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Dirk Väth1, Ngoc Thang Vu1,
1University of Stuttgart

dirk.vaeth@ims.uni-stuttgart.de, thang.vu@ims.uni-stuttgart.de

Abstract

Recently, Large Language Models (LLMs) have emerged as
an alternative to training task-specific dialog agents, due to
their broad reasoning capabilities and performance in zero-
shot learning scenarios. However, many LLM-based dialog
systems fall short in planning towards an overarching dia-
log goal and therefore cannot steer the conversation appro-
priately. Furthermore, these models struggle with hallucina-
tion, making them unsuitable for information access in sen-
sitive domains, such as legal or medical domains, where cor-
rectness of information given to users is critical. The recently
introduced task Conversational Tree Search (CTS) proposes
the use of dialog graphs to avoid hallucination in sensitive
domains, however, state-of-the-art agents are Reinforcement
Learning (RL) based and require long training times, despite
excelling at dialog strategy. This paper introduces a novel
zero-shot method for controllable CTS agents, where LLMs
guide the dialog planning through domain graphs by search-
ing and pruning relevant graph nodes based on user interac-
tion preferences. We show that these agents significantly out-
perform state-of-the-art CTS agents (p < 0.0001; Barnard
Exact test) in simulation. This generalizes to all available
CTS domains. Finally, we perform user evaluation to test the
agent’s performance in the wild, showing that our policy sig-
nificantly (p < 0.05; Barnard Exact) improves task-success
compared to the state-of-the-art RL-based CTS agent.

Code —
https://github.com/DigitalPhonetics/conversational-tree-
search/tree/llm-policy

1 Introduction
Recently, LLMs have emerged as an alternative to train-
ing task-specific dialog agents. They excel in broad reason-
ing capabilities (Huang and Chang 2023), and demonstrate
high performance in zero-shot learning scenarios (Wei et al.
2021; Brown 2020). However, LLMs-based dialog agents
often fall short when planning towards a dialog goal is re-
quired. As the underlying LLMs are optimized towards fol-
lowing user instructions, such agents struggle to take ini-
tiative in proactively steering dialogs towards a fixed goal
across multiple turns (Deng et al. 2024). Additionally, these
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Figure 1: To plan a dialog, the proposed agent tracks possi-
ble user goals (green: G1, G2) based on the initial user input
(purple: S), then plans paths (blue: S → ... → D → G1/2)
to reach them, identifying decision points to proactively
prompt the user for more information (orange: D).

models struggle with hallucination (Xu, Jain, and Kankan-
halli 2024; Li et al. 2024), making them unsuitable for in-
formation access in sensitive domains where the information
given to a user must be correct.

Because of these challenges, common language-based in-
terfaces for accessing information in sensitive domains rely
on FAQ-style retrieval or hand-crafted dialog policies. How-
ever, while FAQ-style retrieval agents can deliver immediate
answers, they are limited to general information not tailored
to a users specific situation, which leads to either very gen-
eral or overly long and complex responses. Furthermore, re-
trieval accuracy can suffer in large domains. Dialog systems
with hand-crafted policies, on the other hand, can provide
short and personalized responses, but are often perceived as
frustratingly long and rigid.

The recently introduced task, CTS (Väth, Vanderlyn, and
Vu 2023), proposes a graph-based framework for control-
lable task-oriented dialog in sensitive domains that interpo-
lates between these two information seeking styles, implic-
itly adapting its behavior to match user interaction expec-
tations. This flexibility allows CTS to combine the advan-
tages of both settings, while avoiding their largest disadvan-
tages. To prevent the policy from switching contexts or hal-
lucinating false information, CTS requires a dialog agent to
walk an expert-created dialog graph, deciding at each node
whether it is relevant to the user and should be output, or
which neighbor to skip to next. This graph walking approach
requires the ability to plan efficient paths to possible goal



nodes and to identify the decision points where additional
user input is necessary. As RL-based algorithms are trained
to optimize goal planning, Väth, Vanderlyn, and Vu (2023,
2024) propose RL-based agents for the CTS task.

Despite these advantages, a big drawback of the afore-
mentioned RL-based state-of-the-art CTS agents is their
long training time (up to 7 days on GPU for a graph with
123 nodes). This is particularly problematic as a new agent
must be trained every time the graph is updated, even if only
a single node changes, making it difficult to develop new di-
alog domains in an iterative way. Not only does this have
a big impact on the environment and costs, but in sensitive
domains such as legal domains, it could be unacceptable to
have such long waiting times in cases where new laws or
policies come into effect.

The goal of this paper is therefore to explore how to apply
the reasoning and zero-shot capabilities of LLMs to dialog
planning in a way that allows steering the conversation to-
wards an overarching goal, while at the same time avoid-
ing the hallucination problem and maintaining an expert-
controllable dialog flow. To this end, we investigate the fol-
lowing research questions:
• RQ1: How can we optimize the runtime efficiency (to

allow for real-time dialogs) and resource requirements of
a zero-shot LLM-based CTS agent when planning dialog
trajectories through a CTS domain graph?

• RQ2: How can we optimize the dialog success of such a
zero-shot LLM-based CTS agent?

• RQ3: How does a zero-shot LLM-based approach to dia-
log planning compare to a trained CTS RL-agent in sim-
ulation?

• RQ4: How does a zero-shot LLM-based approach to di-
alog planning compare to a trained CTS RL-agent when
testing with real users?

To address these questions, we investigate how LLMs can
be leveraged to help plan conversations by first detecting the
user preference for interaction style, searching the domain
graph for relevant nodes, pruning the search results, and sub-
sequently guiding the user across selected paths through the
domain graph (see figure 1), while at the same time elimi-
nating the need for training and adhering to the CTS con-
trollability aspects. We validate our method against state-of-
the-art RL-based agents in simulation on multiple domains.
Finally, we evaluate real-world performance in a user study.

Our main contributions are: 1) We propose a novel, LLM-
based method for a zero-shot, controllable task-oriented
CTS agent: CTS-LLM. 2) We demonstrate strategies to
improve the reasoning quality and inference speed of this
LLM-based agent, making real-time dialog feasible. 3) We
show that CTS-LLM is not only able to successfully plan
and execute dialogs, but even improves dialog success in
simulation compared to trained state-of-the-art RL-based
CTS agents. These results generalize to all three available
domains, when using large commercial as well as smaller
scale local LLMs. 4) Finally, we demonstrate that improve-
ments to dialog success translate to the real world through
human evaluation on a single domain. All code and data are
publicly available.

2 Related Work
In this section, we give a brief overview of the most closely
related methods.

Dialog Planning
In task-oriented dialog systems, a policy, sometimes also
called dialog manager, is responsible for selecting the dia-
log system’s next actions. There are many different ways to
implement dialog policies, such as using a fixed set of rules
(Bobrow et al. 1977), statistical models (Kim et al. 2008),
or even prompting or fine-tuning LLMs (Mi, Wang, and Li
2022).

One of the most frequently applied approaches is to train
task-oriented dialog policies with RL because such agents
naturally learn efficient planning strategies to reach user
goals (Scheffler and Young 2002; Peng et al. 2018; Kwan
et al. 2023). These RL agents are usually trained in an in-
teractive setting, by performing dialogs against a simulated
user (Schatzmann et al. 2006). Each dialog, the user simula-
tor randomly selects a goal and then takes turns conversing
with the RL agent, until either reaching this goal, or encoun-
tering another constraint such as maximum dialog length.
While RL agents perform well in task-oriented dialog, a new
dialog agent must be trained for every new dialog domain.

Conversational Tree Search
CTS (Väth, Vanderlyn, and Vu 2023) is a task-oriented, con-
trollable dialog task which frames dialog planning as a graph
search and traversal problem.

The graph, which describes the dialog domain, is struc-
tured by a human domain expert. Each node contains text
that the dialog agent can output to the user, e.g. a greeting,
information, or follow-up questions. As the possible output
texts are defined by a human dialog designer, no hallucina-
tion is possible. Nodes are connected to neighbors via edges,
where each edge is associated with a specific user intent,
e.g., indicating interest in reimbursement or in booking. Ev-
ery node is associated with a node type, such as question
and variable nodes (for acquiring user input), logic nodes
(choosing neighbor nodes based on variable values instead
of user intents), and information nodes (information output
without user input).

A CTS agent walks this graph node by node, starting from
a unique greeting node. The goal is to identify and reach the
node in the graph that best answers the user’s information
need. At each node, the agent makes the decision to either
output the current node’s text (e.g., asking a question or pro-
viding information), or to skip a neighboring node.

The task supports different user interaction preferences,
accommodating both users with a vague or general infor-
mation need, as well as users with more concrete questions.
Based on the predicted interaction style, an agent can either
traverse the graph by 1) follow a rigid scheme where the
system outputs the text of each node visited, e.g., if the user
information need is very vague, 2) skip directly to an answer,
e.g., if the user question is very concrete, or 3) employ a hy-
brid approach, asking only questions that are necessary to
clarify the user’s information need on the path to the nodes



Figure 2: Example dialog graph and three different user in-
puts, leading to step-by-step conversation (a), clarification
steps (b), or directly skipping to the answer (c) (Väth, Van-
derlyn, and Vu 2023)

that are candidates for potentially providing the requested
information. Figure 2 shows an example of three different
user inputs, and the three different resulting interactions. As
the agent can only output predefined text or filled templates,
the output information is controllable by the dialog designer.
Regardless of interactions style, the agent must walk the di-
alog tree node by node, meaning it cannot suddenly switch
contexts.

Current state-of-the art CTS agents are RL-based (Väth,
Vanderlyn, and Vu 2023, 2024), and while demonstrating
good task performance, require long training times if any
portion of the graph is changed. To this end, our goal is to
replace the RL-based agent with one that can zero-shot adapt
to any graph changes or even new graphs.

Zero-Shot Learning
Recent research into LLMs has demonstrated their strong
abilities as zero-shot learners (Gruver et al. 2023). This per-
formance can be improved by fine-tuning models on tasks
which are described by textual instructions (Wei et al. 2021).
Brown (2020) further show that similar improvements can
be obtained by providing in-context examples. Rather than
providing only instructions for the task the model should
accomplish, the authors additionally included examples of
how to do the task in their prompt. Furthermore, Schick and
Schütze (2021) found that in-context examples are not just
useful for very large LLMs, but can also be used to improve
the performance of smaller, less resource intensive language
models.

Information Retrieval
As this paper focuses on information seeking scenarios, we
also discuss related work in the realm of information re-
trieval. Although there has recently been a shift towards re-
trieval augmented generation (Lewis et al. 2020; Chen et al.
2024), these methods can still suffer from the same hallu-
cination problems inherent to LLMs (Hersh 2024), making
them unsuitable for sensitive domains. Therefore, we pri-
marily discuss document based retrieval, which has long
been an area of research (Mitra and Chaudhuri 2000; Ghorab
et al. 2013; Wang et al. 2024). Early methods relied on co-
occurrences of words or lemmas between the search query
and the available documents (Salton 1983). Modern ap-
proaches tend to make use language embeddings that are
better able to represent the meaning of documents (Wang
et al. 2024), sometimes adding a filtering or re-ranking step
to the retrieved documents (Zerveas et al. 2022). Our pro-
posed method also makes use of such embedding models
for the initial document retrieval, and an LLM for a filtering
step.

Natural Language Understanding
Natural language understanding has been a long-standing
goal in the NLP community (Schank 1972; Weld et al. 2022;
Yu et al. 2023). Although many approaches have been ap-
plied over the years, from handcrafted rules (Seneff 1992),
to probabilistic models (Kuhn and De Mori 1995; He and
Young 2003), to deep learning (Xu and Sarikaya 2013),
more recent approaches have begun leveraging the power of
LLMs (Min et al. 2023). In this paradigm, rather than need-
ing to learn a mapping from user utterances to a fixed set
of slots and intents, the problem can be reformulated as a
question answering task (Namazifar et al. 2021). Here, the
goal is to leverage the knowledge and language understand-
ing capabilities of language models to answer the question
of “which intent/slot is the user trying to express?”, and by
doing so, to reduce or eliminate the need for training data.

Our method similarly uses LLMs to match user inputs
against the set of possible intents (edges) at a given dialog
node, following the most similar intent (edge).

3 Method
Our proposed LLM dialog system is a module based system
(see figure 3) with the following components: 1) a dialog
policy, 2) a Natural Language Understanding (NLU) unit,
and 3) a dialog state tracker, storing variable values to fill
templates. The dialog policy consists of a) an LLM-based
interaction mode classifier, which decides whether the user
inputs a statement or a question, b) an LLM-based intent
classifier, to determine per node which intent, i.e., edge, a
user was trying to select, c) an LLM-based filter module,
searching node candidates in the dialog graph that might an-
swer a user’s question, and d) a navigation module respon-
sible for walking the dialog graph and choosing to output or
skip a node,

The policy adheres to the CTS task by traversing the di-
alog graph node by node, only outputting predefined node
texts, thus remaining controllable. Even though we use
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Figure 3: Interaction between user and system. The system predicts user intent and interaction mode from the user utterance
(1). If the interaction mode is free, the user utterance is used to retrieve answer candidates from the dialog graph (2a). In guided
mode (2b), the policy follows the edge associated with the predicted user intent (3b). The agent may also decide to ask for
clarification or output information (3a).

LLMs to make decisions in how to traverse the graph, their
outputs are never shown to the user.

Dialog Policy
In contrast to RL-based agents, the dialog planning in our
method is performed by the combination of an LLM and
graph algorithms. Concretely, the dialog policy uses the
same LLM for the components a), b) and c) to coordinate
planning (see algorithm 1 for a concise overview).

Navigation Module The policy initiates a dialog by out-
putting the start node of the dialog graph to the user. After
receiving the first input from the user, the interaction mode
classifier (step 1 in figure 3) is called to decide whether the
user expresses a vague information need, or poses a concrete
question, then proceeding with either step:

(2a) If the user input was classified as a vague or general
information need, the following dialog interaction is consid-
ered a “guided” turn-by-turn mode with the dialog system
in the lead, supporting users unfamiliar with the domain or
with a vague information need. That is, the policy will al-
ways output the content of the current node to the user and,
if necessary, wait for user input to continue (step 3a in fig-
ure 3). The user’s input will be matched against the possi-
ble intents available at that node (step 2a in figure 3). Then,
the policy will move to the corresponding neighboring node
(step 3b in figure 3). Dialog continues in this manner until
the tree end is reached or the user ends the dialog.

(2b) If the user input was classified as a (concrete) ques-
tion, the following dialog interaction is considered a “free”
mode, with the goal to answer the user’s question as effi-
ciently as possible, only prompting the user when disam-
biguation is required to clarify the exact information need.
From the dialog graph G = (V,E), with nodes V and edges
E, a list of possible goal node candidates Vg ⊆ V is re-
trieved by the filter module (step 2b in figure 3). A node
is considered a goal candidate if it might answer the user
question. For each goal node candidate vg ∈ Vg , the pol-
icy calculates all possible paths Pg := {(v1, . . . , vn)|vn =

vg∧∀vi, vi+1 : (vi, vi+1) ∈ E} in the dialog graph that lead
from the current node v1 ∈ V to that goal node. Between the
list of paths to each goal node, it selects the longest shared
path prefix reaching all goal nodes. Here, we calculate the
shared prefixes by looking at all paths to the candidate goals:
Pshared := {(v1, . . . , vn)|∀vg ∈ Vg∃p ∈ Pg∀1 ≤ i ≤ n :
pi = vi}. Once the longest prefix argmaxp∈Pshared

|p| has
been identified, the policy walks through this prefix without
outputting any of the nodes to the user until it reaches the fi-
nal node (see step 3b in figure 3). The final node in the prefix
is then output to the user (step 3a in figure 3), because it is
by definition either a decision point where user input is re-
quired, or a goal node itself. If there are still open goals, the
user intent is identified, the policy moves to the correspond-
ing neighbor, and a new longest prefix is calculated using
the remaining goal nodes. We use the longest shared path
prefix as users in our pilot study perceived this approach as
more usable, e.g., compared to using shortest paths, as the
decisions at the tail of the paths seem more related to the
user question (closer to the goal) than at the beginning of
the paths, where topics might still be quite general (farther
removed from the goal).

As variable questions do not cause splits in the graph, they
are skipped. Whenever the policy reaches a node contain-
ing a template, but does not know the necessary values from
the Dialog State Tracker (DST) yet, it looks back through
the history of visited nodes until if finds the corresponding
variable node. The policy then requests the variable value
from the user, updates the beliefstate, and continues the dia-
log from the template node.

The full planning process is visualized in figure 1, where
the policy calculates paths (blue) to two possible goal can-
didates (green), asking for clarification only at the orange
node (last node on longest shared path prefix) which is di-
rectly connected to the two possible goal candidates, rather
than at preceding branching points (blue).

Interaction Mode Classification Interaction mode clas-
sification is the first step in planning dialogs with our pro-
posed method. We classify the user utterance into the classes



Algorithm 1: Dialog Policy
Data: graph, input, node
done← false ;
mode← mode classifier(input);
if mode = QUESTION then

goals← goal filter(graph, input);
path← longest prefix(goals);

end
while done ̸= true do

if mode = QUESTION then
node← last node(path);

end
output(node);
if node.type ∈ {QUESTION, VARIABLE} then

input← input();
next node←

neighbors(node)[intent(input)];
path← longest prefix(goals);

else
next node← neighbor(node);

end
if node ∈ goals then

goals← goals \ {node};
end
node← next node;
done← goals = ∅ ∨ neighbors(node) = ∅;

end

guided or free by prompting an LLM to determine if a given
user input is a question/command/request or not (see ap-
pendix B for the exact prompt). We then parse the generated
outputs ‘yes’, ‘command’, ‘request’ as free and all other out-
puts as guided. Using an LLM for this task avoids training a
specialized classifier and detects the interaction mode better
than, e.g., off-the-shelf question classifiers, as many user in-
puts that are asking for information might not be phrased as
questions.

Intent Classification Each decision (question) node has a
list of possible user intents. To decide what intent the user is
trying to express, we prompt an LLM with the user utterance
and a JSON list containing the intent candidates and their
indices. We ask the model to output the index of the response
that best matches the user’s input (see appendix B). We then
extract this index and move to the corresponding neighbor.

Goal Node Filter The goal node filtering step is respon-
sible for the path selection aspect of dialog planning in free
policy mode. We perform a similarity ranking between the
user utterance and the list of all nodes in the graph using a
fast semantic search model, retrieving the 15 most similar
nodes as a pre-filtering step. These nodes are then passed
into an LLM to reason about which candidates could actu-
ally be answers to the user’s question. Performing the re-
trieval step with a much smaller model instead of giving
the full list of nodes to the LLM keeps the number of input
nodes to the LLM constant, regardless of graph size. This

reduces the number of input tokens and the search space to
be reasoned over, thus simplifying the problem and reducing
computation time, while also increasing the accuracy of the
results. However, fast retrieval methods usually obtain rea-
sonable recall scores for k >> 1, and thus the top-1 result
cannot be trusted (also demonstrated in figure 4).

We therefore apply LLM-based reasoning to the 15 an-
swer node candidates conditioned on user utterance to filter
out the most relevant candidates regardless of their retrieval
rank. We then ask the model to output all nodes which an-
swer the question, along with a justification for why each
node does so. To improve the reasoning process, we add
out-of-domain, in-context examples that represent positive
and negative question/answer pairs. For example, we add:
‘What is the weather usually in Singapore at 9 a.m.?’, and
as a positive example fact: ‘In Singapore, between 8 a.m. and
11 a.m., the weather is around 35 degrees Celsius.’ with the
justification: ‘The fact is relevant as it answers the user re-
quest, and the requested time of 9 a.m. lies between the fact’s
timespan of 8 a.m. to 11 a.m.’. The full prompt can be seen
in appendix B.

4 Datasets
To investigate how our method compares to state-of-the-
art RL-based CTS agents, we evaluate on the three avail-
able English datasets: REIMBURSE-en, DIAGNOSE and
ONBOARD. REIMBURSE-en contains information about
travel reimbursement procedures, DIAGNOSE is a medical
help domain, and ONBOARD provides support for foreign-
ers moving to a new city.

Each of these datasets contains a dialog graph, user ques-
tions and user responses. User questions are associated with
the dialog node that provides an answer. User responses are
paraphrases for the possible user intents at each node. Statis-
tics for each dataset can be found in table 1.

5 User Study
To assess the performance of our proposed CTS-LLM agent,
we performed user evaluation. To be able to compare our
results to Väth, Vanderlyn, and Vu (2024), we performed
a parallel study adhering to the same design, methodology,
and REIMBURSE-en domain. Although we only evaluated
the CTS-LLM agent, we can thus treat the combination of
both studies as a between-subject design.

Study Design
All participants were recruited via the crowdsourcing plat-
form Prolific and paid at a rate of 12.60C/hr, consistent with
minimum wage in the country of our research institution.
They were asked to provide basic demographic information
about their age, gender, and experience with chatbots and
business travel. Following Väth, Vanderlyn, and Vu (2024),
subjects were then asked to conduct three conversations with
the chatbot in the REIMBURSE-en domain. For each dia-
log they were randomly assigned an information goal they
should try to reach. These goals represented 1) an open ques-
tion, e.g., the general process of how to book a hotel, or what
to do in an emergency, 2) a simple, concrete question, e.g.,



Dataset Split #Nodes Tree
Depth

Max. Node
Degree

#User
Questions

Avg. User
Questions

#Answer
Paraphrases

Avg. Answer
Paraphrases

REIMBURSE-en Train 123 32 14 279 3.5 246 3.4
REIMBURSE-en Test 123 32 14 173 2.2 162 2.2
DIAGNOSE Test 98 10 6 150 2.0 298 3.0
ONBOARD Test 88 15 9 117 2.0 152 2.7

Table 1: Overview of the REIMBURSE-en, ONBOARD and DIAGNOSE datasets (Väth, Vanderlyn, and Vu 2024).

if they could get reimbursed for seat reservations on a train,
or 3) a complex, concrete question, e.g., how much money
they could be reimbursed per day if they planned to stay at
their brother’s apartment on their upcoming trip to France.

After each dialog, users were asked to rate the subjective
quality and length, using two single-item Likert questions.
Subjective length was rated on a 5-point scale from 1 (much
too short) to 5 (much too long). Success was rated on a 4-
point scale from 1 (‘my question was not answered at all’) to
4 (‘my question was entirely answered’). After the final dia-
log, participants were also asked to provide free-form feed-
back on their perception of the agent as well Likert feedback
on the usability of the agent using the UMUX scale (Finstad
2010). They were also asked about their trust in the agent
and perceived reliability using the Trust and Reliability sub-
scales of Körber (2018)’s Trust in Automation scale.

Pilot Study
Before conducting the main user study, we performed a pilot
study with 12 users to check the technical setup. Here, we
found that users were quickly frustrated when they had to
answer multiple questions at the beginning of the dialog tree,
as they took this to mean that the agent had not understood
their question. This motivated our design decision to delay
clarifications by calculating the longest shared path prefix
instead of shortest paths.

Main Study
For the main study, we recruited 24 participants. Of these, 13
identified as female and 11 as male, with ages ranging from
under 20 to 59 years old. On average, participates had de-
cent familiarity with chatbots (3.5 on a 5-point Likert scale)
and some familiarity with business trips (2.5 on a 5-point
Likert scale). Each user participated in 3 dialogs, resulting
in a total of 72 collected dialogs. After removing 4 dialogs
due to technical errors or bad-faith participation, we were
left with 68 total dialogs. Combining these with the 61 di-
alogs collected for CTS-RL by the parallel study from Väth,
Vanderlyn, and Vu (2024) resulted in a total of 129 dialogs
for the between-subject setup.

6 Results & Discussion
All results for the LLM-CTS agents were obtained using
GPT-4o-mini (version 2024-07-18)1 or the instruction tuned
Gemma-2 9B (Team et al. 2024). We choose the multi-
qa-mpnet-base-dot-v1 Sentence Transformer (Reimers and

1https://platform.openai.com/docs/models/gpt-4o-mini

Gurevych 2019) for pre-filtering. Results for the RL-based
CTS agents are taken from (Väth, Vanderlyn, and Vu 2024).

Objective Evaluation Metrics
To evaluate the objective performance, we follow Väth, Van-
derlyn, and Vu (2024) and measure binary dialog success by
evaluating whether the user’s information need was fulfilled
for each dialog. This means that the dialog agent has to reach
the node containing the answer to the user’s information goal
as well as output the node text to the user. The reported val-
ues for dialog success measure the percentage of successful
dialogs.

Dialog length refers to the number of dialog turns (agent
turns + user turns) which are perceived by the user. Thus,
dialog length only counts the number of user inputs and
the number of system ASK actions. SKIP actions are not
counted, as they are not visible to the user.

Finally, interaction mode classification is a binary classi-
fication measure (free or guided), measured once per dialog
based on the prediction from the initial user utterance.

RQ1: Optimizing Resource Requirements &
Runtime Efficiency
To save on hardware requirements, we try to solve as many
of the policy sub-tasks as possible with the same LLM. We
used Gemma-2 on the train split of the REIMBURSE-en
dataset as a development setup.

After conducting preliminary experiments, we find that
we can obtain good performance from the same LLM for in-
teraction mode detection, user intent classification, and goal
node candidate filtering. However, as can be seen from table
2, filtering goal node candidates directly from the full dialog
graph proved too slow for real-time usage. In our experi-
ments, we found that this approach to filtering takes ∼33.61
seconds, and is resource intensive because of the number
of resulting input and output tokens (4601 and 158, respec-
tively). This will only get worse as the graph size increases.

To address this, we add a small Sentence Transformer spe-
cialized in relevant passage retrieval (Reimers and Gurevych
2019) to pre-filter nodes based on semantic similarity to the
user utterance. After performing a retrieval experiment on
the REIMBURSE-en train split (see figure 4), we choose
k = 15 as a good trade-off between candidate space reduc-
tion and accuracy.

Keeping all 15 goal candidate nodes, however, would re-
sult in the need for many clarifying questions and thus long
dialogs. To mitigate this, we choose to apply the LLM as
a post-filter to the 15 retrieved candidates. Together, the re-
trieval and post-filtering process only take ∼17.84 seconds,



Pre-filter Justifications
In-

Context
Examples

Recall
Avg.

Candidates
per Question

Avg. time
per Question

(sec)

Avg.
#tokens
(input)

Avg.
#tokens
(output)

Avg. GPU
memory

(GB)
✓ ✓ ✓ 0.84 2.37 17.84 1581 95 26.59
✓ ✓ ✗ 0.35 0.91 25.85 935 147 26.49
✓ ✗ ✓ 0.80 2.26 6.66 1346 31 26.56
✗ ✓ ✓ 0.78 2.66 33.61 4601 158 27.04

Table 2: Recall and resource usage for the REIMBURSE-en train split with Gemma-2 on a NVIDIA A600 GPU for different
goal candidate filtering processes.

Figure 4: Recall of pre-filtering the possible goal nodes for
different k on the REIMBURSE-en train split.

almost halving the execution time, making it feasible for
real-time use. Since the retrieval step is very efficient, it
scales better with graph size while the slower post-filter is
now decoupled from the graph size. This allows for scaling
to larger domains without a noticeable penalty on filter time.
As we see in table 2, even though we add the additional re-
trieval model, the reduction in input (factor∼2.9) and output
(factor ∼1.7) tokens results in a lower total memory foot-
print: 26.59 GB, compared to 27.04 GB for the LLM with-
out the retrieval step. Finally, the reduction in tokens and
computation time also lowers the environmental impact, and
especially for LLMs consumed via API, costs.

RQ2: Optimizing Dialog Success
Performance of free mode is fully dependent on the out-
put quality of the filtering step, thus improving filter per-
formance directly results in better dialog success. Again,
we use Gemma-2 on the train split of the REIMBURSE-en
dataset as a development setup.

As first tests with the two-stage filtering process did not
yield good retrieval accuracy, we analyzed filtering failures.
We observed, e.g., that some LLMs have trouble with nu-
merical reasoning. For example, given the user question:
‘How much money do I get for a 9 hour long business trip?’,
the only relevant node returned by the LLM is ‘For busi-
ness trips lasting less than 8 hours, you are not entitled to a
per diem’, which does not answer the question because the
user’s time requirement is outside the answer’s time interval.
This is particularly problematic, as there is another node that
answers the question: ‘For trips lasting more than 8 hours,
but less than 14, you are entitled to a per diem of 6C.’.

To improve the model performance and reasoning, we
tested the following interventions 1) adding in-context ex-
amples to the model prompt and 2) adding an additional rea-

soning step by requiring the model to also output its justifi-
cation for marking facts as relevant.

In the ablation study in table 2, we can see that both the
in-context examples and additional reasoning step result in
improved recall. While justifications slow the model down
by generating more output tokens, we consider the improve-
ment in recall as more important, as retrieval errors define
the upper bound on task performance.

Based on these experiments, we see that combining pre-
filtering, justifications and in-context examples provides the
best recall, and a good trade-off in response time and re-
source usage.

RQ3: Performance In Simulation
Evaluating dialog performance against a simulated user is
common practice in the dialog community (Ai and Weng
2008), where it is expensive to test development systems on
real users. To this end, the CTS task provides a user simula-
tor to evaluate the system’s performance (Väth, Vanderlyn,
and Vu 2023). To simulate a dialog, a random goal is cho-
sen from the dialog graph along with a tree path to reach
that goal. The interaction mode is set to either free mode
or guided mode. When free mode is chosen, a random user
question associated with the goal node is drawn as the first
user utterance. If guided mode is chosen, the simulator will
select a paraphrase of one of the pre-defined intents at the
start node as first utterance. For each node along the goal
path that accepts user input, a random paraphrase of that in-
tent will be chosen . If the simulated user reaches their goal,
the dialog is rated successful (see Appendix C for more de-
tails). Table 3 shows performance metrics against the CTS
simulator when evaluating on 500 simulated dialogs for our
LLM agent and a state-of-the-art RL agent (Väth, Vander-
lyn, and Vu 2024) on the test splits of all three domains.

Using GPT-4o-mini, our method significantly improves
dialog success in all three domains (p < 0.0001; Barnard
Exact test). From this, we see that in addition to the sustain-
ability advantages our proposed agent brings by eliminating
the need for training, it is also able to outperform the pre-
vious RL-based state-of-the-art CTS agent. We also see that
this performance generalizes across domains.

Additionally, when looking at the results for the Gemma-
based agent, we find that even a smaller LLM, which can be
run locally (e.g. on a single NVIDIA A600), can improve di-
alog success on all domains compared to the RL-based CTS
agent, with significant improvements in the ONBOARD and
DIAGNOSE domains (p < 0.001; Barnard Exact test).



Domain Dialog Policy Dialog Success
(%)

Dialog Length
(Guided)

Dialog Length
(Free)

Interaction
Mode (F1)

CTS-RL 73.86 13.56 2.95 0.94
REIMBURSE-en CTS-LLM (Gemma-2) 77.00 10.79 2.91 0.89

CTS-LLM (GPT-4o-mini) 84.20** 10.31 2.79 0.95
CTS-RL 76.31 6.42 2.29 n/a

DIAGNOSE CTS-LLM (Gemma-2) 94.60** 5.24 3.36 1.0
CTS-LLM (GPT-4o-mini) 98.80** 5.26 3.52 1.0
CTS-RL 73.61 7.88 2.98 n/a

ONBOARD CTS-LLM (Gemma-2) 95.00** 4.94 2.96 1.0
CTS-LLM (GPT-4o-mini) 96.00** 4.88 2.96 0.99

Table 3: Objective performance metrics of our proposed CTS-LLM agent compared to the RL-based CTS baseline (Väth,
Vanderlyn, and Vu 2024) ** represents significant increases (p < 0.0001 Barnard Exact test). We bold the best results per
model and domain, except for guided dialog length, where the goal is to obtain context, rather than simply efficient navigation.

RQ4: Performance With Real Users
For the user evaluation, we selected the GPT-4o-mini-based
policy, as it achieved the highest task success in simulation.
To compare it with a state-of-the-art RL-based CTS agent,
we use the results reported for the REIMBURSE-en domain
in Väth, Vanderlyn, and Vu (2024) and conduct a parallel
user study with our LLM-based agent. As no user studies
exist for the RL agent on other domains, recruiting sufficient
participants to evaluate both agents across multiple domains
would have been prohibitively expensive. Thus, we focus on
the challenging real-world REIMBURSE-en domain in this
study. Example interactions can be found in Appendix D.

Policy Success
(%)

Avg.
Turns

Subj.
Length

Subj.
Quality

CTS-RL 77.05 7.38 2.92 2.87
CTS-LLM 86.76* 10.24 2.75 2.94

Table 4: User study results for objective and subjective dia-
log metrics for CTS-RL (Väth, Vanderlyn, and Vu 2024) and
our method. * represents significant differences (p < 0.05).
Perceived quality is a 4-point scale (1 = not answered; 4 =
fully answered), perceived length a 5-point scale (1 = much
too short; 5 = much too long).

Table 4 shows the results of our policy compared to the
results of the RL-based CTS agent. Performing a Barnard-
Exact test, we find that our method led to a significant in-
crease in dialog success compared to the RL-based CTS
agent (p < 0.05) without causing any negative effects in
how users perceived the quality of answers they received.
We additionally find that although the CTS-LLM dialogs
were objectively longer, the subjective length of the system
was rated similarly (even slightly shorter) to the RL-based
CTS agent. The shorter paths from the RL agent are likely
explained by the optimization goal, which optimizes dialog
length. Thus, a future goal is to improve the dialog length in
the planning step.

When looking at the subjective perception of the agent in
table 5, we find that users rated both reliability and usability
of our proposed method higher.

Policy Trust Reliability Usability
CTS-RL 3.16 2.96 62.83
CTS-LLM 3.00 3.06 67.90

Table 5: User study results for perceived trust, reliability
and usability. No significant differences were found between
CTS-RL (Väth, Vanderlyn, and Vu 2024) and our results.

7 Conclusion
In this paper, we explore how to apply the reasoning and
zero-shot capabilities of LLMs to dialog planning in a way
that allows steering the conversation towards an overarch-
ing goal, while at the same time avoiding hallucination and
retaining an expert-controllable dialog flow. We introduce a
novel task-oriented dialog policy that performs dialog plan-
ning based on a combination of a fast Sentence Transformer,
LLMs, and graph algorithms. Our dialog policy conforms to
the controllability aspect of the CTS task by using LLMs to
help with path planning, rather than generating output for the
user, avoiding the possibility of hallucination. This approach
also removes the need for training CTS dialog policies, al-
lowing for instantaneous adaptation to changes in domain
graphs.

Although RL is known for its planning capabilities, espe-
cially in the task-oriented dialog policy setting, we demon-
strate that our LLM-based approach to dialog planning
can significantly outperform state-of-the art RL-based di-
alog policies. These results hold across all three domains
tested in simulation, and also translate to evaluation on the
REIMBURSE-en domain with real users.

In addition, we identify computational resource and rea-
soning challenges, and demonstrate working solutions to
speed up response time and reduce the number of input
and output tokens. In this way, we improve policy perfor-
mance and effectively decouple the slow filtering step from
the graph size.

Finally, our simulations demonstrate that our approach
yields good results not only using very large commercial
LLM, but also when using a smaller open-source LLM that
can be run on a single GPU. This allows for more data safety
and less costly experimentation and deployment.



A Limitations
Although we list the exact version numbers of the LLMs we
use, commercial LLMs might get updated, thus impacting
the exact reproducibility of our results obtained using com-
mercial LLMs.

Additionally, at the time of writing, there are only three
domains available for the CTS task. Therefore, we can eval-
uate our proposed method only on these domains. The eval-
uation with real users is limited to a single domain due to
cost reasons.

As discussed in the results, the LLM policy interactions,
although perceived shorter than the RL policy interactions in
the user study, are objectively several turns longer than the
RL policy interactions.

Although we save the computational resources required
to train CTS-RL agents, the runtime resources of the CTS-
LLM are higher.

B LLM Prompts
Interaction Mode Classification
Table 6 shows the full prompt for the interaction mode clas-
sifier.

Role Prompt
variables user utterance
system Answer with ”yes” or ”no” only.

user Is the following text a question / command /
requesting or not: user utterance?

Table 6: Prompt for classifying which interaction mode
(guided or free) the user wants.

Intent Classification
Table 7 shows the full prompt for the user intent classifier.

Role Prompt
variables user utterance, intent candidates
system Given this list of possible response candi-

dates:
intent candidates
Decide which of the response candidate texts
most closely matches the user intent, and
only output the responses index. Do not out-
put any other text, any code, or anything else.

user user utterance

Table 7: Prompt for classifying which pre-given intent the
user is most likely trying to choose.

Goal Node Filter
Table 8 shows the full prompt for the goal node filtering step.
The variable examples is filled with the following text:

For example, given the facts:

Role Prompt
variables user utterance, node texts, examples
system You will be provided with a json list of facts

and a query. You are to act as a first filter to
decide which of the given facts answer the
query or are relevant to answering the query,
at least partially, and which ones are not rel-
evant to answering the query at all? Assign
each fact a relevance indicator between 0 and
2, and add a justification of why it is rel-
evant (2), partially related (1), or irrelevant
(0). Facts are also considered relevant if they
imply the answer. If facts contain placehold-
ers inside curly braces, assume the place-
holder will be filled with a reasonable value.
Don’t return anything besides the json list of
relevant facts, and only return facts with rel-
evance indicator higher than 0. Don’t return
code or additional text.
REMEMBER: even if some facts are only
slightly relevant to answering the query, it is
better to rate them with a relevance of 1 than
to have all facts have relevance 0.
examples
Note that the fact with key 4 was excluded
from the output, as it has a relevance of 0:
Fact 4 is not related to the query about the
weather in Singapore.

user ======= Facts =======
node texts
======= Query =======
user utterance

Table 8: Prompt for filtering to keep only relevant goal node
candidates

[{"key": 0, "fact": "In Singapore,
at 9 a.m., it is usually around
35 degrees celsius."},

{"key": 1, "fact": "In Singapore,
between 8 a.m. and 11 a.m., the
weather is around 35 degrees
celsius."},

{"key": 2, "fact": "In London, at 9
a.m., it is usually 25 degrees
celsius."},

{"key": 3, "fact": "In Singapore,
between 10 a.m. and 11 a.m., it
is usually around 30 degrees
celsius."},

{"key": 4, "fact": "In Singapore,
there are many tourist
attractions."},

{"key": 5, "fact": In Singapore, it
is usually around 35 degrees
celsius in the mornings, but
cooler in the evenings."},

{"key": 6, "fact": "In {{ COUNTRY



}}, at 9 a.m., it is usually
around 35 degrees celsius."}]

And a query: ”What is the weather usually in Singa-
pore at 9 a.m.?” The reply should only be a json list
of the facts, indicating if the facts are related to or di-
rectly answering the query, formatted like this:

[{"key": 0, "relevance": 2, "
justification": "The fact is
relevant because it answers the
user request perfectly"},

{"key": 1, "relevance": 2, "
justification": "The fact is
relevant as it answers the user
request, because the requested
time of 9 a.m. lies between the
fact’s timespan of 8 a.m. t0 11
a.m."},

{"key": 2, "relevance": 1, "
justification": "While the time
is correct, the fact is listing
the temperature for London
instead of Singapore"},

{"key": 3, "relevance": 1, "
justification": "The fact is
talking about the weather in
Singapore, which is relevant to
the user, although the requested
time of 9 a.m. lies outside the
fact’s timespan of 10 a.m. to

11 a.m."},
{"key": 5, "relevance": 2, "

justification": "The fact is
relevant as it partially answers
the user query: while it does

not state a specific time, it
implies the temperatures in
Singapore at the requested time
"},

{"key": 6, "relevance": 2, "
justification": "The fact is
relevant as it could answer the
user request perfectly, once the
placeholder is filled."}]

C User Simulator
All dialog success scores and conversation lengths reported
from simulated users are the average across 500 dialogs.

At the start of each simulated dialog, a goal node is drawn
randomly from the domain graph. Each interaction then be-
gins at the (unique) start node, which is output to the user.
Here, the initial user utterance is generated depending on the
dialog mode. In free mode, a question associated with the
goal node is drawn randomly. In guided mode, a paraphrase
for the user intent on the path to the goal is randomly cho-
sen instead. Control is then handed over to the policy. When
the policy chooses to output a node to the user that requires
a user response, the user response is randomly chosen from

a list of available paraphrases associated with a user intent
that facilitates reaching the goal. A dialog ends once the goal
was reached, the user patience was reached (encountering
the same dialog node multiple times), or the maximum turn
length was reached (four times the maximum tree depth). To
support the training of RL agents, each turn is stored in an
experience buffer. The simplified pseudo-code for the user
simulator is shown in listing 2. For more details, we refer to
Väth, Vanderlyn, and Vu (2023) and Väth, Vanderlyn, and
Vu (2024).

Algorithm 2: Pseudo code for the user simulator,
adapted from Väth, Vanderlyn, and Vu (2023) and
Väth, Vanderlyn, and Vu (2024).

Data: questions←
List of Questions associated with dialog tree nodes

Data: answers← List of Answer synonyms
Data: N ← Number of dialogs to be simulated
Data: G(V,E) ; // Dialog Tree
Data: T ← Maximum number of turns per dialog
n← 0;
for n < N do

v ← start node;
m← random uniform({Free,Guided});
g ← random uniform({g ∈ V :
|questions(g)| ≥ 1});
p← (e(v, v1), . . . , e(vN , g)) ⊂ E;
u← random uniform(questions(g));
t← 1;
while v ̸= g ∧ t ≤ T ∧ neighbors(v) ̸= ∅ do

a← policy(v, u) ; // Select action
if a = ASK(v) then

print(v);
e← e(v, v′) ; // v′ is g (guided
mode) or next node after v
(free mode)

if type(v) = information then
u← ∅;

else
u←
random uniform(questions(e))

end
else

if a = SKIP(v,v’) then
v ← v′;
u← ∅;

end
end
r ← Calculate rewards;
Store a, v′, r in replay buffer;
t← t+ 1;

end
n← n+ 1;

end



D Example Interactions
In this section we provide examples of different types of in-
teractions users had with our LLM-based CTS agent.

In figure 5, we see an example of a user who had a con-
crete question and was given a concrete answer. In this case,
our agent found two possible goals along the same branch in
the dialog graph that might answer the user’s query, as there
were no branches between the two answers which could de-
termine which was more relevant, both were output, leading
to a more complete answer being given to the user.

GOAL NODE: (16460328708250870): If you are also
transporting other coworkers, you are entitled to 2
Cent per kilometer.

USER INSTRUCTIONS: You want to figure out how
much money you can get for your travel.
1. You used your own car.
2. You took two colleagues with you.

SYSTEM: (NODE: 16348058621438633) What topic do
you have questions about? You can either click on an
answer from the suggested topics or enter your own
text.

USER: Hi, on my recent trip I took my own car and car-
ried two colleagues, how much money can I claim
back for this please?

SYSTEM: (NODE: 16460325754790153) If you used
your car for a pressing reason, you are entitled to
0.25C per kilometer driven.

SYSTEM: (NODE: 16460328708250870) If you are also
transporting other coworkers, you are entitled to 2
Cent per person and kilometer for each passenger who
is also eligible for travel reimbursement. (To claim a
passenger, they must also sign your travel reimburse-
ment request.) If you are transporting business-related
items (e.g., files) weighing more than 50 Kg, you are
eligible for 2 Cent per 50 Kg and kilometer. (Changes
coming in 2022)

DIALOG END: SUCCESS
SUBJECTIVE QUALITY: 3
SUBJECTIVE LENGTH: 2

Figure 5: Example dialog of a direct question which is given
a direct answer. Excerpt from the conversations with user
c7bb706cdb623739bf9e80c638e4eb.

In figure 6, we again see a user asking a direct question,
however in this case, the system has two possible answer
candidates (train or plane seat reservations) and needs to ask
the user to clarify which of these is correct in order to an-
swer. Once the user does this, there is only one answer can-
didate left and this is directly output to the user.

GOAL NODE: (16363756478730906): Seat reservations
are allowed for train travel.

USER INSTRUCTIONS: You want to know if you can get
reimbursed if you reserve a seat for yourself on the
train.

SYSTEM: (NODE: 16348058621438633) What topic do
you have questions about? You can either click on an
answer from the suggested topics or enter your own
text.

USER: I want to book a seat on the train. Can I get a
refund if needed?

SYSTEM: (NODE: 16348100109577394) What type of
transportation would you like?

USER: Train
SYSTEM: (NODE: 16363756478730906) Seat reserva-

tions are allowed for train travel.
DIALOG END: SUCCESS

SUBJECTIVE QUALITY: 2
SUBJECTIVE LENGTH: 3

Figure 6: Example dialog of a direct question which needs
clarification before being answered. Excerpt from the con-
versations with user 6248a541d241dda06d678a24a511ce.

In figure 7, we see a different type of dialog interaction.
Here the user does not formulate a direct question and in-
stead chooses one of the offered general topics. From here,
the agent guides the user through each node in that branch
of the dialog tree, giving them additional context and asking
clarifying questions until they get the answer to their ques-
tion.

GOAL NODE: (16370483534787100): Your business trip
must be planned as though you were traveling alone.

USER INSTRUCTIONS: : You want to know how the re-
imbursement process works for a research semester.
1. You plan to bring your family with you.

SYSTEM: (NODE: 16348058621438633) What topic do
you have questions about? You can either click on an
answer from the suggested topics or enter your own
text.

USER: Research semester
SYSTEM: (NODE: 16370487978253782) How long will

your research semester last?
USER: 2 days
SYSTEM: (NODE: 16353297472197738) Is this as part

of a reallocation?
USER: No
SYSTEM: (NODE: 16370501863636503) As there has

been no reallocation, your research semester counts
as a business trip.

SYSTEM: (NODE: 16353303012891903) Are you trav-
eling alone or with your family?

USER: With family
SYSTEM: (NODE: 16370483534787100) Your business

trip must be planned as though you were traveling
alone (without your family).
How does that work? 1. Provide receipts for only the
costs associated with purchases for yourself. 2. Col-
lect comparison offers where necessary (e.g., trans-
portation costs and accommodation) for what the
costs would have been for only one person. 3. Per-
sonal expenses must be strictly separated from busi-
ness expenses.



You are responsible for paying all additional costs that
result from bringing your family along.

DIALOG END: SUCCESS
SUBJECTIVE QUALITY: 1
SUBJECTIVE LENGTH: 2

Figure 7: Example dialog of a guided mode inter-
action, where the user does not ask a direct ques-
tion and must be asked follow-up questions to clarify
their intent. Excerpt from the conversations with user
c017850ef3e9fd55350d0c8374859f.

Ethical Considerations and Risks
To ensure that users could give informed consent, we pro-
vided a detailed description of the task and research ob-
jectives both on the crowdsourcing platform and once they
had accepted the task. In respect of participant privacy, we
specifically did not collect personally identifying data from
any users. To this end, we store all logs and survey responses
using an anonymous hash generated based on a given user-
name, rather than with the username itself. In this way, users
could log in again if they needed to take a break in the middle
of the interaction, but we had no way of directly linking any
recorded results to, e.g., users’ Prolific account identifiers.
To ensure that participants were fairly compensated, we fol-
lowed best practices recommended by the crowdsourcing
platform paying users at 12.60C/hr, which was in-line with
minimum wage in the country of our research institution. We
additionally used our pilot study to verify that our estimated
time was below the median time we selected when advertis-
ing the task, meaning most participants had a higher hourly
wage.

In terms of risks, the goal of this paper is to create more ef-
fective dialog agents with zero training effort. While we try
to mitigate the possibility of chatbots generating false infor-
mation, our work has the possible risk of creating chatbots
that could also be used to replace human jobs.
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