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Introduction 

Recent advances in deep learning, particularly in 3D geometric learning, combined with the 

growing availability of specialized hardware, have led to the development of powerful new 

methodologies, algorithms, and tools for 3D content creation. These innovations enable 

automatic generation, manipulation, and interpretation of complex spatial data at a 

computational cost that is manageable with today’s commodity hardware. This work focused 

on a self-supervised training approach that leverages input data such as 2D images or other 

task-specific modalities captured from the physical world. The output is a digital twin in the 

form of a 3D triangular mesh, ready for real-time use in any conventional visualization 

framework (e.g., web, mobile, desktop). This type of 3D geometric learning algorithms has the 

potential to automate the creation of digital replicas of real-world objects. Consequently, these 

technologies can greatly accelerate the traditionally labor-intensive process of generating 

accurate virtual representations, streamlining workflows and enabling more efficient and high-

fidelity novel content creation. However, architecting a reliable end-to-end workflow is a non-

trivial task since one needs to strike balance between several key factors. These include output 

quality in terms of surface structure and associate properties (e.g., color), computation time 

and resources to prepare the input stream and generate the final mesh as well as transform the 

content of the output mesh such as quality is maximized while size is minimal to be transmitted 

and loaded to any conventional device. 

This work introduces VISOR, a virtualization service for object reconstruction which builds 

upon the latest developments in the literature Neural Radiance Fields [1] (NeRFs) and stands as 

a complete pipeline for generating 3D content from real-world physical objects. The proposed 

pipeline integrates and extends state-of-the-art techniques at the intersection of computer 

vision, computer graphics, and neural optimization and it is structured into three distinct 

phases: pre-processing, optimization, and post-processing, each of which is discussed in detail 

below. Finally, we present empirical results on a diverse set of objects to demonstrate the 

effectiveness of the pipeline and discuss its current limitations along with potential future 

directions for improvement. 
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Methodology 

VISOR is designed for the reconstruction of single entities from the physical world that can be 

captured by conventional recording devices such as a smartphone. In this section, we outline 

the key methodologies and design considerations required to construct such a workflow to 

transform a sequence of images, or a video stream, of a physical object into a 3D triangular 

mesh. Briefly, the VISOR pipeline can be described by three main stages: pre-processing, 

optimization, and post-processing, each designed to efficiently extract and refine spatial and 

appearance information from unstructured visual input. 

Pre-processing. VISOR receives input from a finite stream of images or a video sequence 

capturing the target physical object. There are no restrictions on the type of images or the 

video encoding as well as the capturing resolution. To generate a plausible result, the input set 

of images can be as low as 50 unique and overlapping photos while the video sequence can 

be at least 30 seconds long. Since VISOR optimizes mesh structure from raw images, if a video 

stream is supplied instead, we automatically convert it to a finite image set by adaptively 

sampling the sharpest consecutive frames. To proceed with the NeRF optimization stage, 

camera calibration to extract both intrinsic and extrinsic camera parameters is required since 

these per-image parameters are typically unknown but implicitly defined by the user’s capture 

device. VISOR recovers those parameters by applying the GLOMAP [2] calibration toolbox 

which balances between speed and accuracy. Finally, we isolate the object interest from the 

background for each image by applying a general-purpose dichotomous image segmentation 

neural network [3]. Each generated tuple of segmentation mask and viewport transformation 

is forwarded to the optimization stage. 

Optimization. VISOR’s reconstruction methodology follows the signed distance field (SDF) 

formulation for which the reference 3D surface lies at the zero-level set. SDF essentially defines 

a real function that maps 3D coordinates to real values indicating their closest distance from 

the reference surface. In the special case of the zero-level set, these distances must be equal 

to zero. This paradigm is a common modelling approach in object reconstruction due to its 

continuous, flexible and mathematically grounded form. The task of the VISOR service is to 

learn and recover this function from the input stream of images. VISOR optimizes the SDF by 

following the current state-of-the-art paradigm based on NeRF theory [1]. Briefly, it leverages 

volume rendering designed for novel view synthesis tasks reparameterized in a way that allows 

for SDF optimization at the same time. As is typical in this optimization regime, ray batches are 

iteratively generated from the calibrated viewports of the input images. These rays are then 

sampled across their span in a predefined granularity and the volume rendering equation is 

evaluated in a per-pixel basis. VISOR follows practices from the most recent literature [4], which 

demonstrates how opaque objects can be formulated as volumetric entities by adopting 

stochastic geometry theory. Then, by reparameterizing the volume rendering equation the 

novel synthesis task can be reformulated as an SDF optimization problem, effectively retrieving 

the zero level-set of the reference object. VISOR follows this paradigm as its core optimization 

methodology. To make this approach tractable in terms of resources and computation time, 

VISOR is implemented based on state-of-the-art hardware accelerated neural encoding 

modules [5] as well as adopting specific design choices for the underlying neural-based 

modules for this task [6] to further accelerate the training phase. As an additional optimization 
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This scheme effectively decouples the input image resolution from the actual physical object 

which is only depicted on a small portion of it. 

Post-processing. In the final phase, VISOR processes the signed distance values sampled from 

the optimized field to generate an initial triangular 3D mesh. An isosurface extraction algorithm 

(in our case, Marching Cubes [7]) is used to construct the polygonal surface. Notably, the 

chosen resolution to discretize space directly influences both quality and file size. Since we aim 

to extract a triangular surface that closely resembles the optimized SDF we prioritize quality 

over size in the first step. Then, the surface is appropriately simplified to reduce primitive 

redundancies [8] to drastically reduce the initial triangle count. To also embed surface 

properties such as color information we apply UV-unwrapping [9], allowing for texture baking. 

Since the simplified geometry includes new points, we need to resample the radiance in the 

hemisphere around the local normal vector using the already trained model to estimate the 

per-point appearance. Surface colors are encoded into the texture map we have already 

created and enable realistic shading of the mesh. The completed 3D model is then exported in 

a standard file format (e.g., FBX or GLB), making it ready for real-time rendering in 3D game 

engines such as Unity or Unreal Engine. 

Results 

In this section we provide some experimental results demonstrating the efficiency of the VISOR 

service. The full workflow of VISOR can be executed in under 10 minutes on commodity GPU 

hardware, such as NVIDIA RTX 4090, for a single object instance. In Figure 1, we depict some 

indicative outputs from our service. For each example case, we include the size of the reference 

object in physical units, the total time required to get the output 3D mesh along with the final 

file size and triangle count of the actual content. 

Conclusion & Future Work 

The VISOR pipeline offers an end-to-end solution for 3D reconstruction from a set of input 

images or a video stream. While each module is designed with research-driven methodologies, 

certain limitations remain, primarily due to the quality of input data and implementation-

specific assumptions embedded within intermediate stages. For instance, early-stage errors, 

such as motion blur or insufficient coverage of the target object, can propagate through the 

pipeline and significantly degrade the fidelity of the final reconstruction. To support accessibility 

and ease of use, VISOR is deployed as a web-based service, allowing users to upload videos or 

image collections and receive a reconstructed 3D asset in return. The planned future updates 

aim to align the pipeline more closely with the latest research. Improvements are anticipated 

in the calibration stage, enhancing robustness to challenging capture conditions, and in surface 

appearance modeling to better approximate physically accurate rendering. However, the most 

critical area of ongoing development is the optimization phase, with a focus on improving the 

converged SDF quality and reducing the time required to achieve high-quality reconstructions. 
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Figure 1. Indicative outputs from the VISOR service. 
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