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ABSTRACT

Self-supervised (SELF-SL) and Semi-supervised learning (SEMI-SL) are two
dominant approaches in limited label representation learning. Recent advances in
SELF-SL demonstrate its importance as a pretraining step to initialize the model
with strong representations for virtually every supervised learning task. This
SELF-SL pretraining followed by supervised finetuning” pipeline challenges the
benefits of SEMI-SL frameworks. This paper studies the advantages/disadvantages
of SELF-SL and SEMI-SL frameworks under different conditions. At its core,
this paper tries to answer the question “When to favor one over the other?”. In
particular, we explore how the choice of SELF-SL versus SEMI-SL framework
affects performance in in-domain, near-domain and out-of-distribution data, robust-
ness to image corruptions and adversarial attacks, cross-domain few-shot learning,
and the ability to learn from imbalanced data. Surprisingly, contrary to popular
belief, our extensive experiments demonstrate that in-domain performance and
robustness to perturbations are the two biggest strengths of SEMI-SL approaches,
where they outperform SELF-SL methods by huge margins, while also matching
Self-supervised techniques on other evaluation settings.

1 INTRODUCTION

Large-scale annotated computer vision datasets such as ImageNet|Deng et al.| (2009) and Kinetics |Kay
et al.| (2017) have been instrumental in remarkable progress towards solving many practical computer
vision tasks such as object recognition He et al.[| (2016)), object detection |[Ren et al.| (2015)), and
image segmentation |Chen et al.| (2017). Nevertheless, due to the high cost of annotating large-
scale datasets, label-efficient representation learning has been an active area of research in the
vision community |Chen et al.| (2020a)); |Dave et al.[ (2022). Methods for learning label-efficient
representations can be roughly grouped into two broad approaches: Self-Supervised Learning (SELF-
SL) and Semi-Supervised learning (SEMI-SL). The SELF-SL approach aims to learn a generic
task-agnostic visual representation using large unlabelled datasets, which can then be finetuned later
on smaller labelled datasets. From a different point of view, SEMI-SL framework introduces the
available limited labels from the very beginning of training, and rely on them to take advantage of a
large unlabeled dataset. These two lines of research have progressed largely independent of each other.
Nevertheless, they both aim to reduce annotation cost of large datasets through utilizing unlabelled
data. In this work we study the differences between representations learned through comparable
instantiations of these techniques to understand the advantages and disadvantages inherent in each
choice. In particular, we employ notable SELF-SL methods such as SwWAV |Caron et al.| (2020), and
SimCLR |Chen et al.[(2020a)), to compare against PAWS |Assran et al.| (2021)) and SimMatch [Zheng
et al.| (2022), which are representative SEMI-SL methods. We note that our study does not include
every SELF-SL and SEMI-SL method, specifically, we do not include Masked autoencoder |He et al.
(2022)) and DINO |Caron et al.| (2021b)) because they are not directly comparable to current prominent
SEMI-SL techniques.

We analyze different aspects of the representations learned by SELF-SL versus SEMI-SL to establish
patterns that can aid practitioners in adopting the best framework to meet their requirements. The
first criterion that we explore is in-domain performance, which is the classification accuracy when
the unlabeled data is drawn from the same distribution as the limited set of labeled data. This is the
classic benchmark to evaluate SEMI-SL algorithms, however, it can readily be applied to SELF-SL
methods as well. Even though the SELF-SL methods’ performance have been improving drastically
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Figure 1: Limited Label Representation Learning is the task of learning a strong classifier using a
small amount of labelled data along with a large amount of unlabeled data. Two popular paradigms
for solving this task are (a) Self-Supervised pre-training on the unlabeled data followed by finetuning
on the labelled data and (b) Semi-Supervised learning, where labeled and unlabeled data are both
used together during joint representation and classifier learning.

in the past few years, our analysis suggests that SEMI-SL methods outperform SELF-SL methods
even when given access to a very limited annotated set. Unsurprisingly, this performance gap narrows
as the size of the annotated data grows.

Our next set of experiments concern the robustness of the learned representations. The first robustness
criterion that we examine is out-of-distribution (OOD) detection Hendrycks & Gimpel| (2017).
Particularly, we evaluate predictive confidence of classifiers based on SEMI-SL and SELF-SL against
data that is drawn from a different semantic space than training data. A practical classifier should
produce low-confidence predictions against OOD data. Utilizing a small set of annotated data, our
experiments indicate SEMI-SL surpasses SELF-SL in OOD detection. The OOD detection is vital for
deploying models that encounter a significant distribution shift at test time. To deploy models in safety-
critical applications |Ghaffari Laleh et al.|(2022)), another quality that is essential is robustness against
corruption and adversarial attacks. Therefore, subsequently, we evaluate adversarial robustness
and robustness to corruption of the SEMI-SL and SELF-SL models, where SEMI-SL outperforms
SELF-SL on both benchmarks.

A key goal of representation learning from large datasets is to reuse representations across multiple
downstream tasks. We evaluate the transferability of SEMI-SL and SELF-SL learned features

to near-domain image classification through retrieval [Krause et al.| (2013); [Fei-Fei et al.| (2004);
Bossard et al.| (2014)); Berg et al.| (2014); [Parkhi et al|(2012); Nilsback & Zisserman| (2008)) and

fine-grained [Radenovic et al|(2018) image retrieval tasks. Utilizing retrieval allow us to test the
general utility of the learned features themselves without finetuning. The chosen classification
datasets are considered near-domain as they share significant overlap with the ImageNet dataset used
for pre-training. We also study transferability in cross-domain settings such as satellite images and
medical images with few-shot training examples.

Finally, we also compare the robustness of SELF-SL and SEMI-SL methods to class imbalance in the
training data. Since imbalance is a natural property of most real world sources of unlabeled data, this
is a crucial test for limited label representation learning methods.

To briefly summarize, the key contributions of our work are as follows:

* An extensive, fair and systematic evaluation of comparable SELF-SL and SEMI-SL methods,
» Demonstration of robustness and transferability benefits of SEMI-SL over SELF-SL,
* Establishing the importance of early introduction of labels in limited label representation learning.
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2 RELATED WORK

2.1 SELF-SUPERVISED LEARNING

In recent years, many classes of self-supervised learning methods have become popular for limited
label representation learning. The standard frameworks follow a two stage approach: the first stage is
self-supervised representation learning followed by supervised finetuning on the labelled set. Popular
families of SELF-SL methods include Contrastive learning based, Clustering based, Self Distillation
based and Masked Image Modeling based methods.

Contrastive Learning methods such as SimCLR |Chen et al.|(2020a) carry out representation learning
by forming positive pairs from image datasets by applying semantics preserving data augmentation
and using other data instances to form negative pairs. Some works build upon the simple contrastive
learning framework by complementing it with techniques such as Momentum Contrast (MoCo
family He et al.| (2020); |Chen et al.| (2020bj; 2021))) and Nearest Neighbour hard positive mining
(NNCLR Dwibedi et al.|(2021)).

Clustering Based SELF-SL: DeepCluster (Caron et al.| (2018) learns an image representation by
alternatively carrying out clustering using the learned features and learning features by predicting the
cluster assignment from the previous clustering step. SWAV |Caron et al.| (2020) takes clustering online
using the Sinkhorn-Knopp algorithm and combined the idea of swapping the cluster assignment to be
predicted between multiple augmented views of the same image.

Self-Distillation Based SELF-SL: Methods such as BYOL |Grill et al.| (2020) and DINO |Caron et al.
(2021b) maintain an exponential moving average of the model being trained as a teacher and train the
student model to match the teacher’s prediction. In order to prevent collapse an additional predictor
head and feature centering are used.

Masked Image Modeling Based SELF-SL: MIM based methods focus on learning representations
by reconstruction. MAE He et al.[(2022) uses an encoder-decoder based approach, with a lightweight
decoder for pixel reconstruction. MaskFeat|Wei et al.|(2022) utilizes a simple linear layer on top of a
vision transformer encoder for reconstructing low level features of the masked area.

2.2  SEMI-SUPERVISED LEARNING

Many approaches for semi-supervised learning have been explored in the literature: combining a
self-supervised loss on the unlabeled images with a supervised loss on the labeled images, imposing
consistency regularization across multiple predictions from the same unlabeled image, self-training
using psuedo-labels, and hybrid approaches which combine these techniques.

S4L|Zhai et al.{(2019) combines the self-supervised rotation prediction pretext task along with super-
vised loss on labeled images. Consistency regularization based approaches include II-Model |Laine &
Aila|(2017) which imposes consistency between different network outputs obtained using dropout.
Mean Teacher Tarvainen & Valpolal (2017) uses consistency between a “student” model and an
exponential moving average “teacher” version of itself. UDA Xie et al.[(2020) simply generates two
views of the input data using data augmentation for consistency training. PAWS |Assran et al.| (2021)
utilizes samples of the labeled data as a support set for predicting view assignments for unlabeled
images, and utilizes consistency between view assignments of augmented views of a single image
for training. Psuedo-labeling [Lee et al.| (2013) the unlabeled data using a model trained on the
labeled data and then iteratively self-training on the generated labels is a simple and effective method
for Semi-SL. UPS Rizve et al.| (2021) proposed an improved method for assigning psuedo-labels
using label uncertainty estimation. Hybrid methods such as MixMatch [Berthelot et al.| (2019b)
and FixMatch |Sohn et al.| (2020) combine elements of both psuedo-labeling and consistency regu-
larization. Some hybrid methods such as ReMixMatch Berthelot et al.[|(2019a) also combine the
previously mentioned techniques with imposition of a prior on the label distribution of the unlabeled
images. SimMatch Zheng et al.| (2022} uses a dual-consistency approach, where each unlabeled
instance is assigned an “instance” psuedo-label based on its similarity with labeled instances, and a
“semantic” psuedo-label based on its distance to class centers. Both consistency loss and self-training
on psuedo-labels are used, which makes SimMatch one of the most powerful Semi-SL techniques.
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3 SEMI AND SELF SUPERVISED LEARNING

In this section we revisit the SELF-SL and SEMI-SL as the two dominant approaches to deal
with the challenge of training with a limited labeled dataset X; through an auxiliary unlabeled
dataset X,,. Suppose X; = {(x;,y;) € X X Y};—1. ., where X C R" denotes the input space
and Y C R denotes the classification probability simplex for K classes. Moreover, consider
Xu = {u; € U};=1..m, where U C R" denotes the set of unlabeled data. Our goal is to learn h o f
that models p(y|x), where fy is the network that learns the representation (feature extractor) and
hg is the classification head. The main challenge in learning SEMI-SL and SELF-SL is to learn
representations from unlabeled examples that enhance generalization of the classifier. To this end,
both approaches rely on some assumptions about the data distribution.

One common assumption about data distribution is data consistency, which presumes small vari-
ations of a data sample should not produce large variations in its representation. In other words,
f(z) = f(2') given a2’ = T(x); T € T, where T is a set of valid transformations such as the data
augmentations that do not change the classification label of an image. However, data consistency
can lead to the degenerate solution, where representations of different samples collapse; therefore
various samples are assigned to an identical representation. To resolve such a mode collapse, data
consistency is usually applied in conjunction with clustering assumption, where, the data distribution
undertakes at least K (K is the number of the clusters) distinct modes. From this perspective, the
training objective for unlabeled data is defined as:

loss, = Z simg(T(w;), T (u;)) — A Z simg(T(w;), T' (uj)), (1)

u; €Ci,u5€Cq

consistency obj. clustering obj.

where ¢; is the ith cluster and simg(.,.) is a function that measures similarity of two samples in a
representation space induced by a function g()ﬂ

Most of the successful SEMI-SL and SELF-SL methods such as pseudo-labeling (Lee et al.| 2013}
Rizve et al., 2021)), FixMatch (Sohn et al., |2020), contrastive learning (Chen et al., 2020a; Tian
et al.} 2020), and Dino (Caron et al.,|2021a)) are based on data consistency and clustering assumption.
Therefore, these methods follow Eq[I} For example, in contrastive learning methods such as SimCLR
(Chen et al.| |2020a), every sample defines a cluster and the training objective is to minimize the
negative log-likelihood:

Zlog > expleos-sim(f(T(uy)), f(T" (ur)))/7)]~log exp(cos_sim(f (T (uy)), f(T" (wi)))/7),

up€c;
@)
where cos_sim() denotes cosine similarity function and 7 is the temperature scaling parameter.

A main difference between SEMI-SL and SELF-SL is in the timeline for introducing the labeled data.
Particularly, SEMI-SL methods introduce these examples early during the training by including a
supervised learning loss such as cross entropy. However, SELF-SL methods uncouple representation
learning and the classification stage. As a result, a common postulate is that SELF-SL methods are
better suited to learn more generalizable representations, i.e., more fitted for transfer learning, than
Semil-SL algorithms. We study the transferability property of the two approaches in Section 4.3]
where we find that across all tasks, SEMI-SL methods match or outperform SELF-SL methods.

Another major disparity is in the definition of the clusters. While in semi-supervised learning the
dominant approach is assigning a cluster to each class, in contrastive learning every sample represents
a cluster. Furthermore, there are SELF-SL methods, such as Dino, in which the number of clusters is
a hyperparameter. The mismatch between the number of clusters and the training examples leads
to various approaches to assign examples to the clusters. A successful technique in SEMI-SL is
to dynamically assign samples to clusters following their predictive confidence (Sohn et al., [ 2020).
Alternatively, Dino applies centering to dynamically assign examples to the predefined clusters.

To compare SEMI-SL and SELF-SL approaches, we adopt two representative methods from SEMI-SL
and their matching counterparts from SELF-SL. In particular, we compare SimMatch and PAWS
with SimCLR and SwAV, respectively. Figure 2| shows a schematic overview of these methods. In the
following we briefly review them.

!Common choices for g are f and h o f.
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Figure 2: Self and Semi-Supervised Learning Methods analyzed in this work. ME-MAX in PAWS
denotes mean entropy maximization which maximizes the average of the sharpened predictions.

SimCLR: One of the earliest approaches in SELF-SL through contrastive learning is SimCLR. As
presented in Figure [2| SimCLR utilizes two semantic preserving transformations of an image to
generate members of a positive pair that are trained to produce consistent representations. Whereas it
regards the other images from a batch as negative samples that belong to other clusters and, therefore,
their representations are dissociated. The training objective is called InfoNCE, which combines these
consistency and clustering objectives according to Equ. 2]

SwAV: Another prominent method in SELF-SL is contrasting cluster assignments across views
(SwAV), which also utilizes the paired augmentation strategy of SimCLR to generate matching views
for unlabeled data to impose data consistency. However, SWAV promotes this consistency between
cluster assignments of different views of the same image, contrary to SimCLR which implement
the consistency directly on image features. In particular, SWAV replaces the similarity between two
representation vectors sim(g(u), g(u')) by sim(g(u), cy) + sim(g(u'), ¢,,), where ' = T"(u) and
¢, denotes the soft cluster assignment of u. On top of that, SWAV utilizes Sinkhorn-Knopp algorithm
to guarantee that the cluster assignments of examples is uniform. In addition, SWAV introduces a set
of prototype vectors to ameliorate the necessity of large batch sizes that are applied in contrastive
learning methods in order to increase the variety of the clusters (negative pairs).

PAWS: Predicting view assignments with support samples (PAWS) is a SEMI-SL method that takes
advantage of the set of labelled samples, called support set, instead of learning a set of prototypes
as in SWAV. This method encourages the similarity between the two views of the same image by
minimizing the cross-entropy between their pseudo-labels (akin to soft cluster assignments in Eq. [T)).
The pseudo-labels are generated by a soft nearest neighbor classifier that makes a weighted average
of the labels in the support set according to the distance of the unlabeled sample to the samples in

. d(f (ui).f(z5)) ‘ : : : :
the support set: ijex)yjey S ex A(F(un) Famyy Vi Where d(.,.) is a distance function. Finally,
to avoid representation collapse, PAWS sharpens the pseudo-labels and applies a mean entropy
maximization term that promotes assignment to different labelled samples.

SimMatch: Another prominent SEMI-SL method is SimMatch, which proposes to improve consis-
tency of the learned representation by a semantic level-similarity and an instance-level similarity.
Following FixMAtch, the semantic similarity minimizes the cross-entropy loss between pseudo-labels
of a weakly augmented and a strongly augmented view of an image. This loss is only applied to
the samples with a high predictive confidence of their weakly augmented view. The instance-level
similarity first convert the weak view and strong view representations to a distribution by utilizing
their distances to the representations of the labeled samples. Then a cross-entropy loss promotes the
agreement of these two distributions. Note that the labeled samples are simultaneously trained with a
supervised learning loss.
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4 ANALYSIS

In this section we compare different aspects of the representations learned by SEMI-SL and SELF-
SL approaches. Our analysis is organized into four sets of experiments: in-domain performance,
robustness, transferability and the ability to learn from imbalanced data.

4.1 IN-DOMAIN PERFORMANCE

In-Domain performance is the classic framework to evaluate SEMI-SL algorithms. In this setting,
both the unlabelled and labelled data used for representation learning are from the same domain (in
this case ImageNet). The downstream task is the classification of the same domain (ImageNet) as well.

Intuitively, in this task, we expect SEMI-SL.  Method ImageNet Top-1 Accuracy
to outperform SELF-SL, as features relevant  Labelled data — 1% 10%
for the downstream task can be learned from  gepmi-Supervised
the very beginning of representation learning PAWS 66.48 75.43
in SEMI-SL, whereas SELF-SL does not have  SimMatch 67.11 74.15
access to labels and hence the learned represen- ¢ ,
L. . . elf-Supervised
tation is not tailored to the given set of classes.  gwAy 5934 74.99
This matches with the empirical observations in  §imCLR 45.95* 65.35

Table where in the 1% labelled dataset sett-
ting SEMI-SL methods (PAWS and SimMatch) Table 1: In-Domain Classification Performance.
outperform SELF-SL techniques by 7%. As the * - our reproduction

amount of labelled data increases (10%), the gap

between SEMI-SL and SELF-SL closes and we observe that PAWS outperforms SwAV only by <1%.

4.2 ROBUSTNESS

4.2.1 OUT-OF-DOMAIN DETECTION

In our first task, we evaluate robustness of SELF-SL and SEMI-SL approaches to out-of-domain
(OOD) detection . In these experiments, an OOD dataset is created by sampling images from LSUN-
Scenes and ImageNet21k datasets, respectively, where we remove the classes that are in common
with ImageNetlk. The ImageNet1K Validation set is used as the in-domain dataset. The finetuned
ImageNet classifiers are used as OOD detectors by treating the softmax score of the highest predicted
class as the predicted in-domain score. Following prior work (Hendrycks & Gimpell 2016; [Liang
et al.| [2017), AUPR and AUROC metrics are calculated for the binary task of OOD detection. When
1% labelled data is available, SEMI-SL outperforms SELF-SL. Nevertheless, with the availability
of more labelled data, in the 10% setting, both classes of methods perform similarly with small
difference in AUPR and AUROC. As OOD detection can be important for practical deployment of
models, the choice of SEMI-SL vs SELE-SL can make a difference.

OOD Dataset — LSUN-Scenes ImageNet21K — ImageNet1K
Labelled data — 1% 10% 1% 10%
Method AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC
Semi-Supervised

PAWS 0.689 0.659 0.742 0.735 0.687 0.710 0.713 0.737
SimMatch 0.756 0.732 0.734 0.732 0.711 0.726 0.716 0.741
Self-Supervised

SwAV 0.649 0.617 0.752 0.745 0.658 0.659 0.715 0.727
SimCLR 0.606 0.571 0.699 0.678 0.625 0.618 0.662 0.675

Table 2: Out-of-Domain Detection

4.2.2 ADVERSARIAL ROBUSTNESS

The adversarial robustness is measured by using popular adversarial attacks such as FGSM and
PGD. Images from the ImageNet validation set are used for generating the adversarial examples.
This setting highlights a major advantage of SEMI-SL methods over SELF-SL as in both 1% and
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Figure 3: Effect of different types of corruptions

10% settings SEMI-SL outperforms SELF-SL by large a margin. As reported in Table 3] in the
10% labelled data setting, PAWS outperforms SwAV by 6% and 8% under FGSM and PGD attacks,
respectively, while SimMatch outperforms SimCLR by even a larger margin. We hypothesize that
the availability of labels during representation learning allows SEMI-SL methods to learn robust
representations that lead to maintaining larger margins between class boundaries and class instances.
In applications where robustness is important, SEMI-SL representations therefore provide a clear
advantage over SELF-SL models.

1% labelled data 10% labelled data
Robust Ace. 1 Robust Acc. T

Method

Clean Acc.t FGSM PGD Clean Acc.t FGSM PGD

e=1/25 L[2e=0.5 e=1/2m5 L[2e=0.5

Semi-Supervised
PAWS 66.48 17.56 19.01 75.43 14.90 15.79
SimMatch 67.11 25.94 25.70 74.15 26.59 26.91
Self-Supervised
SwAV 59.34 6.25 6.43 74.99 8.91 7.28
SimCLR 45.95 10.37 9.29 65.35 11.67 9.65

Table 3: Adversarial Robustness

4.2.3 ROBUSTNESS TO NATURAL CORRUPTIONS

Adversarial robustness represents the worst case
perturbation that a classifier could encounter,
however, in practice robustness to natural cor-

Mean Corruption Error (mCE1) |

ruptions such as blurring and fog is more impor- Method labelled data

tant. To measure robustness to natural corrup- 1% 10%
tions we utilize ImageNet-C dataset Hendrycks|  Semi-Supervised

& Dietterich| (2019) and measure mean Corrup-  PAWS 1154 93.4
tion Error (mCE) across 15 different perturba- ~ SimMatch 112.2 97.7
tion types relative to a supervised ResNet50 Self-Supervised

model, which is assigned an mCE score of 100.  gwAv 151.2 109.5
Lower values indicate higher robustness. In  SimCLR 171.7 128.6

this experiment, SEMI-SL methods outperform
SELF-SL methods by nearly ~ 40 points in the Table 4: Robustness to Natural Corruptions
1% setting and ~ 10 points in the 10% setting (Table ). This experiment confirms that the labels are
crucial for learning robust features. Figure [3]illustrates the effect of each type of corruption.

4.3 TRANSFERABILITY

Transfer learning is a common practical application of representation learning. Recent progress in
SELF-SL methods show their superior transferability over classic supervised pretraining approach.
In this section we compare the transfer learning capabilities of SELF-SL and SEMI-SL methods.

4.3.1 NEAR-DOMAIN TRANSFERABILITY

In order to evaluate the transferability of the features learned by SEMI-SL and SELF-SL methods in
a near-domain setting, we formulate a simple retrieval based classification task. We do not fine-tune
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the models in order to evaluate the natural transferability of the learned features. Alternatively, a
k-nearest neighbour classifier is built using the training set of the evaluated problem, and the images
from the val/test are classified by matching with the training set using the feature representation of
the model being evaluated.

BirdSnap Cars Food Flowers CalTech Pets Average

Semi-Supervised

SimMatch (1%) 357 234 496 81.6 88.8 879 55.8
SimMatch (10%) 36.6 302 514 82.5 89.1 89.1 57.9
PAWS (1%) 340 328 534 873 87.0 845 58.9
PAWS (10%) 378 359 550 87.2 88.4 859 60.9
Self-Supervised

SimCLR 126 160  39.6 77.2 855 683 46.2
SimCLR (1% FT) 156 146  39.6 74.2 846 713 50.0
SimCLR (10% FT) 220 189 437 75.8 874 792 49.6
SwAV 164 21.6 499 83.0 84.7 753 51.1
SwAV (1% FT) 265 244 520 83.6 839 789 54.1
SwAV (10% FT) 345 272 555 85.7 87.0 844 58.0

Table 5: Near-Domain Transferability. Best overall & 1% result Bolded & Underlined.

Note that all of these datasets consist of near-domain examples from ImageNet, where the images
have label overlap with ImageNet. Moreover, CalTech and Pets datasets have a high degree of overlap
with ImageNet classes, while BirdSnap and Cars have limited overlap, i.e., representing a harder
generalization task. As a result, we expect higher accuracies on CalTech and Pets.

We find that across all tasks, SEMI-SL methods match or outperform SELF-SL methods in transfer-
ability (Table[5). At the first glance, transferability is one of the tasks in which we expect SELF-SL
to have an advantage over SEMI-SL methods as their representation learning is not tied to one set of
labels. However, as we observe in this Table, even in transferability, SEMI-SL methods maintain their
advantage. This suggests that the semantic information in the source domain improves the quality of
learned features for near-domain tasks.

4.3.2 FINE-GRAINED RETRIEVAL

This analysis is siilar to the near-domain transferability, however it utilizes a fine-grained task. In this
experiment, the images are from the revisited Oxford and Paris datasets, where one specific building
forms a single “class”. The result in Table[6]show that SEMI-SL methods outperform SELF-SL by
significant margin across Easy, Hard and Medium settings. Therefore, despite being trained on coarse
grained class labels, SEMI-SL methods still benefit on this fine-grained task.

rOxford5k (mAP) rParis6k (mAP)
Method Easy Medium Hard Easy Medium Hard

Semi-Supervised
SimMatch (1%) 50.33 33.57 7.03 7634 60.72 32.46
SimMatch (10%) 48.84 33.38 8.05 74.47 59.29 31.80

PAWS (1%) 57.61 38.79 893 75.33 59.73 32.44
PAWS (10%) 54.98 38.07 10.36 78.12 61.39 33.70
Self-Supervised

SimCLR 34.92 23.56 426  66.37 50.07 22.76

SimCLR (1% FT) 38.77 26.27 463  68.51 52.80 25.01
SimCLR (10% FT)  39.80 26.49 4.67 70.84 53.95 25.49
SwAV 47.15 3225 794 7191 53.22 24.08
SwAV (1% FT) 49.86 32.58 6.06 73.89 56.13 26.99
SwAV (10% FT) 52.56 34.82 7.54  75.02 57.86 29.28

Table 6: Fine-Grained Retrieval. Best overall & 1% result Bolded & Underlined.
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4.3.3 CR0OSS-DOMAIN FEW-SHOT TRANSFERABILITY

To compare the transferability of learned features by these methods to completely different data
domains, we evaluate their few-shot classification performance in the cross-domain setting . The
datasets |Guo et al.| (2020) on which we evaluate the few-shot performance exhibits various shifts
from in-domain ImageNet data. For instance, even though the Crop Disease dataset contains natural
images, it covers drastically different semantic concepts that are specific to the agricultural industry.
EuroSAT, on the other hand, not only contains semantically different images but also includes images
without any perspective distortion. ISIC and ChestX datasets pose greater challenge since both of
these datasets contain medical images, with ChestX images lacking even color.

To minimize the impact of confounding variables in this evaluation we do not perform any finetuning.
We use the pretrained models from the corresponding methods to extract features and learn a logistic
regression classifier on top of the extracted features by utilizing the few labeled examples from the
support set. We report the results in Table [/ where, we observe that, on ISIC and EuroSAT datasets,
the learned representations from PAWS outperforms SwAV, whereas, on Crop Disease and ChestX
datasets the difference is smaller than the margin of error. We observe a similar trend in the case
of SImCLR and SimMatch where SimMatch outperforms SimCLR on all datasets except ChestX,
where it ties with SimCLR. These results demonstrate that, even on drastically different data domains,
transferability of SEMI-SL features either outperforms or matches SELF-SL methods.

Crop Disease EuroSAT ISIC ChestX
1-shot  5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Semi-Supervised

SimMatch (1%) 7495 9330 68.36 87.04 30.82 4391 2290 26.56
SimMatch (10%) 76.15 93.80 69.28 87.60 30.51 4437 2246 25.81
PAWS (1%) 79.47 9492 71.55 89.77 32.03 46.79 2327 27.12
PAWS (10%) 80.32 95.16 70.04 89.96 31.72 4582 2333 2723
Self-Supervised

SimCLR 73.11 92,60 61.35 84.73 30.74 4397 2351 27.90

SimCLR (1% FT) 72.04 9154 6155 7991  29.12 4055 2265 2588
SimCLR (10% FT) 71.34 9227 6346 84.63 29.54 4292 2294 2693

SwAV 80.02 9507 6999 8927 2925 4259 2298 2653
SwAV (1% FT) 80.06 9536 6897 87.67 30.05 4326 2281 26.36
SwAV (10% FT) 80.60 9559 68.53 8847 2971 4380 2252  26.00

Table 7: Cross-Domain Few Shot Transfer Learning. Best overall & 1% result Bolded & Underlined.

4.4 LEARNING FROM IMBALANCED DATA

To compare SEMI-SL and SELF-SL on their ability
to learn from imbalanced data we utilize subsets of
ImageNet-100 for reasonable training time within our
computational budget. For training, we create two sub- SwAV  PAWS
sets of ImageNet-100, each with 58,200 unlabelled im- B

. alanced 36.7 48.3
ages and 6,500 labelled images. In the balanced subset, Imbalanced 244 474
equal number of images from each of the 100 classes i ’
are included in both labelled and unlabeled groups. Table 8: Learning from Imbalanced Data.
Whereas, in the Imbalanced subset, the number of im-
ages from each class match a distribution with Imbalance Factor of 5. The entire ImageNet-100
validation set is used for testing. Both SWAV and PAWS models are trained for 100 epochs. The
results in Table [8|demonstrate that SEMI-SL (PAWS) outperforms SELF-SL (SwAV) in both balanced
and imbalanced settings. It is also noteworthy that SEMI-SL is less sensitive to imbalance in data.

Top-1 Accuracy on ImageNet-100

5 CONCLUSIONS

As self-supervised pre-training followed by finetuning becomes the dominant paradigm for limited
label representation learning, this study provides evidence for the continued utility of SEMI-SL. In
particular, our detailed empirical studies demonstrate that early introduction of labels in SEMI-SL
benefits both the robustness and transferability of the learned representation. Moreover, our analysis
illustrates that SEMI-SL leads to representations that are more resilience to imbalance in data.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

In our experiments, we obtain the analyzed models from the repositories of the original authors.
The links to each of these are provided below:

SWAV: https://github.com/facebookresearch/swav
SimCLR:https://github.com/google-research/simclr
PAWS:https://github.com/facebookresearch/suncet
SimMatch:https://github.com/mingkai-zheng/SimMatch.git

Since the SIimCLR repository does not provide weights for the 1% finetuned model, we train such a
model by finetuning it on 1% of data. The finetuning job ran for 20 epochs, with a learning rate of
5.0 for the classification head and 0.2 for the backbone. LR decay of 0.2 was applied at the 12th and
16th epochs. A Batch Size of 256 (128 across 2 RTX A6000 GPUs with 48GB VRAM) was used for
the finetuning.

A.1.1 OOD DETECTION

In our OOD experiments, we use a temperature of 1.0 for calculating the softmax score.

A.1.2 ADVERSARIAL ROBUSTNESS

For the PGD attack we use a L, norm magnitude of 0.5, with 4 attack steps.

A.1.3 ROBUSTNESS TO NATURAL CORRUPTIONS

The original ImageNet-C dataset has 5 severity levels of corruption, we only use severity level 1 since
the models under test are not especially trained for robustness and severity = 1 causes a significant
drop in robustness.

Unlike the original paper which uses an AlexNet model as reference for calculating the relative mean
corruption error, we use a Supervised ResNet50 model as the reference as all the models we are
testing are ResNet50 and this shifts the scale to a natural reference point of 100.

A.1.4 NEAR-DOMAIN TRANSFERABILITY

For the k-nearest neighbour classifier we use k=1. In our experiments different values of k do not
change the relative ordering of the models.

A.1.5 FINE-GRAINED RETRIEVAL

We use the Revisited Oxford and Paris images without distractors for these experiments.

A.2 EVALUATING REPRESENTATIONS IN DENSE ASSOCIATION TASKS

We use the UniTrack [Wang et al.|(2021)) codebase for these experiments:
https://github.com/Zhongdao/UniTrack

A.2.1 VIDEO OBJECT SEGMENTATION

We evaluate the model representation on DAVIS-2017 Video Object Segmentation task following
the protocol in Jabri et al. Jabri et al.|(2020) The segmentation mask is propagated by nearest
neighbour matching between consecutive frames without any trainable component. This provides us
an evaluation of the spatial representation capabilties of the models. We report mean region similarity
(Jm) and contour accuracy (F,,) relative to the ground truth segmentation. Region similarity is
measured using Intersection over Union, while contour accuracy is measured using F-measure, which
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is a weighted average of the recall and precision. We find that SEMI-SL methods slightly outperform
SELF-SL models on this task.

(T&F)m  Tm  Fm

Semi-Supervised

PAWS (1%) 62.2 60.6 63.8
PAWS (10%) 62.0 60.2 639
SimMatch (1%) 63.4 613 654
SimMatch (10%) 63.6 61.6 65.6
Self-Supervised

SimCLR 62.3 60.5 64.2
SimCLR (1% Finetuned) 58.1 56.5 59.7
SimCLR (10% Finetuned) 61.6 59.7 635
SwAV 62.7 61.1 643
SwAYV (1% Finetuned) 62.2 60.5 63.9
SWAV (10% Finetuned) 61.9 60.2 63.7

Table 9: Video Object Segmentation

A.2.2 MULTI-OBJECT TRACKING

We follow the UniTrack framework Wang et al.|(2021) for this evaluation. The ground truth detections
are provided to the framework, and data association across frames is carried out with features extracted
using the model being tested. SEMI-SL methods outperform SELF-SL by around 1.5% in IDF1
(which measures association accuracy) and around 1% in the composite HOTA metric.

IDF1 HOTA

Semi-Supervised

PAWS (1%) 77.6 64.1
PAWS (10%) 78.0 64.5
SimMatch (1%) 78.1 64.5
SimMatch (10%) 78.8 64.8
Self-Supervised

SimCLR 76.1 63.2

SimCLR (1% Finetuned) 77.2 63.5
SimCLR (10% Finetuned) 76.9 63.5
SwAV 70.9 59.5
SWAV (1% Finetuned) 77.3 63.7
SwAV (10% Finetuned) 77.2 63.9

Table 10: Multi-Object Tracking
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