desired future rewards, enabling effective offline learning.
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However, RTG values are manually specified and often
fail to provide structured guidance, particularly in goal-
conditioned tasks, where reaching a designated state is the
primary objective. This limitation motivates our study: Can
we replace RTG with a learned distance metric that
better aligns with goal-reaching behavior?

To address this question, we propose Quasimetric Decision
Transformer (QuaD), an enhancement to DT that incorpo-
rates quasimetric distances as an alternative to RTG. In-
spired by metric learning in representation learning (Schroff
et al., 2015), we train quasimetric models to estimate asym-
metric distances between states, capturing meaningful struc-
tural relationships in the state space. Specifically, we ex-
plore two quasimetric formulations:Interval Quasimetric
Embeddings (IQE) — Learning a structured embedding space
where distances represent goal-reaching difficulty and Met-
ric Residual Networks (MRN) — Refining learned distances
through residual connections to improve accuracy and sta-
bility.

Our experiments on the AntMaze benchmark demonstrate
that QuaD significantly improves success rates and general-
ization capabilities compared to standard DTs. We conduct
ablation studies to analyze the impact of different quasi-
metric formulations and discuss the broader implications of
structured distance learning in offline RL.

In summary, our work introduces a novel approach that re-
moves heuristic RTG dependencies and replaces them with
a theoretically grounded quasimetric formulation, opening
new directions for goal-conditioned RL and sequence-based
decision-making.

2. Related Work

Our work builds on previous work in learning temporal
distances, concepts from goal-conditioned RL and sequen-
tial modeling for reinforcement learning. Our analysis will
draw a connection between these prior methods, a connec-
tion which will ultimately result in a new guiding metric for
decision transformer for goal-conditioned environments.
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2.1. Goal Conditioned Reinforcement Learning

Goal-conditioned reinforcement learning (GCRL) provides
a flexible framework for training policies to achieve diverse
outcomes by conditioning on explicit goal states. Unlike
traditional reinforcement learning (RL), which optimizes for
cumulative rewards, GCRL shifts the focus toward reaching
specific states in the environment, making it particularly
useful for tasks where defining a dense reward function
is challenging or infeasible. A key challenge in GCRL is
learning effective goal-conditioned value functions. Several
approaches leverage hindsight relabeling (Andrychowicz
et al., 2017), contrastive learning (Eysenbach et al., 2022),
and state-occupancy matching to improve generalization and
robustness. However, many of these methods rely on boot-
strapping with a learned value function, which can introduce
instability and inefficiencies, particularly in long-horizon
tasks with sparse rewards (Ghugare et al., 2024). To mitigate
the challenges of long-horizon planning, hierarchical RL
(HRL) (Pateria et al., 2021) and subgoal planning (Chane-
Sane et al., 2021) have been explored as extensions to GCRL.
HRL methods decompose tasks into subgoals and learn poli-
cies that operate at multiple temporal resolutions, improving
sample efficiency and task scalability.

2.2. Transformers for Reinforcement Learning

Transformers have shown remarkable generalization capa-
bilities in fields such as language modeling, image gener-
ation, and representation learning (Vaswani et al., 2017;
Devlin et al., 2019; He et al., 2022). Within offline RL,
transformer-based policies treat RL tasks as sequential pre-
diction problems. Decision Transformer (Chen et al., 2021)
models trajectories as sequences and autoregressively pre-
dicts actions conditioned on return-to-go, past states, and
actions. The Trajectory Transformer (Janner et al., 2021)
demonstrates transformer-based learning for single-task of-
fline policies. Multi-game Decision Transformer (Lee et al.,
2022) and Gato (Reed et al., 2022) extend transformer-based
policies to multi-task and cross-domain applications. How-
ever, these approaches distill expert policies rather than
enabling self-improvement. When data are suboptimal or
adaptation to new tasks is required, multi-game DTs must
fine-tune parameters, and Gato must rely on expert demon-
strations. If the model generalizes effectively to out-of-
distribution return-to-go values, it can generate superior
policies by prompting higher returns. However, achieving
this level of generalization remains an open challenge in se-
quential decision-making. DT struggles with robustness to
data distribution shifts, particularly when trained on trajec-
tories generated by suboptimal policies. Research indicates
that DT underperforms in tasks requiring trajectory stitch-
ing—integrating suboptimal trajectory segments to create
improved policies(Fujimoto & Gu, 2021a; Emmons et al.,
2022; Kostrikov et al., 2022). This confirms that naive

return-to-go prompts are insufficient for solving complex
sequential decision-making problems.

2.3. Metric Learning in RL and State Abstractions for
Decision Making

A fundamental challenge in reinforcement learning (RL) is
learning representations that capture meaningful distances
between states. Successor representations and successor fea-
tures (Dayan, 1993; Barreto et al., 2017) offer one approach
by using temporal difference learning to predict states vis-
ited in the future. While these methods bear similarity to
Q-learning (Watkins & Dayan, 1992) in tabular settings,
they struggle with continuous states and actions (Janner
etal., 2021; Touati & Ollivier, 2021). To address this, recent
work (Eysenbach et al., 2022; Touati & Ollivier, 2021)has
proposed learning representations where inner products cor-
respond to visitation probabilities. The notion of state-
space geometry plays a key role in RL. Prior work has
explored quasimetrics for multi-task planning (Micheli et al.,
2020) and parametrizing Q-functions with improved goal-
reaching performance in DDPG (Lillicrap et al., 2016) and
HER (Andrychowicz et al., 2017)). Other approaches define
distances based on optimal value functions, the Wasserstein-
1 distance (Durugkar et al., 2021), or bisimulation met-
rics (Hansen-Estruch et al., 2022; Ferns et al., 2011). A key
advantage of quasimetrics is their ability to capture transi-
tion difficulty between states while satisfying the triangle
inequality. Unlike prior work, we construct a quasimet-
ric that can be easily learned from discounted state occu-
pancy measures, providing a principled way to model goal-
conditioned value functions without assuming symmetry or
other restrictive properties. By leveraging state abstraction
techniques and quasimetric learning, our approach enables
improved long-horizon generalization and more effective
goal-reaching policies.

3. Preliminaries

In this section, we introduce notation and preliminary
definitions for goal-conditioned RL, the Decision Trans-
former (Chen et al., 2021) method and the notion of quasi-
metrics (Wang & Isola, 2022a;b; Liu et al., 2023) which will
serve as the foundation for this work.

3.1. Problem Setting

The offline goal-conditioned reinforcement learning
(GCRL) problem is defined by a controlled Markov pro-
cess M = (S, A, u, p)—that is, a Markov decision process
(MDP) without rewards—along with an unlabeled dataset
D. Here, S denotes the state space, A represents the ac-
tion space, p(s) € A(S) is the initial state distribution, and
p(s' | s,a): SxA — A(S) describes the transition dynam-
ics. The notation A(X) refers to the space of probability



Quasimetric Decision Transformer

distributions over a set X. The dataset D = {7(") N
consists of N unlabeled trajectories:
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The objective of offline GCRL is to learn a goal-conditioned
policy m(a | s,9) : S x S — A(A) that enables an agent
to reach any target state ¢ € S from any initial state in
the minimum number of time steps. This is achieved by
maximizing the expected return:

T
Erp(rlg) [Z 7t5g(8t)] ,
t=0

where T' € N is the episode horizon, v € (0,1) is the
discount factor, and p(7 | g) is the trajectory distribution
induced by:

ey

T-1

p(7 | 9) = n(so) H m(ae | 56, 9)p(see1 | se,ar).
t=0

Here, §, (s) represents the Dirac delta function, which in a
discrete MDP corresponds to the indicator function 14 (s).
In continuous MDPs, a precise definition requires measure-
theoretic notation or distribution theory, but we omit these
details for simplicity.

For any goal g € S, we frame goal-reaching as an inference
problem (Borsa et al., 2019; Barreto et al., 2022; Blier et al.,
2021; Eysenbach et al., 2022): given the current state and
desired goal, what is the most likely action to bring the agent
closer to that goal? This corresponds to solving the MDP
My, which extends M with a goal-conditioned reward
function:

rg(s) = (1= 7)d4(s). @)
Thus, a goal-conditioned policy 7(a | s, g) receives both

the current state and goal as inputs, effectively transforming
M into a goal-conditioned MDP, denoted as M.

3.2. Revisiting Decision Transformers

Decision Transformer (DT) (Chen et al., 2021) is an influ-
ential method that bridges sequence modeling with decision-
making by adapting the transformer architecture (Vaswani
et al., 2017) to reinforcement learning. Unlike traditional re-
inforcement learning (RL) algorithms that rely on dynamic
programming or policy gradient methods, DT directly learns
an autoregressive model from trajectory data using a causal
transformer (Radford et al., 2019). This allows DT to
leverage powerful pre-trained architectures developed for
language and vision tasks (Brown et al., 2020; Chowdh-
ery et al., 2023). DT modifies initial trajectories from the
dataset and represents them as :

3)

T = (R17817a17R2, S$2,09, . . .,RT7ST,GT),

where R, = Z;it r; is the return-to-go (RTG) from time
step t onward. The DT policy is parameterized as:

“

FDT(at|3t,Rt,7't);

where 7 = (Ro, S0, a0, - -, Rt—1,5t—1,a:—1) is the sub-
trajectory history before time step ¢. Training is performed
autoregressively, where the model predicts actions condi-
tioned on the previous state, RTG, and trajectory history.
At test time, DT initializes with a desired return-to-go Ry
and an initial state sg. The generated action is executed,
the return is decremented by the achieved reward, and the
process continues until termination. The authors of (Chen
et al., 2021) argue that the conditional prediction model is
able to perform policy optimization without using dynamic
programming. However, recent works observe that DT often
shows inferior performance compared to dynamic program-
ming based offline RL algorithms when the offline dataset
consists of sub-optimal trajectories (Fujimoto & Gu, 2021a;
Emmons et al., 2022; Kostrikov et al., 2022).

3.3. Learning the Quasimetric Distance Function

Within any Markov decision process (MDP), there is an
intuitive notion of “distance” between states as the difficulty
of transitioning between them. There are many seemingly
reasonable definitions for distance a priori: likelihood of
reaching the goal at a particular time, expected time to reach
the goal, likelihood of ever reaching the goal, etc. (under
some policy). The key mathematical structure for a distance
to be useful for reaching goals is that it must satisfy the
triangle inequality d(a, ¢) < d(a,b) + d(b, ¢): being able to
go from a — b and from b — ¢ means going from a — ¢
can be no harder than both of the aforementioned steps.
Such a distance is called a metric over the state space if it
is symmetric and more generally a quasimetric (Wang &
Isola, 2022b;a; Liu et al., 2023).

Definition 3.1. We define a distance functiond : S x S —
R that satisfies nonnegativity and identity properties. The
set of all such distance functions is given by:

DE{d:SxS—R|d(s,s)=0,d(s,s)>0

forall s #s € S} (5)

A distance function satisfying the triangle inequality is
called a quasimetric, and the set of all quasimetrics is:

Q= {deD|d(s,g) <d(s,w)+d(w,g)

forall s, g,w € S}. 6)

While prior work on bisimulations (Hansen-Estruch et al.,
2022) use a reward function to construct such a distance,



Quasimetric Decision Transformer

x/aD @t?ﬂ (aess)

' i ==

e o o Causal Transformer e o o

T 1 T T 1 T
o) an) (4] m) A (4] () @) )
N ~—
! ! I

Quasimetric Network Quasimetric Network Quasimetric Network

t i t i t t

o

R0 ORO. RO,

Figure 1. Architecture of the Quasimetric Decision Transformer (QuaD). The model replaces return-to-go (RTG) with a learned
quasimetric function d(s¢, g), which provides structured goal-aware guidance. The Quasimetric Network computes d; given the current
state s; and the goal g, producing a distance embedding. These embeddings, along with state-goal embeddings sg; and past actions a;,
are tokenized and processed by a causal transformer, which autoregressively predicts actions a:+1. The quasimetric function enables
better trajectory modeling and generalization in goal-conditioned RL tasks.

we aim will to leverage a notion of distance that does not A QuaD trajectory is represented as:

require a reward function. For the correct choice of distance,

learning a goal-conditioned value function will correspond 1a = (51,a1,d(s1,9), 2, a2,d(52,9),...,57), (1)
to selecting a distance metric that best enables goal reaching.
Such a distance can then be learned with an architecture
that directly enforces metric properties, e.g., metric residual
network (MRN)(Liu et al., 2023), interval quasimetric em-  The core idea behind QuaD is that d(s, g) acts as a struc-
beddings (IQE), etc. (Wang & Isola, 2022b;a). Since the tured guidance signal, allowing the transformer model to
space of value (quasi)metrics imposes a strong induction (1) learn more effective trajectory stitching by minimizing
bias over value functions, using the right metric architecture (8, 9) at each step, (2) Generalize to new goals based on
can enable better combinatorial and temporal generalization ~ quasimetric-based similarity in state space.

without requiring additional samples. Unlike a standard

metric, a quasimetric does not necessarily satisfy symmetry,  4.1. Quasimetric Models in Goal-Conditioned MDPs
ie., d(z,y) # d(y,x) in general (Wang & Isola, 2022a).
This asymmetry is particularly useful for modeling goal-
conditioned environments where reaching a state g from s
may not have the same difficulty as returning from g to s.

where d(s;, g) replaces the return-to-go R;.

A quasimetric model dgy usually consists of (1) a deep en-
coder mapping inputs in X to a generic latent space R? and
(2) a differentiable latent quasimetric head djatent € (Rd)
that computes the quasimetric distance for two input la-
tents. € contains both the parameters of the encoder and
4. Quasimetric Guided Decision Transformer parameters of the latent head djatent, if any. Recent works
have proposed many choices of d|,tent, Which have different
properties and performances. We refer interested readers
to (Wang & Isola, 2022b) for an in-depth treatment of such
models. The quasimetric model dy is optimized as follows:

The Quasimetric Decision Transformer (QuaD) replaces
RTG with a learned quasimetric function d(s, g), which
explicitly models the difficulty of reaching a goal state g
from a given state s. This quasimetric satisfies the properties
discussed in Section 3.3 and provides a structured distance
measure for goal-reaching tasks.

max Es~psae [dg (s, g)] 8)

9~ Pgoal

SUb‘]eCt to E(Saavs,vr)’\‘ptransition [relu(d9(87 S/) + T')Q] S 62’



Quasimetric Decision Transformer

where ¢ > 0 is small, and relu(x) prevents dy(s, s”) from
exceeding the transition cost —r > 0. After optimization,
we take dg as our estimate of the difficulty of reaching a
goal state g from a given state s.

4.1.1. TRAINING QUAD WITH QUASIMETRIC DISTANCE

The QuaD training objective follows the standard Decision
Transformer loss function but conditions on the quasimetric
distance d(s, g):

T
LQuaD = ZETND [_ IOgP(at ‘ Td)] . (9)

t=1
, where 74 = s1,a1,d(s1,9),---,8¢,d(st,g)). Using

mean-squared-error loss alone in Decision Transformer
(DT) can lead to suboptimal policy learning, as it directly
minimizes the difference between predicted and observed ac-
tions without considering long-term rewards. This approach
lacks a mechanism to distinguish high-value actions from
suboptimal ones, limiting performance in offline RL settings.
To address this, we integrate Deep Deterministic Policy Gra-
dient with Behavior Cloning (DDPG+BC) (Lillicrap et al.,
2016) alongside MSE loss, combining Q-function optimiza-
tion with policy regularization. DDPG provides value-based
updates, ensuring the policy prioritizes high-reward actions,
while BC prevents excessive deviation from the dataset,
improving stability. The additional MSE loss refines ac-
tion consistency, keeping predictions aligned with observed
behaviors while benefiting from value-driven learning. Fur-
thermore, instead of treating goals and states as separate
tokens as done by DT, we enhance trajectory tokenization
by concatenating the goals with state together and then to-
kenize the vector, improving context understanding. This
integrated approach results in better stability, improved ac-
tion selection, and more effective offline RL training

The quasimetric function d(s, g) is learned separately as a
neural network fy(s, g) trained to satisfy the quasimetric
properties:

d(s,g) = min E,

T
Zc 56,9 |50—s] , (10
=0

where c(s;, g) is a cost function associated with reaching g
from s;. Training fy ensures that the quasimetric structure
is learned efficiently and provides meaningful goal-directed
guidance.

Algorithm 1 Training QuaD with Quasimetric-Guided Loss

Require: Offline dataset D = {(s, a,r, ')}, trained quasi-
metric model dy, goal distribution pye.i, loss balance
A
Ensure: Trained transformer policy 74(a: | 74)
1: Initialize transformer policy g with parameters ¢
2: for each training iteration do
3:  Sample trajectory T = {(s¢,ar)}7_, from D

4: Sample a goal g ~ Pgoal
5: Compute quasimetric distances: d; = d(s¢, g)
6: Construct input sequence:
Td = (81, ai, dl, ceey ST)
7: Predict actions G, ~ mg(- | 74)

8: Compute MSE loss:

T
Luse = Y llar — ar])?
t=1

9: Estimate Q-value using quasimetric:
Q(s¢) = —d(s¢, 9)
10: Total Loss:
T
Lol = Z A (=Q(s¢)) + (1 = A) - Luse]
t=1
11: Update ¢ using gradient descent to minimize Lo

5. Experiments

Our experiments will use three offline goal-conditioned
tasks, aiming to answer the following questions:

1. Quasimetric Guidance vs. Return-to-Go (RTG):
How does replacing RTG conditioning with quasimet-
ric distances affect trajectory optimization and goal-
reaching performance?

2. Effectiveness of Different Quasimetric Models:
Which quasimetric model—Interval Quasimetric
Embedding (IQE) or Metric Residual Network
(MRN)—provides better generalization and planning
capabilities?

3. Impact of Loss Functions: How do different loss
functions (Advantage-Weighted Regression (AWR) vs.
DDPG+BC) influence quasimetric learning and goal-
reaching success?
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Figure 2. Dr4l AntMaze environments - Umaze, Medium & Large

5.1. Experimental Setup

We first describe our evaluation environments, shown in
Fig.2. We evaluate QuaD in D4RL AntMaze (Fu et al.,
2020), a suite of six goal-conditioned navigation tasks fea-
turing an 8-DoF Ant robot navigating from a starting po-
sition to a goal location. These tasks require long-horizon
planning and trajectory stitching, making them well-suited
for evaluating quasimetric-based decision transformers. The
six tasks include:

* AntMaze-Umaze (Play & Diverse) - Easy difficulty maze
tasks

* AntMaze-Medium (Play & Diverse) — Moderate difficulty
maze tasks.

* AntMaze-Large (Play & Diverse) — Complex navigation
requiring global planning.

We compare QuaD against state-of-the-art goal-conditioned
RL and sequence modeling baselines. For behavior cloning
baselines, we select Behavioral Cloning (BC) — Supervised
learning on offline datasets and 10%BC — A low-data variant
using only 10% of demonstrations. For offline RL baseline,
we select TD3+BC — a model-free RL with conservative
Q-learning, OneStepRL — A single-step RL approach for
offline data efficiency. Lastly, for sequence modeling base-
lines, we select Decision Transformer (DT) — Transformer-
based RL conditioned on RTG and Q-Learning Decision
Transformer (QuaD) — A variant using Q-value guidance.
In our experiments, we use 5 random seeds and represent
95% confidence intervals with shaded regions (in figures)
or standard deviations (in tables), unless otherwise stated.
We provide full details of environments and baselines in
Appendix.

5.2. Main Results on AntMaze Environments

Table 1 summarizes the success rates (%) and standard
errors across multiple seeds, comparing our approach
against various state-of-the-art offline RL methods, includ-
ing TD3+BC (Fujimoto & Gu, 2021b), OneStep RL (Brand-
fonbrener et al., 2021), BC (Behavior Cloning), and Deci-
sion Transformer (DT) (Chen et al., 2021). The transformer-
based methods (right side of the vertical line) are particu-
larly relevant for comparing our approach, as they employ

sequence modeling techniques.

Overall Performance Trends. Our methods, QuaD (IQE)
and QuaD (MRN), significantly outperform Decision Trans-
former (DT) and QLDT in all environments, particularly
in more complex mazes. While DT struggles to achieve
meaningful success rates, our approach demonstrates robust
performance even in difficult settings. Notably, on the easier
umaze environments, QuaD (IQE) achieves a success rate
of 91.0%, far surpassing DT (53.6%) and QLDT (67.2%).
Similarly, in umaze-diverse, both IQE and MRN models
reach 91.4%, outperforming all baselines.

Performance in Medium and Large Mazes. In more
challenging medium and large mazes, our method signif-
icantly improves over prior approaches. Notably, in the
medium-play setting, DT and QLDT both fail to achieve
meaningful success rates, whereas our QuaD (IQE) and
QuaD (MRN) models achieve 59.4% and 60.8% suc-
cess rates, respectively, demonstrating the advantage of
quasimetric-based distance guidance. Similarly, in medium-
diverse, both of our models maintain a high success rate
around 60%, while all prior transformer-based methods fail
to solve the task.

Challenging Large Maze Tasks. The large-scale
AntMaze tasks remain among the most challenging bench-
marks in offline RL. While all prior transformer-based meth-
ods fail completely (DT and QLDT achieve 0% success), our
models significantly outperform previous baselines, achiev-
ing 33.2% (IQE) and 32.0% (MRN) on large-play, and
31.2% (IQE) and 30.4% (MRN) on large-diverse. This
demonstrates that our quasimetric distance-based approach
enables effective long-horizon goal reaching, even in highly
sparse-reward settings.

Comparison with Traditional Offline RL. Traditional
offline RL methods such as TD3+BC, OneStep RL, and BC
fail to generalize effectively across AntMaze tasks. While
TD3+BC achieves some success on umaze and umaze-
diverse, its performance drops significantly in medium
and large environments, where goal-conditioned trajectory
stitching is required. Our method, on the other hand, main-
tains strong performance across all difficulty levels, high-
lighting its advantage in long-horizon tasks requiring strate-
gic planning.

Overall, QuaD (IQE) and QuaD (MRN) consistently out-
perform DT, QLDT, and other prior methods across all
AntMaze tasks. The results validate our hypothesis that re-
placing RTG with quasimetric guidance enables better goal-
directed decision-making in sequence-based RL. Moreover,
IQE slightly outperforms MRN in most settings, suggest-
ing that interval-based quasimetric embeddings provide a
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Environment | TD3+BC OneStepRL BC GCBC GC-IQL DT QLDT QuaD(IQE) QuaD(MRN)
An-U-v2 78.6 64.3 546 673 +1010 635+146 | 53.6 £73 67.2+23  91.0 £3.16 89.2 +3382
An-UD-v2 71.4 60.7 456 719 +162 709 +112 | 422 +54 621 +16 91.4 +358 91.4 £323
An-MP-v2 10.6 0.3 0 20.2 +91  50.7 188 0.0 0.0 59.4 +3.66 60.8 +3.24
An-MD-v2 3.0 0.0 0 23.1 +156 56.5 +144 0.0 0.0 60.6 +2.87 57.8 +32
An-LP-v2 0.2 0.0 0 144 +97 21.6 +152 0.0 0.0 33.2 +3.80 32.0 £ 1.79
An-LD-v2 0.0 0.0 0 20.7 +97  29.8 + 124 0.0 0.0 31.2 +207 30.4 +336

Table 1. Offline RL benchmarks: We use the AntMaze suite (Fu et al., 2020) of goal-conditioned RL tasks to compare our method
to prior methods, measuring the success rate and standard error across multiple seeds. The methods on the right of the vertical line
are transformer-based methods, the top scores among which are highlighted in bold. To save space, the name of the environments and
datasets are abbreviated as follows: for the environments An=Ant; for the datasets U=umaze, UD=umaze-diverse, MP=medium-play,
MD=medium-diverse, LP=large-play, LD-large-diverse. The proposed solution performs well.

stronger representation for long-horizon trajectory modeling.
These findings establish QuaD as a powerful alternative to
traditional RTG-based Decision Transformers, particularly
in goal-conditioned RL.

5.3. Ablation Studies

To better understand the performance and generalization
capabilities of Quasimetric Decision Transformer (QuaD),
we conduct a series of ablation studies focusing on key
design choices: the effectiveness of different quasimetric
learning models and the impact of loss functions on training
stability and goal-reaching success.

5.3.1. EFFECTIVENESS OF DIFFERENT QUASIMETRIC
METHODS

A fundamental component of QuaD is the choice of quasi-
metric function, which serves as a structured guidance signal
in place of return-to-go (RTG). We evaluate the two primary
quasimetric formulations introduced in this work:

¢ Interval Quasimetric Embeddings (IQE) — IQE learns
an interval-based quasimetric representation by sorting
embedded state-goal representations into discrete inter-
vals and aggregating them using mean and max pool-
ing. This approach enforces implicit ordering constraints,
making it robust to trajectory perturbations.

* Metric Residual Networks (MRN) — MRN computes
a residual correction over a base Euclidean distance, in-
corporating an additional asymmetric L-infinity term to
better capture directed transition dynamics.

Comparison Results: We evaluate both quasimetric models
across all six AntMaze tasks, reporting success rates in
Tables 2 and 3. Our key findings are:

1. IQE vs. MRN: General Performance Trends. IQE
consistently outperforms MRN in most environments,
particularly in structured mazes. In AntMaze-Umaze,
IQE achieves a success rate of 91.0% (DDPG+BC)
and 93.2% (AWR), whereas MRN lags slightly be-

hind at 89.2% (DDPG+BC) and 92.4% (AWR). This
suggests that IQE’s structured interval-based represen-
tation is highly effective in environments where local
trajectory stitching is sufficient for goal-reaching.

2. Impact of Quasimetric Choice in Medium-Scale
Planning. In AntMaze-Medium-Play and Medium-
Diverse, MRN performs comparably to IQE, with a
slight advantage for MRN in Medium-Play (60.8 %
(MRN) vs. 59.4% (IQE), DDPG+BC), but an edge
for IQE in Medium-Diverse (61.0% (IQE) vs. 57.8%
(MRN), AWR). This indicates that MRN’s additional
residual correction aids in handling longer-horizon de-
pendencies, though IQE remains competitive.

3. Long-Horizon Performance in Large Mazes. In the
most difficult environments (AntMaze-Large-Play and
Large-Diverse), both methods see a performance drop
due to the extreme sparsity of rewards and complexity
of planning. IQE and MRN yield similar success rates,
with IQE slightly outperforming MRN in Large-Play
(33.2% vs. 32.0%, DDPG+BC), but both converg-
ing to 31.2% success in Large-Diverse. This suggests
that neither method generalizes well in extremely long-
horizon settings, indicating a potential limitation in
quasimetric extrapolation.

IQE provides superior trajectory stitching capabilities in
small- and medium-scale environments, whereas MRN’s
residual-based approach enhances stability in longer-
horizon tasks. However, in complex large-scale mazes, both
methods reach similar performance ceilings, highlighting
the need for further research into quasimetric learning for
extreme long-horizon goal-reaching.

5.3.2. IMPACT OF DIFFERENT LOSS FUNCTIONS

Beyond the choice of quasimetric function, the selection of
an appropriate loss function plays a crucial role in determin-
ing the quality of learned quasimetric representations and
the robustness of trajectory conditioning. We analyze the
effect of the following loss formulations:
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Figure 3. Learning curves of QuaD on antmaze-Umaze-v2 envi-
ronment with different quasimetric functions (IQE on left, MRN
on the right)
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Figure 4. Learning curves of QuaD on antmaze-medium-play-v2
environment with different quasimetric functions (IQE on left,
MRN on the right)

¢ Advantage-Weighted Regression (AWR) — This loss
function reweights the behavioral cloning loss using an
exponential advantage factor, which is derived from the
quasimetric distance function. Higher advantages result
in a greater probability of action selection, biasing the pol-
icy toward trajectories with lower quasimetric distances.

* DDPG+BC Loss — A hybrid offline RL loss that com-
bines Q-learning (DDPG) and policy regularization (BC),
encouraging quasimetric distance learning while prevent-
ing overestimation of value function errors. This loss is
particularly effective for long-horizon planning tasks.

Loss Function Comparison: We evaluate QuaD under
each loss function and summarize performance trends based
on the success rates in Tables 2 and 3.

1. AWR excels in small, structured environments. -
In AntMaze-Umaze, IQE with AWR achieves a suc-
cess rate of 93.2%, slightly outperforming DDPG+BC
at 91.0%. - Similarly, in AntMaze-Umaze-Diverse,
AWR-based IQE reaches 89.9%, whereas DDPG+BC
achieves 91.4%. - These results suggest that AWR pro-
vides a strong local decision-making bias, making it
more effective in short-horizon structured tasks where
optimal trajectories are well-defined.

2. DDPG+BC outperforms AWR in medium and large-
scale environments. - In AntMaze-Medium-Play, IQE
with DDPG+BC achieves 59.4%, slightly higher than

58.4% with AWR. - A similar trend is observed in
AntMaze-Medium-Diverse, where IQE scores 60.6%
(AWR) vs. 61.0% (DDPG+BC). - The advantage of
DDPG+BC becomes more pronounced in large-scale
AntMaze tasks, particularly in Large-Play (33.2% vs.
31.2%) and Large-Diverse (31.2% for both methods). -
These results indicate that Q-learning improves long-
horizon trajectory stitching, making DDPG+BC prefer-
able for complex planning tasks.

3. MRN follows the same trend as IQE but with
slightly lower performance across all environments.
- In AntMaze-Umaze, MRN achieves 92.4% (AWR)
and 89.2% (DDPG+BC), slightly behind IQE. - How-
ever, in long-horizon tasks, MRN benefits more from
DDPG+BC, as seen in Medium-Play (60.8%) and
Large-Play (32.0%), closing the gap with IQE. - These
results suggest that MRN’s residual structure is more
sensitive to loss function selection than IQE.

AWR provides superior stability and early-stage learning
efficiency, making it ideal for short-horizon, structured tasks
like Umaze. DDPG+BC enables better long-term planning,
significantly improving performance in medium and large-
scale environments where trajectory stitching is crucial. IQE
remains the superior quasimetric model overall, but MRN
benefits more from DDPG+BC in large-scale tasks. These
findings suggest that an adaptive loss function, combining
AWR’s stability with DDPG+BC'’s long-horizon planning
benefits, could be a promising future direction.

Environment IQE (AWR) IQE (DDPG+BC)
An-U-v2 93.2 +3.21 91.0 + 3.16
An-UD-v2 89.9 + 3.23 91.4 + 3.58
An-MP-v2 58.4 + 3.66 59.4 4+ 3.63
An-MD-v2 61.0 +2.07 60.6 £ 2.87
An-LP-v2 31.2+2.28 33.2£3.80
An-LD-v2 31.24+2.17 31.24+2.07

Table 2. Success rate (%) with standard error for IQE using AWR
loss and the DDPG+BC loss. Environments: An=Ant. Datasets:
U=umaze, UD=umaze-diverse, MP=medium-play, MD=medium-
diverse, LP=large-play, LD=large-diverse.

5.4. Summary of Ablation Findings

Our ablation studies provide key insights into the effective-
ness of different quasimetric models, the impact of loss
function selection, and the robustness of QuaD to quasimet-
ric inaccuracies. The results from Tables 2 and 3 highlight
the following key takeaways:

* IQE consistently outperforms MRN in structured envi-
ronments but faces challenges in long-horizon tasks.
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Environment MRN (AWR) MRN (DDPG+BC)
An-U-v2 92.4+5.94 89.2 + 3.82
An-UD-v2 89.8.3 £ 3.23 91.44+3.23
An-MP-v2 57.2 £4.36 60.8 +3.24
An-MD-v2 58.6 £2.19 57.8£3.2
An-LP-v2 28.4 £2.07 32.0+1.79
An-LD-v2 31.2£2.17 30.4 £+ 3.36

Table 3. Success rate (%) with standard error for MRN using AWR
loss and the DDPG+BC loss. Environments: An=Ant. Datasets:
U=umaze, UD=umaze-diverse, MP=medium-play, MD=medium-
diverse, LP=large-play, LD=large-diverse.

* DDPG+BC significantly improves long-horizon planning
and goal-reaching success, outperforming AWR in larger
environments.

e DDPG+BC is the most effective loss function overall,
achieving the highest success rates across all AntMaze
tasks.

* AWR enables stable training but struggles with long-
horizon planning.

¢ Quasimetric-based trajectory modeling provides a signif-
icant advantage over RTG-based Decision Transformers.

These findings emphasize the importance of quasimetric
selection and loss function choice in effective trajectory
modeling. Future improvements may focus on adaptive loss
function strategies and hierarchical extensions that integrate
quasimetric subgoal discovery for enhanced long-horizon
planning.

6. Conclusion

We introduced Quasimetric Decision Transformer (QuaD),
a novel framework that replaces return-to-go (RTG) condi-
tioning in Decision Transformers with learned quasimetric
distances for goal-conditioned RL. By leveraging quasimet-
ric learning, QuaD provides a structured, goal-aware signal
that improves trajectory optimization, generalization to un-
seen goals, and long-horizon planning. Our experiments on
AntMaze tasks demonstrate that QuaD significantly outper-
forms standard Decision Transformers across all settings,
with IQE excelling in structured navigation tasks. We show
that Advantage-Weighted Regression (AWR) is the most
effective loss formulation, while DDPG+BC can further
aid long-horizon trajectory stitching. Theoretical analysis
confirms that quasimetric distances offer a superior suc-
cess predictor compared to RTG, leading to more effective
decision-making. This work establishes the first systematic
study of metric learning in sequence-based RL, bridging
the gap between Decision Transformers and distance-based
goal representations. Future directions include hierarchical
RL with quasimetric-based subgoal discovery, contrastive

quasimetric learning, and real-world applications in robotics.
By introducing quasimetric guidance in DTs, we open a new
research avenue for scalable and structured goal-conditioned
RL.
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A. Hyperparameters
A.1l. Quasimetric Network

We provide the hyperparameters used for training the Interval Quasimetric Embedding (IQE) and Metric Residual Network
(MRN) value functions in Table 4. Most hyperparameters are set following standard configurations used in prior Quasimetric
RL (QRL) (Wang & Isola, 2022a; Liu et al., 2023). Both IQE and MRN utilize a three-layer MLP with 512 hidden units
per layer and layer normalization to ensure stable training. The latent dimension for both architectures is set to 512, with
IQE using a per-component dimension of 8, which defines the number of interval embeddings used in the quasimetric
representation. For the dual lambda loss, we set the margin parameter e = 0.05 across all environments.

Regarding dataset configurations, we set the probability of sampling random value goals to 1.0, ensuring diverse quasimetric
learning, while future trajectory-based goal sampling is only applied for the actor policy. Additionally, geometric sampling
is enabled for value function learning but is disabled for the actor function to avoid unintended bias in trajectory learning.
The quasimetric loss formulation follows the original implementation in Quasimetric RL, where a softplus loss is used for
negative distances, and a quadratic penalty is applied for positive distances exceeding 1.0. The full hyperparameter details
are reported in Table 4.

Hyperparameter IQE (Interval Quasimetric Embeddings) MRN (Metric Residual Network)
Learning Rate (Ir) 3x 1074 3x10~*

Batch Size 1024 1024

Quasimetric Type ige mrn

Value Hidden Dims (512,512, 512) (512,512,512)

Latent Dimension 512 512

Dimension per Component 8 Not Applicable

Layer Normalization True True

Discount Factor 0.99 0.99

Epsilon for Lambda Loss 0.05 0.05

Quasimetric Function Interval-Based IQE Metric Residual Over Euclidean Distance
Distance Function Mean and Max Aggregation Euclidean + L-Infinity Metric
Alpha Parameter Trainable via Sigmoid Not Applicable
Distance Computation Sorted Components with Negative Increments ~ Symmetric Euclidean + Asymmetric Max

Table 4. Hyperparameter settings and architectural details for the two quasimetric network versions: IQE and MRN.

A.2. Quasimetric Decision Transformer

We summarize the hyperparameters and architectural details of the Quasimetric Decision Transformer (QuaD) in Table
5. Most hyperparameters align with standard Decision Transformer (DT) (Chen et al., 2021) configurations. The model
is trained using a sequence length of 20 with a transformer-based architecture consisting of 4 causal attention blocks,
each using 8 self-attention heads and a dropout probability of 0.1. The embedding dimension is set to 128, with separate
state-goal, action, and quasimetric distance embeddings to enhance representation learning.

For quasimetric learning, we experiment with two quasimetric functions: Interval Quasimetric Embeddings (IQE) and
Metric Residual Networks (MRN), where the latent dimension is set to 512. The quasimetric-guided actor policy is trained
using DDPG+BC by default, but we also evaluate Advantage-Weighted Regression (AWR) loss settings in ablation studies.
The quasimetric prediction model is integrated into the autoregressive transformer framework, where quasimetric distances
are computed at each timestep and embedded into the transformer sequence model.

Regarding training settings, we follow standard DT training configurations, using an Adam optimizer with a learning rate of
8 x 10™%, weight decay of 1 x 10, and gradient clipping at 0.25 to ensure stable training. The quasimetric target values
replace the standard return-to-go (RTG) formulation, providing a structured goal-reaching metric for improved sequence
modeling. We evaluate the QuaD framework across six AntMaze environments from D4RL. The full list of model-specific
and training-specific hyperparameters is presented in Table 5.
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Hyperparameter Value

General Training Settings

Batch Size 64
Training Steps 100,000
Evaluation Episodes 100
Episode Length 1,000
Evaluation Interval 10000
Discount Factor () 0.99
Learning Rate 8 x 10~*
Weight Decay 1x10*
Adam Beta Parameters (0.9, 0.999)
Gradient Clipping 0.25
Warmup Steps 10,000
Decision Transformer Model
Sequence Length 20
Number of Transformer Blocks 4
Hidden Dimension (hgim) 128
Number of Attention Heads 8
Dropout Probability 0.1
Attention Heads 8

Quasimetric Network

Quasimetric Type IQE /MRN
Latent Dimension 512

Actor Loss Type AWR / DDPG+BC
Alpha Scaling Factor 0.003
Constant Standard Deviation True

Table 5. Hyperparameter and Architectural Details of the Quasimetric Decision Transformer (Quad).
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